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Expressive Generalized Itemsets

Elena Baralis, Luca Cagliero, Tania Cerquitelli, Vincenzo D’elia, Paolo
Garza∗

Dipartimento di Automatica e Informatica, Politecnico di Torino,

Corso Duca degli Abruzzi 24, 10129, Torino, Italy

Abstract

Generalized itemset mining is a powerful tool to discover multiple-level cor-

relations among the analyzed data. A taxonomy is used to aggregate data

items into higher-level concepts and to discover frequent recurrences among

data items at different granularity levels. However, since traditional high-

level itemsets may also represent the knowledge covered by their lower-level

frequent descendant itemsets, the expressiveness of high-level itemsets can be

rather limited. To overcome this issue, this article proposes two novel itemset

types, called Expressive Generalized Itemset (EGI) and Maximal Expressive

Generalized Itemset (Max-EGI), in which the frequency of occurrence of a

high-level itemset is evaluated only on the portion of data not yet covered

by any of its frequent descendants. Specifically, EGIs represent, at a high

level of abstraction, the knowledge associated with sets of infrequent item-

sets, while Max-EGIs compactly represent all the infrequent descendants of
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a generalized itemset. Furthermore, we also propose an algorithm to discover

Max-EGIs at the top of the traditionally mined itemsets.

Experiments, performed on both real and synthetic datasets, demonstrate

the effectiveness, efficiency, and scalability of the proposed approach.

Keywords: Generalized Itemset Mining, Data Mining, Expressiveness of

generalized itemsets

1. Introduction

Frequent itemset extraction [1] is a widely used exploratory technique to

discover interesting correlations among data items. A frequent itemset is a

set of data items, whose observed frequency of occurrence (support) in the

source dataset is above a given threshold. A taxonomy (i.e., a set of is-a hi-

erarchies) built over the data items can be used to aggregate items, based on

granularity concepts, into higher-level items, called generalized items. Tax-

onomies enable the discovery of multiple-level patterns from the analyzed

data. This process is called frequent generalized itemset mining [27]. Gener-

alized itemsets are itemsets that may contain either data items or generalized

items defined in the taxonomy. In most related works (e.g., [6, 19, 26]), the

analyzed datasets are equipped with user-provided taxonomies and the cor-

responding generalized items are defined according to domain-specific knowl-

edge. For example, in the healthcare domain examinations and drugs can

be generalized as the corresponding categories, while in market basket anal-

ysis products (items) can be aggregated into the corresponding category or

brand [27]. Frequent generalized itemsets are generalized itemsets whose

support is above a given threshold. The support is defined as the ratio be-
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tween the number of dataset records covered by the itemset and the total

number of records in the dataset. The knowledge represented by a high-level

(generalized) itemset is the same as a set of low-level descendants, including

frequent and infrequent itemsets. However, a frequent high-level itemset is

extracted even if its corresponding subset of frequent low-level itemsets cov-

ers almost the same dataset records. Hence, there is a need for improving

the expressiveness of traditional generalized itemsets by proposing new types

of multiple-level patterns.

This article presents (i) two new itemset types, namely the Expressive

Generalized Itemset (denoted by EGI) and the Maximal Expressive Gen-

eralized Itemset (Max-EGI). Both EGI and Max-EGI extend the notion of

generalized itemset [27] by enhancing the pattern expressiveness with re-

spect to its descendant set. (ii) An algorithm to discover Max-EGIs at the

top of traditional itemsets. (iii) An in-depth experimental evaluation on

many structured datasets to demonstrate the effectiveness and efficiency of

the proposed approach to mine interesting and highly expressive patterns.

(iv) An example of application of the proposed approach to a real-life appli-

cation context, i.e., the analysis of network traffic captures. The proposed

approach can be profitably exploited to analyze data coming from different

application contexts if real data can be equipped with meaningful taxonomies

(e.g., context-aware applications, network traffic data analysis, medical treat-

ments).

As an example, Table 1 reports a running example dataset, where each

record stores some information about the orders submitted to a chain of

clothing shops. For each order the date, the name of the shop who received
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(a) Order date - Generalized Tree GT1 (b) City - Generalized Tree GT2

(c) Clothing shop -

Generalized Tree GT3

(d) Most discounted item - Generalized Tree

GT4

Figure 1: Taxonomy built on the attributes of the running example D
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Order date Clothing shop City Most discounted item

2012-06-17 Shop A Turin Jackets

2012-09-01 Shop A Turin Hiking boots

2012-10-20 Shop B Cambridge Ski pants

2012-05-01 Shop C Rome Hiking boots

2012-05-01 Shop C Tivoli Jackets

2012-10-20 Shop B Asti Hiking boots

2012-10-20 Shop A Cuneo Jackets

2012-05-01 Shop A Cuneo Hiking boots

2012-10-20 Shop C Alba Gloves

Table 1: Example dataset.

the order, the city from which the order has been submitted, and the most

discounted item are stored. Figure 1 shows a simple taxonomy built on the set

of attributes of the running example. For the sake of clarity, in this section we

consider only the subset of frequent generalized itemsets mined from the most

discounted item attribute of the example dataset. Table 2(a) reports the set

of frequent generalized itemsets mined by a traditional mining algorithm [27]

by enforcing an absolute minimum support threshold equal to 2 and by ex-

ploiting the taxonomy in Figure 1. Both the “low-level” itemset (e.g., {(Most

discounted item,Hiking boots)}) and the “high-level” (generalized) itemset

(e.g., {(Most discounted item,Footwear)}) are mined even if, for example,

the support value of {(Most discounted item,Footwear)} is equal to the one

of its descendant {(Most discounted item,Hiking boots)}. Let us consider

now generalized itemset {(Most discounted item,Outerwear)}. It covers both

the knowledge associated with its infrequent descendants {(Most discounted

item,Ski pant)} and {(Most discounted item,Gloves)} and the knowledge

represented by its frequent descendant {(Most discounted item,Jackets)}.
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Itemset Sup

{(Most discounted item, Footwear)} 4

{(Most discounted item,Hiking boots)} 4

{(Most discounted item,Clothes)} 5

{(Most discounted item,Outerwear)} 5

{(Most discounted item, Jackets)} 3

(a) Generalized itemsets

Max-EGI Sup

{(Most discounted item,Hiking boots)} 4

{(Most discounted item, Jackets)} 3

{(Most discounted item,Outerwear)} ≀ {{(Most discounted item, Jackets)}} 2

(b) Max-EGIs

Table 2: Mined generalized itemsets and Max-EGIs. min sup = 2.

Hence, evaluating the interestingness of {(Most discounted item,Outerwear)}

is a challenging task. On the one hand, the pattern is interesting because it

represents some knowledge that is not covered by any of its frequent descen-

dants. However, on the other hand, the pattern expressiveness with respect

to its descendants is rather limited, because the dataset records that contain

jackets are already represented by the low-level itemset ({(Most discounted

item,Jackets)}).

To select the high-level patterns that retain a significant degree of nov-

elty with respect to their frequent descendants, we propose a novel type of

high-level itemset, namely the EGI. While a traditional generalized itemset

represents all of its descendant itemsets, both the frequent and the infrequent

ones, each EGI represents, at a higher level of abstraction, the information

represented by its subset of infrequent descendant itemsets. Hence, as thor-
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oughly discussed in the following, EGIs are more expressive than traditional

generalized itemsets because they consider, from a high-level viewpoint, only

the rare knowledge that remains hidden at lower granularity levels.

EGIs are represented in the form X ≀ S, where X is a generalized itemset

and S is a set of (generalized) itemsets that contains only frequent descen-

dants of X1. X ≀ S represents all the X’s descendants, except for those

contained in S, and covers all the records that are matched by X except

for those already covered by any itemset in S. For example, {(Most dis-

counted item,Outerwear)} ≀ {{(Most discounted item,Jackets)}} represents all

the descendants of {(Most discounted item,Outerwear)}, except for {(Most

discounted item,Jackets)}. Its support value is equal to 2, because it covers

the same dataset records of {Outerwear} except for those that are covered

by {(Most discounted item,Jacket)}. Symbol ≀, which is used to separate the

X part from the S one, roughly recalls the symbol of complement between

two sets (\), because the knowledge covered by S is “excluded” from that

covered by X. To enhance the readability and usability of the mined set,

we consider a worthwhile EGI subset, i.e., the Max-EGIs. Max-EGIs are

EGIs for which the S term has maximal length, i.e., the S term contains all

the frequent descendants of X. Each Max-EGI compactly represents all the

infrequent descendants of a generalized itemset X. Since the number of fre-

quent descendants of X (|S|), is typically less than the number of infrequent

descendants of X, the pattern X ≀ S is a compact yet expressive represen-

tation of the infrequent knowledge covered by X. By convenient abuse of

1For the sake of simplicity, in this preliminary example we neglect the case in which

the S part may also contain other EGIs, which will be discussed in the following sections.
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set theory notation, the “complement” between a generalized itemset X and

its frequent descendant set S represents the (potentially large) set of infre-

quent descendants of X. For example, {(Most discounted item,Outerwear)}

≀ {{(Most discounted item,Jackets)}} represents itemsets {(Most discounted

item,Ski pant)} and {(Most discounted item,Gloves)}. Since they are indi-

vidually infrequent but collectively frequent in the analyzed data, the expert

could deem the above pattern to be interesting for advanced analysis. Ta-

ble 2(b) reports the set of Max-EGIs extracted by enforcing an absolute

minimum support threshold equal to 2 and by exploiting the taxonomy in

Figure 1.

This article is organized as follows. Section 2 introduces the generalized

itemset mining problem. Section 3 formally states the Max-EGI mining

task, while in Section 4 an algorithm to efficiently perform Max-EGI mining

is presented. Section 5 presents the experiments performed to evaluate the

effectiveness and efficiency of the proposed approach. Section 6 compares

our approach with previous works. Finally, Section 7 draws conclusions and

presents future work.

2. Generalized itemset mining

In the context of structured data, a dataset consists of a set of records.

Each record is a set of items, where an item is a pair (attribute name, value).

While attribute name is the description of a data feature, value represents

the associated information and it belongs to the corresponding attribute

domain. Since continuous attributes are unsuitable for being employed in

itemset mining, because their values are unlikely to occur frequently in the
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analyzed data, attribute values are discretized using traditional preprocess-

ing techniques [31]. Table 1 reports the structured dataset that will be used

as running example throughout the section. To generalize items in a struc-

tured dataset at a higher level of abstraction, we introduce the notions of

generalization tree and taxonomy. A generalization tree (see Figure 1(a))

is a rooted labeled tree2, which represents the aggregations of the attribute

domain values into higher-level concepts. Each leaf node of the tree in Fig-

ure 1(a) represents a distinct value of the domain of the order date attribute,

whereas each non-leaf node represents a generalization (higher-level concept)

of its children, which may be further generalized by its parent.

Definition 1. Generalization tree. Let ti be a data feature and Ωi its

domain. A generalization tree GTi is a hierarchy of generalizations built over

values in Ωi and it is represented by a rooted labeled tree GTi(r,N, Label, E)

where

• the set of labels Label is a superset of Ωi (i.e., Ωi ⊆ Label) and contains

both the values in the attribute domain and their generalizations,

• leaf nodes in GTi are labeled with values in Ωi,

• non-leaf nodes are aggregations of the values in Ωi and are labeled with

values not in Ωi,

2A rooted labeled tree is an acyclic connected graph in which a node is selected as the

root. A rooted labeled tree T could be denoted by T (r,N, Label, E), where (1) N is the

set of nodes; (2) r ∈ N is the root node; (3) Label is the set of node labels, for every node

n ∈ N , Label(n) is the label of node n; and (4) E = {(x, y) | x, y ∈ N,x 6= y} is the set of

edges.
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• the root node is labeled with the special value ⊥ (i.e., undefined).

• for each label l ∈ Label there exists one and only one node in GTi

labeled with l.

Figure 1 reports three examples of generalization trees built over the

attributes of the dataset D in Table 1. The order date attribute has the

canonical form YY-MM-DD and might be generalized into its corresponding

month, semester, and year (see Figure 1(a)), while the city attribute might

be generalized into region/country and state (see Figure 1(b)). Since the

clothing shop attribute values have no meaningful aggregations, the corre-

sponding GT3 aggregates all the leaves labeled with values in Ω3 directly

into the root node (see Figure 1(c)).

A taxonomy is a set of generalization trees defined on the attributes of a

structured dataset. For example, the set of generalization trees in Figure 1

is a taxonomy defined on the attributes of the running example dataset.

Definition 2. Taxonomy. Let T be a set of attributes. A taxonomy Γ =

{GT1, GT2, . . . , GTn} is a forest of generalization trees, where GTi is a gen-

eralization tree defined on attribute ti ∈ T .

Although a taxonomy may consist of an arbitrary number of generaliza-

tion trees per attribute, for the sake of simplicity in this article we consider

only taxonomies containing one generalization tree per attribute.

In the presence of taxonomies, itemsets are sets of data items belonging to

distinct dataset attributes, for which the corresponding values are taxonomy

node labels (disregarding the root label). Note that each item can be mapped
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to the corresponding taxonomy node. If an itemset contains at least one

item corresponding to a non-leaf taxonomy node (i.e., an item that does

not appear in the source dataset) then it is also called generalized itemset.

The generalization level of an item with respect to the given taxonomy is

defined as the height of the subtree rooted in the corresponding taxonomy

node. The itemsets whose items have all the same level are called level-

sharing itemsets [15]. Similar to the approach proposed in [15], we focus

on this subset of (generalized) itemsets. For example, {(date,may 2012),

(city,Latium)} is an example of level-sharing itemset of level 2, because both

the subtrees of GT1 and GT2 rooted in may 2012 and Latium, respectively,

have height 2 (see Figure 1). A k-itemset I (i.e., a set of k items) covers a

given record r if all of its items are either contained in r or ancestors of an

item in r with respect to the given taxonomy. Given a structured dataset D,

the I’s support in D is defined as the ratio between the number of records

in D covered by I and the total number of records in D. Itemsets whose

support is above or equal to a given support threshold are said to be frequent.

For example, since {(date,may 2012),(city, Latium)} covers the fourth and

the fifth records of the running example dataset (see Table 1), its support

value is 2
9
. Given a structured dataset D, a taxonomy, and a minimum

support threshold, the (generalized) frequent itemset mining problem entails

discovering all the frequent (generalized) itemsets from D.

3. Problem statement

To effectively represent the knowledge extracted from a structured dataset

at different abstraction levels, we propose two novel itemset types, called EGI
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and Max-EGI. As thoroughly discussed in the following, the newly proposed

patterns are more expressive than traditional generalized itemsets.

Let us consider a k-itemset X. Every k-itemset Y 6= X whose items

are either contained in X or descendants of any item in X is said to be a

descendant of X. Every portion of the source dataset D covered by a X’s

descendant is covered by X too. Hence, we argue that only the records

covered by X and that are not covered by any of its frequent descendants

represent a portion of data that is worth considering for X’s support count.

In fact, the subset of records covered by any frequent descendant of X are

already represented by a lower-level frequent itemset. With this in mind, we

introduce the concepts of EGI and Max-EGI below.

EGIs are patterns in the form X ≀ S, where X is a (generalized) itemset

and S is a set of X’s descendants or, more generally, a set of other EGIs

Y ≀ Q such that Y is a descendant of X. The set S will be also denoted

as descendant set throughout the article. A more formal definition of EGI

follows.

Definition 3. Expressive Generalized Itemset (EGI). Let D be a struc-

tured dataset, Γ a taxonomy, X a (generalized) itemset, and S a set of EGIs.

X ≀ S is an EGI if and only if

A) S is empty (i.e., S={}), or

B) for each EGI (Y ≀Q) ∈ S, Y is a descendant of X in D with respect to

Γ.

A generalized itemset X is a special case of EGI X ≀ S for which S=∅. For

example, given the example dataset in Table 1 and the corresponding tax-

onomy in Figure 1, {(city,Piedmont)} ≀ {} is an EGI, which is equivalent
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to the traditional generalized itemset {(city,Piedmont)}. For the sake of

readability, hereafter we will indicate the descendant set S only if it is not

empty (e.g., {(city,Piedmont)} ≀ {} is abbreviated to {(city,Piedmont)}).

According to Definition 3, if S 6= ∅ then it contains (a subset of) X’s de-

scendants. For example, {(city,Piedmont)} ≀ {(city,Turin)} is an EGI where

X={(city,Piedmont)}, while S consists of a single descendant itemset, i.e.,

{(city,Turin)}. The above pattern represents all the cities of the Piedmont

region except for Turin. In the following, we extend the ancestor and descent

relationships to EGIs.

Definition 4. EGI ancestor and descendant. Let W= X ≀ S and Z=

Y ≀Q be two EGIs. W is an ancestor of Z if and only if X is an ancestor of

Y . If W is an ancestor of Z, then Z is a descendant of W .

An EGI X ≀ S covers the dataset records covered by X except for those

already covered by any of its descendants in S. A more formal definition

follows.

Definition 5. EGI coverage. Let D be a structured dataset and X ≀ S an

EGI. X ≀ S covers a record r ∈ D if and only if:

A) X covers r and

B) ∄ an EGI Wj ∈ S such that Wj covers r.

Based on the concept of EGI coverage, the EGI support is defined ac-

cordingly.

Definition 6. EGI support. Let D be a structured dataset and W an EGI.

The W ’s support in D, denoted by sup(W ,D), is the ratio between the number

of records in D covered by W and the total number of records in D.
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Recalling the running example, the support of {(city,Italy)} ≀ { {(city,

Piedmont)} } is 2
9
, because it covers 2 out of 9 dataset records. More specif-

ically it covers Rome and Tivoli, located in Latium, whereas it does not

cover any city located in Piedmont. Hence, the pattern represents all the

Italian cities contained in the source dataset except for those located in the

Piedmont region.

The level L[X ≀ S] and length of an EGI X ≀ S correspond to those of its

X part. An EGI for which X has length k is also denoted by k-EGI. For

example, {(city,Italy)} ≀ { {(city,Piedmont)} } is characterized by length 1

and level 3.

The descendant set S of an EGI X ≀ S may potentially contain some of

its descendant EGIs Y ≀Q. For example, the following EGI represents all the

Italian cities occurring in the analyzed dataset except for those located in

the Piedmont region other than Turin:

{

(city, Italy)
}

≀
{

{(city, P iedmont)} ≀ { {(city, Turin)} }
}

To reduce the amount of generated EGIs and thus ease the knowledge

discovery process, we consider a worthwhile EGI subset. The EGI selection

procedure is two-fold.

Level-sharing EGI selection: following an approach similar to the one

proposed in [15], we consider only the EGIs for which X is a level-sharing

itemset. We denote this type of EGIs as the level-sharing EGIs.

Max-EGI selection: to focus our attention on a subset of highly expressive

EGIs, we select only the level-sharing EGIs X ≀ S for which:

14



1) the support in the source dataset is above or equal to a given threshold

min sup (i.e., the frequent EGIs) and

2) the descendant set S consists of all of the frequent descendant EGIs of

X ≀ S (see Definition 4).

Constraints (1) and (2) ensure that the selected EGIs cover a significant

portion of the analyzed data that is not already covered by any of their

frequent descendants. EGIs that satisfy both (1) and (2) are called Max-

EGIs. A more formal definition of Max-EGI follows.

Definition 7. Max-EGI. Let D be a structured dataset, Γ a taxonomy,

O = X ≀ S a level-sharing EGI, and min sup a minimum support threshold.

O is a Max-EGI if and only if O is frequent (i.e., sup(O,D) ≥ min sup) and

at least one the following conditions hold:

• L[O]=1 (i.e., O has no descendants) or

• there exists no Oa = Xa ≀ Sa such that Oa /∈ S, sup(Oa,D) ≥ min sup,

and Oa is a frequent descendant of O with respect to Γ.

From the above definition, it follows that O = X ≀ S is Max-EGI if it is

frequent according to min sup and its S part contains all the frequent de-

scendants of X ≀ S.

Below we report the list of frequent EGIs mined from the city attribute

of the example dataset in Table 1 by enforcing an absolute minimum support

threshold equal to 2.

A) {(city,Turin)}, support=2
9
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B) {(city,Cuneo)}, support=2
9

C) {(city,Piedmont)} ≀ { {(city,Turin) }, {(city,Cuneo) } }, support=2
9

D) {(city,Piedmont)} ≀ { {(city,Turin) } }, support=4
9

E) {(city,Piedmont)} ≀ { {(city,Cuneo) } }, support=4
9

F) {(city,Piedmont)}, support=6
9

EGIs (A), (B), and (C) are Max-EGIs. Instead, {(city,Piedmont)} ≀ { {(city,

Turin)} } is not a Max-EGI because its descendant set S does not contain the

frequent Max-EGI descendant {(city,Cuneo)}. Hence, the records covered

by {(city,Cuneo)} are also covered by {(city,Piedmont)} ≀ { {(city,Turin)} }.

Similar considerations hold for EGIs (E) and (F).

Given a structured dataset D, a taxonomy, and a minimum support

threshold min sup, the Max-EGI miner extracts all the Max-EGIs that sat-

isfy min sup in D (Cf. Definition 7).

4. The Max-EGI Miner Algorithm

TheMax-EGI Miner (MaximalExpressiveGeneralized Itemsets Miner)

algorithm takes as input a structured dataset D, a taxonomy Γ built on D,

and a minimum support threshold min sup. It extracts all the Max-EGIs

from D that satisfy min sup (see Definition 7). To accomplish this task,

the input taxonomy is evaluated in a bottom-up fashion, i.e., Max-EGIs are

generated in order of increasing generalization level.

The Max-EGI Miner algorithm relies on a step-wise process which

can be summarized as follows: (i) Traditional frequent level-sharing itemset

mining and (ii) Max-EGIs extraction at the top of the previously extracted
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Algorithm 1 Max-EGI Miner - Maximal Expressive Generalized Itemset

(X ≀ S) Miner
Input: a structured dataset D, a taxonomy Γ, a minimum support threshold min sup

Output: the set of frequent Max-EGIs L

1: T I = mineTraditionalLevelSharing(D, Γ, min sup) /* Frequent level-sharing itemset mining. */

/* Max-EGI mining */

2: L = ∅

/* One frequent Max-EGI of level 1 is generated for every frequent level-sharing itemset of level 1 */

3: for all W in T I[1] do

4: insert (W ≀ {}) into C[1] /* Add a level-l Max-EGI having W as its X part. */

5: end for

6: L[1]=C[1]

/* Generate Max-EGIs of level greater than 1 */

7: for l=2 to maxlevel do

8: /* One candidate Max-EGI of level l is generated for every frequent traditional level-l itemset.

The S part of each candidate is initially empty. */

9: for all W in T I[l] do

10: insert the candidate Max-EGI (W ≀ {}) into C[l]

11: end for

12: /* Exploit candidate Max-EGIs of level l − 1 to populate the S part of candidate Max-EGIs of

level l. */

13: for all I in C[l− 1] do

14: GI = retrieveAncestor(C[l],I,l,Γ); /* Retrieve the candidate level-l itemset GI that is ancestor

of I */

15: insert the set I.S into GI.S /* The Max-EGIs in I.S are descendants of GI */

/* If the level-(l− 1) candidate I is frequent then it must be inserted into GI.S too */

16: if support of I ≥ min sup then

17: add I to GI.S

18: end if

19: end for

/* Select the level-l frequent Max-EGIs */

20: for all c in C[l] do

21: if support of c ≥ min sup then

22: add c to L[l]

23: end if

24: end for

25: end for

26: return L

17



itemsets. A pseudo-code of the Max-EGI algorithm is given in Algorithm 1.

A high-level description of each algorithm step is reported below.

Level-sharing itemset mining. Since, for each Max-EGI O = X ≀ S, X is a

frequent level-sharing itemset and S contains the frequent level-sharing X’s

descendants, then traditional level-sharing itemset mining is used to drive

the Max-EGI extraction process (see line 1 in Algorithm 1).

To efficiently extract frequent level-sharing itemsets, we adopted an FP-

growth-like itemset miner, i.e., LCMv2 [14]. Similar to FP-Growth [16], LCM

relies on a projection-based approach. It entails: (i) creating and storing in

main memory an FP-tree-based dataset representation and (ii) mining the

frequent itemsets by recursively visiting the conditional FP-tree projections.

To suit the standard LCM implementation to generalized itemset mining, we

adopted the strategy, first proposed in [27], of extending the dataset records

by appending to each record all its item generalizations in Γ. Furthermore,

the recursive projected FP-tree generation is tailored to level-sharing itemset

mining. Specifically, the conditional FP-tree related to the level-l item i

is generated by exclusively considering level-l items. In such a way, the

generation of not level-sharing itemsets is prevented. The frequent level-

sharing itemsets are stored in T I (line 1).

Max-EGI mining. Once all the frequent level-sharing itemsets X are gener-

ated, Max-EGI Miner associates with each of them a candidate Max-EGI

X ≀S and populates its descendant set S. level-1 Max-EGIs can be straightfor-

wardly mapped to traditional level-1 itemsets (contained in T I[1]) because

they are characterized by an empty descendant set (lines 3-5). In contrast,

high-level Max-EGIs are mined by following a level-wise approach, i.e., the
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taxonomy is climbed up stepwise until the maximum generalization level is

reached (lines 7-25). Level-wise taxonomy evaluation prevents the need for

multiple itemset scans. In fact, level-l Max-EGIs are generated from the

level-l itemsets T I[l] and the level-(l − 1) candidate Max-EGIs (C[l − 1]).

While the level-l itemsets in T I[l] are exploited to populate the X part of

the level-l Max-EGIs X ≀S (lines 9-11), the level-(l−1) candidate Max-EGIs

in C[l− 1] are used to fill their S set (lines 13-19). Note that the traditional

generalized itemsets with level less than l can be discarded early while mining

level-l Max-EGIs. Finally, the frequent level-l Max-EGIs are added to the

output set (lines 20-24).

Algorithm complexity. Itemset mining algorithms are commonly eval-

uated in terms of time complexity, because nowadays it is one of the most

challenging issues [31]. The analysis of the time complexity of the Max-EGI

Miner algorithm can be divided into two steps. The first step concerns the

analysis of the complexity of the frequent level-sharing itemset mining task.

Since it has been accomplished by a LCMv2 algorithm, it is linear in the num-

ber of extracted itemsets [33]. The second step entails the analysis of the

Max-EGI mining procedure, which is performed at the top of level-sharing

itemsets. Since the Max-EGI extraction requires a level-wise scan of the list

of extracted itemsets, its time complexity is again linear in the number of

mined itemsets.

Algorithm completeness and correctness. In the following we will

prove by contradiction that theMax-EGI Miner algorithm is complete and

correct according to the problem statement formalized in Section 3.

Violation of the completeness assumption. By contradiction, let us sup-
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pose that a Max-EGI X ≀ S satisfying min sup in D is not extracted. Three

unexpected behaviors may happen: (a) X is not a frequent level-sharing

itemset, or (b) X is a frequent level-sharing itemset but it has not been ex-

tracted, or (c) X is a frequent level-sharing itemset but some Max-EGIs have

wrongly been included in S.

Since, by construction, the support of X is above or equal to the one of

X ≀ S, then hypothesis (a) is false. Furthermore, all level-sharing itemsets

X are extracted by means of an established level-sharing frequent itemset

mining algorithm [33] (see line 1 in Algorithm 1). Hence, hypothesis (b) is

false. Finally, according to lines 13-19 in Algorithm 1, the S part of each

Max-EGI is populated with the frequent level-(l−1) descendants of X solely.

Therefore, hypothesis (c) is false as well. Contradiction.

Violation of the correctness assumption. By contradiction, let us suppose

that a Max-EGI X ≀ S not satisfying min sup in D is wrongly extracted.

Hence, X is a frequent level-sharing itemset but some Max-EGIs are missing

in S. According to lines 13-19 in Algorithm 1, the S part of each Max-EGI

is populated with the subset of all frequent level-(l − 1) descendants of X.

Therefore, the aforementioned hypothesis is false. Contradiction.

5. Experimental results

A variety of experiments have been conducted on both real-life and syn-

thetic datasets to evaluate Max-EGI Miner performance and compare the

Max-EGI expressiveness and usefulness with that of traditional generalized

itemsets. Experiments were performed on a 3.30 GHz Intel(R) Xeon(R) CPU

E31245 PC with 16 GB main memory running Linux (kernel 3.2.0).
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As discussed in Section 4, the traditional level-sharing itemset extraction

task is accomplished by an implementation of the LCMv2 algorithm [14]

which has been extended to cope with multiple-level data. The implemented

algorithm is a more efficient (projection-based) version of the ML T2L1

algorithm, originally proposed in [15]. For the sake of brevity, the tradi-

tional generalized itemset mining algorithm will be denoted by ML T2L1

throughout the section.

This section is organized as follows. Section 5.1 briefly describes the real

and synthetic datasets that have been used in the performed experiments as

well as the corresponding taxonomies. Section 5.2 compares the characteris-

tics of the Max-EGIs mined by Max-EGI Miner from real and synthetic

datasets with that of the level-sharing itemsets mined by the ML T2L1

algorithm. Sections 5.3 and 5.4 discuss the impact of the support thresh-

old and the discretization method, respectively, on Max-EGI Miner and

ML T2L1 performance. Finally, Section 5.5 analyzes theMax-EGI Miner

algorithm scalability.

5.1. Datasets and taxonomies

We tested the Max-EGI Miner and ML T2L1 algorithms on both real

and synthetic datasets. Table 3 summarizes the main characteristics (i.e., the

number of records and attributes) of the analyzed datasets.

Network traffic datasets. Network traffic data acquired in real-life

contexts is typically analyzed at different abstraction levels. For example,

for IP traffic monitoring experts could analyze either single IP addresses or

IP subnets (i.e., IP address aggregations). For this reason, network traffic

analysis has been considered to be a suitable application context for assessing
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Number of Number of Taxonomy

Dataset records attributes height

UCI datasets

adult 32,561 15 3

breast 699 11 3

cleve 303 14 3

crx 690 16 3

glass 214 11 3

heart 270 14 3

iris 150 5 3

labor 57 17 3

letter 20,000 17 3

nursery 12,960 9 3

pendigits 10,992 17 3

pima 768 9 3

shuttle 43,500 10 3

vehicle 846 19 3

waveformd 5,000 22 3

wine 178 14 3

yeast 1,484 10 3

Network datasets

NetD1 3,802 6 4

NetD2 17,374 6 4

Synthetic datasets

IBM 500K 15A 9L 500,000 15 9

IBM 500K 20A 5L 500,000 20 5

Table 3: Main dataset characteristics.
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the effectiveness of the proposed approach.

Two real datasets with different characteristics were acquired by perform-

ing different capture sessions with the open-source Network Analyzer tool3 on

a backbone link of our campus network4. The captured traffic has been ag-

gregated into unidirectional traffic flows, i.e., records that summarize a group

of similar and temporally contiguous packets. Each flow is a record that con-

sists of six attributes: SourceAddress (source IP address), DestAddress (des-

tination IP address), SourcePort (source port number), DestPort (destina-

tion port number), FlowSize (flow size expressed in bytes), and NumPackets

(number of IP packets aggregated in that flow). We will refer to each dataset

using the dataset name reported in the first column of Table 3 throughout

the article.

Items occurring in the network datasets are aggregated according to the

following generalization trees: (1) SourceAddress and DestAddress attributes

are associated with the generalization tree reported in Figure 2(a). More

specifically, IP addresses are generalized as the corresponding 24-bit subnet

if they are local to our campus network or as external addresses otherwise.

(2) SourcePort and DestPort are associated with the generalization tree in

Figure 2(b), which aggregates ports into three well-known aggregation val-

ues (well known, registered, dynamic). (3) Both FlowSize and NumPackages

have been discretized using the 4-bin unsupervised equi-frequency discretiza-

tion, i.e., the same number of objects is (approximately) assigned to each

interval. In Section 5.4 we analyze the impact of the discretization process

3Analyzer 3.0, http://analyzer.polito.it. Lastly accessed: December 13, 2013
4Due to privacy concerns, the network traffic datasets are not publicly available.
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(a) generalization tree for

SourceAddress and DestAddress

(b) generalization tree for

SourcePort and DestPort

Figure 2: Network datasets. Generalization trees for IP addresses and ports.

on the mining result and we discuss the motivations behind the use of the

equi-frequency discretization in the performed experiments. For FlowSize

and NumPackets no high-level item aggregations have been defined. Hence,

the corresponding items are directly aggregated into the root node.

UCI benchmark datasets. We also evaluated the performance of our

approach on 17 real-life benchmark datasets, which were retrieved from the

UCI repository [13]. Table 3 summarizes the main features of the tested

datasets, which show rather different characteristics in terms of number of

records and attributes.

For each tested dataset a 3-height taxonomy is generated. The taxonomy

generation procedure over the real-life UCI datasets is performed as follows.

To generate the generalization trees over the continuous data attributes (e.g.,

age, flnwgt, education-num, capital-gain, capital-loss, and hours-per-week),

we applied a 10-bin equi-frequency discretization. Discretized item values
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are exploited to aggregate pairs of consecutive item values. Instead, gen-

eralization trees over nominal data attributes are analyst-provided. If no

meaningful aggregation is available, data items are directly aggregated into

the root node. The UCI datasets and taxonomies used in the experimen-

tal evaluation are available for research purposes at [12]. A description of a

representative UCI dataset coming from the census domain is reported below.

Adult dataset. Adult collects census data about American people (e.g.,

education, occupation, marital status, race, and sex). For the Education,

Marital-status, and Native-country nominal attributes we defined the follow-

ing generalization trees:

• Education (1st grade, .., 12th grade, Bachelors, Masters, Doctorate,

Preschool) → No-College / College/ . . . / Post-College

• Marital-status (Divorced, Civil married, Church married, Separated,

Widowed) → Married / Non-Married

• Native-country → Europe / America / Asia / Oceania / . . . / South-

Africa

For the remaining nominal attributes no meaningful item aggregations (dis-

regarding the root node) are defined.

Synthetic datasets. To generate synthetic data we used the function

2 of the Quest IBM synthetic dataset generator [18], which has first been

exploited by [23] in the context of data classification. The data generator

automatically produces structured datasets that consist of a user-specified

number of records and attributes. To automate the taxonomy generation

procedure we extended the data generator source code as follows. Once a
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user has specified the required taxonomy height h, for each attribute the item

values are treated as taxonomy leaf nodes, sorted into lexicographical order,

and clustered into a subset of equi-frequency bins. Each bin is associated with

a generalized item which aggregates all the group members. Next, the high-

level bins are further aggregated with each other and the procedure iterates

until all the items are clustered into a single group (i.e., the root node). At

each generalization level the bin frequency is automatically computed based

on taxonomy height and attribute domain cardinality. For example, if the

taxonomy height is equal to 3 then a 27-value attribute domain is partitioned

into 9 equi-frequency bins at level 1, 3 equi-frequency bin at level 2, and a

single level-3 bin. The extended generator version is available at [12]. Here-

after the synthetic datasets will be identified using the following notation:

IBM num records num attributesA num levelsL, where num records and

num attributes are the dataset cardinality and dimensionality, respectively,

while num levels is the taxonomy height.

5.2. Pattern analysis and expert-driven validation

We demonstrated the effectiveness of the proposed approach on both real

and synthetic datasets with different data distributions and taxonomy char-

acteristics. More specifically, we analyzed: (i) the usefulness of the extracted

Max-EGIs for supporting the knowledge discovery process on the network

traffic datasets (see Section 5.2.1), and (ii) the characteristics of the mined

patterns on real and synthetic datasets (see Section 5.2.2).
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Destination Pattern Sup Sup

address ID Max-EGI X ≀ S S part

subnet

130.192.XX/24

1 {(DestA,130.192.XX/24),(SourceA,external)} ≀ 0.28% 0.10%

{(DestA,130.192.XX.DD),(SourceA,213.92.WW.LL)}

2 {(DestA,130.192.XX.DD), (SourceA,213.92.WW.LL)} 0.10% -

130.192.YY/24

3 {(DestA,130.192.YY/24), (SourceA,external)} ≀ 0.68% 0.32%

{{(DestA,130.192.YY.EE), (SourceA,195.210.AA.HH)}

{(DestA,130.192.YY.GG), (SourceA,211.112.BB.FF)}}

4 {(DestA,130.192.YY.EE), (SourceA,195.210.AA.HH)} 0.22% -

5 {(DestA,130.192.YY.GG), (SourceA,211.112.BB.FF)} 0.10% -

130.192.ZZ/24 6 {(DestA,130.192.ZZ.MM)} 0.25% -

Table 4: Network dataset NetD2: examples of Max-EGIs relative to the subnets

130.192.XX/24, 130.192.YY/24, and 130.192.ZZ/24. min sup=0.1%.

5.2.1. Max-EGI expert-driven validation

We validated the usefulness of the Max-EGIs mined from the NetD2

dataset with the help of a domain expert. As an example, Table 4 reports a

worthwhile subset of Max-EGIs selected by the analyst. They are related to

the IP traffic directed to the campus subnets 130.192.XX/24, 130.192.YY/24,

and 130.192.ZZ/24. To compare Max-EGIs with traditional itemsets, Table 5

also reports the corresponding set of frequent itemsets, generalized and not.

The expert deemed the aforemetioned Max-EGIs to be valuable for tar-

geted traffic flow analysis. For example, the Max-EGI with PID (1) in Table 4

describes the portion of traffic generated from external IP addresses that is di-

rected to the campus subnet 130.192.XX/24. Item (DestAddress,130.192.XX/24)

generalizes all the IP destination addresses that belong to subnet 130.192.XX/24,

while (SourceAddress,external) represents all the external IP sources. The

analysis of the characteristics of the incoming traffic generated by external
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Destination Pattern
Traditional itemset Sup

A ID

subnet

130.192.XX/24
1 {(DestA,130.192.XX/24), (SourceA,external)} 0.38%

2 {(DestA,130.192.XX.36), (SourceA,213.92.WW.LL)} 0.10%

130.192.YY/24

3 {(DestA,130.192.YY/24), (SourceA,external)} 1%

4 {(DestA,130.192.YY.EE), (SourceA,195.210.AA.HH)} 0.22%

5 {(DestA,130.192.YY.GG), (SourceA,211.112.BB.FF)} 0.10%

130.192.12/24
6 {(DestA,130.192.ZZ/24)} 0.33%

7 {(DestA,130.192.ZZ.MM)} 0.25%

Table 5: Network dataset NetD2: examples of traditional generalized itemsets relative to

the subnets 130.192.XX/24, 130.192.YY/24, and 130.192.ZZ/24. min sup=0.1%

IP addresses could be helpful for performing campus network monitoring and

service shaping. To delve into such traffic flows, the expert first examines the

frequent descendant set S of the Max-EGI with PID (1), because it contains

a reduced number of patterns. The traffic flows related to the pair of source

and destination IP addresses 213.92.WW.LL and 130.192.XX.DD frequently

occur in the analyzed trace. Source IP address 213.92.WW.LL turns out to

be associated with a video streaming server, which provides public network

services. Similarly, the analysis of the Max-EGI with PID (3) highlights a

couple of other external public services. They are associated with the exter-

nal IP addresses 195.210.AA.HH and 211.112.BB.FF, respectively, and they

are reachable from the campus network subnet 130.192.YY/24. The tradi-

tional itemsets with IDs 1 and 3 in Table 5 correspond to the X part of

the Max-EGIs (1) and (3) respectively. However, they provide a partial and

somehow misleading information, because their support count considers both

frequent and infrequent descendant contributions. From the analysis of the

28



Max-EGI mining results it appears that some IP external addresses should

be analyzed apart from their common high-level aggregation. To perform

these analyses, the expressiveness of traditional high-level itemsets is shown

to be rather low compared to that of Max-EGIs.

Examples of real contexts of use for the mined Max-EGIs are: (i) the

analysis and discovery of network service malfunctioning, which may trigger

targeted reactions, (ii) the profiling of network user activities, and (iii) the

shaping of the network service provision. For example, bandwidth could

be shaped differently for frequently asked and underused public services.

Similarly, the unexpectedly frequent traffic flows directed to a specific IP

subnet could be monitored carefully because they may hide a potential system

malfunctioning or a denial of service attack.

Pattern Sup Sup

ID Max-EGI X ≀ S S part

1 {(SourceA,external),(DestA,local),(DestPort,well-known)} 0.28% 2.44%

≀

{ {(SourceA,external),(DestA,130.192.LL),(DestPort,well-known)} ≀

{{(SourceA,213.209.XX.TT),(DestA,130.192.LL.ZZ),(DestPort,815)}}

. . .

{(SourceA,external),(DestA,130.192.YY),(DestPort,well-known)}

{(SourceA,external),(DestA,130.192.VV),(DestPort,well-known)} }

2 {(SourceA,external),(DestA,local),(DestPort,dynamic-port)} 0.30% 5.37%

≀

{ {(SourceA,external),(DestA,130.192.XX),(DestPort,dynamic-port)} ≀

{{(SourceA,217.45.TT.PP),(DestA,130.192.XX.ZZ),(DestPort,57403)}}

. . .

{(SourceA,external),(DestA,130.192.YY),(DestPort,dynamic-port)}

{(SourceA,external),(DestA,130.192.VV),(DestPort,dynamic-port)} }

Table 6: Network dataset NetD2: examples of complex Max-EGIs. min sup=0.1%
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Table 6 reports two examples of more “complex” Max-EGIs, which con-

tain in their S set other Max-EGIs with S 6= ∅. The first Max-EGI de-

scribes the traffic generated from external IP addresses and directed to well-

known ports. The network expert analyzes the frequent descendant set S of

the Max-EGI with PID (1) and she identifies the most frequently accessed

local subnets (e.g., DestA,130.192.YY and DestA,130.192.VV). Note that

Max-EGI {(SourceA,external),(DestA,130.192.LL),(DestPort,well-known)} ≀

{{(SourceA,213.209.XX.TT),(DestA,130.192.LL.ZZ),(DestPort,815)}} is also

contained in S. This pattern indicates that a large number of external con-

nections are directed to well-known ports of subnet 130.192.LL, but actually

many of them are related to a specific IP address (130.192.LL.ZZ) corre-

sponding to an external video streaming service provider. This informa-

tion is worthy for network traffic monitoring. Similarly, the Max-EGI with

PID (2) in Table 6 can be considered to shape external connections directed

to dynamic ports of local IP addresses.

5.2.2. Characteristics of mined patterns

We performed different Max-EGIs and traditional generalized itemset

mining sessions from real and synthetic datasets. The choice of the appro-

priate minimum support threshold value to enforce depends on the analyzed

data distribution. During the experiments we noticed that both Max-EGI

Miner and ML T2L1 produces interesting results by setting the minimum

support threshold to 1% on the UCI and synthetic datasets and to 0.1% on

the network datasets. Hence, we consider the above thresholds as reference

configuration settings on the analyzed datasets. A more thorough discussion

of the impact of the support threshold on the algorithm performance is given
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in Section 5.3.

For each dataset Table 7 summarizes (i) the number of mined not gen-

eralized traditional itemsets, i.e., the level-1 Max-EGIs (see Column 3), (ii)

the number of mined traditional level-sharing itemsets with level above 1,

i.e., the traditional high-level itemsets (Column 4), and (iii) the number of

mined Max-EGIs with level above 1 (Column 5). Since level-1 itemsets are

in common between the two mined sets, their count is reported separately.

Max-EGIs extend the traditional itemsets by also considering their corre-

sponding frequent descendant set (i.e., the S part). Specifically, a high-level

Max-EGI covers only the subset of dataset records that are associated with

its infrequent descendants. Neglecting frequent descendant support contri-

butions may affect the support counting of high-level patterns. Changes to

the mining result are three-fold: (a) some of the traditional high-level item-

sets are pruned, because they become infrequent with respect to the support

threshold; (b) some others are enriched with a (not empty) descendant S; (c)

still others remain unchanged (i.e., their frequent descendant set S is empty).

To compare Max-EGIs with traditional itemsets, Table 7 reports the number

and percentage of traditional itemset changes occurred while extracting Max-

EGIs (see Columns 6 and 7), where ”‘changes”’ consists of itemset pruning

(fold (a)) or enrichment (fold (b)).

Based on the results reported in Table 7, 10 UCI datasets out of 17

have a percentage of changed itemsets above 50%. Hence, the mined pat-

terns represent, on average, a significantly different knowledge compared to

the traditional level-sharing itemsets. The percentage of changed itemsets is

more significant when coping with denser datasets (e.g., 99.05% for the Shut-
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min sup Num. of Num. of Num. of Num. Perc. of Avg. Num. Avg. Num. Relative

Dataset (%) itemsets Level-sharing Max-EGIs of changed of overlapped of overlapped overlap

of level 1 itemsets (level>1) changed itemsets Level-sharing Max-EGIs reduction

(level > 1) itemsets (%) itemsets (level>1) (level>1) (%)

per record per record

UCI datasets

adult 1 249,413 368,926 193,384 192,364 52.1 9,216 2,789 69.7

breast 1 13,099 11,497 9,572 5,796 50.4 664 131 80.3

cleve 1 159,439 220,676 130,274 104,902 47.5 3,954 1,539 61.1

crx 1 1,069,561 1,430,270 877,711 734,228 51.3 32,287 10,475 67.6

glass 1 32,556 24,912 13,470 17,433 70.0 854 169 80.2

heart 1 459,708 614,661 334,996 334,400 54.4 8,243 2,803 66.0

iris 1 1,454 665 0 665 100 30 0 100

labor 1 7,027,978 6,546,242 0 6,546,242 100 127,308 0 100

letter 1 55,107 503,395 496,647 31,491 6.3 9,763 8,737 10.5

nursery 1 8,118 4,302 2,593 1,709 39.7 89 34 62.0

pendigits 1 37,978 437,442 431,020 24,849 5.7 7,085 6,400 9.7

pima 1 7,845 10,626 9,721 2,933 27.6 361 189 47.8

shuttle 1 10,847 6,764 1,608 6,700 99.1 1,013 27 97.4

vehicle 1 445,248 4,717,476 4,612,624 324,288 6.9 72,475 65,734 9.3

waveformd 1 786,443 13,589,520 13,494,548 475,716 3.5 236,850 223,243 5.7

wine 1 2,815,380 2,406,677 0 2,406,677 100 16,382 0 100

yeast 1 9,202 8,952 0 8,952 100 255 0 100

Network datasets

NetD1 0.1 4,357 5,891 5,676 736 12.5 62 53 14.7

NetD2 0.1 1,576 4,603 4,542 349 7.6 61 57 6.6

Synthetic datasets

IBM 500K 15A 9L 1 467 878,700 859,956 70,639 8.0 68,047 32,720 51.9

IBM 500K 20A 5L 1 467 1,327,092 1,325,794 10,344 0.8 1,054,383 1,048,562 0.6

Table 7: Number of mined Max-EGIs and level-sharing itemsets.

tle dataset), whereas it becomes less relevant on sparser ones (e.g., 7.60% for

the NetD2 network dataset). A dataset is usually considered to be dense

if it contains a relatively large number of frequent itemsets even when aver-

agely high support thresholds are enforced. Conversely, the dataset is said

to be sparse. Data sparseness/density appears to be strongly correlated with

the percentage of changed (high-level) itemsets. On the one hand, on denser

datasets (e.g., Shuttle) a larger number of low-level itemset is likely to be

frequent. Hence, the percentage of changed itemsets becomes significant and

thus Max-EGI mining is much more effective than traditional itemset min-
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ing. In 4 cases out of 17 (i.e., iris, labor, yeast, wine), no Max-EGI with level

above 1 is mined, because low-level itemsets already cover most of the dataset

records. On the other hand, itemsets generalization on sparser datasets (e.g.,

Letter, NetD2) prevents the discarding of a large number of infrequent but

potentially relevant patterns. However, the percentage of changed itemsets

is, on average, more limited.

A key issue of traditional itemset mining is that each dataset record r

could be covered by many extracted itemsets Xi (i.e., Xi ⊆ r) at the same

time. In [24] the authors formulated the redescription mining problem as the

task of finding sets of patterns that all cover the same set of records. These

pattern sets are of interest as they point towards equivalences in the ana-

lyzed data facets. In the context of itemset mining the lower the number of

“overlapped” itemsets covering the same record is, the more manageable the

result becomes for manual inspection. Hence, in Table 7 we also quantita-

tively compared Max-EGIs with traditional itemsets in terms of the average

number of overlapped Max-EGIs (Column 8) and traditional itemsets (Col-

umn 9) per record. The relative difference between the aforesaid measures,

i.e., Column(8)−Column(9)
Column(8)

, is also reported (see Column 10). The results em-

pirically demonstrate that Max-EGIs are significantly less overlapped than

traditional itemsets on most datasets, in particular on denser ones (e.g.,

97.4% relative overlap reduction on Shuttle) for which the percentage of not

extracted or changed high-level Max-EGIs is higher.

5.3. Performance analysis

We thoroughly analyzed the performance of our approach in terms of (i)

impact of the support threshold on the number of extracted Max-EGIs and
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(c) Adult: Num. of itemsets
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(d) Adult: Execution Time
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(e) Letter: Num. of itemsets
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(f) Letter: Execution Time

Figure 3: Effect of the minimum support threshold on the characteristics of the extracted

itemsets with level>1 and execution time.
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(ii) algorithm execution time.

Impact of the support threshold. Since the support threshold can significantly

affect the performance of itemset mining algorithms, we also analyzed its

impact on the Max-EGI Miner and ML T2L1 performance in terms of

number of mined itemsets and algorithm execution time.

Figures 3(a)- 3(f) report the number of extracted high-level patterns (i.e.,

the Max-EGIs and the traditional level-sharing itemsets with level above 1)

and the algorithm execution time spent on three representative UCI datasets

by varying the support threshold value in the range [0.8%,10%]. We consid-

ered as representatives a very dense (Shuttle), an averagely dense (Adult),

and a sparse dataset (Letter), because they yield high, medium, and low

percentages of changed itemsets, respectively (see Table 7 at Column (7)).

For all datasets, when higher support thresholds (e.g., 7%) are enforced

the selectivity of the support threshold is rather high (see Figures 3(a), 3(c),

and 3(e)). In other words, many low-level itemsets become infrequent and,

thus, are pruned, whereas some of their high-level ancestors are extracted.

Therefore, the informative content of the mining result is rather low, because

most of the extracted patterns represent rather generic correlations among

data. In contrast, when setting relatively low support values (e.g., 1%) the

mining result may contain potentially relevant knowledge. Since most of the

high-level itemsets are kept, the curves achieved for the two algorithms have

a similar trend (see Figures 3(a), 3(c), and 3(e)). However, the expressive-

ness of the traditional high-level itemsets degrades while setting low support

thresholds, because many of the extracted high-level data correlations does

not cover a significant number of uncovered records. Thanks to high-level
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itemset pruning, Max-EGI Miner yields a quite significant cardinality pat-

tern set reduction compared to ML T2L1. For example, setting min sup to

1% the number of extracted Max-EGIs on Shuttle is 76% lower than the

number of traditional level-sharing itemsets. The cardinality reduction is

equal to 47% and 1% for Adult and Letter, respectively. Furthermore, an in-

creasing number of traditional itemsets is enriched with a not empty S part.

Hence, a higher percentage of changed itemsets is achieved (see Column (7)

of Table 7). More specifically, when setting min sup = 1%, the percentages

of changed itemsets are 99.1%, 52.1%, and 6.3% on Shuttle, Adult, and Let-

ter, respectively. As expected, the reduction in terms of number of mined

itemsets is higher on denser datasets (e.g., Shuttle) and lower on sparser ones

(e.g., Letter). For example, on Letter the number of level-sharing itemsets

is close to the number of extracted Max-EGIs (the two curves in Figure 3(e)

are substantially overlapped).

Algorithm execution time. We compared the execution times of Max-EGI

Miner and ML T2L1 algorithms on the analyzed datasets. Table 8 reports

the ML T2L1 and Max-EGI Miner execution time on all the considered

datasets (both real and synthetic) by enforcing the reference support thresh-

old. Although Max-EGI Miner performs a post-processing step at the

top of the traditional level-sharing itemsets, its execution time is comparable

with that of ML T2L1 with most of the tested support threshold values5

(see Figures 3(b), 3(d), and 3(f)).

5The gap in Figure 3(b) is negligible because the runs last less than 2 seconds.
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min sup Execution time Execution time

Dataset (%) of ML T2L1 (s) of Max-EGI Miner (s)

UCI datasets

adult 1 5.0 11.8

breast 1 0.5 0.9

cleve 1 2.7 6.9

crx 1 11.4 38.0

glass 1 0.6 1.6

heart 1 3.2 8.5

iris 1 0.2 0.4

labor 1 71.1 295.2

letter 1 5.7 13.9

nursery 1 0.7 1.0

pendigits 1 4.2 10.6

pima 1 0.5 0.8

shuttle 1 1.1 1.5

vehicle 1 38.7 143.6

waveformd 1 112.2 876.5

wine 1 2.8 7.2

yeast 1 0.5 0.8

Network datasets

NetD1 0.1 0.6 0.9

NetD2 0.1 0.8 1.4

Synthetic datasets

IBM 500K 15a 9l 1 43.1 63.2

IBM 500K 20a 5l 1 42.4 59.5

Table 8: Execution time of Max-EGI Miner and ML T2L1.

5.4. Effect of the discretization method

Similar to traditional itemset mining, continuous data need to be dis-

cretized before executing the Max-EGI Miner algorithm. Since the dis-

cretization process can affect the characteristics of the mining result, we

analyzed the Max-EGI performance by adopting different well-known dis-
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cretization methods. For the sake of brevity, in the following we reported

the results achieved using two representative and established methods, i.e.,

equi-width and equi-depth [31]. Equi-width discretization focuses on parti-

tioning the attribute domain into a fixed number of equi-width bins, whereas

the equi-depth discretization method generates a set of bins which contain

approximately the same number of objects.

We tested many datasets composed of continuous attributes solely (dis-

regarding the class label). Since the effect of discretization is similar on all

the tested datasets, we reported just the results achieved on a fairly complex

dataset (Vehicle). Figures 4(a) and 4(b) report the number of Max-EGIs

with level above 1 achieved using equi-width and equi-depth discretization,

respectively. For each discretization, every plotted curve is related to a dis-

cretization process with a different number of bins. For example, the curve

denoted by equi-width X-Y represents the mining results achieved on a source

dataset discretized as follows: (i) a X-bin equi-width discretization step at

level 1 (i.e., at the data item level) and (ii) a Y-bin equi-width discretization

step to generate level-2 items (see Section 5.1).

As expected, increasing the number of bins the number of mined Max-

EGIs decreases, because the average support of the data items decreases. By

enforcing relatively low support threshold values (e.g., 1%), the equi-width

discretization method yields an averagely higher number of Max-EGIs com-

pared to the equi-depth discretization, because some of the generated bins

(and their corresponding combinations) become on average frequent, whereas

all the others are discarded early. In contrast, the equi-depth discretization

method generates a large number of level-1 and level-2 items for which the

38



 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 1  2  3  4  5  6  7  8  9  10

N
um

be
r 

of
 M

A
X

-E
G

Is
 w

ith
 le

ve
l>

1

Minimum support threshold (%)

equi-width 10-5
equi-width 20-5

equi-width 20-10

(a) Equi-width discretization.
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(b) Equi-depth discretization.

Figure 4: Vehicle dataset: Impact of the discretization step on the number of mined

Max-EGIs (level>1). min sup = 1%.

observed frequency in the analyzed data is approximately the same. Hence,

to some extent, the equi-depth discretization method appears to be more suit-

able for coping with relatively sparse datasets and thus it has been adopted

as reference preprocessing step throughout the article.

5.5. Scalability

We analyzed the scalability, in terms of execution time, of the Max-

EGI Miner algorithm on synthetic datasets with (i) the number of dataset

records, (ii) the number of attributes, and (iii) the taxonomy height. Max-

EGI Miner extractions were performed by setting the minimum support

threshold to 1%. Note that, for most of the tested configurations, the number

of generated patterns is in the order of 105 or even higher. Figure 5 reports

the achieved results, which are discussed in the following.

Scalability with the number of records. The results on synthetic data

were achieved varying the dataset cardinality in the range [100,000, 1,000,000],
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while setting the number of attributes and the taxonomy height to 15 and 5,

respectively. The results, reported in Figure 5(a), show that the Max-EGI

Miner execution time scales roughly linearly with the number of records,

because the data distribution does not vary substantially while the dataset

cardinality increases.

Scalability with the number of attributes. The impact of the number

of attributes on the Max-EGI Miner execution time was tested by varying

the dataset dimensionality in the range [10, 20], while setting the number

of records and the taxonomy height to 500,000 and 5, respectively. The

results, reported in Figure 5(b), show that the execution time scales more

than linearly with the number of attributes, because of the combinatorial

increase in the number of generated combinations.

Effect of the taxonomy height. We varied the taxonomy height in the

range [2, 8] and we set the dataset cardinality and the number of attributes

to 500,000 and 15, respectively. The results, reported in Figure 5(c), show

that the Max-EGI Miner execution time scales more than linearly with

the taxonomy height. In fact, the more complex taxonomies you consider,

the more high-level candidate Max-EGIs you generate.

6. Related work

The problem of discovering generalized itemsets and association rules has

first been addressed in [27] to perform market basket analysis. The authors

propose a generalized itemset mining algorithm that extracts frequent item-

sets by considering, for each item, all of its parents in a taxonomy supplied
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Figure 5: IBM dataset: Max-EGI Miner algorithm scalability. min sup = 1%.

with the analyzed data. A similar problem has been addressed in [28] when

dealing with quantitative data. However, since the candidate frequent item-

sets are generated by evaluating the taxonomy exhaustively, a very large

number of patterns is typically extracted. To overcome this issue, many re-

lated approaches [3, 10, 19, 29, 30] focus on reducing the complexity of the
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mining process by preventing the generation of uninteresting or redundant

candidates. For example, in [3] the authors propose to push user-provided

boolean constraints, which enforce the presence or the absence of a given

item combination, into the mining process. Similarly, the approach pre-

sented in [29] also takes subset-superset and parent-child item relationships

into account. An attempt to constrain the generalized itemset extraction

based on the cardinality of its descendant set has been made in [10]. To

make the mining result practically manageable by domain experts, the au-

thors propose to extract high-level itemsets only when their corresponding

descendant set is so large that its manual inspection is practically unfeasible.

In parallel, the approaches presented in [19, 30] focus on discovering closed

and maximal itemsets, which are compact frequent itemset subsets [25], in

the presence of taxonomies. Unlike [3, 10, 19, 29, 30], the approach presented

in this article neither proposes novel itemset mining constraints nor focuses

on selecting a worthwhile subset of traditional generalized itemsets. Instead,

it proposes two novel generalized itemset types that are characterized by a

higher expressive power compared to traditional high-level itemsets. A lazy

support-driven approach to generalized itemset mining has also been pre-

sented [4]. The authors propose an algorithm that discovers the frequent

itemsets and all of the (traditional) generalized itemsets that have at least

one infrequent descendant. Furthermore, a recent extension of [4], presented

in [5], addresses the pushing of analyst-provided constraints during the lazy

itemset extraction process. The focus of this article differs, to a large extent,

from that of the above-mentioned approaches because, rather than selecting a

worthwhile itemset subset, in this article we propose two new pattern forms,
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namely the EGI and the Max-EGI. The newly proposed generalized itemset

types significantly improve the expressiveness of traditional high-level item-

sets. Analyses of the item correlation changes across the taxonomy levels

have been performed in [6, 9]. Both [6] and [9] consider high-level itemsets

whose low-level descendants have contrasting item correlation, rather than

mining expressive generalized itemsets.

A parallel effort have been devoted to proposing optimization strategies

to accomplish the generalized itemset mining task efficiently [4, 15, 17, 26].

For instance, in [17] a faster support counting is proposed to compute the

TID intersection in algorithms that exploit the vertical data format [35]. The

authors in [15] proposed an optimization strategy based on a top-down hi-

erarchy traversal. The proposed approach identifies in advance the itemsets

that cannot be frequent in a transactional dataset by exploiting the Apriori

principle [2]. To further prune the search space, the authors also propose to

select a worthwhile subset of generalized itemsets, namely the level-sharing

itemsets. More recently, in [20, 21] efficient generalized itemset and associa-

tion rule mining in a fuzzy context has also been addressed. Similar to [15],

we exploit the concept of level-sharing itemset to reduce the cardinality of

the extracted patterns. However, since we address Max-EGI mining instead

of traditional itemset mining, our focus is radically different.

In the last years, a large body of work has also been devoted to selecting

succinct yet informative pattern sets (e.g., [7, 11, 22, 32]). They commonly

evaluate the global quality of the mined set by means of entropy-based or

statistics-based strategies. Unlike [7, 11, 22, 32], the approach presented in

this article evaluates the interest of each individual pattern based on the
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characteristics of a subset of descendant itemsets. Since pattern set selec-

tion is commonly applied as a postprocessing step, our approach may be

considered to be orthogonal with respect to the previously mentioned ones.

7. Conclusions and future work

This article presents two new types of generalized itemsets, namely the

EGI and the Max-EGI. The proposed patterns are more expressive than

traditional ones, because the support count of high-level patterns only con-

siders the dataset records not covered by any of their frequent descendants.

Furthermore, the list frequent descendants is appended to each high-level

itemset. To efficiently tackle the Max-EGI mining problem at the top of

traditional itemsets, a novel algorithm has been proposed. The experimen-

tal results, achieved on both real and synthetic datasets, demonstrate the

effectiveness of the proposed approach to discover interesting and expressive

patterns from the analyzed datasets as well as the algorithm scalability.

Up to the present, EGIs and Max-EGIs only contain level-sharing item-

sets [15]. Furthermore, their extraction is driven only by the minimum sup-

port constraint [27]. As future work, we plan to (i) mine EGIs associated

with not level-sharing itemsets and (ii) push more complex pattern selection

constraints (e.g., [8, 22, 34]) into the Max-EGI mining process, and (iii) tai-

lor the Max-EGI mining process to continuous data to avoid the preliminary

discretization step.
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