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Feedbacks in QCA: a Quantitative Approach
Marco Vacca, Juanchi Wang, Mariagrazia Graziano Member IEEE, Massimo Ruo Roch, Maurizio Zamboni

Abstract—In the post-CMOS scenario a primary role is played
by Quantum dot Cellular Automata (QCA) technology. Irre-
spective of the specific implementation principle (e.g. either
molecular, magnetic or semi-conductive in current scenario) the
intrinsic deep-level pipelined behavior is the dominant issue. It
has important consequences on circuit design and performance
especially in presence of feedbacks in sequential circuits. Though
partially already addressed in literature, these consequences still
must be fully understood and solutions thoroughly approached
in order to allow this technology any further advancement.

This work conducts an exhaustive analysis of the effects and
the consequences derived by the presence of loops in QCA cir-
cuits. For each problem arisen a solution is presented. The analy-
sis is performed using as test architecture a complex systolic array
circuit for biosequences analysis (Smith-Waterman algorithm)
which represents one of the most promising application for QCA
technology. The circuit is based on NanoMagnetic Logic as QCA
implementation, is designed down to the layout level considering
technological constraints and experimentally validated structures,
counts up to approximately 2.3Ml nanomagnets, is described
and simulated with HDL language using as a testbench realistic
protein alignment sequences.

The results here presented constitute a fundamental advance-
ment in the emerging technologies field, since, 1) they are based
on a quantitative approach relying on a realistic and complex
circuit involving a large variety of QCA blocks, 2) they strictly
are reckoned starting from current technological limits without
relying on unrealistic assumptions, 3) they provide general rules
to design complex sequential circuits with intrinsically pipelined
technologies, like QCA, 4) they prove with a real application
benchmark how to maximize the circuits performance.

Index Terms—QCA, NML, Systolic Array, Smith-Waterman,
Feedbacks, VHDL.

I. INTRODUCTION

Studies on Quantum dot Cellular Automata (QCA) envisage

this technology as a promising alternative to CMOS [1].

Information is coded using cells retaining only two stable

states used to represent digital values [2]. Nearby cells in-

fluence each other like in a ”domino” chain. Circuits are

designed placing identical cells on a plane and computation is

performed through local coupling among neighbor cells [3].

Different implementations of the general QCA principle were

proposed. The most interesting are Molecular QCA [4][5] and

NanoMagnet Logic (NML) [6][7][8]. In the former version

molecules are the basic cells and are interesting for their

potential high operating speed (1 THz) and reduced power

density due to the absence of inter-molecules conduction

[9]. However technology is far from being mature and from

giving experimental results in the short term [10]. NanoMagnet

Logic uses instead single domain nanomagnets as basic cells

(Fig. 1.A). While this technology operates at frequencies lower
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Fig. 1. NML logic basics. A) Single domain nanomagnets are used as basic
cells to represents the logic values ’0’ and ’1’. B) Example of experimental
fabrication of a NML wire. C) The majority voter is a 3 input gate where the
value of the central magnet is equal to the majority of the inputs. It is the main
logic gate available in this technology. D) NML circuit example. Circuit is
divided in areas called clock zone composed by a limited number of cascaded
magnets. Since only one plan is available to route signals a particular block,
called cross-wire, allows to cross two signals without interferences. Other
logic gates can be fabricated changing the shape of one magnets [18]. E)
Multi-phase clock system: timing evolution of the circuit. F) Clock signal
waveforms required for the three phase clock system.

than in the molecular case (50-200 MHz) [11][12], due to

its magnetic nature it combines logic and memory in the

same device enabling the development of completely new type

of circuits. It has already been experimentally demonstrated

[6] and it proved to have a very good tolerance to process

variations [13][14]. Furthermore it is resistant to radiations

and heat, being as a consequence a perfect candidate for

military and space applications. Even more notably, it has also

a potential very low power consumption with respect to state-

of-the-art CMOS technology [15], confirming thus to be the

possible candidate to solve those power issues that are the

designer nightmares when dealing with forthcoming scaled

CMOS technology nodes [16][17].

We use NML here as a reference for the discussion.

Nonetheless, any aspect mentioned in this paper can be directly

applied to the other possible QCA implementations. Details

on the circuits organization (an overview is in Fig. 1) and

on the most important technological constraints are presented

and discussed in section II. A pair of crucial aspects are herein

briefly enlightened, instead, to clearly state the contribution we

provide in this paper.

The first issue is related to technological features that have

a few consequences: i) circuits are intrinsically pipelined, ii)

the pipeline depth is dictated by technology, and iii) the delay

of a signal is counted in terms of number of clock cycles and

depends on the circuit layout. This aspect has been baptized

“layout=timing” [19], it is well known and several works and

discussions on careful circuit layout have been carried on and

circuit level solutions have been deeply analyzed [20] [21][22]

[23][24] [25].

A second issue, consequence of the first and focused in this
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paper, is related to the presence of functional feedbacks in

the architecture to be implemented. Due to the coexistence

of the “layout=timing” issue, in presence of loops two kind

of problems arise: a) dramatic loss of performance and b)

signals synchronization issues. On the one hand, these might

seem obvious to the experienced designer of circuits based on

conventional technologies. On the other hand i) their solution

is not that obvious considering typical QCA technological

constraints and possibilities; ii) it has been mentioned in

the literature [20] but only in some cases it has been given

practical solutions [22] and thus it still needs to be thoroughly

addressed; iii) it assumes particular relevance when the de-

signer tackles circuits of realistic complexity implementing

functions comparable to conventional technology ones. This is

true especially considering that often in the literature simple

or medium complexity circuits and case studies have been

used for discussing these problems. The following are then

our goals and main contributions in this paper.

GOALS. As the key-point is understanding whether QCA

technology can be a reliable substitute for CMOS, then we

believe that:

1) the issues arisen are to be completely revealed,

2) the problems must be discussed considering a circuit of

realistic complexity,

3) the feasibility of possible solutions should be thoroughly

discussed at the light of the currently available techno-

logical solutions,

4) the solutions should be general and not specific for a

given architecture and a particular QCA implementation.

CONTRIBUTIONS. After a short introduction on NML

circuit layout and a discussion on the timing issues here

mentioned in Section II,

1) we introduce in Section III the test architecture we im-

plemented based on a complex systolic array circuit for

Biosequence analysis [15]. This architecture represents

itself a novelty for the state of the art in NML, because it

is completely designed at the layout level and because it

respects all the technological constraints, without relying

on unrealistic assumptions.

2) The analysis is particularly relevant because it involves

a complex circuit counting up to 2.3Ml nanomagnets,

involving both combinational, sequential and memory

blocks, implying the solution of various and articulate

design issues far beyond those addressed up to now in

the related literature.

3) We analyze and quantify the loss of performance due

to the presence of feedbacks in Section IV and propose

solutions that can be applied independently on the type

of architecture and of the QCA implementation.

4) We discuss and reveal the synchronization issues in

Section V quantifying the impact of this problem on

our realistic circuit.

5) We propose in the same Section solutions allowing not

only to achieve a full signal synchronization, but also to

maximize performance, and we do this by considering

the constraints that technology imposes.

Therefore our contribution represents a very important step

Fig. 2. A) Example of NML circuit layout. Clock zones are organized
in parallel straight wires. While this clock system was developed for mag-
netic field-based NML circuits it can be adopted also with different clock
mechanism since it solves the “layout=timing” problem. B) An example of a
possible clock generation based on the injection on current through a copper
wire, with consequent magnetic field generated on the top layer. C) Detail
of clock wires. Wires are placed under and over the plane so that can be
twisted to allows signals propagation in every direction. D) Systolic arrays
are circuit architectures particularly suited for QCA technology, due to the
layout regularity and the absence of long interconnections. Can be organized
in simple rows of processing elements (PE), or in E) matrixes of PE.

forward in the development of QCA technology. Moreover,

even though our analysis uses here NML as test technology,

vi) the results here discussed can be directly extended to

all the technologies that present an intrinsically pipelined

behavior, like molecular QCA or NanoFabric [26] or even

more conventional technologies [27]. This paper then gives

general guidelines for designing sequential circuits in presence

of loops in many emerging and future technologies.

II. NML BACKGROUND AND CIRCUITS ORGANIZATION

Although the basic cell in NML technology is quite different

with respect to the cells based on other implementations of the

QCA principle, circuits are organized and constrained in a sim-

ilar way independently on the implementation. Figs. 1 and 2

will help to gather the most important characteristics.

Fig. 1.B shows for example the experimental fabrication of

a NML wire, based on horizontally aligned magnets. The basic

logic gate is the Majority Voter (MV) [13], shown in Fig. 1.C.

It is a three input gate where the value of the central magnet is

equal to the majority of the inputs. By forcing one of the inputs

to 0/1, the MV works as a AND/OR. More simply, AND/OR

gates can be obtained changing the shape of one magnet [18],

as shown in the circuit example of Fig. 1.D (bottom box).

Since up to now NML circuits are limited to only one plan

(no stacked layers are admitted), a cross-wire block [28] is

used to cross two wires without interferences (Fig. 1.D).

The first issue mentioned in the introduction arises from two

intrinsic technological aspects. First of all the near-neighbor

interaction among neighbor cells is not sufficient to switch

magnets from one state to the opposite. An external field,

normally called clock [29], is needed to temporarily force

magnets in an intermediate unstable state (NULL in Fig. 1.A).

This action lowers the energy barrier and consequently allows

for a cell to switch its neighbors. The second important
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technological feature is that only a limited number of cascaded

elements will switch correctly in sequence without errors. This

is particularly true if external influences, like thermal noise

[30], are taken into account.

To solve these problems and to allow error-free sig-

nals propagation, multi-phase clock systems were developed

[31][11][7][32]. Just to give an example in [7][32] a three

phase clock system for NML technology was proposed.

Magnets are organized in zones (e.g. zones 1, 2 and 3 in

both Fig. 1.D and Fig. 2.A). In each zone only a sequence

of a few magnets can reliably propagate the information, and

this is enabled by applying the clock signal with the proper

timing to each zone as shown in Fig. 1.F. Thanks to this

mechanism in every time step magnets of a clock zone can

be in three different states, as shown in Fig. 1.E: RESET,

SWITCH, HOLD. In the RESET state an external means, like

a magnetic field, is applied to magnets forcing them in the

NULL state. This can be obtained, for example, by injecting

a current I through a metal wire under the the magnet layer,

as depicted in Fig. 2.A [33]. This solution works and was also

experimentally demonstrated [34]. In this case the clock zones

layout is made by parallel stripes which correspond to the

wires used to transport the current, as shown in both Fig. 2.A.

and 2.B. The current flows and a magnetic field is induced

in the direction perpendicular to the nanomagnets main axis,

thus erasing any previous magnetization state they might have.

Fig. 2.C shows a detail of the three phase clock system [7].

Wires are placed over and under the plane so that can be

twisted allowing signals propagation in every direction. This

is one of three techniques available to build loops in NML,

the other solution is to use a 2-phase clock as proposed in [35]

or magneto-electric interfaces to translate the magnetic signal

into an electric one. For detailed explanations and results refer

to [34][7].

Going back to the sequence of phases, after the RESET ap-

plication, in the SWITCH phase the magnetic field is removed

and magnets are free to switch to a stable state. They switch

according to magnets on the left, which are in the HOLD state,

that means no magnetic field is applied. Magnets in the HOLD

state act therefore as inputs for switching magnets. Fig. 1.E

shows how in every time step this situation is repeated, but the

clock zone in the SWITCH state is the next in the sequence,

so signals propagate through the circuits, in this example from

left to right. The multiphase clock system leads to an intrinsic

pipelined behavior. Wires are equivalent to a CMOS shift-

register, because every consecutive group of three clock zones

has a delay of one clock cycle. However, differently from

CMOS in QCA technology the pipeline level is not a choice

of the designer, but it depends on technological constraints,

like the maximum number of cells in a clock zone and the

total number of clock zones, and it is normally quite high.

Apart from the magnetic field based clock [34][7], in recent

years different clock solutions were proposed, like Spin Torque

coupling through a current flowing through the magnets [12] or

systems based on the magneto-elastic effect [36] [15], where

an electric field is applied to a piezoelectric material that

strains the magnets and rotates the magnetization vector. A

comparison between these clock systems can be found in [15],

but here no further details are reported, being they out of the

scope of the paper. It is worth mentioning that different QCA

implementations will use different mechanism like an electric

field instead of a magnetic field in the Molecular QCA case

for example [37][38].

The clock zones layout shown in Fig. 2.A is based on the

constraints of the magnetic field approach. Other clock systems

may not be limited to this layout. However, we use this layout

organization in this work because it intrinsically enables the

solution of the abovementioned “layout=timing” problem. As

a matter of fact, using this layout the length of all the wires

from every input to every output in terms of clock cycles is the

same. Consequently signals are perfectly synchronized without

the need of asynchronous protocols like widely discussed in

[23][25] [39][21].

Irrespective of the type of physical method used, the intrin-

sic clocking system is not a feature strictly related to QCA

technologies. Other emerging technologies, for example like

NanoFabric circuits [26], use a dynamic clocking required to

locally control the information flow, independently from the

circuit functions. This, actually, means to lead to the extreme

what is already happening in conventional high performance

CMOS based architectures. Often, interconnect delay is re-

duced by increasing pipelining depth to maximize throughput

[40].

Due to the intrinsic pipelining the propagation delay (or

latency) in terms of number of clock phases of a signal over

an interconnection [41] can be very long. As a consequence

it is important to avoid long interconnection wires and to use

architectures where no global interconnections are required.

Systolic Arrays (SA) were proposed as an ideal target for

QCA technology [35][22][42]. SAs are circuits composed

by a network of identical processors, Processing Elements

(PE), which rhythmically compute and pass data through the

system. The circuit regularity, coupled with the presence of

only local interconnections, allows to optimize the circuit

area and therefore minimize the delay. However, if the PE

is too complex further optimizations are required. It is very

important to underline that reducing the area means reducing

the power consumption as well, because in this technology, as

demonstrated in [43], the power dissipation strictly depends

on the circuit area.

III. BIOSEQUENCE ANALYSIS

On the basis of the discussion above and on the light of

the suggestion about using SAs to maximize performance in

QCA circuits, it is important to identify which real applications

can gain advantage from this technology. We believe that

bioinformatics is one of the application fields that can receive

the biggest benefits from QCA technology. This, not only due

to the remarkable interest growing around this field, but espe-

cially because of the need to gain in computation capability

for it, being a so called “embarrassingly parallel” application

[44]. In [15] we analyze a NML circuit for biosequences

analysis and compare its performance to the same architecture

implemented with CMOS transistors. Even though the mag-

netic implementation is by nature slower than the molecular
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Fig. 3. Proteins are made by long chains of Amino Acids (AAs) represented
by alphabetical letters. Biosequences analysis is an application where huge
proteins databases are scanned to find local alignments between Amino Acids
sequences.

approach – to be considered more suitable for an application

where speed is one of the essential requirements – we use here

NML as the only one technologically feasible at the time of

writing and because it rises the same implementation issues

from an architectural point of view that any other QCA-like

technology (and not only) would suffer. Here we use the same

architecture we demonstrated in [15] as a testbench to analyze

with a quantitative approach the impact of loops on NML (and

in general QCA) technology and to inspect and evaluate the

possible solutions. However, for the sake of completion, we

give herein a short introduction on what a Biosequence is and

on how biosequences analysis is normally performed.

A. Background on Biosequence analysis

Proteins are normally organized as long chains of Amino

Acids (AAs), as shown in Fig. 3. In Biology and Biotech-

nology very often the need to identify a specific protein or

a set of characteristics or defects in a protein arise. This

can be obtained comparing the Amino Acids sequence of the

protein under test against a huge database of proteins, where

each protein is made by a variable length sequence of AAs.

In most of the cases the protein identification is executed

by finding local alignments (regions of similarity) between

the studied protein (Query) and the ones in the databases

(Subject), as shown in Fig. 3. Bioinformatics offers a large

variety of algorithms, among which one of the most used is the

Smith-Waterman (SW). This algorithm finds an optimum local

alignment between two protein sequences. Due to the nature

of this problem, which involves the analysis of a huge amount

of data, software and/or hardware accelerators are necessary to

improve the analysis speed. Parallel architectures, like SAs, are

therefore a natural choice to be used as a base for a dedicated

hardware accelerator. We have developed an optimized version

of this algorithm [45] and implemented a systolic array version

for CMOS technology in [46]. We have then mapped the

same architecture on NML logic and compared it with the

CMOS version in [15]. In the following we discuss in a short

description the NML architectural implementation.

B. Smith-Waterman NML implementation

Fig. 4 shows the architecture of our NML Smith-Waterman

implementation. Fig. 4.A represents the circuit general orga-

nization. The SA is composed by identical PEs connected in

a long chain. Every AA of the Query sequence to be studied

is stored in one PE. Subject proteins from the database are

fed to the SA input one by one. They pass through the entire

structure and at the end an alignment score is generated. The

alignment score identifies the level of similarity between two

AA sequences. Among all the sequences scanned by the circuit

the one that gets the maximum value of alignment score is the

most similar to the studied protein.

Fig. 4.B shows the single PE architecture, that is based

on the Smith-Waterman algorithm [46]. A configuration part

(PE CONFIG) handles the loading of the AA of the Query

sequence to be studied. The AA is stored inside a MEMORY.

The calculation part (PE CALC) is organized in two macro-

blocks (MAX3 and MAX4) which aim is to evaluate the

alignment score. Each of these macro-blocks is based on 3

subtracters connected in parallel. The MAX3 block compares

the alignment score evaluated inside its PE with the maximum

alignment score evaluated by previous processing elements.

If the alignment score evaluated inside its PE is bigger than

the maximum, than it becomes the new maximum and it is

propagated to the next PE of the SA. The MAX4 macro-block

is the most important computational part of the PE. It evaluates

the alignment score between the stored AA and the AA sent

to the PE input. More details can be found in [46].

In order to give an example, Fig. 4.C shows instead a

detail of a multiplexer implemented at the layout level using

NML technology. Clock zones are structured by parallel

stripes, cross-wires are used to cross two wires on the same

plane, while AND/OR gates [18] are used as basic logic

gates. The main blocks implemented are: adders/subtracters,

multiplexers/demultiplexers, boolean functions, decoders and

memory cells. The parallelism used is 8, as in [46]. The

whole circuit has been designed at layout level considering

all the constraints currently derived by experimental results

or by accurate micro-magnetic simulations (partially our own

work and partially found in the literature). Overall the whole

circuit counts approximately 2.3Ml nanomagnets, each sized

as 50nm × 100nm. Such a large number of magnets can be

fabricated with high-end optical lithography as shown in [47].

Each clock zone includes six nanomagnets. This number was

chosen according to [30] to have a reasonable clock zones size

and avoid errors in the signals propagation.

C. Circuit description and simulation results

To simulate this circuit a RTL model we developed and

presented in [43] was used. It is summarized in Fig. 5.A.

The model relies on registers with an appropriate clock signal

applied to simulate the propagation delay of signals through

the sequence of clock zones. Ideal logic gates are instead used

to model the logic functions. This kind of RTL modeling,

which relies on VHDL language, allows to easily describe

and simulate NML circuits. Further details on the model can

be found in [43]. As in [46] and [15], the architecture has

been simulated using as queries, sequences extracted from

the ”human hexokinase 1” regions and the database is the

commonly used Swiss-Prot [48].

Fig. 5.B shows instead the simulation results of the whole

SA structure. Subject Sequence ID identifies the sequence

number fed to the SA input, which is composed by many AA.

Maximum Score identifies instead the maximum alignment

score of a sequence. In the simulation shown in Fig. 5.B, the
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Fig. 4. NML Smith-Waterman implementation. A) The systolic architecture is made by a chain of identical processing elements. Every processing element
contains an Amino Acids of the Query sequence that must be studied. More processing elements there are and more complex proteins can be studied. Subject

proteins from the database are fed to the systolic array input. The output is made by the maximum alignment score between the sequences. B) Detail of the
processing element. A network of adders and subtracter is used to evaluate a local alignment score. C) Detail of a multiplexer. The clock zones layout is
made by parallel strips. Cross-wires are used to cross two wires on the same plane, while the basic logic gates used are AND/OR gates.

Fig. 5. A) RTL model of NML logic described using VHDL. Registers
are used to emulate the propagation delay while ideal logic gates are used to
model the logic function. B) Simulation results of the whole structure. Subject

Sequence ID identifies the number of the Amino Acids sequence analyzed.
Every sequence can be composed by a variable number of Amino Acids.
Maximum Score identifies the maximum alignment score of a sequence.

sequences from 2 to 12 obtain the same score, while from 12

to the end the score is different. The most similar sequence is

the number 14, which gets an alignment score of 15.

It is important now to state the initial performance. A new

AA is fed to the circuit input every 208 clock cycles, which

is the latency needed to execute the whole evaluation. Since

every Subject sequence contains N AA, in order to find the

maximum alignment score for a particular sequence, N times

208 clock cycles is the require time. This means about 1.8 ms

with a clock frequency of 100 MHz (considered an average

case frequency for this technology [34]). In this test case the

Subject sequences used for the test were made by the same

number of AAs, but in general every sequence can have a

different length. The longer the sequence is, the longer is the

time required for the analysis to be completed. The reason

why a new AA is fed only every 208 clock cycles lies in

the loops present inside the PE. Being the focus of the paper

this point will be throughly tackled in Section IV. A detailed

performance analysis and comparison with CMOS cannot find

space in this paper as it is out of to the claims this article wants

to demonstrate. However, for interested readers a timing and

power comparison between NML and CMOS circuits can be

found in this work [15].

IV. PERFORMANCE MAXIMIZATION

The presence of loops in the circuit originates a performance

issue in NML logic circuit, and, more in general, in intrinsi-

cally pipelined technologies, like in all QCA implementations

[20][22]. The circuit throughput is reduced by N times, where

N is the length in terms of clock cycles of the longest loop.

Fig. 6 shows a simple example that clearly outlines this prob-

lem. The circuit in figure is for simplicity of representation an

adder, where the output is connected to one of its inputs. It is

indeed an accumulator, where the number of registers reflects

the number of clock zones interested by the signals. At the first

clock cycle (Fig. 6.A) a signal (A) is sent to the adder input.

Due to the intrinsically pipelined nature of this technology,

theoretically it would be possible to send to a circuit a new

input every clock cycle, because the first stage at the input is

free to operate on a new value. However, if in this case a new

input (B) is sent immediately after 1 clock cycle (Fig. 6.B), the

results is wrong. The reason behind this lies in the fact that the

result of the previous operation has not yet reached the second

adder input in time (as it would happen, instead, in a normal

CMOS based accumulator structure where a single register

would be present). To correctly synchronize operations, the

first input (A) must be kept constant (the well known concept

of stalling) for 4 clock cycles, as shown in Fig. 6 from C to

E. At the fifth clock cycle (Fig. 6.F) a new input (B) can be

safely sent to the adder input. In this case the result is correct,

because the previous value had the time to propagate back.
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While a perfect synchronization is obtained, the circuit

throughput is reduced by 4 times, because a new input signal

can be sent only every 4 clock cycles. This is a common

and well known problem also for CMOS technology, however

there are some substantial differences that make the issue

intolerable and of much more complex solution. First, in

standard technology the level of pipelining is a design pa-

rameter, while in NML (and QCA) circuits it is intrinsic to

the technology itself, and it is then a constraint. Second, the

pipeline depth in CMOS only slightly is influenced by the

physical design phase, while for QCA in general, it totally

depends on the circuit layout. Moreover, third, in CMOS the

level of pipelining is quite low while in QCA technology it

might be dramatically high. Actually one has to think that

every gate is a pipeline stage and every interconnect is to be

intended as a shift register. To be concrete, for example, in

case of the NML Smith-Waterman here used as testbench, the

longest loop has a delay of 208 clock cycles. As a consequence

the throughput is reduced by 208 times. This is certainly a

remarkable problem, especially because in NML the clock

frequency is quite low (around 50-200 MHz depending on the

clock solution chosen). It is clear then that the reduction of

speed is not acceptable and largely limits the real possibilities

of this technology to become a CMOS substitute. It is worth

underlining that solutions proposed in literature to solve the

“layout=timing” problem itself, like using asynchronous logic

[7][25], are not of help in case of loop [23] in any case.

To solve this problem it is possible to work on two different

design levels: algorithm and hardware.

A. Interleaving

Since the pipelining is intrinsic to the hardware, the first

solution to improve the throughput is to modify the algorithm

to avoid data dependencies between one input data and the

next. This is a solution commonly adopted in standard tech-

nology, for example in microprocessors, where instructions are

dynamically rearranged to avoid data dependency. Another

solution, adopted in superscalar microprocessors in case of

jump instructions, is to use predictive techniques to speculate

if the next instruction depends on the result of the previous
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Fig. 7. Interleaving as a solution to maximize circuit throughput. 4
operations are executed in parallel. At every clock cycle a data of a different
operation is sent to the adder input. The results is correct because there is no
data dependency between data of different operations. Signals are perfectly
synchronized and throughput is maximized.

instruction or not. These are solutions that can be adopted also

in case of QCA technology. However, the applicability and

effectiveness of these solutions strongly depend on the algo-

rithm, so they must be studied specifically for each application.

A solution to be applied at the design stage is cut-set retiming,

as thoroughly discussed in [22]. Though this is a valid solution

for general QCA, if the constraints of realistic technology are

taken into account, like the fact that strict limitations on the

possible organization of clock zones hold, then the method

has to be proven, especially in the case of complex circuits.

This approach is at the basis of some of the modifications we

propose in this paper (see next sections).

A general solution that can be instead applied to any

architecture is interleaving [15]. Interleaving is based on the

idea to parallelize the algorithm and to interleave data at the

circuit inputs [27]. In case of QCA it has been envisaged in

[39], even though no or only extremely simple implementation

and verification have been provided up to now. Fig. 7 shows

the interleaving principle applied to the same adder of Fig. 6.

Four operations are executed in parallel here. At the first clock

cycle the first input of the first operation (A) is sent to the

adder (Fig. 7.A). At the second clock cycle the first input

of the second operation (D) is sent to the adder (Fig. 7.B).

This operation is correct because D does not rely on A to

be evaluated. A and D are part of different operations so

there is no data dependency between them. At the third clock

cycle the first data of the third operation (G) is sent to the

adder input (Fig. 7.C) and at the forth cycle the first data

of the forth operation (L) is sent as input (Fig. 7.D). At this

point the cycle can start again, and at the fifth clock cycle

the second data of the first operation (B) is finally sent to

the adder input (Fig. 7.E). The results is correct because the

signal A had the time to propagate back to the second adder

input with the due latency, as shown in Fig. 6.F. Continuing

to fed interleaved data to the adder input (Fig. 7 from F to N)

signals are perfectly synchronized and, at the same time, the
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Fig. 8. A) INTERLEAVING. Smith Waterman simulation with interleaving
equal to 3. Three analyses are carried on in parallel. Three independent
subjects are sent with an interleaved sequence to the circuit. The delay between
two AA of the same subject is always 208 clock cycles, but in the mean time
other AA of different analysis are sent to the circuit. Throughput is improved
by 3 times. B) LOOP LENGTH REDUCTION. Simulation comparison between
the original processing element with the modified version without using
interleaving. The analysis of 14 sequences takes only 16 ms instead of 24 ms.
C) NESTED LOOP SIGNALS SYNCHRONIZATION. Comparison between the
case without and with correct synchronization. If the correct loop length is not
respected the results are wrong. D) ADDITIONAL DELAY LOOP. Simulation
comparison with and without the synchronization loop. If the synchronization
loop is not used the results are completely wrong.

throughput is maximized. One single operation is completed

with a throughput 4 times reduced, but 4 operations can be

executed in parallel so 1 output is generated at every cycle.

Fig. 8.A shows a complete simulation of the Smith Water-

man using a level of interleaving equal to 3. Three different

analyses are carried on in parallel so 3 different Subjects are

sent interleaved to the circuit. The delay between two AAs

of the same Subject is always 208 clock cycles, about 1.8 µs.

However, between one AA of the same sequence and the other,

other AAs are sent to the circuit. In this case the delay between

two AAs of different Subjects is between 70 and 68 clock

cycles, because it is not possible to divide 208 (the worst case

loop latency) in exactly three parts of the same number of

clock cycles. This, however, is not a problem and the circuit

still works correctly. The maximum alignment score changes

accordingly to the Subject sequence sent to the circuit. The

use of interleaving level 3 improves the throughput by 3 times.

While to maximize performance it is necessary to use a level

of interleaving equal to 208, this is not mandatory. Using a

lower level of interleaving in any case improves performance.

The throughput will therefore vary between the maximum (in-

terleaving 208) and the minimum (no interleaving) depending

on the number of operations that can be run in parallel. The

efficiency obtained by a given interleaving level must be traded

off with the increased complexity at the input stage, where

physically inputs from different sequences are to be fetched.

Interleaving is therefore a necessity for NML (and QCA)

circuits if loops are present. However, due to the extremely

high level of pipelining, a huge amount of data has to be

provided in order to obtain the maximum throughput. In

case of the NML Smith-Waterman architecture, 208 analyses

should be run in parallel, and thus all the correspondent

sequences should be available since the first iteration. As

a consequence not all applications are good candidates to

exploit the potential of this intrinsically pipelined technology.

Biosequences analysis is one of the applications more adapted

to NML (and QCA) technology because the huge amount of

data to process enables the algorithm massive parallelization,

always allowing to reach the maximum throughput. This

further validates our choice of developing the Smith-Waterman

architecture using NML technology.

B. Architecture redesign for loops length reduction
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Fig. 9. Architecture redesign to reduce loops length. The processing element
was redesigned bending back the main loops. The layout was changed from
a linear shape to a U-shape, reducing the overall length of the loop in terms
of clock cycles.

To improve throughput it is possible to work on a different

level modifying the circuit layout in order to reduce the

overall length of the loops. This solution is complementary

to the algorithmic approach. Ideally the loop length should

be reduced to 1 clock cycle, clearly not possible in complex

circuits. In case of the Smith-Waterman the general processing

element architecture (Fig. 4.B) has a simple organization: All

inputs come in from the left side and go out on the right

side. This organization is chosen according to the general SA
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architecture (Fig. 4.A) which is composed by a linear chain of

PEs. With this PE architecture the layout is optimized and the

latency is minimum. However, as previously discussed, due

to the Smith-Waterman algorithm there is a main loop which

connects the end of the blocks for the maximum alignment

score to their inputs. This loop is unavoidable, because every

systolic array compares the alignment score with the value

evaluated at the previous iteration.

The circuit was changed by bending back the loop and

changing the linear structure to a U-shaped structure. This

principle is detailed in Fig. 9, which shows the new circuit

architecture. The picture is just a very simplified schematic for

the sake of clarity. The drawback of this solution is that the

overall latency is increased, but the overall length of the loop is

reduced from 208 clock cycles to 141 clock cycles. The result

is that the circuit performance are greatly improved. Fig. 8.B

shows a simulation comparison between the original PE and

the modified one without using interleaving. The analysis of

14 sequences takes only 16 ms instead of 24 ms. Using also

interleaving it is possible to obtain maximum throughput, and

in this case only 141 analysis must be run in parallel instead

of 208. This hardware solution can therefore greatly enlarge

the field of applications where NML (and QCA) technology

can be used, and, coupled with interleaving allows to easily

maximize performance.

In Fig. 9 some local loops on interconnection wires can be

seen. Their presence is requested for signal synchronization,

and this is object of discussion in Section V.

V. SIGNALS SYNCHRONIZATION

While the loss of performance is clearly a major problem,

the presence of loops has some serious consequences also

on the propagation delay; in particular, problems arise when

signals must be synchronized. Two important categories of

synchronization issues can be identified: i) The presence of

nested loops and ii) additional delays present on specific

signals. The two aspects are treated in the following two

subsections.

Nested loops. In a generic circuit it is quite normal to find

several loops. Some of these loops have no reciprocal depen-

dencies, while others are nested. A schematic representation of

this situation is shown in Fig. 10.A. Since in QCA technology

the pipelining is intrinsic to the layout, in presence of multiple

loops the length of these loops must be carefully studied and

designed to obtain perfect signals synchronization. The Smith-

Waterman processing element is again a perfect testbench

to reveal and to explain this situation. Fig. 10.B shows the

schematic representation of the processing elements. Two main

loops are present: loop-1) The output of the MAX4 block

which is connected back to one of the adder input and to

a multiplexer, and loop-2) the output of the MAX3 block that

is connected back to its inputs. These two loops are not nested

but independent.

The loop-1 is however composed by two nested loops, as

shown in Fig. 10.B, in the details. The big arrow identifies

the output data signal coming from the MAX4 block, which

is connected to the adder at the bottom, that in its turn has

Fig. 10. Nested Loops signals synchronization. If two or more nested loops
are present their length must be exactly the same, otherwise signals will have
different propagation delays. B) Smith-Waterman processing element, with
the two nested loops outlined. C) Simulation comparison, a detail of the
simulation in figure 8.C.

output connected to the MAX4 inputs again. The small arrow

represents instead a control signal, generated by the MAX4

block, which is connected to the selection bit of a multiplexer.

This multiplexer’s output is then connected to the adder input

together with the signal represented by the big arrow. As a

consequence these two nested loops have two different lengths.

That means that the signal represented by the big arrow arrives

at the adder input before the correct output can be generated

by the multiplexer. The results is therefore unavoidably wrong

as shown in Fig. 10.C (a detail), or Fig. 8.C (the whole

simulation). These waveforms refer to a simulation of the

Smith-Waterman with and without proper loops lengths. Only

if the lengths of the two loops is equalized the operation is

perfectly synchronized, as shown in the detail of Fig. 10.B

(correct box), and the Smith-Waterman behaves correctly, as

shown in the simulation.

Additional delay loops. Another important situation that

must be carefully taken into account is the necessity to add

additional delay loops in order to synchronize signals. In

CMOS it is quite normal to add additional registers to delay

specific signals as requested by the implemented algorithm

(skewing and de-skewing networks). This is also the case

of the Smith-Waterman algorithm. The key element of this

algorithm implemented in CMOS is shown in Fig. 11.A. Every

PE computes the local maximum alignment score comparing

the result of the previous MAX operation with the maximum

evaluated by the previous PE at the previous clock cycle and

two clock cycles before [46]. This situation is well explained

by Fig. 11.A, where the MAX IN signal is connected to the

MAX4 block 2 times, the first time using only one register and

the second time with 2 registers.

To map the same situation on NML (or QCA) technology

it is important to understand the delay among subsequent data

sent to the circuit. In standard technology a new data, i.e. an

AA symbol, is sent to the circuit input at every clock cycle.
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Fig. 11. Additional delay loops. Additional registers, used to delay a specific
signal in CMOS, must be mapped in QCA technology as “wire loops” with
a length equal to N, where N is the length of the longest loop inside the
circuit in terms of clock cycles. B) Processing element representation with
the synchronization

So, if an extra register is added to a specific signal, that signal

is effectively sampled to the value that it had two clock cycles

before. However, in QCA technology, if at least one loop is

present in the circuit, a new data is sent to the circuit every N

clock cycles. This is true also considering interleaving. With

interleaving an AA is sent to the circuit, then every clock cycle,

for the next 207 clock cycles, a new AA of a different sequence

is sent to the circuit input. Only after 208 clock cycles a new

AA of the first sequence is sent again to the circuit input. As

a consequence, even adopting interleaving the delay between

two subsequent AA of the same sequence is always N clock

cycles.

To map this algorithm to QCA technology, then, an ad-

ditional delay on the MAX IN signal must be added. Since

the pipelining is intrinsic to the layout, adding a delay on a

specific signal means making its correspondent wire longer.

Nonetheless, to solve the “layout=timing” issue, every input

signal of a specific block must have the same length. As a

consequence, to add an additional delay on a specific wire, a

“wire loop” has to be used as shown in Fig. 11.A. In this way

every input signal to the MAX4 block has the same length,

except for the first one that is longer. Therefore two results

are obtained, as signals are synchronized and the algorithm is

respected. Fig. 11.A show how in the mapping process from

CMOS to NML only the additional register on the first signal

becomes a “wire loop”. This happens because the registers that

are common to all the inputs change the propagation delay on

all signals.

The last issue that calls for an investigation is the length of

the additional loop. As previously explained to add a register

on a specific signal means to consider the signal sent one

clock cycle before in CMOS. Since in QCA technology an

input must be sent every N clock cycles, the length of this

additional loop in terms of clock cycles must be exactly equal

to N. This is equivalent to sample the AAs of the same

sequence previously sent. Fig. 11.B highlights the additional

loop added to the circuit. In Fig. 8.D is instead shown a

comparison between a simulation obtained with and without

the synchronization loop. If this loop is not present the results

are totally wrong. Concluding, additional CMOS registers used

to delay only selected signals correspond in QCA technology

to synchronization loops.

The synchronization loops in Fig. 9.A emulate therefore

CMOS registers and are used to add a delay on a specific

signal. In Fig. 9.A the architecture was changed to reduce

the main loops length. In that case the circuit was reshaped

bending back the main loop. The results was a reduction of

the loop length, at the price of an increased propagation delay

on that specific signal. As a consequence all the other signals

must be delayed, using synchronization loops, to match the

increased delay of the feedback signal.

VI. CONCLUSIONS

In this paper we have presented a complete overview of

the major issues related to the presence of feedback signals

in intrinsically pipelined technologies, using as a reference

QCA technology in its NanoMagnetic Logic implementation.

Results are based on a considerably big and complex systolic

architecture for biosequences analysis. It is implemented using

NanoMagnetic logic down to the detailed layout level and

taking into account realistic technological limits. The results

we present are valid not only for QCA technology, but also

for all the emerging technologies that have an intrinsically

pipelined behavior at the micro-architectural level. Two kind

of problems arise in case of loops.

• Performance reduction, which can be solved using in-

terleaving and redesigning circuits to reduce loop length.

• Failures due to bad signals synchronization, which can

be solved properly designing the loop length in case of

nested loops and adding synchronization loops.

This work represents a milestone in the design of circuit

for intrinsically pipelined emerging technologies, and can be

used by researchers as a collection of guidelines for designing

complex circuits with both combinational and sequential parts.
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