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Abstract

Power system has been acknowledged as a complex system owing to its
complexity resulting from interactions of different layers which include physical layer
like generators, transformers, substations and cyber layer like communication units
and human decision layer. Complex network theory has been widely used to
analyze the power grids from basic topological properties to statistic robustness
analysis and dynamic resilience property. However, there are still many problems
need to be addressed. This thesis will pay more attention on the application and
extension of complexity science and complex network theory in power system
analysis from different aspects:

In the first place, one of our aims is using an extended topological method to
effectively explore the structural property and analyze vulnerability of power systems
by introducing some electrical engineering features into traditional complex network
approach. Based on this consideration, some features such as line impedance, line
flow limit are introduced into characteristic path length and clustering coefficient as
well as degree metrics in order to examine if power grids share structural features of
exist complex network models. And aiming at analyzing static robustness of power
grids, a new metric named electrical betweenness is proposed and used by
introducing power transmission capability and line flow limit into betweenness
centrality which is a metric to measure the importance of a vertex or an edge in
network. In the meantime, a metric named net-ability is used to replace the original
network efficiency to quantify the performance of power grid from a global
perspective. Through our extended complex network methodology, the bulk
interconnecting power transmission network UCTE is analyzed to see the efficiency
and accuracy on the spotting component importance and the robustness of network
with respect to different attacks.

Secondly, although power grids have been thoroughly studied as complex
network and many topological measures have been used in order to classify their

structure, evaluate their behavior in terms of robustness or model their dynamic
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response to malfunctions. Their results have been mainly theoretical and no
correlation between power grids’ realistic behavior (i.e., malfunctions and major
events) and any structural measure has been found. Therefore, a first attempt to
correlate these new measures with real malfunctions data for some major European
power transmission grids is given in this thesis. Based on our proposed new metrics,
similar behavior is found in four major power transmission networks (Germany +
Italy, France + Spain), in terms of robustness to selected attacks to buses, between
different networks. This is measured by means of extended topological indexes
electrically better defined. These behaviors can be (weakly) correlated with similar
probability distributions of major events, identifying similar dynamical response
among topologically similar grids. It would raise hopes in finding a more meaningful
and significant linkage between structural measures and the real dynamical output
(i.e., major events) of a grid.

Thirdly, as complex systems are usually characterized by some level of hierarchy,
which spans in time and space at different scales. This hierarchical structure
commonly allows reducing costs in terms of reliably transmitted information but at
the same time involves different dynamical responses to malfunctions. In the case of
critical infrastructures like transmission power grids, different hierarchical structures
may lead to different behaviors in terms of accumulated major events. We compare
and evaluate the evolution of hierarchy for some real different power transmission
networks when buses are attacked selectively in decreasing order of some
topologically and electrically defined metrics. The simulation results show that:
hierarchy increases when the network is being attacked and a low variability of
hierarchy implies an increased probability of accumulated major events.

Finally, in the smart grid scenario, new energy generation facilities (mainly based
on renewable sources) are becoming widely accessible and becoming more and
more numerous. In this situation, distribution grids gain more and more importance,
while requiring a major update. Most of the researches focus on modeling the power
grid as a simple graph, and the differences are undirected or directed, unweighted
or weighted. However, the power grids have significant spatial characteristics: the
coordination of the generator, transformer and substation, the wiring direction/shape

and length of power cables, etc. Therefore, in our research we apply complex
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network theory to power distribution network analysis, and model the power grid as
a spatial network. Some real distribution networks: SDN1 and SDN2 (Spanish
distribution network 1&2) and NL1-NL12 (the Netherlands distribution network 1-12)
are analyzed using complex network methodology. The cumulative distribution
functions of degree, betweenness and real length of cable exhibit some significant
differences. In order to explain these differences better, we study the role of branch
wiring in spatial model of power grid. Two methods: edge exchange shuffling and
vertex swapping shuffling are used to reveal the relation between branch wiring and
performance optimality. The simulation shows that SDN2 network and one Dutch
network don’t achieve their optimal branch wiring compared with other networks.
Again, the real malfunctions data will be used to verify our simulation results

aforementioned.
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Chapter 1.

Introduction

1.1. TASKS ENCOUNTERED

Although complexity science or complex network in short is widely used in the
power systems analysis especially the vulnerability studies, there are still some
problems are neglected and needed to be addressed further.

Firstly, to our best knowledge, the initial researches mainly focus on traditional
pure topological method which overlooks electrical engineering specificity so that the
analysis and understanding of power systems could be far from the reality. However,
power grid has its own features like line impedance, flow-based network and
transmission capacity, etc. It seems that there needs an update of the pure
topological method evolving specific electrical characteristics together.

Secondly, although batch of metrics have been proposed to evaluate the
importance or robustness both for the components and the whole network, there is a
lake of linkage between measures (such as structure or capability) and malfunctions
(such as the failures of real power systems’ operation). This linkage would be
beneficial to verify the feasibility and efficiency of the application of complex network
methodology to the vulnerability analysis of power systems.

Thirdly, the hierarchy seems to pervade complexity in both living and artificial
systems. As an important complex system, how power grids’ hierarchy
characteristics will influence its own performance and robustness is a pretty good
point to be studied. On the other hand, whether this hierarchy property will affect the
cascading failure evolution could help us to guide the construction of the power grid
at the beginning to improve its robustness.

Last but not least, most of the researches focus on high voltage networks or
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Chapter 1 - Novelty and foundational contribution

power transmission networks. While with the emerging development of smart grid,
the power distribution networks gain more and more importance. Therefore, a
comprehensive study is needed to power distribution networks involving complexity

science and complex network methodology.

1.2. NOVELTY AND FOUNDATIONAL CONTRIBUTION

In this thesis, complexity science or complex network theory is applying and
extending to power systems analysis. Multiple aspects of novelty can be found from
the encountered task and possible solutions:

First of all, to our best knowledge, exist studies about the application of complex
network theory in power systems neglect the specific electrical features. However,
power grids have obvious different characteristics compared with other kinds of
complex networks. Based on this consideration, this thesis tries to introduce the
electrical features of power systems such as line impedance, power flow and
transmission capacity into traditional pure topological methodology. A novel
extended method including three new metrics: entropy degree, electrical
betweenness and net-ability are proposed and used to assess the vulnerability of
power systems.

When using complex network theory to analyze the vulnerability of power
systems, a natural consideration is restoring to some metrics both traditional and
extended. Batch of papers have addressed this problem and some metrics have
been proposed. However, there are still no papers mentioned how to verify the
feasibility and efficiency of these metrics. Therefore, a first attempt to build a linkage
between our proposed extended topological metrics and malfunctions dataset of
power grids is given in the thesis. Four major power grids: France, Germany, ltaly
and Spain are chosen to be analyzed using our proposed electrical metrics. And the
cumulative probability distribution functions of the malfunctions for these grids are
checked respectively. A linkage is built between topological measures and
malfunctions in the similar topologically characterized networks.

Hierarchy is another important feature of complex network. The novelty of this
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Chapter 1 - Structure of the thesis

thesis is that we investigate the hierarchy evolution of power transmission networks
under a morphosapce coordinates that evaluates and quantifies the hierarchy
properties of complex networks. The interesting point is that the evolution arbitraries
of different power grids have a strong correlation with their real operation
malfunctions. Based on this observation, the influence of hierarchy property to the
cascading failure is further studied.

In order to investigate the power distribution networks not only in terms of
vulnerability but also in the performance optimality, a spatial model considering the
geographic coordinates of node and branch is built. In this spatial model, the
topological and spatial properties are checked. Additionally, the role of branch wiring
in spatial model of power grid is studied as well. Two methods: edge exchange
shuffling and vertex swapping shuffling are used to reveal the relationship between
branch wiring and optimality of performance. Furthermore, the real malfunctions

data of each grid will be used to verify our simulation results aforementioned.

1.3. STRUCTURE OF THE THESIS

In addressing aforementioned methods and resolutions, the main chapters of the

thesis are organized as following:

- Chapter 2 gives a short but comprehensive description about the complexity
science and complex network theory. In the meantime, the complexity of
power systems is addressed and modeling power network as complex
network is also introduced. After that, a comprehensive review about the
application of complex network theory in power systems is given.

- Chapter 3 starts from the analysis of the neglecting of specific electrical
features in power systems of traditional pure topological method in complex
network theory. Based on this consideration, an extended topological
methodology is proposed which involving complex network theory and
electrical features of power systems together and three new metrics are

proposed to analyze the vulnerability of power systems.



Chapter 1 - Structure of the thesis

Chapter 4 illustrates the lack of efficient method to verify the feasibility and
efficiency of topological metrics derived from complex network theory to
assess the vulnerability of power systems. A first attempt is given in this
chapter to link the analysis results of proposed topological metrics with the
real malfunctions of power systems. Results show statistically meaningful
(although weak) correlations among similar topologically characterized
networks, which could finally help in defining a linkage between topological
measures and malfunctions in power grids.

Chapter 5 analyzes the hierarchy evolution of power transmission networks
under a morphorspace coordinates. The different evolution arbitraries have
a strong correlation with their real malfunctions data. This phenomenon
illustrates that the hierarchy property of complex network has a strong
influence to cascading failure. Therefore, the relationship between
hierarchy and cascading failure is further analyzed in this chapter.

Chapter 6 extends complex network theory from power transmission
networks to power distribution networks. On the one hand, the traditional
properties are checked for distribution networks, on the other hand, the
spatial network model is built for distribution networks and their optimality
property under spatial constraints is analyzed. Different performance is
obtained and analyzed. Furthermore, the malfunctions datasets are used to

verify the results as well.



Chapter 2.
Complexity in Power Systems and

Complex Network Approach

Since the traditional methods of science and analytical philosophy were not
sufficiently efficient and feasible to capture the dynamics exhibited in complex
systems. Late last century there was a trend for geographers, biological,
environmental, human, societal scientists and engineers applying a new theory,
called complexity theory to topics ranging from economic growth, herds behavior,
cultural dissimilation to the braiding of rivers, the urban geography [1-3], etc. in
sharp contrast to the Newtonian Science based on reductionism, determinism and
objective knowledge, the complexity science provides a new way of thinking that
values the non-linear, interaction, asymmetrical relationships of elements in a
system much more than analytically accurate models themselves which are used
represent the behavior of a specific component. The significance of the elements
was obtained through the complex interactions and interplays in a network.

The same story happens in power systems as well, especially after the
deregulation since last century and the emergence of smart grids in the new
millennium and low voltage networks which involved human distributed decision
making scenarios. In the smart grids environment, the interactions among a
considerable number of participants in various levels have been greatly enhanced.
At present, many researches begin to exploit the complexity science and techniques
to the study of power systems and to develop a new synthetic perspective to view
the power systems.

In this chapter, the definitions of complexity and relevant issues regarding



Chapter 2 - Complexity and complex systems

complexity science and techniques will be given. Then the complexity in power
systems and a scene of power system as a complex system are discussed.
Furthermore, the new application about complex network theory to power systems is

presented and a corresponding and comprehensive review is also given.

2.1. COMPLEXITY AND COMPLEX SYSTEMS

There is no general accepted formal definition of complexity science like
Heyligen gave an answer to this question: “Conceptually, the most difficult aspect of
complexity is still its definition and the deeper understanding that goes with it” [4].
There have been many different forms of endeavors in complexity over almost all
disciplines which cover various definitions and measures of complexity. Generally,
they could be categorized into three groups: Algorithmic complexity [5][6],
Deterministic complexity [6] and Aggravate complexity [6]. The first group covers the
complexity of describing system characteristics, such as mathematical complexity
theory and information theory. The second group includes the interaction of very few
key variables that create largely stable systems prone to sudden discontinuities,
such as chaos theory, catastrophe theory, etc. the last one which mostly interests us
concerns how individual elements work in a synergy that generates complexity in a
system.

To explicitly and clearly define the notion of complexity used in this dissertation,
while avoiding too generalizing the concept to be workable or losing any useful
positive meaning, in this thesis we adopt the definition of complexity as follows:
“Complexity is a property that makes it difficult to analytically formulate its overall
behavior even when knowing the complete information about its elements and their
relationships”. Here “difficult” could involve several aspects such as size, depth,
computational indication, efforts in a search for the most apt representation, etc.

Accordingly, a general and logical definition of complex system is a system that
exhibits complexity: “A system, that can be decomposed in a set of different types of

elementary parts with autonomous behaviors, goals and attitudes and an
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environment, is complex if its modeling and related simulation tools cannot be done
resorting to a set of whichever type of equations expressing the overall performance
of the system, in terms of quantitative metrics, or a function on the basis of state
variables and other quantitative inputs”. It's noticed that this definition is more like
an articulated and practical way which targeting at engineering systems.

Over the last several years, complexity science has changed the way scientists
approach all fields of life, form biology to medicine, from economics to engineering
[7-11]. The concepts or techniques such as self-organization, genetic algorithm,
cellular automata, criticality, artificial life or chaos theory are now widely accepted
and used as new means of understanding the always changing reality. The history
complex systems research including these concepts begins in the 1950’s, emerging
with the advent of von Bertalanffy’s systems theory, the appearance of nonlinear
phenomena in scientific fields away from physics, like chemistry and biology, and
the study of feedback concepts in communication and control in living organisms,
machines and organizations. From these early stages, the idea of threshold turned
up to be the cornerstone of much of the complexity science developments of the
1980’s, especially in the cellular automata and artificial life fields, where complex
behavior seemed to appear suddenly [12-14]. From then on many books, journals,
conferences, and even whole institutes devoted to the field have flourished
everywhere, and even computer modeling of complex systems has become widely
accepted as a valid scientific activity. A conceptual map which cited from the
dissertation of Marti Rosas-Casals (“Topological Complexity of the Electricity
Transmission Network: Implications in the Sustainability Paradigm”) is shown in Fig.
2-1 highlights various aspects involved in the characterization of complexity. In this
conceptual framework complexity pervades both the (a) structure (i.e., formal
arrangement of the constituent parts), (b) dynamics (i.e., functional behavior) and (c)
evolution (i.e., the way it has reached its actual formal and functional state) of any
system. It covers comprehensive majors of complexity science and different

technology and method.
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Fig. 2-1 The conceptual map to highlight the various aspects involved in complexity’s
characterization. (Source: Marti Rosas-Casals, “Topological Complexity of the Electricity
Transmission Network. Implications in the Sustainability Paradigm”, Ph.D Thesis)

Reference [15] gave a try to review the methods and techniques of complex
systems, and grouped them into three categories: (1) those for analyzing data, (2)
those for building and understanding models, and (3) those for measuring
complexity as such. The techniques for the purpose (1) and (3) are out of the scope
of this thesis, hence, what we focus on are those commonly used in power systems
like multi-agent modeling and complex network theory which will be described

specifically in the next section.

2.2. COMPLEX NETWORK

As introduced in the last section we have noticed that complex system, or
complexity in short, is a new approach to science that studies how relationships
between parts give rise to the collective behaviors of a system and how the system
interacts and forms relationships with its environment. Complex system is a very hot

research arena which is studied by many areas of natural science, mathematics,
8
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and social science. Many complexity models have been proposed include human
economies and social structures, climate, nervous systems, as well as modern
energy like power systems or telecommunication infrastructures. One of important
branch of complexity techniques is called complex network theory which is
conceptualized as the intersection of graph theory and statistical methodology [15].
Complex network theory pays attention on top level properties, i.e., a global level, to
analyze the emergent pattern of the system mapping on a graphic representation. It
examines the interconnections in diverse physical, engineering, social, etc.,
networks, seeking for principles, algorithms governing the network patterns and
leading to predictive models.

Over the last decade, mainly due to advances in computational capacity and
database accessibility of computer science, modeling and computational methods
have stimulated the interest of the scientists to analyze complex systems as
networks. In its broadest sense, a network is a formal and functional representation
of a complex system, where vertices are the elements of the system and an edge
represents the interactions between any two of vertices. For example, living cells are
supported by large molecular genetic networks, whose vertices are proteins and
edges represent the chemical interactions among them. Similarly, complex networks
occur in social sciences, where vertices are individuals, organizations or countries
and the edges characterize the social, economic or cultural interactions among them
[16]. Examples from nowadays biological science, which is shown in Fig. 2-2 left
part, a network showing 3200 protein interactions between 1700 proteins; or the
information science, which is shown in Fig. 2-Zright part, the world wide web whose
vertices are HTML documents connected by links pointing from one page to another
[17][18]. When power network as a complex network, the generators, transformers
and substations could be abstracted as the vertices and the power cables could be

modelled as edges.
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() (b)

Fig. 2-2 A complex system viewed as a network. Left: protein interactions. (Source: [17]).
Right: part of the actual internet, retrieved from the Internet Mapping Project.(Source:
http://www.visualcomplexity.com).

In order to study the complex systems from the topological point of view,
complex network approach has become popular. Following will give a review of the
complex network approach application in complex system including structural
properties and structural robustness.

Structural properties of a network and its evolution process could be analyzed by
defining and calculating a set of metrics. The metrics can in turn be used to
categorize real networks into several classes with different properties, as different
classes of networks have different features that can be characterized by the class
itself. In fact, network models based on real systems show some special features,
such as community structure (the presence of groups of vertices more densely
interconnected), power law degree distributions (the probability distribution of the
number of edges connected to a vertex follows a mathematical power law) [19] and
hubs (vertices linked to a large part of the edges of the network) [20]. Three specific
works have made particular contributions to this field: the model of random network
by Bollobas [21], the investigation of small-world networks by Watts and Strogatz
[22], and the characterization of scale-free models by Barabasi and Albert [19][20].

Besides structural classification of networked complex systems, another

10
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research topic of complex systems from topological point of view is its structural
robustness, which can be defined as the ability of a network to avoid malfunctioning
when a fraction of its components is damaged. This was one of the first issues
having been explored in the literature on complex networks [20][23] and it can be
encountered in two different groups: static robustness and dynamic robustness.
Static robustness is the act of deleting nodes without the need of redistributing any
quantity that is transmitted in the network; while dynamic robustness refers to the
situation that dynamics of the redistribution of flows has been taken into
consideration. Deletion is the most common method for detecting the vulnerability of
the networks which usually refers to the components in the networks, such as
deleting vertices or edges. At the same time, both groups can be implemented in
two ways: Errors (or random failures) and Attacks (or selective failures). Errors are
the ability of the system to maintain its connectivity properties after the random
deletion of a fraction of its vertices or edges. Attacks are the ability of the system to
maintain its connectivity properties when a deletion process is targeted to a
particular class of vertices like the highly connected ones.

The static robustness of a network to maintain its connectivity obviously depends
on its original topology and the way to modify its structure (i.e., errors and attacks by
means of successive deletion). For example, scale-free networks, i.e. World Wide
Web links, are extremely sensible to attacks but very resilient to error failures; while
random networks, i.e. Erdos-Renyi model, react similarly to any kind of deletion of
the components of the networks [20]. Also, it is significant to find the critical
components in networked systems. In this respect, efficiency [24] seems to be a
promising metric for analyzing the overall structural vulnerability in a networked
infrastructure such as routing network [25], internet [26], subway network [27],
power systems [28], and so on.

Dynamic robustness is another important problem considered in complex
networks research since it refers to modeling the dynamics of flows of the physical
quantities of interest over a network. When it comes to modeling the dynamics, the
situation is far more complicated since the components of a network may have

different dynamical behaviors and the flows are often highly variable, both in space
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and time. In the traditional topological method, the betweenness centrality is used to
evaluate the flow of the physical quantities over a network. Betweenness centrality
is @ measure of a node's centrality in a network, equal to the number of shortest
paths from all vertices to all others that pass through that node [29]. Since in
traditional topological method, it consumed that the physical quantities is always
passing through the shortest path, therefore betweenness can be seen as a useful
measure of the load over a network. By reviewing each element characterized by a
finite capacity (defined as the maximum load that the element can handle), the
dynamic robustness of the network is then evaluated in the following way: 1) a
deletion of node, which obviously changes the shortest paths between vertices.
Consequently, the redistribution of betweenness, possibly creating overloads on
some other vertices. 2) All the overloaded vertices are removed simultaneously from
the network. This leads to a new redistribution of loads and subsequent overloads
may occur again. 3) The new overloaded vertices are removed and the redistribution
process continues until at a certain time all the value of betweenness of the

remaining vertices under or equal to its capacity [30][31].

2.3. POWER SYSTEM AS A COMPLEX SYSTEM

2.3.1. Complexity in power systems

Before the arising of complexity science, people used complexity to refer to a
very complex situation in power systems, such as ref. [32] used it to describe the
increase of heavily computational burden on solving power flows as the increase of
system size. Ref. [33] defined complexity over the failures and employed it to state
problems that could become potentially quite difficult to solve. Ref. [34] described a
system involving DC lines or asynchronous operation, loss of synchronism, etc., as
complex system. However, these situations were conceptually incorrectly described
as complex while they were actually complicated.

In recent years, the difference between complexity and complication has been

noticed by the researchers of power system. A few researches regarding complexity
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and the applications of its theories to power systems were reported. Instead of
looking at the details of particular blackouts, ref. [35] studied the statistics and
dynamics of series of blackouts with approximate global models. Ref. [36] employed
topology analysis to figure out the vulnerability of a given transmission system and
concluded that when a network is attacked following a delicately sequence
corresponding to their criticality, the network would illustrate more vulnerability. A
very important research using complex network features to analyze the topological
structure and static tolerance to errors and attacks of the Union for the Coordination
of Transport of Electricity (UCTE) power grids [37] was published. The authors
found that the nodal removal behavior can be logarithmically related to the power
grid size, which suggests that though size favors fragility, growth can reduce it.
Energy infrastructures, such as power systems, are characterized by a large
number of components and many different types of interactions among them. Size
itself does not infer complexity. Continental-scaled power grid, for example, is the
biggest dynamic system in the world but from a physical point of view it can be
modeled by a huge set of differential and algebraic equations. It may conjure
complexity in the computational efficiency; however, it is somehow solvable by using
computationally powerful facilities and advanced algorithms. In contrast, complexity
arises when the physical substrate interacts with the rest of hierarchical levels
governing and using the infrastructure. The overall expected performance and
dynamic evolution are related to those interactions at the “individual" scale. These
phenomena cannot be handled nor studied with a set of equations in any form.
Studies and applications related to the deregulation towards market environment
have thrived in both academia and industries. This change brought a great
challenge to power systems in the production and transmission. With the prevalence
of the distributed generation and smart grids, the distribution and utilization are
confronting with new scenarios in which a large number of users transformed from
passive receipts to active participants. The emerging situation and newly introduced
players with clear self-interest display an important role for the future power system

which will increase the complexity of power system further.
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Fig. 2-3 Complex interactions in the power systems

The power system is a typical system of Multi-layer Interacting Reality (MLIR) as
shown in Fig. 2-3. In power systems, various layers involving different physical,
technological, human decision-making systems interact among themselves to
determine the overall performance of the system that can be measured by a set of
meaningful metrics, such as energy savings, environmental pollution, market
efficiency, etc., which had not been seriously considered before. The overall
“system control" can be exerted only in terms of policy action, implemented by laws
and regulations to influence the behavior of various players. For example, a
regulator may issue a set of mandatory codes to compel generators providing
necessary auxiliary services to keep system feasible in terms of providing quality
power supply without endangering the system itself. Market designers may set
prohibition for participants to game collusively in any phase of any market. Incentive
or disincentive could be of great use in modifying ratios of various energy sources.

In contemporary power industry, green energy is incredibly encouraged for
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replacement of high-pollutant fossil resources, which can be achieved by
discounting access tariff for renewable energy and subsidizing green-energy price.

The complexity of power systems also increases with the change of its
administrative mechanism. Initially, in power systems, each utility and/or pool of
utilities has control centers which support today's hierarchical monitoring and control
of the grid. Moreover, electrical market is gradually introduced into power systems in
order to transmit the least expensive power in power grids. The important
consequence of this situation is that utilities require systematic integration of
monitoring, computing and controlling for improved performance. Therefore, the
interaction between power grids and decision information via cyber layer is more
complex than before.

Besides, renewable energy such as wind power, solar energy, fuel cell and so on
is drastically emerging and developing in the distribution level of traditional power
industrial. This trend apparently increases the complexity in power systems as a

whole.

2.3.2. Power grid as a complex network

Power grids have been widely acknowledged as a typical complex network
because of both their huge sizes of components and the complex interactions
among them. For example, the UCTE transmission network has about 5910 nodes
and 7970 transmission lines. The North American power grid has about 14,099
nodes and 19,657 transmission lines. A typical paradigm about abstracting power
grid as a complex network is shown in Fig. 2-4. In part (a) we can see that the power
systems is composed of multiple and diverse elements, such as generator,
transformers, switching stations, etc., connected physically by electric cable lines;
part (b) is an ltalian (220-400 KV) transmission power grid, where each node is a
substation or transformer; part (c) is an abstract network of the ltalian transmission

power grid in part (b) from pure topological point of view.
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Fig. 2-4 Power grid as a complex network

Mathematically, from the graph theory point of view, when applying complex
network methodology to power systems, the electrical power grid as a weighted and
directed network identified by a set Y = {B, L, W} where B (dim {B} = Mk) is the set of
vertices (or nodes), L (dim {L} = M) is the set of edges (or links) and W is set of line
weights. Vertices are identified by index /i Edges are identified by /; which
represents a connection between vertex /and vertex . And the weight element w;in
the set W is associated with each line J;

With the development of complex system theory, power grids arise as natural
objects of study under the conceptual frame of complex systems, particularly as
complex networks. Therefore, complex network methodology as one of approaches
to study complex systems has been used to analyze and understand power systems
from topological point of view. How complex network theory and methodology
applied in power systems study especially its vulnerability analysis will be addressed

in the following sections.
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2.4. REVIEW OF COMPLEX NETWORK METHODOLOGY
APPLIED IN POWER SYSTEMS

Complex network theory has received considerable attention recently which has
been used in many different fields. A lot of researches including basic characteristics,
statistical global graph properties, small-world property, scale-free property, degree
distribution, betweenness distribution and vulnerability analysis, have been
performed to power grids since they are infrastructures in our society. It is noticed
that there is a strong link between the topological structure and operation
performance in power systems because the structural change could alter
operational condition of a power system and thus change its operation performance.
As a result, there is an increasing interest in analyzing structural vulnerability of
power grids by means of complex network methodology.

In this section, to our best knowledge, a brief but comprehensive review about
the application of complex network theory in power systems from basic structure

property analysis to vulnerability assessment.

2.4.1. Structure property analysis

As mentioned in section 2.2, there are three main models of complex networks:
small-world, scale-free and random networks. Different network will exhibit different
structure and vulnerability property. Therefore, the first question to analyze power
grid is what type of power grid is. The first reference comes from Watts and Strogatz
[22] who analyzed the graph of the United States western power grid. It was
deduced that the western power grid seemed to be a small-world network. After that,
Barabasi and Albert in 1999 [19] firstly published that degree distribution of a power
grid was supposed to be scale-free following a power law distribution function, but
few of the subsequent later references would support this finding. Exponential
cumulative degree function was detected in Californian power grid [38] and the
whole United States grid [39]. The topological features of the UCTE (Union for the
Co-ordination of Transport of Electricity) power grid and its individual nation grids

are analyzed and results showed these national transmission power grids’
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topologies are similar in terms of mean degree and degree distribution, which could
suggest similar topological constraints, mostly associated with technological
considerations and spatial limitations [37]. Besides, the topologies of the North
American eastern and western electric grids were analyzed to estimate their
reliability based on the Barabasi—-Albert network model. The results were compared
to the values of power system reliability indices previously obtained from some
standard power engineering methods, which suggested that scale-free network

models are applicable to estimate aggregate electric grid reliability [40].

2.4.2. Vulnerability analysis

v' Traditional approach fo assess power systems vulnerability

Power systems are one of critical infrastructures since they are widely distributed
and indispensable to modern society. Both accidental failures and intentional attacks
can cause disastrously social and economic consequences. For example, in August
2003, the historic blackout of United States and Canada in which 61,800 MW of
power were disconnected to an area spanning most of the north-eastern states of
United States and two provinces of Canada, and more than 50 million people
remained without electricity for 15 hours [41]. Therefore, electrical utility operators
need to analyze the vulnerability of power systems and identify the critical
components whose protection or back-up will result in a more robust system against
natural or malicious threats.

The concept of a vulnerable system is defined in [42] as a system that operates
with a “reduced level of security that renders it vulnerable to the cumulative effects
of a series of moderate disturbances”. Vulnerability is a measure of the system’s
weakness with respect to a sequence of cascading events that may include line or
generator outages, malfunctions or undesirable operations of protection relays,
information or communication system failures and human errors.

According to the functions and structures of power systems, there are four basic
parts in our security interests of a power network, listed as following:

e Transmission network (e.g. 380kV and 220kV in Italian transmission

system)
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e High voltage (HV) distribution network (e.g. 150kV and 132kV)
e Substations
e Power plants

Compared with substations and power plants, the networks are much more
widely distributed in geography, and this makes them more easily and possibly to be
targeted by intentional threats than substations and power plants where strict
protections may be implemented, such as on-site police guard, access control, anti-
burglary system or perimeter detection system in substations. However, on the
contrary, if the substations or power plants are really successfully attacked, the
consequences and impacts may be more serious. For example, the failure of a key
substation can be considered as the failure of all transmission lines connected to it.

A vulnerability assessment is the process of identifying, quantifying, and
prioritizing (or ranking) the vulnerabilities in a system [43]. Energy utilities should
routinely perform vulnerability assessments to better understand threats and
vulnerabilities, determine acceptable levels of risks, and stimulate action to mitigate
identified vulnerabilities. The direct benefits of performing a vulnerability assessment
include:

e Build and broaden awareness.

o Establish or evaluate against a baseline.

¢ Identify vulnerabilities and develop responses.

e (Categorize key assets and drive the risk management process.
o Develop and build internal skills and expertise.

In the traditional study of vulnerability of power systems, the vulnerability is
analyzed using methods completely based on operational data and physical models
such as static security assessment [44][45] and dynamic security assessment [46].

However, these traditional methods evaluate the security and reliability relying
on a given contingency and operating condition. On the one hand, it is
computationally infeasible to check all possible combinations of contingencies that
could cause serious blackouts in practical power grids; on the other hand, operating
conditions of power systems change in time due to load variations, switching actions,

etc. So it is difficult to prevent the collapse of electrical power grids owing to
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unforeseen operating conditions. Besides, due to the size of large-scaled power
systems, physical behaviors and the interaction among many operators over power
grid add difficulty to perform a comprehensive analytic analysis and simulation of the
electromagnetic processes over the whole grid. Hence, in practical, reduced
systems or some simplifying hypothesis are applied to these conventional methods
to simulate the network’s response to various external disturbances, but the
simulation results cannot reflect the exact response of power systems.

As a result, frequent blackouts occurred all over the world although advanced
technologies and huge investments have been exploited in maintaining the reliability
and security of power systems. To deepen the insight into power systems, it is
necessary to develop and complement the conventional analysis technology with

new point of view.

v’ Structural robustness analysis

The vulnerability analysis of network is the main motivation for the studies
involving CN analysis into power grids. The first power grid whose robustness was
analyzed was the North American power grid [39]. The authors removed vertices
randomly and in decreasing order of their degrees for both generation vertices and
transmission vertices, and monitored the connectivity loss which measured the
decrease of the ability of distribution substations to receive power from the
generators. The loss of generating substations does not significantly alter the overall
connectivity of the grid owing to a high level of redundancy at the generating
substations. However, the grid is sensitive to the loss of transmission nodes. Even
the removal of a single transmission node can cause a slight connectivity loss.
Especially, the connectivity loss is substantially higher when intentionally attacking
higher degree or high load transmission hubs. They concluded that the transmission
highly connected hubs guarantee the connectivity of the power grid but meanwhile
they are also its largest liability in case of power breakdowns. The first reference to
European power grids was made by Crucitti ef a/ The authors studied and
compared the topological properties of the Spanish, Italian and French power grids,

finding those components whose removals seriously affected the structure of these
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graphs [47]. Since the proposed improvements also treat power grid as a simple
graph and no physical features are taken into consideration, we think that the power
grid vulnerability results obtained with this approach could be different from the real
situation. Rosato ef al. studied the topological properties of high-voltage power grid
in Italy (380 kV), France (400 kV) and the Spain (400 kV) [48]. An assessment of the
vulnerability of the networks has been implemented by analyzing the level of
damage caused by a controlled removal of links. Such topological studies could be
useful to make vulnerability assessment and to design specific action to reduce
topological weaknesses. Since the grids are the same as used in the former case,
most of the results are consistent. Robustness of the whole European power grid is
studied in [48][49], where also includes the resilience against to the failures and
attacks of every national power grid. The authors found that European power grid
composed of the thirty three EU power grids could broadly be classified into two
separate groups, fragile and robust.

It is noticed that cascading failures have frequently occurred throughout
electrical power grids of various countries. The cascading failures firstly were
analyzed in electrical power grid of the western United States [30]. The degree
distribution in this network appeared exponential and was thus relatively
homogeneous. The distribution of loads, however, was more skewed than what
displayed by semi-random networks with the same distribution of links. This implied,
to a certain extent, that the power grid may have structures not being captured by
existing complex network models. As a result, global cascades are supposed to be
triggered more probably by load-based intentional attacks than by random or
degree-based removal of vertices. The attack on a single vertex with large load may
make the largest connected component decrease to less than a half of its initial size,
though the network is highly tolerant. In North American Power Grid, the cascade
phenomenon was also modeled [50]. It was observed that the loss of a single
substation can lead to a 25% loss of transmission efficiency caused by an overload
cascade in the network. A systematically study of the damage caused by the loss of
vertices suggested that 40% of the disrupted transmission substations may lead to

cascading failures. While the loss of a single vertex can exacerbate primary
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substantial damage, the subsequent removals only make the situation worse.
Crucitti etf.al applied cascading failure model into the Italian power grid where they
neglected the details of the electromagnetic processes and only focused on the
topological properties of the grid [51]. The objective of this study was to demonstrate
that the structure of an electric power grid may provide important information about
the vulnerability of the system under cascading failures. The power grid has 341
vertices (substations) and 517 edges (transmission lines). Different kinds of vertices
have been distinguished. Although the degree distribution is not very different
through the network, it still exhibits a high heterogeneity in the vertex load. Most of
the vertices are only responsible for a small load, but a few other vertices have to
carry an extremely high load. Large scale blackouts can be triggered by the failure
of vertices with high loads. Perhaps it is due to the fact that some highly connected
vertices may be not necessarily involved in a high number of paths. However, the
used model is quite simplified for a real electric power grid, so that this result may be
not very credible since the definition of degree and load here are not very
meaningful for power grids. Jiang-wei, ef a/. [52] proposed a cascading failure model
based on degree centrality to analyze the Western United States power grid. A
counterintuitive result is found that the attack on the vertices with the lowest loads is
more harmful than the attack on the ones with the highest loads. Simonsen ef a/. [53]
studied cascading failures in power grids using a dynamical flow model based on
simple conservation and distribution laws. Within the framework, it is studied that the
role of the transient dynamics of the redistribution of loads towards the steady state
after the failure of network edges. It is found that considering only flow of loads in
the steady state gives a best case estimate of the robustness; the worst case of
robustness can be determined by the instantaneous dynamic overload failure model.
Bakke ef al. [54] analyzed the power blackout of Norwegian high-voltage power grid
using a model with Kirchhoff equations and the same line conductance. The results
showed that the size distribution of power blackouts in Norwegian power grid seems

to follow a power law probability distribution.
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2.4.3. From static to dynamic

The works reviewed so far are mainly about the static properties such as the
categorization of power networks and vulnerability assessment of the components
(buses and lines) in power systems. Recently published papers extend these static
analyses to dynamic ones. For example, a Kuramoto oscillator model is introduced
as a phase model to analog the synchronous generator in order to analyze the
synchronization stability property of the coupled generators in the whole power
networks. The Kuramoto oscillator is motivated by the behavior of systems of
chemical and biological oscillators, and it is also adopted as the synchronization
model in the complex network.

In Bullo and Dorfler's papers [55][56], Kron reduction of graphs was introduced
to eliminate the load buses of the power network and Kuramoto oscillator like model
is used to model the synchronous machine, then the whole power grid is a coupled
Kuramoto oscillator like network. The explicit necessary and sufficient condition on
the critical coupling strength to achieve synchronization is studied. Similar results
are also addressed by M. Rohden ef a/ [57] and S. Lozano ef al. [58]. In H.
Sakaguchi’s paper [59], this Kuramoto like model has been used to analyze the
cascading failure in power grid. In the meantime, some other dynamic features are
also taken into consideration: a dynamical flow model is used by Helibing ef al. to
study the cascading failure in a power grid [53]. Restrepo ef a/. [60] proposed
instead a general theoretical approach to study the effects of network topology on
dynamic range. All these works extend the complex network theory from steady-
state analysis to dynamic, which significantly improves the studies about CN theory

application in power systems.
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Chapter 3.

Extended Topological Methodology

Complex network theory proposed by physicists is an increasingly popular
method to analyze complex systems such as social interacting species, internet,
computer network and so forth. In the framework of complex network theory,
complex systems are abstracted as networks consisting of a set of edges
connecting a set of vertices and then inherent structure features of these networks
are analyzed statistically by some metrics. Initially, the complex network approach is
applied in some abstracted networks such as random network [1], small world
network [2], scale-free network [3][4]. It is found that there is relatively short
characteristic path length between any pair of nodes and high clustering coefficient
in small world networks [2]; scale-free networks are robust against random failures
of nodes but fragile to intentional attacks [5]; intentional attacks also more easily
trigger a cascading failure in scale-free networks than random networks [6][7].

Power systems have been considered as complex systems where the
complexity of power systems not just is resulted from the instant power balance of
generators and consumers in large-scale transmission network across multitude of
countries, but also from the intricate decision-making of system operators in order to
keep the system secure and reliable. Furthermore, it is noticed that there is a strong
link between topological structure and operation performance in power systems. For
instance, a large scale blackout is more possible to be triggered by removing some
critical buses or lines which are essential elements of topology structure of power
systems. As a consequence, power systems are naturally analyzed under the
framework of complex networks [8-13]. Structural vulnerability is analyzed in the
North American power grid [8] and European power grids [9-11]. Cascading failure

is modeled in North American power grid [12]. Critical transmission lines are located
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in Italian electrical power grid [13].

However, when applied to power systems, the complex networks method
neglects the specific engineering features; therefore, the analytical results may be
far from the reality in power systems, and so it seems more appropriate to analyze
the structure wvulnerability of electrical power grid combining the electrical
engineering features with complex networks theory. Coming from this thought, in
this section, the specific physical features of power systems such as electrical
distance, line flow limit and power transmission distribution are introduced into the
traditional complex networks metrics: degree [14], betweenness [15] and efficiency
[16]. Three extended topological metrics: entropy degree, electrical betweenness
and net-ability are proposed to assess the vulnerability of components and the
whole power network. In addition, a simplified UCTE power grid is used to test our

extended topological methodology for its structural vulnerability analysis.

3.1. PURE TOPOLOGICAL METHOD

In complex network approach, there exists a fundamental and important set of
centrality indices measuring importance of a vertex or an edge in a network
according to one or another criterion. Basically, these centrality indices can be
divided into three classes: one is based on the idea that the centrality of a vertex in
a network is related to how it is near to other vertices such as degree centrality; the
other is grounded on the thought that central vertices stand between others, playing
the role of intermediary, such as betweenness centrality. Besides, a class of delta
centrality is recently proposed which measures the contribution of a vertex or an
edge to a network performance when removal of it leads to the variation of such
performance. These metrics compose the base of the pure topological method to
measure the criticality of the components in networks.

There are four main types of complex networks, which include weighted digraphs
(directed graphs), unweighted digraphs, weighted graphs and unweighted graphs

[17]. In current literature most of the researches on infrastructure systems is focused
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on the unweighted graphs.

Initially, networked complex systems such as internet network can be abstracted
as a unweighted graph Y = {B, L} to analyze their inherent structure features, where
B(dim{B}=AMk) is the set of vertices (or nodes) and L (dim{L}=M) is the set of edges
(or links). Each vertex can be identified by / the edge is identified by /; that

represents a connection going from vertex /to vertex j.

3.1.1. Degree
The connectivity of a node is measured by its degree, 4;, which is defined as the

number of edges connected to a given vertex /[10].
ki = Z,: a; (3.1)

On the one hand, the elementarily topological features of a graph can be
obtained in terms of degree cumulative distribution P(A>2K) which is the probability
that the degree of a node randomly selected is not smaller than K Generally, if the
degree cumulative distribution of a network follows a Poisson distribution, then it is a
homogeneous network where each node has the same degree; on the other hand, if
the distribution is a power law or exponential, then it is a heterogeneous network
where there are some vertices which have higher degree than others.

On the other hand, since the degree indicate the connectivity of a node, if a node
have higher connectivity, it means that this node has more connections between
other nodes, in other word, it has more importance. Therefore, degree could be

treated as a metric to measure the criticality of the nodes in networks.

3.1.2. Distance and efficiency

The shortest path plays a fundamental and important role to analyze topological
structure of a network since it is usually assumed that a shortest path is an optimal
path along which physical quantity can be transmitted faster and more effectively.

A walk from vertex /to vertex jis a sequence of vertices and edges that begins
with /and end with j/ while a path is a walk in which no vertex is visited more than

once [1]. A shortest path between a pair of vertices is the path which has minimal
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number of edges between the two vertices. Shortest path length djis the number of
edges in the shortest path between vertex /to vertex /.

In a graph, the separation degree among vertices can be quantitatively
measured by average shortest path length, also known as characteristic path length.
Characteristic path length L can be defined as the average of shortest path lengths
over all pairs of vertices in a graph [18].

L= — 2 9 (3.2)

Ng}(Ng} _1) i#jeB

The concept of efficiency is closely related to that of distance. The distance, as
we discussed above, is generally assumed as a measure of the difficulty, cost or
effort needed to transfer physical quantities over a network. So an efficiency e; can
be associated to a pair of vertices /and jand defined as:

| -
eij:I,(l,Jeg.;,'iJ) (3.3)

]

By averaging the efficiencies, the performance of network Y is able to quantify as

global efficiency E£(Y)

1 1

EY=—""Y —
Ny}(Ngg _1) i#jeB dij

(3.4)

where djis shortest path length between vertices 7and j A& is the total number
of vertices in a network.

Assume a unit of information or energy is transmitted along a shortest path
between a pair of vertices. The smaller shortest path length between the pair of
vertices is, more efficiently the information or energy transmits. Therefore, E(Y)
quantifies the average performance of a network as how efficiently the information
exchanges along the shortest path between any pair of nodes, and the global
efficiency of a network is proportional to the reciprocal of shortest path length
between any pair of nodes. Also, because global efficiency is associated with the
performance of network, it is possible to spot critical components of a network by the

ranking of the relative drop of global efficiency after nodes or lines removed [19].
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3.1.3. Betweenness

In networks, if a vertex or edge participates in more number of paths, we
generally consider this component more important for the transmission in the whole
network. Therefore, if we assume that the interactions or transmission always
through the shortest paths between two vertices, we can quantify the importance of
a vertex or an edge in terms of its betweenness.

In form of formula, the betweenness of a vertex or an edge can be represented

as:
Ng Ng v
B(V)=zzo-:;n—(),m¢n¢Ve$ (3.5)
Ng Ng 5 (]
BQJ.):ZZ%,IijeB,i;tjefB,m;tnefB (3.6)

where om{V) and omn(/) are respectively the number of the shortest paths
between vertices m and n that pass through vertex v and edge /. om, denotes the
total number of the shortest paths connecting vertices m and n.

A component with higher betweenness value means a greater number of
shortest paths passing through the component and so implies a higher criticality of
the component. Thus, the critical components of a network can be identified by

ranking the betweenness value of the components in the network.

3.2. EXTENDED TOPOLOGICAL METHDOLOGY

Pure topological method is introduced in last section. However, the
investigations using existing metrics could give rise to the deviation of really
structural features of power systems because of ignorance of electrical engineering
specificity. When these centrality indices are applied to study electrical power grids,
they need to be redefined. Degree centrality has been redefined as entropic degree
in which both weights of each line and their distributions can be taken into account
simultaneously by incorporating entropy concept into original degree centrality.

Efficiency used in delta centrality has also been redefined as net-ability where line
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flow limit on each line and electrical distance were introduced into efficiency index.
And betweenness centrality is redefined as electrical betweenness by incorporating
line flow limit on each line and Power Transfer Distribution Factors (PTDF) [20]
which is a matrix that reflects the sensitivity of the power flow on the lines to the

change in the injection power of buses and withdrawn at a reference bus.

3.2.1. Electrical consideration to complex network approach

The initial research works on complex networks developed many common
concepts and measures which are supposed to be applicable to different types of
networks. However, the functions and physical rules of different networks would be
totally different and many specific characteristics cannot be dealt with by the general
methodologies. When the complex networks methodology is directly applied to
some fields with neglect of the specific features of these networks, analyzing results
is unavoidably deviated from reality. Consequently, complex networks approach
needs to be extended with the consideration of the electrical properties when

applying the methodology to analyze power systems.

v Distance

The distance between a pair of vertices and length of a path are crucial concepts
in definitions of several important metrics in complex networks, such as average
characteristic path length, betweenness and global efficiency, and so forth. In
unweighted and undirected graphs, the number of edges in a path connecting
vertices /and j is called the length of the path. A geodesic path (or shortest path)
between vertices /and jis one of the paths connecting these vertices with minimum
length; the length of the geodesic paths is the distance between the two vertices.

However, from the perspective of electrical engineering, distance should have
more practical meaning which should be a measure of the “cost” when physical
quantity is transmitted between the two vertices through the network. For electrical
power grids, the cost of power transmission between two buses can be described
from both economic and technological point of view, such as transmission loss or
voltage drop. Therefore, for electrical engineering, the description of distance by

pure topological approach cannot effectively reflect these related features and must
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be replaced by the description of “electrical distance”.

v’ Bus classification

In general theory of complex networks, to avoid those difficulties involved in their
differentiation and dynamical behavior characterization, all elements have been
treated identically. Correspondingly, vertices are considered identically in definition
of several metrics, such as betweenness and global efficiency, where the physical
quantity was considered to be transmitted from any vertex to any other, even for
power grids. However, the essential function of power grids is to transmit electrical
power from any generator bus to any load bus with acceptable quality. Generally,
we can classify the buses in power transmission networks as generation buses,
transmission buses and load buses. Power transmission should be only considered

from generation buses to load buses.

v' Line flow limit

In pure topological approach, edges are generally described in an unweighted
way in definition of several related metrics, such as distance, degree and
betweenness. However, in electrical engineering, transmission lines have line flow
limits which restrict the ability of one line for power transmission due to many
economic and technological factors. As this feature is critical for the networks to
perform their essential function, it cannot be neglected in analysis related to security
issues. Different lines may have distinct flow limits; therefore the distribution of this

feature may also be important for vulnerability assessment.

v Flow-based network

As defined by distance, the physical quantity transmission between two vertices
is always supposed to be through the shortest path. This assumption is also in many
works like power grids. This is the most unrealistic assumption from the point of view
of electrical engineering. Power transmission from a generator bus to a load bus will
involve most lines or a huge number of paths with different extent contribution. In a
linear model of power flow, the different contributions of lines in power transmission
can be described by the PTDF.

The network model in pure topological description of complex networks is
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unweighted and undirected. The identification of possible paths connecting two
vertices is based on graph theory where transmission lines are assumed to be
bidirectional, whereas, as we have discussed, the power transmission behavior
between two vertices completely depends on physical rules which can be illustrated
by PTDF. As each element in PTDF has sign, the lines connecting to one vertex
should be classified as input or output lines. Therefore, some paths in undirected

model may be not valid in the directed power transmission networks.

3.2.2. Basic conceptions extend to power grids

As mentioned in chapter 3.2.1, there are four main aspects of power grid
consideration we want to extend to pure topological method. This chapter we will
give detail description about these basic conceptions which will be used to define

some metrics in the following section.

v’ Equivalent impedance as distance

The distance is measured in topological model by the characteristic path length
due to the assumption that physical quantity is transmitted along shortest path.
However, in an electrical power grid, the flow is transmitted not just along the
shortest path but along the remaining path as well. Hence, the electrical distance
between a pair of buses should be defined as the equivalent impedance Z; which
considers the impedance of all transmission lines between buses / and ; [21].
Suppose Uiis the voltage between bus /and bus / /is the current injected at bus /
and withdrawn at bus / (/=-/). According the electrical circuit theory, the equivalent

impedance can be expressed as:
zZ)=—L (3.7)

Moreover, assume a unit current is injected at bus /and withdrawn at bus / (i.e.,
/1 and /=-1) while no current is injected or withdrawn at other buses, then
equivalent impedance can be calculated as:

ZI_U_ij_
i I -

Uij =U,-U,; =(z; -z;)—(z; - 2;) = 7; - 2z; + Z;

J (3.8)
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where zjis the th, th element of the impedance matrix which is the inverse of

bus admittance matrix.

v' Bus classification

Buses have different function in a power grid and so these buses can be
classified as generator buses (G dim(G)=AMg), transmission buses (T dim(T)=M) and
load buses (D dim(D)=Ab). G is a set of buses that injects power in power grid while
D is a set of buses withdrawing power from power grid; T is a set of buses that

transmit power rather than injects and withdraws power in power grid.

v Flow-based network

In the linear model of power systems, the contribution of each transmission line
to power transmission can be computed by PTDF [20]. PTDF reflects the sensitivity
of the power flowing on each line for a power injection/withdrawal at a couple of
buses. Therefore, PDTF matrix is used to denote the flow-based feature of power
grids.

PTDF can be represented by a MxA& matrix F in which each element 7™
express the change of power on each line /; for a unit change of power injected at
bus m and withdrawn at the reference bus; 797 is the change of the power on line J;
(/47€L) for injection at generation bus g and withdrawal at load bus d, and 797 can be

computed as follows:

flfd =f7 - f9 lLep (3.9)

ty o il
where f# and 77 are respectively the /th row, g th column and /th, row c¢tth
column of F.

A conceptual power grid (lines with pure reactance) is used as an example to
illustrate the conception of PDTF calculation. 7able 3-7 reports the PTDF on each
line, for injection at generation 1 and withdrawal at load bus 3.

It is worth noting that fy may be positive or negative, though all the values of
PTDF in table 1 are positive. If f; is positive, then the power flows along the
reference direction of the line /; otherwise, the power flows along the direction
opposite to the reference direction. For instance, in Fig. 3-7, assume the reference

direction of line /2 is from bus 4 to bus 2, then iff’3,, >0, it means that the power
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flows from bus 4 to bus 2.

0.2 VA

Fig. 3-1 Conceptual power grid

Table 3-1 PTDF for the conceptual power grid

3112 3123 13143 13114 1312

Value 0.44 0.64 0.36 0.56 0.20

v’ Transmission capacity

In order to maintain the stability and security operation of a power grid, each
transmission line /; has its own transmission limit 2;7ax. The line flow limit plays a
significant role in safe power transmission between generation buses and load
buses. In fact, for power transmission, not all the lines will reach their line flow limit
at the same. In other words, if one line reaches its transmission limit, the power
transmitted between this pair of buses reaches its upper limit.

To evaluate the feature mentioned above quantitatively, we define the power
transmission capacity C,7 as the power injected at bus g when the first line in all
lines connecting generation bus g and load bus d'reaches its limit:

max

Iy

d .
C, = min(
g ljel
i#jeB

) (3.10)

li

gd‘

In the example of Fig. 3-7 (with the line flow limits in 7able 3-2) the power

transmission capacity is C/%= 15.77 MW.
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Table 3-2 Transmission line limits for the conceptual power grid (MW)

Piygmax Piggmax Pragmax Piygmax Pragmax

Value 15 10 10 15 5

3.2.3. Entropy degree
As a measurement of connectivity for a vertex, the definition of degree in

aweighted network model should reflect the following factors:

o the strength of connections in terms of the weight of the edges;
¢ the number of edges connected with the vertex;

¢ the distribution of weights among edges.

(A) (B)

Fig. 3-2 Different distributions of weights

In a weighted graph, the weighted connectivity of a vertex is measured by
strength which is defined as the sum of weights on lines connected to a given bus.
Higher strength of a bus means the bus more closely connects its neighbor buses.
In Fig. 3-2, for node A and node B, they both have two connections and the sum of
weights is both equal to 1.

The result of the example shown in Fig. 3-2 has been noticed that the strength
fails to distinguish the centrality of nodes especially when two nodes have the same
strength with different distribution of weights among lines. Thus, entropic degree A»

was proposed to define weighted connectivity to solve the existing problem:
= (- Z Py log p.,>ZW P = Z (3.11)
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where weight wj is defined as the line flow limit on line /; because the electrical
parameter can reflect the strength that two buses connect.

Return to the example, the result calculated according to entropy degree is D(A)
= 1.3 and D(B) = 1.14. We can see that, the connectivity of node A is higher than
node B because the distribution of weights is more equal in node A.

As degree is a traditional concept in graph theory and widely applied for the
analysis in complex networks, the proposed entropic degree may be a good
replacement for research in weighted network models which include not only power
grids but also other weighted networked systems. For power grids, it may directly
give a quantitative measurement to indicate the importance of buses and their
difference. The more important vertex may have higher connectivity in network. The
most important buses may need more resource to be protected or be more likely to
be selected as targets of intentional attacks. If measured with the pure topological
concept of degree, the corresponding results may be far from reality. Therefore, this
entropic degree can give more reasonable evaluation of the importance of buses by
taking into account not only the total strength of the connection but also the

distribution of strength that may be sensitive for malicious attacks.

3.2.4. Electrical betweenness

In traditional topological method, betweenness is defined as the sum of the
probability for a vertex or an edge to belong to a randomly selected geodesic path
linking any other pair of vertices. Betweenness is a more useful measure of the load
placed on the given node/edge in the network as the node/edge’s importance to the
network than just connectivity. It is also a local metric as the degree centrality to
measure the criticality of components (vertices and edges) in complex networks.

As it was mentioned that electrical engineering features need be considered in
complex networks approach when electrical power grid is studied from topological
point of view. According to above-mentioned specific features of power grids, the

bus betweenness can be redefined as:
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1
Be(v)ziéécg%q‘f'fd‘,v:tgstd cB (3.12)
1# |€d

d
Z|..€g/ i¢j€$| f|ijg lis the sum of the PTDF of all lines connecting a bus v when a
ij 3

unit of power injected at bus g and withdrawn at bus d.

According to electrical circuit theory, the input power of a bus is equal to the
output power of the bus, so 1/2'Cg ZIijeﬁ/,i¢jg$| f|ijgd | represents the power taken by
the bus v and the power is the half of the sum of power flowing on all lines
connecting the bus vwhen power transmission capacity C,? is injected at generator
bus g and withdrawn at load d.

Be(v) is the total power flowing through the bus v and the total power is equal to
the half of the total sum of power flown on all lines connecting the bus v when
various scenarios of power transmission capacity are transmitted from any
generator bus to any load bus in whole power grid.

Similarly, line betweenness can be redefined as:

Be(lij ) = max[ B (Iij ),

BI(1[], Iy < £ (3.13)

where B/L(f) and B.(f) represent respectively the positive electrical

betweenness and the negative electrical betweenness of line /;

B (I;))=2> Cg Jif 19950 (3.14)
geG ded !
n d ¢ gd
B. (Iij) = Zédzﬁ:)cg f|ijg if fligd <0 (3.15)
ge@g de !

fip?is the PTDF on line /;when a unit of power injected at generation bus g and
withdrawn at load bus d.

C,f97 represents the transmitting power on the line /; when the power C/is
transmitted from the generation bus gto the load bus d.

Be(/) is the total transmitting power on line /; when various scenarios of power
transmission capacity Cy,? are transmitted from any generator bus to any load bus in
whole power grid.

The concept of betweenness has been extended by introducing PTDF and
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power transmission capacity associated with line flow limit. The set of extended
betweenness centrality quantifies the contribution of a component to power
transmission in a power grid and in this respect the components (buses or lines) of

the power grid can be ranked according to their criticality.

3.2.5. Net-ability

In traditional topological method, the performance of network Y is able to
quantify as global efficiency A(Y).

Aiming to analyze the performance of a power grid in consideration of their
above mentioned engineering features, the shortest path length distance should be
replaced with electrical distance while the whole performance of a power grid should
be averaged by all pairs of generators and loads rather than all pairs of nodes since
the power is transferred only from generators to loads in a power grid. Besides, the
power transmission capacity can also be considered. Therefore, the global efficiency

was redefined as net-ability:

|<QQ

AY =

1 C
(3.16)
N¢N, ;dz;‘, Z

Where Ng and Ap respectively are the number of generation buses and load

Q o

buses in a power grid; Z,7 is the equivalent impedance for injection at generation
bus g and withdraw at load bus d.

The general goal of a power grid is the feasible and economic transmission of
power from generation buses to load buses. Feasibility refers to technical issues
(losses, voltage drop, stability, etc.). Economy is related to other aspects
(transmission costs, market efficiency, etc.). Net-ability measures the ability of a
power grid to perform properly its function under normal operating conditions; the
possibility to perform its function properly depends on the maximum line flow limits
(transfer arbitrary amounts of power) and on the impedance of the lines (economic
and technical convenience). The unit for net-ability is MW/ohm which indicates with
one unit of cost (ohm) how many benefits (power transmission) can be achieved

through the considered power grid from any generator to any load.
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3.3. CASE STUDY

The Union for the Co-ordination of Transmission of Electricity (UCTE)
coordinates the operation and development of the electricity transmission grid for
large part of EU countries. Over more than fifty years, UCTE has been issuing all
technical standards for a co-ordination of the international operation of high voltage
grids, providing electricity supply for 430 million people in one of the biggest
electrical synchronous interconnections worldwide. UCTE provide as well
comprehensive statistics on electricity generation and transmission in the European
mainland. In this section, our proposed extended topological methodology is applied
to a simplified UCTE power network which contains 1254 buses and 1944 branches
for its vulnerability analysis. The gird map of UCTE network is shown in Fig. 3-3and

its member counties are reported in 7able 3-3.

Fig. 3-3 Simplified UCTE power grid

Table 3-3 Members of simplified UCTE power grid

Member countries of UCTE [22] Member countries of simplified UCTE power grid
Austria
Belgium \
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Bosnia and Herzegovina
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The entropy degree is calculated for the simplified UCTE network and reported
in Fig. 3-4. As mentioned above, for power grids, entropy degree may directly give a

quantitative measurement to indicate the importance of buses.
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Fig. 3-4 Entropy degree of simplified UCTE network
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The electrical betweenness of buses and branches are calculated and reported
in Fig. 3-5and Fig. 3-6. Besides degree (entropy degree), electrical betweenness is
another metric to measure the importance of a vertex or a line in a network. From
Fig. 3-5 and Fig. 3-6 we can see the importance of each bus and branch in
simplified UCTE network.

» 250
c
2
g £ 200
u
: |
e
b 150 bttt S ] [
E 1
2 "‘H IH LI Ll L || I
ki 100 [ it Tt - |‘|
E 50 it b il N “I[ i
SO0 A ([0 T (e .
MR RN AP ‘
0.
TRHd8ARMBTIENE8B ARSI RIS SRS
—c—-mmmqummmhhmmmm”:zﬁ
Bus ID
Fig. 3-5 Electrical betweenness of buses in simplified UCTE network
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Fig. 3-6 Electrical betweenness of branches in simplified UCTE network
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The relative drop of net-ability when a bus or a branch is cut from the network in
simplified UCTE network is calculated. The results are shown in Fig. 3-7and Fig. 3-
8.
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Fig. 3-7 Normalized drop of net-ability by removing bus in simplified UCTE network

0.07
0.06
£ 005
£
-E?,O.[)d
EO(B —
g O
& 0.02
(=]
0.01
0_
T BR8N SR8 R288853%
Branch ID

Fig. 3-8 Normalized drop of net-ability by removing branch in simplified UCTE network
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The drop of net-ability is normalized by the original net-ability of simplified UCTE
case without node/edge failure. Since each components (buses and branches)
removed from the network will cause the drop of net-ability, the criticality of
components in a power grid can be identified by ranking their drops in net-ability as

well.

3.4. CONCLUSION

In our proposed extended topological method, electrical specificity is introduced
into traditional pure topological method, and three metrics: entropy degree, electrical
betweenness and net-ability are proposed to examine the criticality of the
components (buses and lines) in power grids.

It is conformed that the metrics mentioned above might more suitably analyze
the structural characteristics of power systems as complex systems and are superior
to purely topological metrics in analyzing the criticality of components in power grids
both from local and global point of view. It is more helpful for us to pay more
attention on the improvement of power grid infrastructure protection.

Our proposed extended topological method can also be used in the analysis of
cascading failure in power systems. An improved cascading failure model is
proposed to model the cascading failure in which real line flow limit and maximum
load capacity are introduced so that reality of cascading failure in electrical power
grids is able to be more approximately modeled.

Moreover, since a complex system may be made up of multiple complex
systems, power systems could be abstracted as not only power grids but also other
complex networks (like cyber networks) interacted with power grids. As a
consequence, the interaction and interdependency among various complex
networks could reflect the inherent characteristics of intact power systems which
cannot be uncovered by single power grid.

The extended topological method is applied to analyze the simplified UCTE

network to find the importance of its components. The criticality of the components
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in the simplified UCTE network calculated by extended topological method. However,

to verify the result’'s feasibility, it should be checked by the field data in real

operation condition.
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Chapter 4.
Correlating Empirical Data with

Extended Topological Measures

During the last years, in order to classify their structure, dynamics and evolving
patterns, new topological measures, algorithms and models have been widely used
in networks from different fields such as biology, chemistry, social sciences,
computer networks, etc. A considerable amount of studies have been performed on
a remarkable technological network such as the power grid, where buses and
transmission lines are considered nodes and links respectively, in order to define a
graph. As far as the structure is concerned, power grids, at least at the transmission
level, have been thoroughly studied and different aspects, such as basic topological
characteristics and statistical global graph properties have been performed on many
grids around the world [1]. Among the latter, static robustness (or vulnerability)
analysis based on evaluating the variation in global connectivity due to random
failure (i.e., random bus deletion) or selective attack (i.e., in decreasing order of
some bus topological feature) of nodes has been mostly used. For most grids,
global connectivity decreases exponentially, with a higher variability when buses are
“attacked” in decreasing order of degree [2].

On the other hand, power grids are complex multilayered networks where many
decision processes, involving different objectives, are at play. The global behavior of
the grid is thus mainly driven by the complex interaction between its structure, its
dynamical processes and economic and environmental constraints. Since this
complex interaction is difficult to unveil at a global level, research has been focused

on detecting whether malfunctions, turned into emergent outcomes such as
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blackouts, can be related to topological constraints, the rationale behind this
procedure being that structure affects dynamics and vice versa [3]. Until now, most
of the literature has been concerned on relating purely topological measures, such
as analytical results coming from the aforementioned static vulnerability analysis,
with aggregated malfunctions outcome (i.e., total loss of power, energy not supplied
or restoration time) [4]. But this approach has failed when it has been applied to
power systems with different topological characteristics, mainly due to the poor
definition of purely topological measures, away from the real physical and electrical
definition of the system. In order to overcome this limitation, more specific
topological measures have been defined in last chapter: entropy degree (ED) and
electrical betweenness (EB) have been presented as useful means to characterize
the topology of the nodes of a power network.

In this chapter, ED and EB are used in order to characterize the buses of the
four biggest transport networks in Europe (i.e., France, Germany, Italy and Spain)
and a static robustness analysis is performed. Similar statistical behavior is
observed between Germany and Italy (Gl networks), and Spain and France (SF
networks), with respect to attacks performed in decreasing order of ED and EB. This
behavior can be correlated with disaggregated cumulative probability distributions of
major events. Results show statistically meaningful (although weak) correlations
among similar topologically characterized networks, which could finally help in

defining a linkage between topological measures and malfunctions on power grids.

4.1. VULNERABILITY ANALYSIS TO MAJOR NATIONAL
POWER GRIDS

The robustness of the power grid is an example of a generalized feature of most
complex networks, from the Internet to the genome [3][5-7]. Specifically, real
networks are often characterized by a considerable resilience against random
removal or failure of individual units but experience important short-comings when
the highly connected elements are the target of the removal. Such directed attacks

have dramatic structural effects, typically leading to network fragmentation [8-12]. In
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this subsection the evolution of this fragmentation is evaluated in the case of four
European power grids: France, Germany, ltaly and Spain. Essential features of

these networks are reported in 7able 4-1.

Table 4-1 Basic characteristics of the four major national power grids

Number of France Germany Italy Spain
Buses 1401 1197 535 447
Lines 1819 1714 645 644
Generators 136 156 126 100
Loads 881 602 249 349

Entropy degree and electrical betweenness could be used as new metrics to
evaluate how differently the power grids behave when random or selective nodes
are eliminated and compared to traditional purely topological metrics. The
calculation method is proposed in last chapter. However, since entropy degree and
electrical betweenness imply already an ordered list of nodes, random deletion
could be neglected in this case, and only selective attacks are considered instead.
Therefore, in this chapter we will adopt the decreasing entropy degree and electrical
betweenness as the elimination sequence.

Fig. 4-1 shows the static tolerance to selective removal of a fraction of nodes, by
decreasing order of each metric and for the four major national grids studied.
Robustness is measured by the relative size of the largest connected component
which is normalized to the network size (S/N). As it is shown, German and lItalian
power grids present a distinguished pattern between traditional and entropy degree
static tolerance procedures, the situation is more significant in traditional and
electrical betweenness scenario. However, in Spain and France power grids, the

curves under different scenarios are much more similar and follow a similar trend.
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Fig. 4-1. Effects of attacks on the topology of France (FR), Germany (DE), Italy (IT) and Spain
(ES) power grids.

Except the obvious observation above, a quantified analysis is implemented to
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simulation result. We analyze the maximal information coefficient (MIC) between all
data which is reported in 7able 4-2 [13]. As far as the electrical betweenness is
concerned, there exists a higher correlation between France and Spain, and
Germany and ltaly. As far as the entropy degree is concerned, results are less

conclusive although Germany and Italy are significantly correlated.

Table 4-2 Maximal information coefficient (MIC) for electrical betweenness and entropy
degree among France, Germany, Italy and Spain power grids.

MIC strength Electrical Betweenness | Entropy Degree
France | Germany 0.99624 0.97894
France Italy 0.98761 0.97313
France Spain 0.99668 0.951

Germany Italy 0.99976 0.99825
Germany | Spain 0.99639 0.99825
ltaly Spain 0.98456 0.99844

The evolution of the largest connected component during the attack is obviously
different between Gl power grids and SF power grids when extended metrics
(especially electrical betweenness) are used instead of traditional metrics.
Furthermore, this dissimilar behavior coincides with the conclusion published by
Solé and collaborators [14], where Gl networks and SF networks were segregated in
different groups, in this case termed as robust (y < 1.5) and fragile (y > 1.5)
according to y, the exponential degree distribution characteristic parameter
respectively as shown in Fig. 4-2. In this same reference, the authors provide an
evidence for the correlation between topological structure and vulnerability

performance in terms of aggregated values of major events.
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Errors Attacks
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Fig. 4-2 A summary of the exponential degree distribution exponent of the European power
grids. (Source: [14]).

Through the analysis above we can see that our defined extended metrics can
be used to discriminate the topological difference according to the static tolerance to
selected attacks. Although our proposed new metrics can illustrate the difference
between two particular types of network, it is difficult to directly assume that these
extended metrics can be correlated with any real dynamic feature of the grid.
Therefore, a linkage between structural measures and the real dynamical outputs
(i.e., major events) of a grid is needed. Therefore, the natural consideration is to
check the dynamical outputs of the four major networks which will be described in

the following section.

4.2. PROBABILITY DISTRIBUTIONS OF MAJOR EVENTS

Probability distribution analysis is one of the methods to study the statistics and
dynamics of empirical data with approximate global models. Heavy tailed probability
distributions seem to be ubiquitous statistical features of self-organized natural and
social complex systems [15], and the appearance of the power law distribution is

often thought to be the signature of hierarchy, robustness, criticality and basically,
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non-random behavior [16]. In this sense, European power transmission grids major
events data (UCTE/ENTSO-E) provide us with a set of real malfunctions data for the
vulnerability analysis in power transmission grids. Probability distribution analysis is
used in order to detect correlations between real dynamic output and topological
measures.

European power transmission grids reliability data is given through three
measures: energy not supplied (ENS), total loss of power (TLP) and restoration time
(RT). These statistic data can be found in the UCTE/ENTSO-E webpage and they
are publicly available from 2002 onwards [17]. The data are collected and
investigated using the probability distribution analysis for four major power networks.
Fig. 4-3 shows the cumulative distribution functions for the aforementioned reliability
measures and for the four major power grids. Logarithmic binning has been used in

order to diminish the noise associated with statistical fluctuations [18].
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(b) Total Loss of Power (TLP)
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Fig. 4-3. Cumulative distribution functions for the four major power grids reliability
measures: ENS, TLP and RT.
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The fitting function for the cumulative probability distribution of the reliability
indexes of each power network is needed to be investigated for the pattern
recognition to see whether there is a difference between these curves. The
methodology described by Clauset and collaborators offers the possibility to
statistically fitting a function to the tail of the distribution. This methodology has been
followed in this section, where a maximum likelihood approach is proposed to
estimate the heavy tailed function from the data and a significance test is
constructed to evaluate the plausibility of some specific distributions. 7able 4-3
shows likelihood ratios and p-values with respect to log-normal, exponential,
stretched exponential and power law with cut off distributions, all of them with power
law function taken as comparative means. Positive likelihood values favor the power
law hypothesis and p-values higher than 0.1 imply no significance on the results. As
we can see, although power law could be accepted only for the TLP (total loss of
power) in Spain, the value of the likelihood ratio does not support this option. In
general terms, results are not conclusive and no function can be adjusted with

enough statistical significance.

Table 4-3 Test of fat-tailed behavior taking the power law as comparative function for ENS,
TLP and RT of each power grid.

power law log-normal exponential stretched exp. | power law + cut-off
p LR p LR p LR p LR p
France 0.11 -1.26 | 0.21 0.91 0.36 | -1.23 | 0.22 13.55 1.00
7 Germany 0.80 -0.68 | 0.50 1.04 | 0.30 | -0.63 | 0.53 | 122.08 1.00
E Italy 0.14 -0.87 | 0.39 | -0.57 | 0.57 | -0.76 | 0.45 9.41 1.00
Spain 0.72 -0.42 | 0.68 0.30 | 0.76 | -0.57 | 0.57 37.31 1.00
France 0.81 -0.34 | 0.73 0.79 | 043 | -0.52 | 0.61 66.15 1.00
o Germany 0.65 1.03 0.31 | -0.42 | 0.67 0.00 1.00 82.00 1.00
= Italy 0.13 -0.87 | 0.39 | -0.57 | 0.57 | -0.76 | 0.45 9.41 1.00
Spain 0.07 -1.65 | 0.10 047 | 064 | -1.79 | 0.07 68.33 1.00
France 0.86 0.05 0.96 0.91 0.36 | -0.18 | 0.86 | 114.54 1.00
= Germany 0.91 0.43 0.67 1.58 | 0.11 0.66 0.51 80.16 1.00
& Italy 0.80 -0.51 | 0.61 0.89 | 0.38 | -047 | 0.64 26.38 1.00
Spain 0.28 -1.19 | 0.23 156 | 0.12 | -1.19 | 0.24 9.03 1.00

59



Chapter 4 - Vulnerability, extended topological measures and major events

4.3. VULNERABILITY, EXTENDED TOPOLOGICAL
MEASURES AND MAJOR EVENTS

4.3.1. Probability distribution for aggregated major events

Based on the previous research, it is worthy to point out again that the two
groups networks (DE + IT and FR + ES) exhibit a difference in the static tolerance to
failures according a specific order by entropy degree and electrical betweenness.
However, the probability distribution of the major events of each network cannot tell
us very significant conclusions since we didn’t see any information to separate these
two kinds of power networks. One of the important reasons is due to the short of the
major events number from the statistic science point of view. Therefore, on the one
hand, the major events are separated and aggregated as two groups: DE + IT and
FR + ES; on the other hand, new analysis method of statistic theory will be found
and performed to test the malfunctions data. The corresponding probability
distribution for the aggregated two groups of major events are analyzed again and

reported in Fig. 4-4.

(a) Energy Not Supplied

Germany & Italy

France & Spain

0.01 %

0.001
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(b) Total Loss of Power

10000

© Germany & Italy

France & Spain
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(c) Restoration Time
1 e <5086 ]
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France & Spain
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<
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Fig. 4-4 Cumulative distribution functions for the aggregated two group power grids
reliability measures: ENS, TLP and RT.

It still noticed that there exists a difference between these two group power grids
even in a first glimpse. However, since the method used in last section couldn’t give
us a statistical significant conclusion. A new method is needed to address this
problem.
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4.3.2. Kolmogorov-Smirnov test for aggregated major events

One drawback observed in the previous section is the amount of major events
data considered, which might be less than desired when fitting any fat tailed function.
In this section aggregated data for all combinations of major events has been
considered. On the other hand, although no conclusions can be drawn from the
previous probability distribution analysis, cumulative distributions shown in Fig. 4-3
present obvious differences which make them depart from or approach to fitting
functions. This can be detected with other statistical tests like the Kolmogorov-
Smirnov (KS) test, defined as the maximum distance D between the cumulative
distribution functions of the data S(x)and the fitted model P(x):

D= maX|S(X) - P(X)| (4.1)

KS test is used in order to detect how close a theoretical probability distribution
function is from the real one. It is performed with the aim of detecting whole function
approximation and not only fitting the tail of the function. 7able 4-4 shows KS test
results for the meaningful combination of pairs of grids. The dark black number in
each raw denotes that which distribution function is more sound for the data. From

the table we can see that the exponential distribution can be ruled out completely.

Table 4-4 Values of the KS test for different fitting functions to ENS, TLP and RT probability
distribution functions.

power law + exp. cut- log-norm stretched exp.
off exp.
Germany + Italy 0.096 0.064 0.064 0.387
ENS France + Spain 0.083 0.083 0.083 0.250
TLP Germany + Italy 0.107 0.071 0.071 0.357
France + Spain 0.071 0.071 0.071 0.321
Germany + Italy 0.090 0.121 0.090 0.424
RT France + Spain 0.062 0.062 0.062 0.375

In the power law with exponential cut-off scenario, it's coincident with the

previous selection: Germany and Italy on one side, and France and Spain on the
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other. We can see that although log-normal and stretched exponential distributions
cannot be ruled out completely, power law with exponential cut-off can be ruled out
for energy not supplied; total loss of power and restoration time for Germany and

Italy but not for France and Spain combined major events data.

4.3.3. Correlating extended measures to major events

Even though statistically speaking the evidence is somehow weak, these results
would favor the existence of a linkage between structure and dynamics. Some grids,
in this case France and Spain, can be adjusted by power law with cut-off, lognormal
and stretched exponential. Germany and ltaly, on the other side, can be adjusted by
lognormal and stretched exponential but not by power law with cut-off. Although firm
conclusions cannot be drawn, the probability distributions of major events for these
networks would suggest a different performance in terms of vulnerability,
distinguished by frequency of major events and MW, MWh and minutes (i.e.,
restoration time) involved in these failures. From the physics point of view, an

exponential cut-off could be understood in the following manner:

e For the Energy Not Supplied (ENS), which means the loss of energy from
consumption side, it reveals the physical constraints on the maximum energy
consumption from consumers (residential, commercial and industrial).

e For Total Loss of Power (TLP), which means the loss of production from the
generation side, the fast decaying tail is consistent with the maximum power
output of the generator at each vertex.

e For Restoration Time (RT), it is the signature of an obvious upper bound

since the power facilities cannot be damaged forever.

The physical meaning described above can help us suggesting the meaning of
this dissimilar behavior. Spain and France grids’ dynamic behavior (i.e., major
events) is closer to what would seem the limit of their reality, while Germany and
Italy power grids are not, since there is no exponential decay in their probability

functions. Back to their topological structure, the metrics (i.e., the extended metrics
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EB and ED or the exponential degree distribution characteristic parameter y cited by
Solé and collaborators [14] also discriminate the four major power grids in two
groups, this is Germany and ltaly, and Spain and France. So a direct linkage can be
suggested between structural measures and the real dynamical output: on the one
hand, the topological structure of Spain and France power grids indicates that these
networks nearly reach their maximum power transmission ability. In other words, the
networks are more fragile and, correspondingly, their dynamic output (in terms of
major events) shows the existence of maximum constraints. On the other hand,
Germany and ltaly power grids seem not yet at their maximum capacity, and there is
still a margin to reach the upper bound of their dynamic output. Equivalently, they

could be considered (for the time being) more robust.

4.4. CONCLUSION

Although a contradiction as it seems, complex networks science allows a
simplified view of the reality. Algorithms, measures and models involved in studying
complex systems as networks, have allowed an understanding of some common
features which characterize their topology and, in a lesser extent, their dynamic
processes. Power grids have been thoroughly studied as complex networks and
many topological measures have been used in order to classify their structure,
evaluate their behavior in terms of robustness or model their dynamic response to
malfunctions. Results have been mainly theoretical and no correlation between real
grid’s dynamical behavior (i.e., malfunctions and major events) and any structural
measure has yet been found. In this paper new extended topological measures
have been used in order to quantify the ability of four European power grids (i.e.,
France, Germany, Italy and Spain) to sustain selective removal of buses. A maximal
information coefficient has been used to find similar robustness behavior between
Spanish and French networks on one side, and German and Italian networks on the
other. In order to find a correlation with any dynamical output (i.e., blackouts),

binned cumulative probability distributions of majors events in terms of energy not
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supplied, total loss of power and restoration time have been fitted to some
characteristic fat-tailed functions, with no success. This could be probably due to the
small amount of major events data actually available for the studied power grids (or
simply because real cumulative probability distributions do not follow any of the fat-
tailed function used for the fitting). To avoid the first drawback, aggregated data for
every two networks has been used to significantly increase the amount of values
included in the probability distributions. Although a favorable fitting is not found, the
paper shows that a significant (although weak) statistical approximation appears
when Germany and Italy on one side and France and Spain on the other are
considered in aggregated manner, thus identifying similar dynamical response
among topologically similar grids. Although much research must be done, such as
extending this methodology to distribution networks or exploring the cascading
failure in power grids, combining topological measures that include electrical
engineering perspectives, this evidence would raise hopes in finding a more
meaningful and significant linkage between structural measures and real dynamical

output, in terms of major events, of a power grid.
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Chapter 5.
Evolution of Hierarchy in Power

Transmission Networks

Complex systems are usually characterized by some level of hierarchy, which
spans in time and space at different scales. This hierarchical structure commonly
allows reducing costs in terms of reliably transmitted information but at the same
time involves different dynamical responses to malfunctions. In the case of critical
infrastructures like transmission power grids, different hierarchical structures may
lead to different behaviors in terms of accumulated major events. In this chapter, we
compare and evaluate the evolution of hierarchy for four real different power
transmission networks when buses are attacked selectively in decreasing order of
some topologically and electrically defined values. Two important simulation results
occur: firstly, hierarchy increases as the network is being attacked and secondly a
low variability of hierarchy implies an increased probability of accumulated major

events.

5.1. THE COORDINATES OF HIERARCHY

A morphospace is phenotype space where a small set of quantitative traits can
be defined as the axes [1]. This conception is widely used in the biology science and
then extended to the complexity science and complex network studying [2-7].
Recently, the researcher in [1] has proposed three coordinates in the morphospace
to study the hierarchy property in complex network.

The hierarchy coordinates are applied in a directed graph G(V;E), where v; € V/ (i
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=1, ...,n)isanode and < v;, v;> E'is an arrow going form v; to v. The proposed
morphospace is a metric space defined from three coordinates [1]: Treeness (T),
Feedforwardness (F), and Orderability (O), which properly quantify graph hierarchy.
In the paper, the author also analyze the position of different real networks in this
morphospace which shown in Fjg. 5-7. The electronic circuits (TECH) placed at the
O(G) = 1 plane shows a narrow band of feedforward with -0.2 < T(G) < 0.2 and
slightly biased to negative T(G) values.

dCesuar

W Metabolisms (MET)

B Meuranal {MEL
EElecironic circuits (TECH)
H Sacial

|:| LLatians

[ Saftware {TECH)
EGhNs {GRM)
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.(]WI'II-."H.-T‘IIP

Bl Gerealogy

Fig. 5-1 The coordinates of the 125 real networks (Source: [1])

Based on this observation, a question has been wandered and made hypothesis:
How about power transmission networks? To verify our guess, we testified with the
IEEE 118-bus case as a typical power transmission network. Before the validation,
we need to get the directed graph model for power transmission networks. The most
popular method is using either AC or DC power flow to generate the directed graph
model [8-11]. After the power flow calculation, the flow direction can be obtained. A

simple example using IEEE 4-bus system is shown in Fig 5-2.
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TRV QfE NN/
85 MW 85 MW

28 MW
80 MW 28 MW

R ———

Fig. 5-2 A illustration of directed graph from AC power flow

Using similar procedure, we got the directed graph model of IEEE 118-bus case

and also the hierarchy coordinates are calculated and reported as following:

e Treeness (T) =0.2899
o Feedfordwardness (F) = 1
¢ Orderability (O) =1

The position of IEEE 118-bus system is consistent with the position exhibited in
the TECH group in Fig. 5-1. Therefore, according to the proposed method for
analyzing vulnerability in chapter 4, the evolution of hierarchy coordinates when
eliminating buses or branches from the network is worth of being analyzed. Similarly,
we will also try to correlate the real malfunctions data of power grids with the
evolution of hierarchy coordinates. More detailed information would be addressed in

the next section.

5.2. ASSESSING HIERARCHY IN POWER NETWORKS

Based on the dataset we have, four European power grids: France, Germany,

Italy and Spain are used in this section to analyze their hierarchy evolution. The
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basic features of these networks are shown in 7able 5-17.

Table 5-1 Basic characteristics of the four major national power grids

Number of France Germany Italy Spain
Buses 1401 1197 535 447
Lines 1819 1714 645 644
Generators 136 156 126 100
Loads 881 602 249 349

The hierarchy evolution is corresponding to the eliminating of buses or branches
according to a specific order. The order can be random or calculated by certain
metrics. Here we have chosen to use metrics of decreasing electrical betweenness,
net-ability and randomly generator as the elimination order. The simulation
procedure as following: the Tressness values will be calculated when each bus
(node) is removed from each power transmission network according to the orders

mentioned above.

5.2.1. Hierarchy Evolution in decreasing electrical betweenness

The node electrical betweenness of the four major power networks are
calculated by the formula 3.12. The hierarchy coordinates are calculated one by one
when eliminating the buses according to the decreasing order of electrical
betweeness for each network. The Feedfordwardness and Orderability values are
always 1. Only Treeness values are changing with the elimination of buses.
Therefore, here we just report the Treeness results which are shown in Fig. 5-3, and
their mean values and deviations are shown in Fig. 5-4. It worth to denote that
because the four grids have different bus number, for better illustration, the bus
number is normalized to the maximum value and an interpolation is used to make

they have same length in x axis.
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1.5

—FR

——DE

Normalized number of attacked buses

Fig. 5-3 Treeness evolution of four major power grids by electrical betweenness order

1.5

Normalized number of attacked buses

Fig. 5-4 Mean (in blue) and deviation (in shadow) of Treeness evolution by electrical
betweenness order

Two important features can be observed: firstly, from Fig. 5-3 we can see that
the hierarchy coordinates evolution of Germany power network is smoother than
other networks. Secondly, from Fijg. 5-4 it is noticed that the Treeness value evolves

to positive values mainly.

72



Chapter 5 - Assessing hierarchy in power networks

5.2.2. Hierarchy Evolution in decreasing net-ability

The node net-ability of the four major power networks is calculated by the
formula 3.16. Similar simulation is performed according to the decreasing order of
net-ability for each network. The Feedfordwardness and Orderability values are also
equal to 1. The Treeness results are shown in Fig. 5-5, and their mean values and

deviations are shown in Fig. 5-6. The x axis is also normalized.

1.5

—FR

Normalized number of attacked buses

Fig. 5-5 Treeness evolution of four major power grids by net-ability order

Normalized number of attacked buses

Fig. 5-6 Mean (in blue) and deviation (in shadow) of Treeness evolution by net-ability order
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From Fig. 5-5 and 5-6 we can get the same conclusion with the electrical
betweenness scenario in secfion 5.2.1. The Germany power network can be
identified with a uniqueness compared to other networks in the Treeness coordinate
evolution, which would be introduced more specifically in the random generator

deletion scenario in the following section.

5.2.3. Hierarchy Evolution in randomly generator elimination

Although in the electrical betweenness and net-ability scenarios, the Germany
network exhibits difference. However, the difference is not significant enough. We
need more evidence to highlight this feature. Except for topological metrics to
generate the elimination order, the generator in power network can be used
because it usually plays an important role as source. Because it's difficult to identify
which generator is more important or not, therefore, only random attack to the
generator can be used. Thus considerable times (i.e. 50 times) simulations are
performed. The simulation results and their mean values and deviations are

reported from Fig. 5-7, to Fig. 5-70for four power grids respectively.
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Fig. 5-7 Treeness evolution of DE power grid by random generator elimination. Mean (in
blue) and deviation (in shadow)
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Fig. 5-8 Treeness evolution of FR power grid by random generator elimination. Mean (in
blue) and deviation (in shadow)
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Fig. 5-9 Treeness evolution of IT power grid by random generator elimination. Mean (in
blue) and deviation (in shadow)
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Fig. 5-10 Treeness evolution of ES power grid by random generator elimination. Mean (in
blue) and deviation (in shadow)

The upper right parts of Fig. 5-7 to Fig. 5-70 denote the network hierarchy
direction when generators are removing from the power network. For Germany
network, the Treeness evolution values remain positive which means the hierarchy
direction is from top to bottom. While for other networks, because their Treeness
values cross x axis, it means their hierarchy direction change from top to bottom or
vice versa. In short, in generator deletion scenario, the Germany network again
exhibits difference with other networks which consistent to the conclusion in
electrical betweenness and net-ability scenarios.

From the analysis to the hierarchy coordinates evolution of four major power
transmission networks above, there are enough evidences to say the Germany

power network has different footprint with other networks:

1) Treeness value always remain positive in each scenario;

2) lower variability Treeness value than other networks

In other words, the proposed morphospace hierarchy coordinates [1] can be
used to analyze the power networks from complex network point of view. However,

more important question is to find out what the rationality behind the different
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behaviors in the hierarchy coordinates, and what these results can be translated as
meaningful features. In the next section, an attempt is given to link this evolution

property with specific characteristic of power systems.

5.3. HIERARCHY AND RELIABILITY IN POWER
NETWORKS

Hierarchy property is an important characteristic of complex network [12-21].
Complex systems are usually characterized by some level of hierarchy, which spans
in time and space at different scales. Power system as a typical complex system
would contain this feature as well. Base on this consideration, we would like to see
what's happening about the evolution of hierarchy coordinates in power
transmission networks. From the analysis performed above, we find that the
Feedforwardness and Oderability remain “1” while the Treeness varies in a specific
band. And the hierarchy evolution of different power networks has different features.
A discussion to all these findings needs to be addressed further:

Firstly, in each scenario, it seems only Treeness varies with respect to
Feedforward and Orderability. This feature is a consequence of engineering
practices focused on reducing the wiring costs while keeping the system connected.
In other words, the power networks are generally planar and less mesh graph. A
significant characteristic is that the degree of each node is 2, which is consistent to
the conclusion of [22] that the average degree for 33 European power networks is
2.8 (<k>=2.8).

Secondly, it can be observed that the Treeness evolves to positive values mainly.
This feature means in most cases the hierarchy directions of these networks are
from top to bottom. Or from source (generator) to sink (load). Because, generally
speaking, the power is transmitted from generator to load in power grid. Therefore,
the hierarchy evolution is consistent with the reality. This phenomenon can be seen

as the validation of the hierarchy coordinates in turn.
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Fig. 5-11 Energy not supplied (MWh) cumulative probability distribution, normalized by the
number of nodes for each network (2002 - 2013).

Furthermore, since what we mostly concern is the vulnerability property of power
networks. As the method used in chapter 4, the cumulative probability distribution of
the reliability data: energy not supplied (ENS), total loss of power (TLP) and
restoration time (RT) of these four UCTE major power grids which can be found in
[23] is used and checked. We can find that the ENS index has a most positive result
to discriminate Germany network from other power networks which is shown in Fig.
5-11. From the figure it’s observed that the cumulative ENS distribution of Germany
follows a power-law, while for other networks, there is an obvious cut-off in the tail. It
seems that a linkage could be built: a low variability of hierarchy implies an
increased probability of accumulated major events. This linkage could extend the
application of the hierarchy and vulnerability analysis of power network or even

more broadly the whole complex network.

5.4. CONCLUSION

The hierarchy coordinate in morphospace is introduced to power transmission
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network to analyze the hierarchy evolution of four major UCTE power grids (France,

Germany, Italy and Spain). The evolution is following the removing of bus in power

grid according to the decreasing electrical betweenness, net-ability and random

generator. The simulation results reveal that the Germany network exhibit different

behavior in Treeness evolution. Based on our method proposed in chapter 4, we

also learn the cumulative probability distribution of ENS, TLP and RT of these four

power grids. A good coincidence occurs in ENS that the cumulative probability

distribution follows a power-law distribution while for other networks have a strong

cut-off in the tail. A simple explain is given to explain the reason why these

phenomenon exist. However, more accurate explanation and the relationship with

the cascading failure will be our future works.
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Chapter 6.
Spatial and Performance Optimality in

Power Distribution Networks

Power grids, especially high voltage transmission networks, have been widely
studied applying the complex network analysis approach to the electrical grid.
Usually, basic topological characteristics, statistical global graph properties and
vulnerability (or robustness) analysis have been thoroughly studied on many power
grids in different parts of the world [1]. Especially, the vulnerability characteristic of
the power grid is the main motivation for the studies. In fact topology property plays
an important role in shaping the performance (e.g., effects of natural disasters or
malicious attacks) of power grids [2-5]. As a result, there is an increasing interest in
analyzing structural vulnerability of power grids by means of complex network
methodology.

In current power systems, power plants are large to exploit economies of scales
and more efficient technologies and are usually located far away from the load
center. Therefore, power is transmitted from power plants to load center by high
voltage transmission network, then distributed to different voltage levels to the users
like homes, offices, schools, companies, and stores. Therefore, the power grid is
usually divided in two main segments: transmission (high voltage) and distribution
network (low voltage). Most of the scientific literature using the complex network
approach applied to the power grids has focused so far on transmission grids, while
little attention has been put on the distribution grids. Until to now, to our best
knowledge, only [6] took distribution networks into consideration under emerging

smart grid technology. As addressed by Pagani and Aiello in [6], with the
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development of the smart grid, the main role of high voltage transmission networks
may change while the low voltage distribution networks may gain more and more
importance and require a major update. Most of the research that focuses on
modeling the power grids uses simple graph models with sometimes the use of
basic properties such as direction and weight. However, these studies [1] miss an
important characteristic of the power grid: the spatial characteristic. Spatial
properties are the coordinates of the generator, transformer and, substation, the
wiring direction and lengths of power cable, etc. In this section we will apply complex
network method to power distribution networks since it is the part of the grid that is
going to receive the most of the attention in the future and we pose special attention
to the spatial aspects of the networks, since these aspects are not studied.

Another key aspect of many practical engineering problems concerns is
optimization. Optimization can be applied also in the network context and usually the
objective is to identify optimal network or optimal network model and the optimal
flow or traffic on a network [7-9]. Optimization in power systems is also an important
topic such as, the optimal dispatch of power generation [10], the optimal method for
power distribution network reconfiguration [11], the optimal placement of PMUs
(Phasor Measurement Units) in power networks [12] and optimal control strategy for
power system facility and stability [13], which covers from the static to dynamic
analysis of power systems. Two key issues should be taken into consideration in the
optimization of power grids: performance and cost. For performance of power
systems, the higher the performance and the lower cost, the better for the users. To
assess the performance of a power system from an engineering point of view, two
indexes: the Equivalent Interruption Time Related to the Installed Capacity (TIEPI)
and the Equivalent Number of Interruptions Related to the Installed Capacity (NIEPI)
are used [14]. To assess the cost aspect, the wiring cost is a good measure [15]. In
power grids, the Euclidean length of power cables gives us a method to quantify the
costs of the network taking into account its spatial properties. In this chapter we
would like to identify a trade-off between the performance and the cost from a
spatial network point of view.

In this chapter, a comprehensive study about the application of complex network
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methodology on power distribution networks from pure, extended and spatial

topological point of views.

6.1. CHARACTERISTICS OF THE TOPOLOGY OF
DISTRIBUTION POWER GRIDS

6.1.1. Power grid data sets

In this chapter, we will analyze two kinds of power grids as spatial network: the
transmission power networks and the distribution power networks. The transmission
network is a large scale interconnected bulk power transport grid. As a sample of
this grid we use the European network known as Union for the Coordination of
Transmission Electricity (UCTE). To analyze the distribution networks we use
samples of Spain and the Netherlands. For the confidential and copyright issues, the
Spanish networks are denoted as SDN1 & SDN2, while the Dutch networks are
denoted as NL1 to NL 12. We emphasize that the samples used belong to real
infrastructure and not to synthetic models such as IEEE-bus models. As a typical
transmission network, UCTE data give us a counterpart to compare with the
distribution network from topological manner. The basic information about these
networks is reported in 7able 6-1. For the networks the geographical coordinates of
nodes are available which make us could model the distribution networks as spatial
network, however, these are not mentioned in 7able 6-7 for obvious security and

safety reasons.

Table 6-1 Basic information of distribution/transmission power networks

Number of | Number of
Network type ) Name/Geography
nodes lines

Transmission 2777 3762 UCTE/Europe

Distribution 519 557 SDN1/Spain

Distribution 240 263 SDN2/Spain

Distribution 451 492 NL1/The Netherlands
Distribution 473 505 NL2/The Netherlands
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Distribution 241 254 NL3/The Netherlands
Distribution 287 305 NL4/The Netherlands
Distribution 221 231 NL5/The Netherlands
Distribution 193 209 NL6/The Netherlands
Distribution 957 1095 NL7/The Netherlands
Distribution 371 391 NL8/The Netherlands
Distribution 223 237 NL9/The Netherlands
Distribution 204 207 NL10/The Netherlands
Distribution 271 279 NL11/The Netherlands
Distribution 480 509 NL12/The Netherlands

In our abstraction to represent the power grid as a graph, we consider all the
substations and transformers equal and are presented as nodes in graph; the cables
are abstracted as edges; this type of abstractions are common in the study of power
grid in the complex network framework [16]. The topology of the UCTE and SDN1
networks are shown in Fig. 6-1. From the map we can see that the power grids are

typically a planar graph both at transmission and distribution level [6].

(a) (b)

Fig. 6-1 UCTE transmission network (a) and a sample of a distribution network (b).
Differences in topology are obvious.

6.1.2. Topological metrics

In the complex network methodology several metrics are used to quantify
properties both from a global and local point of view. We assess a series of metrics
including degree, betweenness, characteristic path length, etc. The metrics of the

three power grids are reported in 7able 6-2. Looking at the average degree one
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sees that the distribution grids have a very similar value which is around 2.1 while
the UCTE network is definitely higher (2.7). This aspect gives us already an idea
that the distribution grid tends to have a more radial-like structure since a node has
only two connections to other nodes, while the transmission network presents a

more meshed structure.

Table 6-2 Significant topological metrics for each network

Average Average
Average Average Graphic
Network geodesic clustering
degree | betweenness density
distance efficiency
UCTE 2.709 30147.632 22.712 0.07067 0.00098
SDN1 2.146 6142.634 24.669 0.01279 0.00414
SDN2 2.192 1785.888 15.878 0.00903 0.00917
NL1 2.213 2257.417 11.0085 0.00547 0.004917467
NL2 2.156 3798.359 17.058602 0.01592 0.004568746
NL3 2.116 1285.726 11.665777 0.00330 0.008817427
NL4 2.181 1613.948 12.726142 0.01024 0.00762652
NL5 2.118 1025.222 10.2735 0.00137 0.009625668
NL6 2.176 795.56 9.238959 0.00284 0.011334197
NL7 2.341 3595.902 9.800753 0.00769 0.002448376
NLS 2.113 2610.86 15.072021 0.00151 0.005711372
NL9 2.161 1093.296 10.800861 0.00112 0.009736194
NL10 2.049 1496.235 15.664072 0.00131 0.010093693
NL11 2.081 1693.026 14.765535 0.00075 0.007708077
NL12 2.158 2800.156 13.113497 0.00215 0.004505915

A further discussion about the topological metrics is given as following. First of
all, Fig. 6-2 shows the degree of each network where x axis denotes degree value

and y axis denotes percentage. Two key features are observed, on the one hand,
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the degree distribution of transmission network (UCTE) is obviously different with
the distribution network (Spain and the Netherlands). On the other hand, large part
of degree of distribution networks are 1 and 2, while the for UCTE network, the

degree value distributes more evenly from 1 to 5. Therefore, for these two kinds of

network, the difference in degree focuses on distribution of the small value part (less
than 5).

sesvass UCTE ==fll=SDN1 ——ir—SDN2 ==s==NL1 =—=—HNL2 —@—NL3 ——NL4 NLS

NL6 =—t=——NL7 =—l— NLS NL9 NL1O NL11 NL12 s Mean

Fig. 6-2 Degree distribution of each network

The identification of the right complex network model for the power grid is one
the most important task. There are three general models of networks have been
intensely studied and fairly well developed so far: random, small-world and scale-
free. The probability distribution of degree gives us an insight into the general
properties of the network and allows us to classify it. The log-linear scale cumulative
degree distribution of these networks is shown in Fig. 6-3. The mean and deviation
are also shown in Fijg. 6-3. One notes that the degree distribution of UCTE network
follows an exponential distribution, which is in line with other papers that studied
transmission power grids [1]. For other distribution networks, there isn’t an obvious

exponential fitting in their degree distribution. It seems that a power-law kind
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distribution is exhibited: most of the nodes degree is 1 or 2, only a small number of
nodes have a larger degree. For example, only one node has the maximum degree
which has a value of 21 in the SDN1 network. For the Dutch distribution networks
there is not a definitive answer as it is suggested in [6]; some samples exhibit a
power-law such as sample NL7, while others have a faster decay in the node
degree distribution such as sample NL8. In other word, the rich get richer and the
poor get poorer. This conclusion coincides with the result in the paper [6] and further
support that the power distribution networks tend to be scale-free networks. This
conclusion about scale-free network has its own valuable meaning in power grids’
vulnerability analysis. Because an interesting reliability property for scale-free
networks is that they exhibit high robustness to random failures, whereas they are

very sensitive to targeted attacks towards hubs [17-19].

SDN1 SDN2 —— NL1 - - NL2 NL3 - -NL4 —— NL5
NL6 ———NL7 —— NL8 NL9 NL10 NL11 NL12 ==C== Mean

1 ., 3 5 7 9 11 13 15

0.1 0.1

0.01

0.001 0.001

0.0001 0.0001

Fig. 6-3 Cumulative degree distribution of each network

Additionally, in pure topological methodology, betweenness is an important
measurement to assess how a node is central in a network. It gives an information

of the node importance in the physical transmission [18][19]. The betweenness
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property of each power distribution network is studied and Fig. 6-4 reports the
normalized cumulative betweenness distribution of each network in log-linear scale.
The mean value of normalized betweenness and its deviation are shown in Fig. 6-5.
The x axis is the normalized betweenness value which normalized to their maximum
values of the each network.

Generally speaking, there is an exponential distribution with a bit of decay at the
tail for each distribution network. While for transmission network UCTE, an
exponential distribution is exhibited. It worth to point out that a very faster decay
exists in SDN1 compared to other networks which means the nodes with very high
values of betweenness are less likely to be present in the network. The decay can
also be interpreted from an engineering perspective: power distribution network is
quite radial and hierarchical so that the paths tend to follow the few noes admissible

by the relative simple topology [6].

UCTE
CSDN1
SDN2
NL1
NL2
NL3
+NL4
= =NL5
NLG
i o NL7

NLB
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NLY
0.001 4 o NL10

NL11

NL12

0.0001

Fig. 6-4 Normalized cumulative betweenness distribution of each network.
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Mean
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Fig. 6-5 Mean and deviation of betweenness of the power networks analyzed.

Furthermore, network motifs which are defined as recurrent and statistically
significant sub-graphs or patterns [20] have encode important local properties of
networks. Each of these sub-graphs defined by a particular pattern of interactions
between vertices reflects the structural design principles of complex networks. From
the comparison of degree and betweenness above, one can see that there exist
some differences between each network. In order to dig into these differences, the
network motifs property of each network is examined and reported in the Fig. 6-6.
From the figure we can see that the percentage of sub-graph #1 in the SDN1
distribution network is larger than all the other network samples considered. The
only sample that has a similar value for the considered motifs is the biggest sample
(in term of order and size) of the Dutch set (i.e., NL7). In general, for the motifs
analyzed, one notes that only two motifs appear significant: sub-graph #1 and sub-
graph #3 which reinforce the presence of a radial-like structure. It means that the
SDN1 network is more radical than other networks since it has largest value of sub-
graph #1 which in turn to explain the existence of the a faster decay in the

cumulative betweenness distribution plot.
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Fig. 6-6 Motifs property of each network.

On the summary, looking at 7able 6-2, we find interesting to compare the two
Iberian distribution networks with the Dutch ones. In particular given the number of
nodes and edges we consider fair to compare SDN1 network with NL12 and SDN2
with NL9. First of all despite almost the same average degree SDN1 has an average
geodesic distance that is double the amount of NL12. A similar trend is actually
present in betweenness too: the sample of SDN1 has a much higher average
betweenness compared to NL12, almost twice as big. On the other hand, the SDN1
network has a higher clustering coefficient than the Dutch one. The same tendency
is found on the comparison between SDN2 and NL9. SDN2 needs on average a
path that is 50% longer compared to NL9, and again the betweenness of the Iberian
network is higher than the Dutch (70% increase). The same pattern found in the
clustering coefficient for the previous pair applies: SDN2 has higher local clustering,
almost double the NL9 sample.

From the examinations about the pure topological metrics, it worth to point that
on the one hand, distribution network has its own properties compared to
transmission network; on the other hand, even in distribution network, there exhibits

difference among each other. The question is raised that how this difference
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influences the performance of distribution networks? In order to answer this problem,
the spatial property, spatial constraints and optimality will be taken into

consideration in the following section.

6.2. OPTIMALITY AND SPATIAL CONSTRAINTS

6.2.1. Spatial property of power grids

After checking the pure topological metrics of different kind of power networks,
we would like to study the power grids from spatial network point of view.
Considering the spatial aspects, our power grids data provide us with detail about
the geographical position of the nodes and the length of each power cable. First of
all, the branch distance (length) distribution of each network is reported in Fig. 6-7.
And the cumulative distribution of branch distance of each network is analyzed and

reported in Fig. 6-8in log-log scale.

==UCTE ==5DN1 =dr—S50N2 =—=NL1 L2 =8—NL3
——NL4 — LS ——MNLE ——NL7 —=—NL8 -NL9
——NL10 ——NL11 NL12 ——Mear all Mean all - (NL7 + SDN2)

0.6

0.7

Fig. 6-7 Normalized branch distance (length) distribution of each network.
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0.00001

0.0001

Fig. 6-8 Cumulative probability distribution of real lengths (normalized).

Here the branch length is normalized to their maximum of each network. In the
first glimpse, from Fig. 6-7, the SDN2 and NL7 have a different distribution of the
branch length. In the meantime, the SDN2 and NL7 also have a cumulative
distribution that at least in the central part is closer to a power-law distribution
exhibited in Fig. 6-8 because a straight fitting exist in alone the tail. While for UCTE,
SDN1 and other Dutch networks, one sees an overall distribution that looks
exponential, especially having consistent exponential effects in the tails of the
distribution. For better understanding this observation, Fig. 6-9 just shows the
branch length distribution of UCTE, SDN2, NL7, Mean all and Mean all except
SDN2 and NL7. It's observed that the SDN2 and NL7 are obviously share different
distribution of branch length in small values part (less than 0.05) that discriminate

them among all networks.

93



Chapter 6 - Optimality and spatial constraints
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Fig. 6-9 Branch distance (length) distribution of some specific networks.

Together with the pure topological metrics analysis above, there is an interesting
pattern for SDN2, NL7 distribution networks with other networks. The power-law
tendency of cumulative degree distribution supports a scale-free network conclusion
if treating the distribution network as an undirected graph. While when considering
the spatial properties of the networks, the two groups networks have different
cumulative branch distance distribution. The consequent key issue is that what we
can find through this phenomenon. Obliviously, the spatial property and constraints
could influence the branch wiring, while the branch wiring would influence the
branch length distribution. Since it's noticed that there exists significant difference in
the branch length distribution. Therefore, we can derive that the branch wiring plays
an important role in the spatial model of power distribution networks. Because how
the topology influences the performance is the main motivation of applying complex
network methodology to power systems. In the next section, the role of branch wring
will be further investigated from the performance (or the behavior) optimality point of

view in power networks.

94



Chapter 6 - Optimality and spatial constraints

6.2.2. Optimality property of power grids

To further study the role of branch wiring, we adopt the methods used by Ahn ef
al. [15] to rearrange the position of nodes and the endpoints of edges by using a
shuffling mechanism applied to the fifteen networks. Two shuffling methods are

used:

1) Edge exchange (EE) shuffling in which vertices of randomly selected two
edges exchange their partner vertices;
2) Vertex swapping (VS) shuffling in which two randomly chosen vertices simply

exchange their positions while preserving all the connections.

Inspired by the method used in [15], we apply a Monte-Carlo (MC) scheme using
Metropolis algorithm and controlled by a given temperature T is used for our
numerical simulation. The fully random shuffling of network using either EE or VS
method corresponds to the MC simulation at T = = dented as EE(inf) and VS(inf).
And the simulated annealing technique is used to get the optimal value denoted as
EE(0).
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Fig. 6-10 Normalized wiring costs (physical distances) of networks obtained by fully
random vertex and edge shuffling.
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The simulation results for these networks are reported in Fig. 6-70. The EE(inf),
EE(0) and VS(inf) are all normalized to the original wiring length of each network.
From the Fig. 6-70 we can see that the original distance of UCTE transmission
network is nearly approaching the optimal one. While in the other two distribution
networks the original lengths are not optimal. And the difference arises again, the
EE(inf) value in SDN1 network is less than its original length. On the contrary, in
SDN2 network, the situation is opposite. It means, in SDN2 network, there exist a
couple of branches have long distance which also be embodied in the power-law
distribution of cumulative branch distance. While in SDN1, the exponential decay
means the upper constraint of branch distance.

The Dutch samples have the same behavior as the Iberian ones; the optimality is
not achieved in the majority of the samples. Only few samples (i.e., NL3, NL6, NL10,
NL11 and NL12) have the current and wiring distance similar to the one of the
optimal situation. Generally, the optimality is achieved by those samples that are
more spatially compact that are the network expands in a relatively small geography
and therefore the original distance is limited.

On the summary, the simulation confirms our hypothesis that the branch wiring
will influence the performance optimality of power network. It worth to denoted that

here we use the wiring cost (branch length) as our Hamiltonian.

6.2.3. Evolution of optimality in power grids

Without loss of generality, we also would like to see the evolution of optimality of
a specific power network in a large time scale. Based on this consideration, the
French 400KV power transmission network from 1966 to 2000 is collected and
investigated. 7able 6-3 reports the basic information of the series power

transmission networks analyzed.

Table 6-3 Basic information of French power network from 1966 to 2000

Year Number of nodes Number of lines

1966 14 17
1970 21 26
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1976 34 41
1980 51 61
1986 96 124
1990 124 165
1996 140 186
2000 149 197

The topology evolution of French transmission networks are illustrated in Fig. 6-
77.
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Fig. 6-11 Illustration of the evolution of French power transmission network.

The EE shuffling and VS shuffling procedures are used again, and the Monte-
Carlo simulation is performed one by one to each year’'s network. The simulation
results are shown in Fig. 6-72. From the figure we can see that the original
distances of the network are approaching to the optimal one which means the power
transmission network will gain better capacity with its network evolution. In the
meantime, the difference between the original distance and EE(inf) is increasing

with the evolution which supports again the performance improvement.
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Fig. 6-12 The evolution of optimality with EE(0) for French transmission network. Inset:
detail of the evolution as a sigmoid function of time.

6.2.4. Spatial constraints

Up to now, we have enough evidence to say that the spatial model of power
distribution networks could give us a novel perspective to find out the network
footprint. Thus, it is interesting to correlate the spatial properties of the network with
the performance of the power distribution network from the engineering point of view.
As we noted in the previous section the topologies of the SDN1 and SDN2 networks
are radial-like, resembling a tree with some loops. This structure is very similar to a
case for a high density of loops in real optimal network: the veins in leaves or insect
wings [7]. Therefore, we would like to examine the properties of this structure
including the cumulative distribution of the nodes in each loop and the cumulative
distribution of the nodes in each antenna. The results for the Iberian networks and
Dutch networks are reported in Fig. 6-13 for antenna and Fig. 6-74 for loop under
log-linear scale. Here the x axis denotes the antenna numbers which are normalized
to their node number of each network. The normalization operation is due to the

consideration of network size.
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Fig. 6-13 Antennas in distribution networks.
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Fig. 6-14 Loops in distribution networks.
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In the SDN2 network most of the antennas contain less than 4 nodes, whereas
for the SDN1 network there exist some antennas which contain more nodes even up
to 27. The Dutch samples behave in this respect closer to the SDN2 network since
the samples have in general antenna structures that do not contain many nodes. For
the antenna with less than 5 nodes, the cumulative distribution values are very
similar for both the Dutch samples, SDN1 and SDN2. The difference part focuses on
the nodes large than 5. Dutch sample NL7 has higher probability of finding more
than 5 nodes organized in an antenna structure compared to the other samples;
however there are no antenna configurations with more than 10 nodes for that
sample. Considering loops structures, SDN2 contains loops involving considerably
fewer nodes compared to the SDN1 network. In other words, based on the analysis
above we can say that the SDN2 distribution network is more fragmentation and
homogenization: most of the antennas with fewer nodes like 1 or 2, and most of the
loops contains within 10 nodes, compared to the SDN1 distribution network.

The Dutch samples seem divided into two categories for the aspects considering
loops: almost half of the samples have loops containing few than 50 nodes and
actually a substantial amount of samples that do not have even 30 nodes in loops
structures. The other samples (NL7, NL2, NL4, NL9, NL1) have loops involving an
higher number of nodes. It is interesting to note that there is no correlation in the
number of nodes and edges of the network and the size of the loops formed in that
network. In this last set of samples both the high and small networks in terms of
order are present.

Which spatial topology is better for power distribution network in case of
performance? The performance here should quantify the distribution systems are
operated under normal condition: the voltage in a safe range, the active and reactive
power balancing, etc. The service quality index will be used to quantify the
performance of two typical distribution network SDN1 and SDN2 to find out the

relationship between topology and performance.
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6.3. RELIABILITY

As mentioned above, we would like to build a linkage between the topology
property and performance for distribution network. The precondition is the collection
of real malfunctions data. In Iberia countries, two indexes: the Equivalent
Interruption Time Related to the Installed Capacity (TIEPI) and the Equivalent
Number of Interruptions Related to the Installed Capacity (NIEPI) are used to
quantify the service quality of distribution network. The

TIEPI is used to quantify the average time during which the supply to a customer
is interrupted [14]:

rppy = 2l X0 6.1
r’

where £ is the sum of the rating of all interrupted medium-voltage/low-voltage
transformers plus the contracted power of all interrupted medium-voltage and high-
voltage customers. P is the total rating of all medium-voltage/low-voltage
transformers plus the total contracted power of all medium-voltage and high-voltage
customers connected to the system.

NIEPI is used to quantify the average number of supply interruptions [14]:

NIEPI = L (6.2)
r’

where Py is the sum of the rating of all interrupted medium-voltage/low-voltage

transformers plus the contracted power of all interrupted medium-voltage and high-
voltage customers. P, is the total rating of all medium-voltage/low-voltage
transformers plus the total contracted power of all medium-voltage and high-voltage
customers connected to the system.

Based on the dataset that we can get from the DSOs, here only the TIEPI can be
used to compare the performance of SDN1 and SDN2. The statistical chart is shown
in Fig. 6-15.
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Fig. 6-15 Evolution of TIEPI values for SDN1 and SDN2 distribution networks.

From Fig. 6-75 we can see that the evolution of the equivalent time of
interruption for the optimal (SDN1) and non-optimal (SDN2) distribution networks,
suggesting a significant increase in TIEPI values for the latter. Based on this
observation, it seems that if the wiring cost of a network achieves its optimal then its
resilience to the malfunctions is higher than the one that can’t get its optimal wiring
cost. The conclusion is quit meaningful because it seems the first time to build the
linkage between spatial properties of power distribution networks with their real

malfunctions indexes.

6.4. CONCLUSION

In this chapter, a comprehensive analysis to real power distribution networks
(SDN1, SDN2 and the Netherlands) from complex network point of view is given.
Since present researches focus on power transmission networks, our works extends
the application of complex network theory to power systems. Another contribution of
this chapter to power networks analysis using complex methodology is involving

spatial network conception. A spatial model is proposed to the power distribution
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network and its specifics like: branch length, loop and antenna are analyzed and
some interest conclusions have been proposed. In order to further analyze the
performance of power distribution network, the wiring cost (length) is use as the
object of the optimization, the edge shuffling and vertex shuffling methods are used
to analyze their optimality. The Monte-Carlo (MC) scheme is also adopted to
increase the accuracy. It's noticed that there exist some differences in performance
optimality of distribution networks. However, the difference is just in wiring cost or
economic point of view. What we more care about is the reliability analysis of power
systems. Therefore, on the one hand, the spatial constraints of each power
distribution network are studied and we try to use it to explain the difference
mentioned above. On the other hand, the reliability data of SDN1 and SDN2
networks are collected and compared. More meaningful conclusion is found that if
the wiring cost of a network achieves its optimal then its resilience to the
malfunctions is higher than the one that can’t get its optimal wiring cost. Although
this result is not strong enough, we would dig into the reason for this problem in our

future works.
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Chapter 7.

Conclusion

Complex network theory has been widely used to analyze the power networks
from basic topological property to statistic robustness analysis and dynamic
resilience property. However, to our best knowledge, there are still many problems
need to be investigated and addressed. This dissertation has paid attention on the
application of complex science and complex network methodology in power system
analysis from different aspects:

Firstly, an extended topological methodology was proposed which involving
specific characteristics of power systems in pure topological method to make
traditional complex network approach closer to the reality. Based on this extended
methodology, three new metrics (entropy degree, electrical betweenness and net-
ability) were proposed and used to analyze the vulnerability of power networks. A
simplified UCTE bulk power transmission network is used as an example to show
how these metrics to spot the importance of components in power grid. In the
meantime, as fundamental outputs, our proposed extended metrics will also be used
in our following researches.

Secondly, a first attempt is given to build a linkage between topological
measures and empirical data of power systems. Here the empirical data can be
interpreted as the grids’ realistic behavior (i.e., malfunctions and major events). The
entropy degree and electrical betweenness were applied to four major power
transmission networks (Germany + Italy, France + Spain), and their cumulative
distribution of malfunctions from 2002 onwards were investigated also. A meaningful
and significant linkage between structural measures and the real dynamical output
(i.e., major events) of a grid is built though still weakly.

Thirdly, we compared and evaluated the evolution of hierarchy for some real

106



Chapter 7 - Conclusion

power transmission networks when buses are attacked selectively in decreasing
order of some topologically and electrically defined values. It seems that hierarchy
increases as the network is being attacked and a low variability of hierarchy implies
an increased probability of accumulated major events. This conclusion extends the
application of hierarchy conception to vulnerability analysis of power systems or
even the whole complex network research.

Last but not least, complex network methodology was extended to power
distribution networks. The pure topological properties of some real distribution
networks of Spain and the Netherlands were studied. Furthermore, the spatial
network model was built up for these networks and their spatial properties were also
analyzed. In order to investigate the relationship between performance and topology,
the edge shuffling and vertex shuffling method were used to analyze the wiring cost
and the performance optimality. In the meantime, the real malfunctions data was
used to verify our simulation results aforementioned.

Although we tried to cover a whole picture of applying complex network in the
emerging power system vulnerability analysis, and many aspects and characteristics
of power systems have been revealed from a new perspective as complex systems,
a lot more extensive features can be exploited using similar method developed from
complex network theory, and those are considered as a promising future work. Our
future works are summarized as the following:

- Although in this thesis, the PTDF (or power flow equivalent) is introduced into
traditional pure topological method. And the power grid is not just abstracted
as simple undirected graph but the flow based flow. Our research is still in
the static analysis scope. The future object should be involving dynamic
features in our study. For example, batch of papers have addressed that the
Kuramoto oscillators applied in complex network to analyze its
synchronization property. A natural thought is that using this kind of oscillator
to replace the synchronous generator to simplify the synchronization stability
problem of power systems. Therefore, if we can introduce dynamic features
into the application of complex network methodology to power systems, the

models or the metrics based on complex network theory will be closer to
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power system reality.

How to connect the topological (or extended) metrics with the empirical data
(malfunctions data is used in this thesis) is an interesting and promising work
which is worth of more attention to be paid. On the one hand, this linkage can
prove the correctness and validity of using complex network theory to power
systems. On the other hand, this linkage would help us to discriminate the
vulnerability form component to the whole network in power networks.
Although this dissertation proposed a linkage between extend topological
metrics with the malfunctions data of UCTE major power networks (France,
Germany, ltaly and Spain). More types of dataset and more different real
power networks are needed to verify our proposed method. Or even more
novel methods are needed.

Because in this thesis we have found something about the relationship
between hierarchy and reliability of power networks. Which means hierarchy
will affect the spread of failure in the network. Therefore, we have the reason
to pay more attention on the studying of this mechanism. A new cascading
model involving this hierarchy coordinates could be as a first start.

Modeling power grids as spatial network is a new perspective applying
complex network method in power systems. Accept the results addressed in
the thesis, more works could be done such as how the space constraint

influence the wiring of a network so that influence its performance.
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