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Abstract  

Power system has been acknowledged as a complex system owing to its 
complexity resulting from interactions of different layers which include physical layer 
like generators, transformers, substations and cyber layer like communication units 
and human decision layer. Complex network theory has been widely used to 
analyze the power grids from basic topological properties to statistic robustness 
analysis and dynamic resilience property. However, there are still many problems 
need to be addressed. This thesis will pay more attention on the application and 
extension of complexity science and complex network theory in power system 
analysis from different aspects: 

In the first place, one of our aims is using an extended topological method to 
effectively explore the structural property and analyze vulnerability of power systems 
by introducing some electrical engineering features into traditional complex network 
approach.  Based on this consideration, some features such as line impedance, line 
flow limit are introduced into characteristic path length and clustering coefficient as 
well as degree metrics in order to examine if power grids share structural features of 
exist complex network models. And aiming at analyzing static robustness of power 
grids, a new metric named electrical betweenness is proposed and used by 
introducing power transmission capability and line flow limit into betweenness 
centrality which is a metric to measure the importance of a vertex or an edge in 
network. In the meantime, a metric named net-ability is used to replace the original 
network efficiency to quantify the performance of power grid from a global 
perspective. Through our extended complex network methodology, the bulk 
interconnecting power transmission network UCTE is analyzed to see the efficiency 
and accuracy on the spotting component importance and the robustness of network 
with respect to different attacks.  

Secondly, although power grids have been thoroughly studied as complex 
network and many topological measures have been used in order to classify their 
structure, evaluate their behavior in terms of robustness or model their dynamic 
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response to malfunctions. Their results have been mainly theoretical and no 
correlation between power grids’ realistic behavior (i.e., malfunctions and major 
events) and any structural measure has been found. Therefore, a first attempt to 
correlate these new measures with real malfunctions data for some major European 
power transmission grids is given in this thesis. Based on our proposed new metrics, 
similar behavior is found in four major power transmission networks (Germany + 
Italy, France + Spain), in terms of robustness to selected attacks to buses, between 
different networks. This is measured by means of extended topological indexes 
electrically better defined. These behaviors can be (weakly) correlated with similar 
probability distributions of major events, identifying similar dynamical response 
among topologically similar grids. It would raise hopes in finding a more meaningful 
and significant linkage between structural measures and the real dynamical output 
(i.e., major events) of a grid. 

Thirdly, as complex systems are usually characterized by some level of hierarchy, 
which spans in time and space at different scales. This hierarchical structure 
commonly allows reducing costs in terms of reliably transmitted information but at 
the same time involves different dynamical responses to malfunctions. In the case of 
critical infrastructures like transmission power grids, different hierarchical structures 
may lead to different behaviors in terms of accumulated major events. We compare 
and evaluate the evolution of hierarchy for some real different power transmission 
networks when buses are attacked selectively in decreasing order of some 
topologically and electrically defined metrics. The simulation results show that: 
hierarchy increases when the network is being attacked and a low variability of 
hierarchy implies an increased probability of accumulated major events. 

Finally, in the smart grid scenario, new energy generation facilities (mainly based 
on renewable sources) are becoming widely accessible and becoming more and 
more numerous. In this situation, distribution grids gain more and more importance, 
while requiring a major update. Most of the researches focus on modeling the power 
grid as a simple graph, and the differences are undirected or directed, unweighted 
or weighted. However, the power grids have significant spatial characteristics: the 
coordination of the generator, transformer and substation, the wiring direction/shape 
and length of power cables, etc. Therefore, in our research we apply complex 
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network theory to power distribution network analysis, and model the power grid as 
a spatial network. Some real distribution networks: SDN1 and SDN2 (Spanish 
distribution network 1&2) and NL1-NL12 (the Netherlands distribution network 1-12) 
are analyzed using complex network methodology. The cumulative distribution 
functions of degree, betweenness and real length of cable exhibit some significant 
differences. In order to explain these differences better, we study the role of branch 
wiring in spatial model of power grid. Two methods: edge exchange shuffling and 
vertex swapping shuffling are used to reveal the relation between branch wiring and 
performance optimality. The simulation shows that SDN2 network and one Dutch 
network don’t achieve their optimal branch wiring compared with other networks. 
Again, the real malfunctions data will be used to verify our simulation results 
aforementioned.  
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Chapter 1 - Novelty and foundational contribution 
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power transmission networks. While with the emerging development of smart grid, 
the power distribution networks gain more and more importance. Therefore, a 
comprehensive study is needed to power distribution networks involving complexity 
science and complex network methodology.   
 

1.2. NOVELTY AND FOUNDATIONAL CONTRIBUTION 

In this thesis, complexity science or complex network theory is applying and 
extending to power systems analysis. Multiple aspects of novelty can be found from 
the encountered task and possible solutions: 

First of all, to our best knowledge, exist studies about the application of complex 
network theory in power systems neglect the specific electrical features. However, 
power grids have obvious different characteristics compared with other kinds of 
complex networks. Based on this consideration, this thesis tries to introduce the 
electrical features of power systems such as line impedance, power flow and 
transmission capacity into traditional pure topological methodology. A novel 
extended method including three new metrics: entropy degree, electrical 
betweenness and net-ability are proposed and used to assess the vulnerability of 
power systems. 

 When using complex network theory to analyze the vulnerability of power 
systems, a natural consideration is restoring to some metrics both traditional and 
extended. Batch of papers have addressed this problem and some metrics have 
been proposed. However, there are still no papers mentioned how to verify the 
feasibility and efficiency of these metrics. Therefore, a first attempt to build a linkage 
between our proposed extended topological metrics and malfunctions dataset of 
power grids is given in the thesis. Four major power grids: France, Germany, Italy 
and Spain are chosen to be analyzed using our proposed electrical metrics. And the 
cumulative probability distribution functions of the malfunctions for these grids are 
checked respectively. A linkage is built between topological measures and 
malfunctions in the similar topologically characterized networks. 

Hierarchy is another important feature of complex network. The novelty of this 
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thesis is that we investigate the hierarchy evolution of power transmission networks 
under a morphosapce coordinates that evaluates and quantifies the hierarchy 
properties of complex networks. The interesting point is that the evolution arbitraries 
of different power grids have a strong correlation with their real operation 
malfunctions. Based on this observation, the influence of hierarchy property to the 
cascading failure is further studied.  

In order to investigate the power distribution networks not only in terms of 
vulnerability but also in the performance optimality, a spatial model considering the 
geographic coordinates of node and branch is built. In this spatial model, the 
topological and spatial properties are checked. Additionally, the role of branch wiring 
in spatial model of power grid is studied as well. Two methods: edge exchange 
shuffling and vertex swapping shuffling are used to reveal the relationship between 
branch wiring and optimality of performance. Furthermore, the real malfunctions 
data of each grid will be used to verify our simulation results aforementioned. 

 

1.3. STRUCTURE OF THE THESIS  

In addressing aforementioned methods and resolutions, the main chapters of the 
thesis are organized as following: 

- Chapter 2 gives a short but comprehensive description about the complexity 
science and complex network theory. In the meantime, the complexity of 
power systems is addressed and modeling power network as complex 
network is also introduced. After that, a comprehensive review about the 
application of complex network theory in power systems is given. 

- Chapter 3 starts from the analysis of the neglecting of specific electrical 
features in power systems of traditional pure topological method in complex 
network theory. Based on this consideration, an extended topological 
methodology is proposed which involving complex network theory and 
electrical features of power systems together and three new metrics are 
proposed to analyze the vulnerability of power systems. 
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- Chapter 4 illustrates the lack of efficient method to verify the feasibility and 
efficiency of topological metrics derived from complex network theory to 
assess the vulnerability of power systems. A first attempt is given in this 
chapter to link the analysis results of proposed topological metrics with the 
real malfunctions of power systems. Results show statistically meaningful 
(although weak) correlations among similar topologically characterized 
networks, which could finally help in defining a linkage between topological 
measures and malfunctions in power grids. 

- Chapter 5 analyzes the hierarchy evolution of power transmission networks 

under a morphorspace coordinates. The different evolution arbitraries have 
a strong correlation with their real malfunctions data. This phenomenon 
illustrates that the hierarchy property of complex network has a strong 
influence to cascading failure. Therefore, the relationship between 
hierarchy and cascading failure is further analyzed in this chapter. 

- Chapter 6 extends complex network theory from power transmission 
networks to power distribution networks. On the one hand, the traditional 
properties are checked for distribution networks, on the other hand, the 
spatial network model is built for distribution networks and their optimality 
property under spatial constraints is analyzed. Different performance is 
obtained and analyzed.  Furthermore, the malfunctions datasets are used to 
verify the results as well.  
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complexity science and techniques will be given. Then the complexity in power 
systems and a scene of power system as a complex system are discussed. 
Furthermore, the new application about complex network theory to power systems is 
presented and a corresponding and comprehensive review is also given. 

 

2.1. COMPLEXITY AND COMPLEX SYSTEMS 

There is no general accepted formal definition of complexity science like 
Heyligen gave an answer to this question: “Conceptually, the most difficult aspect of 
complexity is still its definition and the deeper understanding that goes with it” [4]. 
There have been many different forms of endeavors in complexity over almost all 
disciplines which cover various definitions and measures of complexity. Generally, 
they could be categorized into three groups: Algorithmic complexity [5][6], 
Deterministic complexity [6] and Aggravate complexity [6]. The first group covers the 
complexity of describing system characteristics, such as mathematical complexity 
theory and information theory. The second group includes the interaction of very few 
key variables that create largely stable systems prone to sudden discontinuities, 
such as chaos theory, catastrophe theory, etc. the last one which mostly interests us 
concerns how individual elements work in a synergy that generates complexity in a 
system.  

To explicitly and clearly define the notion of complexity used in this dissertation, 
while avoiding too generalizing the concept to be workable or losing any useful 
positive meaning, in this thesis we adopt the definition of complexity as follows: 
“Complexity is a property that makes it difficult to analytically formulate its overall 
behavior even when knowing the complete information about its elements and their 
relationships”. Here “difficult” could involve several aspects such as size, depth, 
computational indication, efforts in a search for the most apt representation, etc.   

Accordingly, a general and logical definition of complex system is a system that 
exhibits complexity: “A system, that can be decomposed in a set of different types of 
elementary parts with autonomous behaviors, goals and attitudes and an 
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environment, is complex if its modeling and related simulation tools cannot be done 
resorting to a set of whichever type of equations expressing the overall performance 
of the system, in terms of quantitative metrics, or a function on the basis of state 
variables and other quantitative inputs”. It’s noticed that this definition is more like 
an articulated and practical way which targeting at engineering systems. 

Over the last several years, complexity science has changed the way scientists 
approach all fields of life, form biology to medicine, from economics to engineering 
[7-11]. The concepts or techniques such as self-organization, genetic algorithm, 
cellular automata, criticality, artificial life or chaos theory are now widely accepted 
and used as new means of understanding the always changing reality. The history 
complex systems research including these concepts begins in the 1950’s, emerging 
with the advent of von Bertalanffy’s systems theory, the appearance of nonlinear 
phenomena in scientific fields away from physics, like chemistry and biology, and 
the study of feedback concepts in communication and control in living organisms, 
machines and organizations. From these early stages, the idea of threshold turned 
up to be the cornerstone of much of the complexity science developments of the 
1980’s, especially in the cellular automata and artificial life fields, where complex 
behavior seemed to appear suddenly [12-14]. From then on many books, journals, 
conferences, and even whole institutes devoted to the field have flourished 
everywhere, and even computer modeling of complex systems has become widely 
accepted as a valid scientific activity. A conceptual map which cited from the 
dissertation of Marti Rosas-Casals (“Topological Complexity of the Electricity 
Transmission Network: Implications in the Sustainability Paradigm”) is shown in Fig. 
2-1 highlights various aspects involved in the characterization of complexity. In this 
conceptual framework complexity pervades both the (a) structure (i.e., formal 
arrangement of the constituent parts), (b) dynamics (i.e., functional behavior) and (c) 
evolution (i.e., the way it has reached its actual formal and functional state) of any 
system. It covers comprehensive majors of complexity science and different 
technology and method. 
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Fig.	2‐1	The	conceptual	map	to	highlight	the	various	aspects	involved	in	complexity’s	

characterization.	(Source:	Marti	Rosas‐Casals,	“Topological	Complexity	of	the	Electricity	
Transmission	Network.	Implications	in	the	Sustainability	Paradigm”,	Ph.D	Thesis)	

 
Reference [15] gave a try to review the methods and techniques of complex 

systems, and grouped them into three categories: (1) those for analyzing data, (2) 
those for building and understanding models, and (3) those for measuring 
complexity as such. The techniques for the purpose (1) and (3) are out of the scope 
of this thesis, hence, what we focus on are those commonly used in power systems 
like multi-agent modeling and complex network theory which will be described 
specifically in the next section. 

 

2.2. COMPLEX NETWORK 

As introduced in the last section we have noticed that complex system, or 
complexity in short, is a new approach to science that studies how relationships 
between parts give rise to the collective behaviors of a system and how the system 
interacts and forms relationships with its environment. Complex system is a very hot 
research arena which is studied by many areas of natural science, mathematics, 
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and social science. Many complexity models have been proposed include human 
economies and social structures, climate, nervous systems, as well as modern 
energy like power systems or telecommunication infrastructures.  One of important 
branch of complexity techniques is called complex network theory which is 
conceptualized as the intersection of graph theory and statistical methodology [15]. 
Complex network theory pays attention on top level properties, i.e., a global level, to 
analyze the emergent pattern of the system mapping on a graphic representation. It 
examines the interconnections in diverse physical, engineering, social, etc., 
networks, seeking for principles, algorithms governing the network patterns and 
leading to predictive models. 

Over the last decade, mainly due to advances in computational capacity and 
database accessibility of computer science, modeling and computational methods 
have stimulated the interest of the scientists to analyze complex systems as 
networks. In its broadest sense, a network is a formal and functional representation 
of a complex system, where vertices are the elements of the system and an edge 
represents the interactions between any two of vertices. For example, living cells are 
supported by large molecular genetic networks, whose vertices are proteins and 
edges represent the chemical interactions among them. Similarly, complex networks 
occur in social sciences, where vertices are individuals, organizations or countries 
and the edges characterize the social, economic or cultural interactions among them 
[16]. Examples from nowadays biological science, which is shown in Fig. 2-2 left 
part, a network showing 3200 protein interactions between 1700 proteins; or the 
information science, which is shown in Fig. 2-2 right part, the world wide web whose 
vertices are HTML documents connected by links pointing from one page to another 
[17][18]. When power network as a complex network, the generators, transformers 
and substations could be abstracted as the vertices and the power cables could be 
modelled as edges. 
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Fig.	2‐2	A	complex	system	viewed	as	a	network.	Left:	protein	interactions.	(Source:	[17]).	
Right:	part	of	the	actual	internet,	retrieved	from	the	Internet	Mapping	Project.(Source:	

http://www.visualcomplexity.com).	

 
In order to study the complex systems from the topological point of view, 

complex network approach has become popular. Following will give a review of the 
complex network approach application in complex system including structural 
properties and structural robustness.  

Structural properties of a network and its evolution process could be analyzed by 
defining and calculating a set of metrics. The metrics can in turn be used to 
categorize real networks into several classes with different properties, as different 
classes of networks have different features that can be characterized by the class 
itself. In fact, network models based on real systems show some special features, 
such as community structure (the presence of groups of vertices more densely 
interconnected), power law degree distributions (the probability distribution of the 
number of edges connected to a vertex follows a mathematical power law) [19] and 
hubs (vertices linked to a large part of the edges of the network) [20]. Three specific 
works have made particular contributions to this field: the model of random network 
by Bollobás [21], the investigation of small-world networks by Watts and Strogatz 
[22], and the characterization of scale-free models by Barabási and Albert [19][20]. 

Besides structural classification of networked complex systems, another 
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research topic of complex systems from topological point of view is its structural 
robustness, which can be defined as the ability of a network to avoid malfunctioning 
when a fraction of its components is damaged. This was one of the first issues 
having been explored in the literature on complex networks [20][23] and it can be 
encountered in two different groups: static robustness and dynamic robustness. 
Static robustness is the act of deleting nodes without the need of redistributing any 
quantity that is transmitted in the network; while dynamic robustness refers to the 
situation that dynamics of the redistribution of flows has been taken into 
consideration. Deletion is the most common method for detecting the vulnerability of 
the networks which usually refers to the components in the networks, such as 
deleting vertices or edges. At the same time, both groups can be implemented in 
two ways: Errors (or random failures) and Attacks (or selective failures). Errors are 
the ability of the system to maintain its connectivity properties after the random 
deletion of a fraction of its vertices or edges. Attacks are the ability of the system to 
maintain its connectivity properties when a deletion process is targeted to a 
particular class of vertices like the highly connected ones. 

The static robustness of a network to maintain its connectivity obviously depends 
on its original topology and the way to modify its structure (i.e., errors and attacks by 
means of successive deletion). For example, scale-free networks, i.e. World Wide 
Web links, are extremely sensible to attacks but very resilient to error failures; while 
random networks, i.e. Erdos-Renyi model, react similarly to any kind of deletion of 
the components of the networks [20]. Also, it is significant to find the critical 
components in networked systems. In this respect, efficiency [24] seems to be a 
promising metric for analyzing the overall structural vulnerability in a networked 
infrastructure such as routing network [25], internet [26], subway network [27], 
power systems [28], and so on. 

Dynamic robustness is another important problem considered in complex 
networks research since it refers to modeling the dynamics of flows of the physical 
quantities of interest over a network. When it comes to modeling the dynamics, the 
situation is far more complicated since the components of a network may have 
different dynamical behaviors and the flows are often highly variable, both in space 
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and time. In the traditional topological method, the betweenness centrality is used to 
evaluate the flow of the physical quantities over a network. Betweenness centrality 
is a measure of a node's centrality in a network, equal to the number of shortest 
paths from all vertices to all others that pass through that node [29]. Since in 
traditional topological method, it consumed that the physical quantities is always 
passing through the shortest path, therefore betweenness can be seen as a useful 
measure of the load over a network. By reviewing each element characterized by a 
finite capacity (defined as the maximum load that the element can handle), the 
dynamic robustness of the network is then evaluated in the following way: 1) a 
deletion of node, which obviously changes the shortest paths between vertices. 
Consequently, the redistribution of betweenness, possibly creating overloads on 
some other vertices. 2) All the overloaded vertices are removed simultaneously from 
the network. This leads to a new redistribution of loads and subsequent overloads 
may occur again. 3) The new overloaded vertices are removed and the redistribution 
process continues until at a certain time all the value of betweenness of the 
remaining vertices under or equal to its capacity [30][31]. 

 

2.3. POWER SYSTEM AS A COMPLEX SYSTEM 

2.3.1. Complexity in power systems 
Before the arising of complexity science, people used complexity to refer to a 

very complex situation in power systems, such as ref. [32] used it to describe the 
increase of heavily computational burden on solving power flows as the increase of 
system size. Ref. [33] defined complexity over the failures and employed it to state 
problems that could become potentially quite difficult to solve. Ref. [34] described a 
system involving DC lines or asynchronous operation, loss of synchronism, etc., as 
complex system. However, these situations were conceptually incorrectly described 
as complex while they were actually complicated. 

In recent years, the difference between complexity and complication has been 
noticed by the researchers of power system. A few researches regarding complexity 
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and the applications of its theories to power systems were reported. Instead of 
looking at the details of particular blackouts, ref. [35] studied the statistics and 
dynamics of series of blackouts with approximate global models. Ref. [36] employed 
topology analysis to figure out the vulnerability of a given transmission system and 
concluded that when a network is attacked following a delicately sequence 
corresponding to their criticality, the network would illustrate more vulnerability. A 
very important research using complex network features to analyze the topological 
structure and static tolerance to errors and attacks of the Union for the Coordination 
of Transport of Electricity (UCTE) power grids [37] was published. The authors 
found that the nodal removal behavior can be logarithmically related to the power 
grid size, which suggests that though size favors fragility, growth can reduce it. 

Energy infrastructures, such as power systems, are characterized by a large 
number of components and many different types of interactions among them. Size 
itself does not infer complexity. Continental-scaled power grid, for example, is the 
biggest dynamic system in the world but from a physical point of view it can be 
modeled by a huge set of differential and algebraic equations. It may conjure 
complexity in the computational efficiency; however, it is somehow solvable by using 
computationally powerful facilities and advanced algorithms. In contrast, complexity 
arises when the physical substrate interacts with the rest of hierarchical levels 
governing and using the infrastructure. The overall expected performance and 
dynamic evolution are related to those interactions at the “individual" scale. These 
phenomena cannot be handled nor studied with a set of equations in any form. 
Studies and applications related to the deregulation towards market environment 
have thrived in both academia and industries. This change brought a great 
challenge to power systems in the production and transmission. With the prevalence 
of the distributed generation and smart grids, the distribution and utilization are 
confronting with new scenarios in which a large number of users transformed from 
passive receipts to active participants. The emerging situation and newly introduced 
players with clear self-interest display an important role for the future power system 
which will increase the complexity of power system further. 
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replacement of high-pollutant fossil resources, which can be achieved by 
discounting access tariff for renewable energy and subsidizing green-energy price. 

The complexity of power systems also increases with the change of its 
administrative mechanism. Initially, in power systems, each utility and/or pool of 
utilities has control centers which support today's hierarchical monitoring and control 
of the grid. Moreover, electrical market is gradually introduced into power systems in 
order to transmit the least expensive power in power grids. The important 
consequence of this situation is that utilities require systematic integration of 
monitoring, computing and controlling for improved performance. Therefore, the 
interaction between power grids and decision information via cyber layer is more 
complex than before. 

Besides, renewable energy such as wind power, solar energy, fuel cell and so on 
is drastically emerging and developing in the distribution level of traditional power 
industrial. This trend apparently increases the complexity in power systems as a 
whole. 

 
2.3.2. Power grid as a complex network 

Power grids have been widely acknowledged as a typical complex network 
because of both their huge sizes of components and the complex interactions 
among them. For example, the UCTE transmission network has about 5910 nodes 
and 7970 transmission lines. The North American power grid has about 14,099 
nodes and 19,657 transmission lines. A typical paradigm about abstracting power 
grid as a complex network is shown in Fig. 2-4. In part (a) we can see that the power 
systems is composed of multiple and diverse elements, such as generator, 
transformers, switching stations, etc., connected physically by electric cable lines; 
part (b) is an Italian (220-400 KV) transmission power grid, where each node is a 
substation or transformer; part (c) is an abstract network of the Italian transmission 
power grid in part (b) from pure topological point of view.  
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Fig.	2‐4	Power	grid	as	a	complex	network	

 
Mathematically, from the graph theory point of view, when applying complex 

network methodology to power systems, the electrical power grid as a weighted and 
directed network identified by a set Y = {B, L, W} where B (dim {B} = NB) is the set of 
vertices (or nodes), L (dim {L} = NL) is the set of edges (or links) and W is set of line 
weights. Vertices are identified by index i. Edges are identified by lij, which 
represents a connection between vertex i and vertex j. And the weight element wij in 
the set W is associated with each line lij. 

With the development of complex system theory, power grids arise as natural 
objects of study under the conceptual frame of complex systems, particularly as 
complex networks. Therefore, complex network methodology as one of approaches 
to study complex systems has been used to analyze and understand power systems 
from topological point of view. How complex network theory and methodology 
applied in power systems study especially its vulnerability analysis will be addressed 
in the following sections.  
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2.4. REVIEW OF COMPLEX NETWORK METHODOLOGY 
APPLIED IN POWER SYSTEMS 

Complex network theory has received considerable attention recently which has 
been used in many different fields. A lot of researches including basic characteristics, 
statistical global graph properties, small-world property, scale-free property, degree 
distribution, betweenness distribution and vulnerability analysis, have been 
performed to power grids since they are infrastructures in our society. It is noticed 
that there is a strong link between the topological structure and operation 
performance in power systems because the structural change could alter 
operational condition of a power system and thus change its operation performance. 
As a result, there is an increasing interest in analyzing structural vulnerability of 
power grids by means of complex network methodology.  

In this section, to our best knowledge, a brief but comprehensive review about 
the application of complex network theory in power systems from basic structure 
property analysis to vulnerability assessment.  

 
2.4.1. Structure property analysis 

As mentioned in section 2.2, there are three main models of complex networks: 
small-world, scale-free and random networks. Different network will exhibit different 
structure and vulnerability property. Therefore, the first question to analyze power 
grid is what type of power grid is. The first reference comes from Watts and Strogatz 
[22] who analyzed the graph of the United States western power grid. It was 
deduced that the western power grid seemed to be a small-world network. After that, 
Barabasi and Albert in 1999 [19] firstly published that degree distribution of a power 
grid was supposed to be scale-free following a power law distribution function, but 
few of the subsequent later references would support this finding. Exponential 
cumulative degree function was detected in Californian power grid [38] and the 
whole United States grid [39]. The topological features of the UCTE (Union for the 
Co-ordination of Transport of Electricity) power grid and its individual nation grids 
are analyzed and results showed these national transmission power grids’ 
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topologies are similar in terms of mean degree and degree distribution, which could 
suggest similar topological constraints, mostly associated with technological 
considerations and spatial limitations [37]. Besides, the topologies of the North 
American eastern and western electric grids were analyzed to estimate their 
reliability based on the Barabasi–Albert network model. The results were compared 
to the values of power system reliability indices previously obtained from some 
standard power engineering methods, which suggested that scale-free network 
models are applicable to estimate aggregate electric grid reliability [40].  

 
2.4.2. Vulnerability analysis 

 Traditional approach to assess power systems vulnerability 
Power systems are one of critical infrastructures since they are widely distributed 

and indispensable to modern society. Both accidental failures and intentional attacks 
can cause disastrously social and economic consequences. For example, in August 
2003, the historic blackout of United States and Canada in which 61,800 MW of 
power were disconnected to an area spanning most of the north-eastern states of 
United States and two provinces of Canada, and more than 50 million people 
remained without electricity for 15 hours [41]. Therefore, electrical utility operators 
need to analyze the vulnerability of power systems and identify the critical 
components whose protection or back-up will result in a more robust system against 
natural or malicious threats. 

The concept of a vulnerable system is defined in [42] as a system that operates 
with a “reduced level of security that renders it vulnerable to the cumulative effects 
of a series of moderate disturbances”. Vulnerability is a measure of the system’s 
weakness with respect to a sequence of cascading events that may include line or 
generator outages, malfunctions or undesirable operations of protection relays, 
information or communication system failures and human errors.  

According to the functions and structures of power systems, there are four basic 
parts in our security interests of a power network, listed as following: 

 Transmission network (e.g. 380kV and 220kV in Italian transmission 
system) 
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 High voltage (HV) distribution network (e.g. 150kV and 132kV) 
 Substations 
 Power plants 

Compared with substations and power plants, the networks are much more 
widely distributed in geography, and this makes them more easily and possibly to be 
targeted by intentional threats than substations and power plants where strict 
protections may be implemented, such as on-site police guard, access control, anti-
burglary system or perimeter detection system in substations. However, on the 
contrary, if the substations or power plants are really successfully attacked, the 
consequences and impacts may be more serious. For example, the failure of a key 
substation can be considered as the failure of all transmission lines connected to it. 

A vulnerability assessment is the process of identifying, quantifying, and 
prioritizing (or ranking) the vulnerabilities in a system [43]. Energy utilities should 
routinely perform vulnerability assessments to better understand threats and 
vulnerabilities, determine acceptable levels of risks, and stimulate action to mitigate 
identified vulnerabilities. The direct benefits of performing a vulnerability assessment 
include: 

 Build and broaden awareness. 
 Establish or evaluate against a baseline. 
 Identify vulnerabilities and develop responses. 
 Categorize key assets and drive the risk management process. 
 Develop and build internal skills and expertise. 

In the traditional study of vulnerability of power systems, the vulnerability is 
analyzed using methods completely based on operational data and physical models 
such as static security assessment [44][45] and dynamic security assessment [46]. 

However, these traditional methods evaluate the security and reliability relying 
on a given contingency and operating condition. On the one hand, it is 
computationally infeasible to check all possible combinations of contingencies that 
could cause serious blackouts in practical power grids; on the other hand, operating 
conditions of power systems change in time due to load variations, switching actions, 
etc. So it is difficult to prevent the collapse of electrical power grids owing to 
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unforeseen operating conditions. Besides, due to the size of large-scaled power 
systems, physical behaviors and the interaction among many operators over power 
grid add difficulty to perform a comprehensive analytic analysis and simulation of the 
electromagnetic processes over the whole grid. Hence, in practical, reduced 
systems or some simplifying hypothesis are applied to these conventional methods 
to simulate the network’s response to various external disturbances, but the 
simulation results cannot reflect the exact response of power systems.  

As a result, frequent blackouts occurred all over the world although advanced 
technologies and huge investments have been exploited in maintaining the reliability 
and security of power systems. To deepen the insight into power systems, it is 
necessary to develop and complement the conventional analysis technology with 
new point of view. 

 

 Structural robustness analysis 
The vulnerability analysis of network is the main motivation for the studies 

involving CN analysis into power grids. The first power grid whose robustness was 
analyzed was the North American power grid [39]. The authors removed vertices 
randomly and in decreasing order of their degrees for both generation vertices and 
transmission vertices, and monitored the connectivity loss which measured the 
decrease of the ability of distribution substations to receive power from the 
generators. The loss of generating substations does not significantly alter the overall 
connectivity of the grid owing to a high level of redundancy at the generating 
substations. However, the grid is sensitive to the loss of transmission nodes. Even 
the removal of a single transmission node can cause a slight connectivity loss. 
Especially, the connectivity loss is substantially higher when intentionally attacking 
higher degree or high load transmission hubs. They concluded that the transmission 
highly connected hubs guarantee the connectivity of the power grid but meanwhile 
they are also its largest liability in case of power breakdowns. The first reference to 
European power grids was made by Crucitti et al. The authors studied and 
compared the topological properties of the Spanish, Italian and French power grids, 
finding those components whose removals seriously affected the structure of these 
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graphs [47]. Since the proposed improvements also treat power grid as a simple 
graph and no physical features are taken into consideration, we think that the power 
grid vulnerability results obtained with this approach could be different from the real 
situation. Rosato et al. studied the topological properties of high-voltage power grid 
in Italy (380 kV), France (400 kV) and the Spain (400 kV) [48]. An assessment of the 
vulnerability of the networks has been implemented by analyzing the level of 
damage caused by a controlled removal of links. Such topological studies could be 
useful to make vulnerability assessment and to design specific action to reduce 
topological weaknesses. Since the grids are the same as used in the former case, 
most of the results are consistent. Robustness of the whole European power grid is 
studied in [48][49], where also includes the resilience against to the failures and 
attacks of every national power grid. The authors found that European power grid 
composed of the thirty three EU power grids could broadly be classified into two 
separate groups, fragile and robust. 

It is noticed that cascading failures have frequently occurred throughout 
electrical power grids of various countries. The cascading failures firstly were 
analyzed in electrical power grid of the western United States [30]. The degree 
distribution in this network appeared exponential and was thus relatively 
homogeneous. The distribution of loads, however, was more skewed than what 
displayed by semi-random networks with the same distribution of links. This implied, 
to a certain extent, that the power grid may have structures not being captured by 
existing complex network models. As a result, global cascades are supposed to be 
triggered more probably by load-based intentional attacks than by random or 
degree-based removal of vertices. The attack on a single vertex with large load may 
make the largest connected component decrease to less than a half of its initial size, 
though the network is highly tolerant. In North American Power Grid, the cascade 
phenomenon was also modeled [50]. It was observed that the loss of a single 
substation can lead to a 25% loss of transmission efficiency caused by an overload 
cascade in the network. A systematically study of the damage caused by the loss of 
vertices suggested that 40% of the disrupted transmission substations may lead to 
cascading failures. While the loss of a single vertex can exacerbate primary 
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substantial damage, the subsequent removals only make the situation worse. 
Crucitti et.al applied cascading failure model into the Italian power grid where they 
neglected the details of the electromagnetic processes and only focused on the 
topological properties of the grid [51]. The objective of this study was to demonstrate 
that the structure of an electric power grid may provide important information about 
the vulnerability of the system under cascading failures. The power grid has 341 
vertices (substations) and 517 edges (transmission lines). Different kinds of vertices 
have been distinguished. Although the degree distribution is not very different 
through the network, it still exhibits a high heterogeneity in the vertex load. Most of 
the vertices are only responsible for a small load, but a few other vertices have to 
carry an extremely high load. Large scale blackouts can be triggered by the failure 
of vertices with high loads. Perhaps it is due to the fact that some highly connected 
vertices may be not necessarily involved in a high number of paths. However, the 
used model is quite simplified for a real electric power grid, so that this result may be 
not very credible since the definition of degree and load here are not very 
meaningful for power grids. Jiang-wei, et al. [52] proposed a cascading failure model 
based on degree centrality to analyze the Western United States power grid. A 
counterintuitive result is found that the attack on the vertices with the lowest loads is 
more harmful than the attack on the ones with the highest loads. Simonsen et al. [53] 
studied cascading failures in power grids using a dynamical flow model based on 
simple conservation and distribution laws. Within the framework, it is studied that the 
role of the transient dynamics of the redistribution of loads towards the steady state 
after the failure of network edges. It is found that considering only flow of loads in 
the steady state gives a best case estimate of the robustness; the worst case of 
robustness can be determined by the instantaneous dynamic overload failure model. 
Bakke et al. [54] analyzed the power blackout of Norwegian high-voltage power grid 
using a model with Kirchhoff equations and the same line conductance. The results 
showed that the size distribution of power blackouts in Norwegian power grid seems 
to follow a power law probability distribution. 
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2.4.3. From static to dynamic 
The works reviewed so far are mainly about the static properties such as the 

categorization of power networks and vulnerability assessment of the components 
(buses and lines) in power systems. Recently published papers extend these static 
analyses to dynamic ones. For example, a Kuramoto oscillator model is introduced 
as a phase model to analog the synchronous generator in order to analyze the 
synchronization stability property of the coupled generators in the whole power 
networks. The Kuramoto oscillator is motivated by the behavior of systems of 
chemical and biological oscillators, and it is also adopted as the synchronization 
model in the complex network.  

In Bullo and Dorfler’s papers [55][56], Kron reduction of graphs was introduced 
to eliminate the load buses of the power network and Kuramoto oscillator like model 
is used to model the synchronous machine, then the whole power grid is a coupled 
Kuramoto oscillator like network. The explicit necessary and sufficient condition on 
the critical coupling strength to achieve synchronization is studied. Similar results 
are also addressed by M. Rohden et al. [57] and S. Lozano et al. [58]. In H. 
Sakaguchi’s paper [59], this Kuramoto like model has been used to analyze the 
cascading failure in power grid. In the meantime, some other dynamic features are 
also taken into consideration: a dynamical flow model is used by Helibing et al. to 
study the cascading failure in a power grid [53]. Restrepo et al. [60] proposed 
instead a general theoretical approach to study the effects of network topology on 
dynamic range. All these works extend the complex network theory from steady-
state analysis to dynamic, which significantly improves the studies about CN theory 
application in power systems. 
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in Italian electrical power grid [13].  
However, when applied to power systems, the complex networks method 

neglects the specific engineering features; therefore, the analytical results may be 
far from the reality in power systems, and so it seems more appropriate to analyze 
the structure vulnerability of electrical power grid combining the electrical 
engineering features with complex networks theory. Coming from this thought, in 
this section, the specific physical features of power systems such as electrical 
distance, line flow limit and power transmission distribution are introduced into the 
traditional complex networks metrics: degree [14], betweenness [15] and efficiency 
[16]. Three extended topological metrics: entropy degree, electrical betweenness 
and net-ability are proposed to assess the vulnerability of components and the 
whole power network. In addition, a simplified UCTE power grid is used to test our 
extended topological methodology for its structural vulnerability analysis.  

 

3.1. PURE TOPOLOGICAL METHOD 

In complex network approach, there exists a fundamental and important set of 
centrality indices measuring importance of a vertex or an edge in a network 
according to one or another criterion. Basically, these centrality indices can be 
divided into three classes: one is based on the idea that the centrality of a vertex in 
a network is related to how it is near to other vertices such as degree centrality; the 
other is grounded on the thought that central vertices stand between others, playing 
the role of intermediary, such as betweenness centrality. Besides, a class of delta 
centrality is recently proposed which measures the contribution of a vertex or an 
edge to a network performance when removal of it leads to the variation of such 
performance. These metrics compose the base of the pure topological method to 
measure the criticality of the components in networks. 

There are four main types of complex networks, which include weighted digraphs 
(directed graphs), unweighted digraphs, weighted graphs and unweighted graphs 
[17]. In current literature most of the researches on infrastructure systems is focused 
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on the unweighted graphs. 
Initially, networked complex systems such as internet network can be abstracted 

as a unweighted graph Y = {B, L} to analyze their inherent structure features, where 
B(dim{B}=NB) is the set of vertices (or nodes) and L (dim{L}=NL) is the set of edges 
(or links). Each vertex can be identified by i; the edge is identified by lij that 
represents a connection going from vertex i to vertex j. 

 
3.1.1. Degree 

The connectivity of a node is measured by its degree, ki, which is defined as the 
number of edges connected to a given vertex i [10]. 

  i ij
j

k a    (3.1) 

On the one hand, the elementarily topological features of a graph can be 
obtained in terms of degree cumulative distribution P(k≥K) which is the probability 
that the degree of a node randomly selected is not smaller than K. Generally, if the 
degree cumulative distribution of a network follows a Poisson distribution, then it is a 
homogeneous network where each node has the same degree; on the other hand, if 
the distribution is a power law or exponential, then it is a heterogeneous network 
where there are some vertices which have higher degree than others. 

On the other hand, since the degree indicate the connectivity of a node, if a node 
have higher connectivity, it means that this node has more connections between 
other nodes, in other word, it has more importance. Therefore, degree could be 
treated as a metric to measure the criticality of the nodes in networks. 

 
3.1.2. Distance and efficiency 

The shortest path plays a fundamental and important role to analyze topological 
structure of a network since it is usually assumed that a shortest path is an optimal 
path along which physical quantity can be transmitted faster and more effectively.  

A walk from vertex i to vertex j is a sequence of vertices and edges that begins 
with i and end with j while a path is a walk in which no vertex is visited more than 
once [1]. A shortest path between a pair of vertices is the path which has minimal 
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number of edges between the two vertices. Shortest path length dij is the number of 
edges in the shortest path between vertex i to vertex j. 

In a graph, the separation degree among vertices can be quantitatively 
measured by average shortest path length, also known as characteristic path length. 
Characteristic path length L can be defined as the average of shortest path lengths 
over all pairs of vertices in a graph [18].  

 
1

( 1) ij
i j

L d
N N  


 

BB B

  (3.2) 

The concept of efficiency is closely related to that of distance. The distance, as 
we discussed above, is generally assumed as a measure of the difficulty, cost or 
effort needed to transfer physical quantities over a network. So an efficiency eij can 
be associated to a pair of vertices i and j and defined as: 

 
1

ij
ij

e
d

 ,  ( , , )i j i j B   (3.3) 

By averaging the efficiencies, the performance of network Y is able to quantify as 
global efficiency E(Y) 
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where dij is shortest path length between vertices i and j; NB is the total number 
of vertices in a network. 

Assume a unit of information or energy is transmitted along a shortest path 
between a pair of vertices. The smaller shortest path length between the pair of 
vertices is, more efficiently the information or energy transmits. Therefore, E(Y) 
quantifies the average performance of a network as how efficiently the information 
exchanges along the shortest path between any pair of nodes, and the global 
efficiency of a network is proportional to the reciprocal of shortest path length 
between any pair of nodes. Also, because global efficiency is associated with the 
performance of network, it is possible to spot critical components of a network by the 
ranking of the relative drop of global efficiency after nodes or lines removed [19]. 
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3.1.3. Betweenness  
In networks, if a vertex or edge participates in more number of paths, we 

generally consider this component more important for the transmission in the whole 
network. Therefore, if we assume that the interactions or transmission always 
through the shortest paths between two vertices, we can quantify the importance of 
a vertex or an edge in terms of its betweenness. 

In form of formula, the betweenness of a vertex or an edge can be represented 
as: 
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N N
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where σmn(v) and σmn(lij) are respectively the number of the shortest paths 
between vertices m and n that pass through vertex v and edge lij. σmn denotes the 
total number of the shortest paths connecting vertices m and n. 

A component with higher betweenness value means a greater number of 
shortest paths passing through the component and so implies a higher criticality of 
the component. Thus, the critical components of a network can be identified by 
ranking the betweenness value of the components in the network. 

 

3.2. EXTENDED TOPOLOGICAL METHDOLOGY 

Pure topological method is introduced in last section. However, the 
investigations using existing metrics could give rise to the deviation of really 
structural features of power systems because of ignorance of electrical engineering 
specificity. When these centrality indices are applied to study electrical power grids, 
they need to be redefined. Degree centrality has been redefined as entropic degree 
in which both weights of each line and their distributions can be taken into account 
simultaneously by incorporating entropy concept into original degree centrality. 
Efficiency used in delta centrality has also been redefined as net-ability where line 
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flow limit on each line and electrical distance were introduced into efficiency index. 
And betweenness centrality is redefined as electrical betweenness by incorporating 
line flow limit on each line and Power Transfer Distribution Factors (PTDF) [20] 
which is a matrix that reflects the sensitivity of the power flow on the lines to the 
change in the injection power of buses and withdrawn at a reference bus. 

 
3.2.1. Electrical consideration to complex network approach 

The initial research works on complex networks developed many common 
concepts and measures which are supposed to be applicable to different types of 
networks. However, the functions and physical rules of different networks would be 
totally different and many specific characteristics cannot be dealt with by the general 
methodologies. When the complex networks methodology is directly applied to 
some fields with neglect of the specific features of these networks, analyzing results 
is unavoidably deviated from reality. Consequently, complex networks approach 
needs to be extended with the consideration of the electrical properties when 
applying the methodology to analyze power systems. 

 Distance 
The distance between a pair of vertices and length of a path are crucial concepts 

in definitions of several important metrics in complex networks, such as average 
characteristic path length, betweenness and global efficiency, and so forth. In 
unweighted and undirected graphs, the number of edges in a path connecting 
vertices i and j is called the length of the path. A geodesic path (or shortest path) 
between vertices i and j is one of the paths connecting these vertices with minimum 
length; the length of the geodesic paths is the distance between the two vertices. 

However, from the perspective of electrical engineering, distance should have 
more practical meaning which should be a measure of the “cost” when physical 
quantity is transmitted between the two vertices through the network. For electrical 
power grids, the cost of power transmission between two buses can be described 
from both economic and technological point of view, such as transmission loss or 
voltage drop. Therefore, for electrical engineering, the description of distance by 
pure topological approach cannot effectively reflect these related features and must 
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be replaced by the description of “electrical distance”. 

 Bus classification 
In general theory of complex networks, to avoid those difficulties involved in their 

differentiation and dynamical behavior characterization, all elements have been 
treated identically. Correspondingly, vertices are considered identically in definition 
of several metrics, such as betweenness and global efficiency, where the physical 
quantity was considered to be transmitted from any vertex to any other, even for 
power grids. However, the essential function of power grids is to transmit electrical 
power from any generator bus to any load bus with acceptable quality. Generally, 
we can classify the buses in power transmission networks as generation buses, 
transmission buses and load buses. Power transmission should be only considered 
from generation buses to load buses. 

 Line flow limit 
In pure topological approach, edges are generally described in an unweighted 

way in definition of several related metrics, such as distance, degree and 
betweenness. However, in electrical engineering, transmission lines have line flow 
limits which restrict the ability of one line for power transmission due to many 
economic and technological factors. As this feature is critical for the networks to 
perform their essential function, it cannot be neglected in analysis related to security 
issues. Different lines may have distinct flow limits; therefore the distribution of this 
feature may also be important for vulnerability assessment. 

 Flow-based network 
As defined by distance, the physical quantity transmission between two vertices 

is always supposed to be through the shortest path. This assumption is also in many 
works like power grids. This is the most unrealistic assumption from the point of view 
of electrical engineering. Power transmission from a generator bus to a load bus will 
involve most lines or a huge number of paths with different extent contribution. In a 
linear model of power flow, the different contributions of lines in power transmission 
can be described by the PTDF. 

The network model in pure topological description of complex networks is 



 
 

Chapter 3 - Extended topological methdology 

 

36 
 

unweighted and undirected. The identification of possible paths connecting two 
vertices is based on graph theory where transmission lines are assumed to be 
bidirectional, whereas, as we have discussed, the power transmission behavior 
between two vertices completely depends on physical rules which can be illustrated 
by PTDF. As each element in PTDF has sign, the lines connecting to one vertex 
should be classified as input or output lines. Therefore, some paths in undirected 
model may be not valid in the directed power transmission networks. 

 
3.2.2. Basic conceptions extend to power grids 

As mentioned in chapter 3.2.1, there are four main aspects of power grid 
consideration we want to extend to pure topological method. This chapter we will 
give detail description about these basic conceptions which will be used to define 
some metrics in the following section. 

 Equivalent impedance as distance 
The distance is measured in topological model by the characteristic path length 

due to the assumption that physical quantity is transmitted along shortest path. 
However, in an electrical power grid, the flow is transmitted not just along the 
shortest path but along the remaining path as well. Hence, the electrical distance 
between a pair of buses should be defined as the equivalent impedance Zji which 
considers the impedance of all transmission lines between buses i and j [21]. 
Suppose Uji is the voltage between bus i and bus j; Ii is the current injected at bus i 
and withdrawn at bus j (Ii=-Ij). According the electrical circuit theory, the equivalent 
impedance can be expressed as: 

 

j
j i

i
i

U
Z

I
   (3.7) 

Moreover, assume a unit current is injected at bus i and withdrawn at bus j (i.e., 
Ii=1 and Ij=-1) while no current is injected or withdrawn at other buses, then 
equivalent impedance can be calculated as: 
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where zij is the ith, jth element of the impedance matrix which is the inverse of 
bus admittance matrix. 

 Bus classification 
Buses have different function in a power grid and so these buses can be 

classified as generator buses (G dim(G)=NG), transmission buses (T dim(T)=NT) and 
load buses (D dim(D)=ND). G is a set of buses that injects power in power grid while 
D is a set of buses withdrawing power from power grid; T is a set of buses that 
transmit power rather than injects and withdraws power in power grid. 

 Flow-based network 
In the linear model of power systems, the contribution of each transmission line 

to power transmission can be computed by PTDF [20]. PTDF reflects the sensitivity 
of the power flowing on each line for a power injection/withdrawal at a couple of 
buses. Therefore, PDTF matrix is used to denote the flow-based feature of power 
grids.  

PTDF can be represented by a NLNB matrix F in which each element flijm 
express the change of power on each line lij for a unit change of power injected at 
bus m and withdrawn at the reference bus; flijgd is the change of the power on line lij 
(lijL) for injection at generation bus g and withdrawal at load bus d, and flijgd can be 
computed as follows: 

 
ij ij ij

gd g d
l l lf f f  ,  ijl L   (3.9) 

where flijg and flijd are respectively the lijth row, g th column and lijth, row d-th 
column of F. 

A conceptual power grid (lines with pure reactance) is used as an example to 
illustrate the conception of PDTF calculation. Table 3-1 reports the PTDF on each 
line, for injection at generation 1 and withdrawal at load bus 3.  

It is worth noting that flij may be positive or negative, though all the values of 
PTDF in table 1 are positive. If flij is positive, then the power flows along the 
reference direction of the line lij; otherwise, the power flows along the direction 
opposite to the reference direction. For instance, in Fig. 3-1, assume the reference 
direction of line l42 is from bus 4 to bus 2, then iff13l42 >0, it means that the power 
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flows from bus 4 to bus 2. 
 

0.3

0.2

0.1

0.2

0.4
 

Fig.	3‐1	Conceptual	power	grid	

 
Table	3‐1	PTDF	for	the	conceptual	power	grid	

 

 f13l12 f13l23 f13l43 f13l14 f13l42 
Value  0.44  0.64  0.36  0.56  0.20 

 

 Transmission capacity 
In order to maintain the stability and security operation of a power grid, each 

transmission line lij has its own transmission limit Plijmax. The line flow limit plays a 
significant role in safe power transmission between generation buses and load 
buses. In fact, for power transmission, not all the lines will reach their line flow limit 
at the same. In other words, if one line reaches its transmission limit, the power 
transmitted between this pair of buses reaches its upper limit.  

To evaluate the feature mentioned above quantitatively, we define the power 
transmission capacity Cgd as the power injected at bus g when the first line in all 
lines connecting generation bus g and load bus d reaches its limit: 
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min( )ij

ij

ij
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B

  (3.10) 

In the example of Fig. 3-1 (with the line flow limits in Table 3-2) the power 
transmission capacity is C13= 15.77 MW. 
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Table	3‐2	Transmission	line	limits	for	the	conceptual	power	grid	(MW)	

 

 Pl12max Pl23max Pl43max Pl14max Pl42max 
Value 15  10  10  15  5 

 
3.2.3. Entropy degree 

As a measurement of connectivity for a vertex, the definition of degree in 
aweighted network model should reflect the following factors: 

 
 the strength of connections in terms of the weight of the edges; 
 the number of edges connected with the vertex; 
 the distribution of weights among edges. 

 

 
Fig.	3‐2	Different	distributions	of	weights	

 
In a weighted graph, the weighted connectivity of a vertex is measured by 

strength which is defined as the sum of weights on lines connected to a given bus. 
Higher strength of a bus means the bus more closely connects its neighbor buses. 
In Fig. 3-2, for node A and node B, they both have two connections and the sum of 
weights is both equal to 1. 

The result of the example shown in Fig. 3-2 has been noticed that the strength 
fails to distinguish the centrality of nodes especially when two nodes have the same 
strength with different distribution of weights among lines. Thus, entropic degree kiw 
was proposed to define weighted connectivity to solve the existing problem: 
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where weight wij is defined as the line flow limit on line lij because the electrical 
parameter can reflect the strength that two buses connect. 

Return to the example, the result calculated according to entropy degree is D(A) 
= 1.3 and D(B) = 1.14. We can see that, the connectivity of node A is higher than 
node B because the distribution of weights is more equal in node A. 

As degree is a traditional concept in graph theory and widely applied for the 
analysis in complex networks, the proposed entropic degree may be a good 
replacement for research in weighted network models which include not only power 
grids but also other weighted networked systems. For power grids, it may directly 
give a quantitative measurement to indicate the importance of buses and their 
difference. The more important vertex may have higher connectivity in network. The 
most important buses may need more resource to be protected or be more likely to 
be selected as targets of intentional attacks. If measured with the pure topological 
concept of degree, the corresponding results may be far from reality. Therefore, this 
entropic degree can give more reasonable evaluation of the importance of buses by 
taking into account not only the total strength of the connection but also the 
distribution of strength that may be sensitive for malicious attacks. 

 
3.2.4. Electrical betweenness 

In traditional topological method, betweenness is defined as the sum of the 
probability for a vertex or an edge to belong to a randomly selected geodesic path 
linking any other pair of vertices. Betweenness is a more useful measure of the load 
placed on the given node/edge in the network as the node/edge’s importance to the 
network than just connectivity. It is also a local metric as the degree centrality to 
measure the criticality of components (vertices and edges) in complex networks. 

As it was mentioned that electrical engineering features need be considered in 
complex networks approach when electrical power grid is studied from topological 
point of view. According to above-mentioned specific features of power grids, the 
bus betweenness can be redefined as: 
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   L B is the sum of the PTDF of all lines connecting a bus v when a 

unit of power injected at bus g and withdrawn at bus d. 
According to electrical circuit theory, the input power of a bus is equal to the 

output power of the bus, so ,
1/ 2 | |V

ijij

d gd
g ll i j

C f
  

  L B  represents the power taken by 

the bus v and the power is the half of the sum of power flowing on all lines 
connecting the bus v when power transmission capacity Cgd is injected at generator 
bus g and withdrawn at load d. 

Be(v) is the total power flowing through the bus v and the total power is equal to 
the half of the total sum of power flown on all lines connecting the bus v when 
various scenarios of power transmission capacity are transmitted from any 
generator bus to any load bus in whole power grid. 

Similarly, line betweenness can be redefined as: 

  ( ) max[ ( ), ( ) ]p n
e ij e ij e ijB l B l B l ,  ijl L   (3.13) 

where Bep(lij) and Ben(lij) represent respectively the positive electrical 
betweenness and the negative electrical betweenness of line lij: 
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flijgd is the PTDF on line lij when a unit of power injected at generation bus g and 
withdrawn at load bus d. 

Cgdflijgd represents the transmitting power on the line lij when the power Cgdis 
transmitted from the generation bus g to the load bus d. 

Be(lij) is the total transmitting power on line lij when various scenarios of power 
transmission capacity Cgd are transmitted from any generator bus to any load bus in 
whole power grid. 

The concept of betweenness has been extended by introducing PTDF and 
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power transmission capacity associated with line flow limit. The set of extended 
betweenness centrality quantifies the contribution of a component to power 
transmission in a power grid and in this respect the components (buses or lines) of 
the power grid can be ranked according to their criticality. 

 
3.2.5. Net-ability 

In traditional topological method, the performance of network Y is able to 
quantify as global efficiency E(Y). 

Aiming to analyze the performance of a power grid in consideration of their 
above mentioned engineering features, the shortest path length distance should be 
replaced with electrical distance while the whole performance of a power grid should 
be averaged by all pairs of generators and loads rather than all pairs of nodes since 
the power is transferred only from generators to loads in a power grid. Besides, the 
power transmission capacity can also be considered. Therefore, the global efficiency 
was redefined as net-ability: 

 
1

( )
d
g

d
g d g
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N N Z 

 
G DG D

Y   (3.16) 

Where NG and ND respectively are the number of generation buses and load 
buses in a power grid; Zgd is the equivalent impedance for injection at generation 
bus g and withdraw at load bus d. 

The general goal of a power grid is the feasible and economic transmission of 
power from generation buses to load buses. Feasibility refers to technical issues 
(losses, voltage drop, stability, etc.). Economy is related to other aspects 
(transmission costs, market efficiency, etc.). Net-ability measures the ability of a 
power grid to perform properly its function under normal operating conditions; the 
possibility to perform its function properly depends on the maximum line flow limits 
(transfer arbitrary amounts of power) and on the impedance of the lines (economic 
and technical convenience). The unit for net-ability is MW/ohm which indicates with 
one unit of cost (ohm) how many benefits (power transmission) can be achieved 
through the considered power grid from any generator to any load. 
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3.3. CASE STUDY 

The Union for the Co-ordination of Transmission of Electricity (UCTE) 
coordinates the operation and development of the electricity transmission grid for 
large part of EU countries. Over more than fifty years, UCTE has been issuing all 
technical standards for a co-ordination of the international operation of high voltage 
grids, providing electricity supply for 430 million people in one of the biggest 
electrical synchronous interconnections worldwide. UCTE provide as well 
comprehensive statistics on electricity generation and transmission in the European 
mainland. In this section, our proposed extended topological methodology is applied 
to a simplified UCTE power network which contains 1254 buses and 1944 branches 
for its vulnerability analysis. The gird map of UCTE network is shown in Fig. 3-3 and 
its member counties are reported in Table 3-3. 

 

 
Fig.	3‐3	Simplified	UCTE	power	grid	

 
Table	3‐3 Members	of	simplified	UCTE	power	grid	

 
Member countries of UCTE [22] Member countries of simplified UCTE power grid 

Austria √ 
Belgium √ 
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The drop of net-ability is normalized by the original net-ability of simplified UCTE 
case without node/edge failure. Since each components (buses and branches) 
removed from the network will cause the drop of net-ability, the criticality of 
components in a power grid can be identified by ranking their drops in net-ability as 
well. 

 

3.4. CONCLUSION 

In our proposed extended topological method, electrical specificity is introduced 
into traditional pure topological method, and three metrics: entropy degree, electrical 
betweenness and net-ability are proposed to examine the criticality of the 
components (buses and lines) in power grids.  

It is conformed that the metrics mentioned above might more suitably analyze 
the structural characteristics of power systems as complex systems and are superior 
to purely topological metrics in analyzing the criticality of components in power grids 
both from local and global point of view. It is more helpful for us to pay more 
attention on the improvement of power grid infrastructure protection.  

Our proposed extended topological method can also be used in the analysis of 
cascading failure in power systems. An improved cascading failure model is 
proposed to model the cascading failure in which real line flow limit and maximum 
load capacity are introduced so that reality of cascading failure in electrical power 
grids is able to be more approximately modeled. 

Moreover, since a complex system may be made up of multiple complex 
systems, power systems could be abstracted as not only power grids but also other 
complex networks (like cyber networks) interacted with power grids. As a 
consequence, the interaction and interdependency among various complex 
networks could reflect the inherent characteristics of intact power systems which 
cannot be uncovered by single power grid. 

The extended topological method is applied to analyze the simplified UCTE 
network to find the importance of its components. The criticality of the components 
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in the simplified UCTE network calculated by extended topological method. However, 
to verify the result’s feasibility, it should be checked by the field data in real 
operation condition. 
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blackouts, can be related to topological constraints, the rationale behind this 
procedure being that structure affects dynamics and vice versa [3]. Until now, most 
of the literature has been concerned on relating purely topological measures, such 
as analytical results coming from the aforementioned static vulnerability analysis, 
with aggregated malfunctions outcome (i.e., total loss of power, energy not supplied 
or restoration time) [4]. But this approach has failed when it has been applied to 
power systems with different topological characteristics, mainly due to the poor 
definition of purely topological measures, away from the real physical and electrical 
definition of the system. In order to overcome this limitation, more specific 
topological measures have been defined in last chapter: entropy degree (ED) and 
electrical betweenness (EB) have been presented as useful means to characterize 
the topology of the nodes of a power network. 

In this chapter, ED and EB are used in order to characterize the buses of the 
four biggest transport networks in Europe (i.e., France, Germany, Italy and Spain) 
and a static robustness analysis is performed. Similar statistical behavior is 
observed between Germany and Italy (GI networks), and Spain and France (SF 
networks), with respect to attacks performed in decreasing order of ED and EB. This 
behavior can be correlated with disaggregated cumulative probability distributions of 
major events. Results show statistically meaningful (although weak) correlations 
among similar topologically characterized networks, which could finally help in 
defining a linkage between topological measures and malfunctions on power grids. 

4.1. VULNERABILITY ANALYSIS TO MAJOR NATIONAL 
POWER GRIDS  

The robustness of the power grid is an example of a generalized feature of most 
complex networks, from the Internet to the genome [3][5-7]. Specifically, real 
networks are often characterized by a considerable resilience against random 
removal or failure of individual units but experience important short-comings when 
the highly connected elements are the target of the removal. Such directed attacks 
have dramatic structural effects, typically leading to network fragmentation [8-12]. In 
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this subsection the evolution of this fragmentation is evaluated in the case of four 
European power grids: France, Germany, Italy and Spain. Essential features of 
these networks are reported in Table 4-1. 

 
Table	4‐1	Basic	characteristics	of	the	four	major	national	power	grids		

 

Number of France Germany Italy Spain 

Buses 1401 1197 535 447 

Lines 1819 1714 645 644 

Generators 136 156 126 100 

Loads 881 602 249 349 

 
Entropy degree and electrical betweenness could be used as new metrics to 

evaluate how differently the power grids behave when random or selective nodes 
are eliminated and compared to traditional purely topological metrics. The 
calculation method is proposed in last chapter. However, since entropy degree and 
electrical betweenness imply already an ordered list of nodes, random deletion 
could be neglected in this case, and only selective attacks are considered instead. 
Therefore, in this chapter we will adopt the decreasing entropy degree and electrical 
betweenness as the elimination sequence.  

Fig. 4-1 shows the static tolerance to selective removal of a fraction of nodes, by 
decreasing order of each metric and for the four major national grids studied. 
Robustness is measured by the relative size of the largest connected component 
which is normalized to the network size (S/N). As it is shown, German and Italian 
power grids present a distinguished pattern between traditional and entropy degree 
static tolerance procedures, the situation is more significant in traditional and 
electrical betweenness scenario.  However, in Spain and France power grids, the 
curves under different scenarios are much more similar and follow a similar trend. 
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simulation result. We analyze the maximal information coefficient (MIC) between all 
data which is reported in Table 4-2 [13]. As far as the electrical betweenness is 
concerned, there exists a higher correlation between France and Spain, and 
Germany and Italy. As far as the entropy degree is concerned, results are less 
conclusive although Germany and Italy are significantly correlated. 

 
Table	4‐2	Maximal	information	coefficient	(MIC)	for	electrical	betweenness	and	entropy	

degree	among	France,	Germany,	Italy	and	Spain	power	grids.	

 

MIC strength Electrical Betweenness Entropy Degree 

France Germany 0.99624 0.97894 

France Italy 0.98761 0.97313 

France Spain 0.99668 0.951 

Germany Italy 0.99976 0.99825 

Germany Spain 0.99639 0.99825 

Italy Spain 0.98456 0.99844 

 
The evolution of the largest connected component during the attack is obviously 

different between GI power grids and SF power grids when extended metrics 
(especially electrical betweenness) are used instead of traditional metrics. 
Furthermore, this dissimilar behavior coincides with the conclusion published by 
Solé and collaborators [14], where GI networks and SF networks were segregated in 
different groups, in this case termed as robust (γ < 1.5) and fragile (γ > 1.5) 
according to γ, the exponential degree distribution characteristic parameter 
respectively as shown in Fig. 4-2. In this same reference, the authors provide an 
evidence for the correlation between topological structure and vulnerability 
performance in terms of aggregated values of major events.  
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The fitting function for the cumulative probability distribution of the reliability 
indexes of each power network is needed to be investigated for the pattern 
recognition to see whether there is a difference between these curves. The 
methodology described by Clauset and collaborators offers the possibility to 
statistically fitting a function to the tail of the distribution. This methodology has been 
followed in this section, where a maximum likelihood approach is proposed to 
estimate the heavy tailed function from the data and a significance test is 
constructed to evaluate the plausibility of some specific distributions. Table 4-3 
shows likelihood ratios and p-values with respect to log-normal, exponential, 
stretched exponential and power law with cut off distributions, all of them with power 
law function taken as comparative means. Positive likelihood values favor the power 
law hypothesis and p-values higher than 0.1 imply no significance on the results. As 
we can see, although power law could be accepted only for the TLP (total loss of 
power) in Spain, the value of the likelihood ratio does not support this option. In 
general terms, results are not conclusive and no function can be adjusted with 
enough statistical significance. 

 
Table	4‐3	Test	of	fat‐tailed	behavior	taking	the	power	law	as	comparative	function	for	ENS,	

TLP	and	RT	of	each	power	grid.	

 
  
  

power law log-normal exponential stretched exp. power law + cut-off 

p LR p LR p LR p LR p 

EN
S 

France 0.11 -1.26 0.21 0.91 0.36 -1.23 0.22 13.55 1.00 

Germany 0.80 -0.68 0.50 1.04 0.30 -0.63 0.53 122.08 1.00 

Italy 0.14 -0.87 0.39 -0.57 0.57 -0.76 0.45 9.41 1.00 

Spain 0.72 -0.42 0.68 0.30 0.76 -0.57 0.57 37.31 1.00 

TL
P 

France 0.81 -0.34 0.73 0.79 0.43 -0.52 0.61 66.15 1.00 

Germany 0.65 1.03 0.31 -0.42 0.67 0.00 1.00 82.00 1.00 

Italy 0.13 -0.87 0.39 -0.57 0.57 -0.76 0.45 9.41 1.00 

Spain 0.07 -1.65 0.10 0.47 0.64 -1.79 0.07 68.33 1.00 

R
T 

France 0.86 0.05 0.96 0.91 0.36 -0.18 0.86 114.54 1.00 

Germany 0.91 0.43 0.67 1.58 0.11 0.66 0.51 80.16 1.00 

Italy 0.80 -0.51 0.61 0.89 0.38 -0.47 0.64 26.38 1.00 

Spain 0.28 -1.19 0.23 1.56 0.12 -1.19 0.24 9.03 1.00 
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4.3.2. Kolmogorov-Smirnov test for aggregated major events 
One drawback observed in the previous section is the amount of major events 

data considered, which might be less than desired when fitting any fat tailed function. 
In this section aggregated data for all combinations of major events has been 
considered. On the other hand, although no conclusions can be drawn from the 
previous probability distribution analysis, cumulative distributions shown in Fig. 4-3 
present obvious differences which make them depart from or approach to fitting 
functions. This can be detected with other statistical tests like the Kolmogorov-
Smirnov (KS) test, defined as the maximum distance D between the cumulative 
distribution functions of the data S(x) and the fitted model P(x): 

  )()(max xPxSD    (4.1) 

KS test is used in order to detect how close a theoretical probability distribution 
function is from the real one. It is performed with the aim of detecting whole function 
approximation and not only fitting the tail of the function. Table 4-4 shows KS test 
results for the meaningful combination of pairs of grids. The dark black number in 
each raw denotes that which distribution function is more sound for the data. From 
the table we can see that the exponential distribution can be ruled out completely.  

 
Table	4‐4	Values	of	the	KS	test	for	different	fitting	functions	to	ENS,	TLP	and	RT	probability	

distribution	functions.	

 
 

  
power law + exp. cut-

off 
log-norm 

stretched 
exp. 

exp. 

ENS 
Germany + Italy 0.096 0.064 0.064 0.387 

France + Spain 0.083 0.083 0.083 0.250 

TLP 
Germany + Italy 0.107 0.071 0.071 0.357 

France + Spain 0.071 0.071 0.071 0.321 

RT 
Germany + Italy 0.090 0.121 0.090 0.424 

France + Spain 0.062 0.062 0.062 0.375 

 
In the power law with exponential cut-off scenario, it’s coincident with the 

previous selection: Germany and Italy on one side, and France and Spain on the 
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other. We can see that although log-normal and stretched exponential distributions 
cannot be ruled out completely, power law with exponential cut-off can be ruled out 
for energy not supplied; total loss of power and restoration time for Germany and 
Italy but not for France and Spain combined major events data.  

 
4.3.3. Correlating extended measures to major events 

Even though statistically speaking the evidence is somehow weak, these results 
would favor the existence of a linkage between structure and dynamics. Some grids, 
in this case France and Spain, can be adjusted by power law with cut-off, lognormal 
and stretched exponential. Germany and Italy, on the other side, can be adjusted by 
lognormal and stretched exponential but not by power law with cut-off. Although firm 
conclusions cannot be drawn, the probability distributions of major events for these 
networks would suggest a different performance in terms of vulnerability, 
distinguished by frequency of major events and MW, MWh and minutes (i.e., 
restoration time) involved in these failures. From the physics point of view, an 
exponential cut-off could be understood in the following manner: 

 
 For the Energy Not Supplied (ENS), which means the loss of energy from 

consumption side, it reveals the physical constraints on the maximum energy 
consumption from consumers (residential, commercial and industrial).  

 For Total Loss of Power (TLP), which means the loss of production from the 
generation side, the fast decaying tail is consistent with the maximum power 
output of the generator at each vertex.  

 For Restoration Time (RT), it is the signature of an obvious upper bound 
since the power facilities cannot be damaged forever.  

 
The physical meaning described above can help us suggesting the meaning of 

this dissimilar behavior. Spain and France grids’ dynamic behavior (i.e., major 
events) is closer to what would seem the limit of their reality, while Germany and 
Italy power grids are not, since there is no exponential decay in their probability 
functions. Back to their topological structure, the metrics (i.e., the extended metrics 
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EB and ED or the exponential degree distribution characteristic parameter γ cited by 
Solé and collaborators [14] also discriminate the four major power grids in two 
groups, this is Germany and Italy, and Spain and France. So a direct linkage can be 
suggested between structural measures and the real dynamical output: on the one 
hand, the topological structure of Spain and France power grids indicates that these 
networks nearly reach their maximum power transmission ability. In other words, the 
networks are more fragile and, correspondingly, their dynamic output (in terms of 
major events) shows the existence of maximum constraints. On the other hand, 
Germany and Italy power grids seem not yet at their maximum capacity, and there is 
still a margin to reach the upper bound of their dynamic output. Equivalently, they 
could be considered (for the time being) more robust. 

 

4.4. CONCLUSION 

Although a contradiction as it seems, complex networks science allows a 
simplified view of the reality. Algorithms, measures and models involved in studying 
complex systems as networks, have allowed an understanding of some common 
features which characterize their topology and, in a lesser extent, their dynamic 
processes. Power grids have been thoroughly studied as complex networks and 
many topological measures have been used in order to classify their structure, 
evaluate their behavior in terms of robustness or model their dynamic response to 
malfunctions. Results have been mainly theoretical and no correlation between real 
grid’s dynamical behavior (i.e., malfunctions and major events) and any structural 
measure has yet been found. In this paper new extended topological measures 
have been used in order to quantify the ability of four European power grids (i.e., 
France, Germany, Italy and Spain) to sustain selective removal of buses. A maximal 
information coefficient has been used to find similar robustness behavior between 
Spanish and French networks on one side, and German and Italian networks on the 
other. In order to find a correlation with any dynamical output (i.e., blackouts), 
binned cumulative probability distributions of majors events in terms of energy not 
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supplied, total loss of power and restoration time have been fitted to some 
characteristic fat-tailed functions, with no success. This could be probably due to the 
small amount of major events data actually available for the studied power grids (or 
simply because real cumulative probability distributions do not follow any of the fat-
tailed function used for the fitting). To avoid the first drawback, aggregated data for 
every two networks has been used to significantly increase the amount of values 
included in the probability distributions. Although a favorable fitting is not found, the 
paper shows that a significant (although weak) statistical approximation appears 
when Germany and Italy on one side and France and Spain on the other are 
considered in aggregated manner, thus identifying similar dynamical response 
among topologically similar grids. Although much research must be done, such as 
extending this methodology to distribution networks or exploring the cascading 
failure in power grids, combining topological measures that include electrical 
engineering perspectives, this evidence would raise hopes in finding a more 
meaningful and significant linkage between structural measures and real dynamical 
output, in terms of major events, of a power grid. 
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= 1, …, n) is a node and < vi , vj > ∊E is an arrow going form vi  to vj. The proposed 
morphospace is a metric space defined from three coordinates [1]: Treeness (T), 
Feedforwardness (F), and Orderability (O), which properly quantify graph hierarchy. 
In the paper, the author also analyze the position of different real networks in this 
morphospace which shown in Fig. 5-1. The electronic circuits (TECH) placed at the 
O(G) ≈ 1 plane shows a narrow band of feedforward with -0.2 < T(G) < 0.2 and 
slightly biased to negative T(G) values.  

 

 
Fig.	5‐1	The	coordinates	of	the	125	real	networks	(Source:	[1])	

 
Based on this observation, a question has been wandered and made hypothesis: 

How about power transmission networks? To verify our guess, we testified with the 
IEEE 118-bus case as a typical power transmission network. Before the validation, 
we need to get the directed graph model for power transmission networks. The most 
popular method is using either AC or DC power flow to generate the directed graph 
model [8-11]. After the power flow calculation, the flow direction can be obtained. A 
simple example using IEEE 4-bus system is shown in Fig 5-2.  
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basic features of these networks are shown in Table 5-1. 
 

Table	5‐1	Basic	characteristics	of	the	four	major	national	power	grids	

 

Number of France Germany Italy Spain 

Buses 1401 1197 535 447 

Lines 1819 1714 645 644 

Generators 136 156 126 100 

Loads 881 602 249 349 

 
The hierarchy evolution is corresponding to the eliminating of buses or branches 

according to a specific order. The order can be random or calculated by certain 
metrics. Here we have chosen to use metrics of decreasing electrical betweenness, 
net-ability and randomly generator as the elimination order. The simulation 
procedure as following: the Tressness values will be calculated when each bus 
(node) is removed from each power transmission network according to the orders 
mentioned above.  

 
5.2.1. Hierarchy Evolution in decreasing electrical betweenness 

The node electrical betweenness of the four major power networks are 
calculated by the formula 3.12. The hierarchy coordinates are calculated one by one 
when eliminating the buses according to the decreasing order of electrical 
betweeness for each network. The Feedfordwardness and Orderability values are 
always 1. Only Treeness values are changing with the elimination of buses. 
Therefore, here we just report the Treeness results which are shown in Fig. 5-3, and 
their mean values and deviations are shown in Fig. 5-4. It worth to denote that 
because the four grids have different bus number, for better illustration, the bus 
number is normalized to the maximum value and an interpolation is used to make 
they have same length in x axis. 
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behaviors in the hierarchy coordinates, and what these results can be translated as 
meaningful features. In the next section, an attempt is given to link this evolution 
property with specific characteristic of power systems. 

5.3. HIERARCHY AND RELIABILITY IN POWER 
NETWORKS 

Hierarchy property is an important characteristic of complex network [12-21]. 
Complex systems are usually characterized by some level of hierarchy, which spans 
in time and space at different scales. Power system as a typical complex system 
would contain this feature as well. Base on this consideration, we would like to see 
what’s happening about the evolution of hierarchy coordinates in power 
transmission networks. From the analysis performed above, we find that the 
Feedforwardness and Oderability remain “1” while the Treeness varies in a specific 
band. And the hierarchy evolution of different power networks has different features. 
A discussion to all these findings needs to be addressed further: 

Firstly, in each scenario, it seems only Treeness varies with respect to 
Feedforward and Orderability. This feature is a consequence of engineering 
practices focused on reducing the wiring costs while keeping the system connected. 
In other words, the power networks are generally planar and less mesh graph. A 
significant characteristic is that the degree of each node is 2, which is consistent to 
the conclusion of [22] that the average degree for 33 European power networks is 
2.8 (<k>=2.8). 

Secondly, it can be observed that the Treeness evolves to positive values mainly. 
This feature means in most cases the hierarchy directions of these networks are 
from top to bottom. Or from source (generator) to sink (load). Because, generally 
speaking, the power is transmitted from generator to load in power grid. Therefore, 
the hierarchy evolution is consistent with the reality. This phenomenon can be seen 
as the validation of the hierarchy coordinates in turn.  
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network to analyze the hierarchy evolution of four major UCTE power grids (France, 
Germany, Italy and Spain). The evolution is following the removing of bus in power 
grid according to the decreasing electrical betweenness, net-ability and random 
generator. The simulation results reveal that the Germany network exhibit different 
behavior in Treeness evolution. Based on our method proposed in chapter 4, we 
also learn the cumulative probability distribution of ENS, TLP and RT of these four 
power grids. A good coincidence occurs in ENS that the cumulative probability 
distribution follows a power-law distribution while for other networks have a strong 
cut-off in the tail. A simple explain is given to explain the reason why these 
phenomenon exist. However, more accurate explanation and the relationship with 
the cascading failure will be our future works.  
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development of the smart grid, the main role of high voltage transmission networks 
may change while the low voltage distribution networks may gain more and more 
importance and require a major update. Most of the research that focuses on 
modeling the power grids uses simple graph models with sometimes the use of 
basic properties such as direction and weight. However, these studies [1] miss an 
important characteristic of the power grid: the spatial characteristic. Spatial 
properties are the coordinates of the generator, transformer and, substation, the 
wiring direction and lengths of power cable, etc. In this section we will apply complex 
network method to power distribution networks since it is the part of the grid that is 
going to receive the most of the attention in the future and we pose special attention 
to the spatial aspects of the networks, since these aspects are not studied.  

Another key aspect of many practical engineering problems concerns is 
optimization. Optimization can be applied also in the network context and usually the 
objective is to identify optimal network or optimal network model and the optimal 
flow or traffic on a network [7-9]. Optimization in power systems is also an important 
topic such as, the optimal dispatch of power generation [10], the optimal method for 
power distribution network reconfiguration [11], the optimal placement of PMUs 
(Phasor Measurement Units) in power networks [12] and optimal control strategy for 
power system facility and stability [13], which covers from the static to dynamic 
analysis of power systems. Two key issues should be taken into consideration in the 
optimization of power grids: performance and cost. For performance of power 
systems, the higher the performance and the lower cost, the better for the users. To 
assess the performance of a power system from an engineering point of view, two 
indexes: the Equivalent Interruption Time Related to the Installed Capacity (TIEPI) 
and the Equivalent Number of Interruptions Related to the Installed Capacity (NIEPI) 
are used [14]. To assess the cost aspect, the wiring cost is a good measure [15]. In 
power grids, the Euclidean length of power cables gives us a method to quantify the 
costs of the network taking into account its spatial properties. In this chapter we 
would like to identify a trade-off between the performance and the cost from a 
spatial network point of view.  

In this chapter, a comprehensive study about the application of complex network 
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methodology on power distribution networks from pure, extended and spatial 
topological point of views. 

 

6.1. CHARACTERISTICS OF THE TOPOLOGY OF 
DISTRIBUTION POWER GRIDS 

6.1.1. Power grid data sets 
In this chapter, we will analyze two kinds of power grids as spatial network: the 

transmission power networks and the distribution power networks. The transmission 
network is a large scale interconnected bulk power transport grid. As a sample of 
this grid we use the European network known as Union for the Coordination of 
Transmission Electricity (UCTE). To analyze the distribution networks we use 
samples of Spain and the Netherlands. For the confidential and copyright issues, the 
Spanish networks are denoted as SDN1 & SDN2, while the Dutch networks are 
denoted as NL1 to NL 12. We emphasize that the samples used belong to real 
infrastructure and not to synthetic models such as IEEE-bus models. As a typical 
transmission network, UCTE data give us a counterpart to compare with the 
distribution network from topological manner. The basic information about these 
networks is reported in Table 6-1. For the networks the geographical coordinates of 
nodes are available which make us could model the distribution networks as spatial 
network, however, these are not mentioned in Table 6-1 for obvious security and 
safety reasons.  

 
Table	6‐1	Basic	information	of	distribution/transmission	power	networks	

 

Network type 
Number of 

nodes 
Number of 

lines 
Name/Geography 

Transmission  2777  3762  UCTE/Europe 

Distribution  519  557  SDN1/Spain 

Distribution  240  263  SDN2/Spain 

Distribution  451  492  NL1/The Netherlands 

Distribution  473  505  NL2/The Netherlands 
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sees that the distribution grids have a very similar value which is around 2.1 while 
the UCTE network is definitely higher (2.7). This aspect gives us already an idea 
that the distribution grid tends to have a more radial-like structure since a node has 
only two connections to other nodes, while the transmission network presents a 
more meshed structure. 

 
Table	6‐2	Significant	topological	metrics	for	each	network	

 

Network 
Average 

degree 

Average 

betweenness

Average 

geodesic 
distance 

Average 

clustering 
efficiency 

Graphic 

density 

UCTE  2.709  30147.632  22.712  0.07067  0.00098 

SDN1  2.146  6142.634  24.669  0.01279  0.00414 

SDN2  2.192  1785.888  15.878  0.00903  0.00917 

NL1  2.213  2257.417  11.0085  0.00547  0.004917467

NL2  2.156  3798.359  17.058602  0.01592  0.004568746

NL3  2.116  1285.726  11.665777  0.00330  0.008817427

NL4  2.181  1613.948  12.726142  0.01024  0.00762652 

NL5  2.118  1025.222  10.2735  0.00137  0.009625668

NL6  2.176  795.56  9.238959  0.00284  0.011334197

NL7  2.341  3595.902  9.800753  0.00769  0.002448376

NL8  2.113  2610.86  15.072021  0.00151  0.005711372

NL9  2.161  1093.296  10.800861  0.00112  0.009736194

NL10  2.049  1496.235  15.664072  0.00131  0.010093693

NL11  2.081  1693.026  14.765535  0.00075  0.007708077

NL12  2.158  2800.156  13.113497  0.00215  0.004505915

 
A further discussion about the topological metrics is given as following. First of 

all, Fig. 6-2 shows the degree of each network where x axis denotes degree value 
and y axis denotes percentage. Two key features are observed, on the one hand, 
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The simulation results for these networks are reported in Fig. 6-10. The EE(inf), 
EE(0) and VS(inf) are all normalized to the original wiring length of each network. 
From the Fig. 6-10 we can see that the original distance of UCTE transmission 
network is nearly approaching the optimal one. While in the other two distribution 
networks the original lengths are not optimal. And the difference arises again, the 
EE(inf) value in SDN1 network is less than its original length. On the contrary, in 
SDN2 network, the situation is opposite. It means, in SDN2 network, there exist a 
couple of branches have long distance which also be embodied in the power-law 
distribution of cumulative branch distance. While in SDN1, the exponential decay 
means the upper constraint of branch distance. 

The Dutch samples have the same behavior as the Iberian ones; the optimality is 
not achieved in the majority of the samples. Only few samples (i.e., NL3, NL6, NL10, 
NL11 and NL12) have the current and wiring distance similar to the one of the 
optimal situation. Generally, the optimality is achieved by those samples that are 
more spatially compact that are the network expands in a relatively small geography 
and therefore the original distance is limited. 

On the summary, the simulation confirms our hypothesis that the branch wiring 
will influence the performance optimality of power network. It worth to denoted that 
here we use the wiring cost (branch length) as our Hamiltonian.  

 
6.2.3. Evolution of optimality in power grids 

Without loss of generality, we also would like to see the evolution of optimality of 
a specific power network in a large time scale. Based on this consideration, the 
French 400KV power transmission network from 1966 to 2000 is collected and 
investigated. Table 6-3 reports the basic information of the series power 
transmission networks analyzed. 

 
Table	6‐3	Basic	information	of	French	power	network	from	1966	to	2000	

 

Year Number of nodes Number of lines 
1966  14  17 

1970  21  26 
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1976  34  41 

1980  51  61 

1986  96  124 

1990  124  165 

1996  140  186 

2000  149  197 

 
The topology evolution of French transmission networks are illustrated in Fig. 6-

11. 
 

 
Fig.	6‐11		Illustration	of	the	evolution	of	French	power	transmission	network.	

 
The EE shuffling and VS shuffling procedures are used again, and the Monte-

Carlo simulation is performed one by one to each year’s network. The simulation 
results are shown in Fig. 6-12. From the figure we can see that the original 
distances of the network are approaching to the optimal one which means the power 
transmission network will gain better capacity with its network evolution. In the 
meantime, the difference between the original distance and EE(inf) is increasing 
with the evolution which supports again the performance improvement.   
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In the SDN2 network most of the antennas contain less than 4 nodes, whereas 
for the SDN1 network there exist some antennas which contain more nodes even up 
to 27. The Dutch samples behave in this respect closer to the SDN2 network since 
the samples have in general antenna structures that do not contain many nodes. For 
the antenna with less than 5 nodes, the cumulative distribution values are very 
similar for both the Dutch samples, SDN1 and SDN2. The difference part focuses on 
the nodes large than 5. Dutch sample NL7 has higher probability of finding more 
than 5 nodes organized in an antenna structure compared to the other samples; 
however there are no antenna configurations with more than 10 nodes for that 
sample. Considering loops structures, SDN2 contains loops involving considerably 
fewer nodes compared to the SDN1 network. In other words, based on the analysis 
above we can say that the SDN2 distribution network is more fragmentation and 
homogenization: most of the antennas with fewer nodes like 1 or 2, and most of the 
loops contains within 10 nodes, compared to the SDN1 distribution network.  

The Dutch samples seem divided into two categories for the aspects considering 
loops: almost half of the samples have loops containing few than 50 nodes and 
actually a substantial amount of samples that do not have even 30 nodes in loops 
structures. The other samples (NL7, NL2, NL4, NL9, NL1) have loops involving an 
higher number of nodes. It is interesting to note that there is no correlation in the 
number of nodes and edges of the network and the size of the loops formed in that 
network. In this last set of samples both the high and small networks in terms of 
order are present. 

Which spatial topology is better for power distribution network in case of 
performance? The performance here should quantify the distribution systems are 
operated under normal condition: the voltage in a safe range, the active and reactive 
power balancing, etc. The service quality index will be used to quantify the 
performance of two typical distribution network SDN1 and SDN2 to find out the 
relationship between topology and performance.  
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6.3. RELIABILITY 

As mentioned above, we would like to build a linkage between the topology 
property and performance for distribution network. The precondition is the collection 
of real malfunctions data. In Iberia countries, two indexes: the Equivalent 
Interruption Time Related to the Installed Capacity (TIEPI) and the Equivalent 
Number of Interruptions Related to the Installed Capacity (NIEPI) are used to 
quantify the service quality of distribution network. The  

TIEPI is used to quantify the average time during which the supply to a customer 
is interrupted [14]: 

 
rT

i iri

P

rP 
  TIEPI  (6.1) 

where Pri is the sum of the rating of all interrupted medium-voltage/low-voltage 
transformers plus the contracted power of all interrupted medium-voltage and high-
voltage customers. PrT is the total rating of all medium-voltage/low-voltage 
transformers plus the total contracted power of all medium-voltage and high-voltage 
customers connected to the system.  

NIEPI is used to quantify the average number of supply interruptions [14]: 

 
rT

i ri

P

P  NIEPI  (6.2) 

where Pri is the sum of the rating of all interrupted medium-voltage/low-voltage 
transformers plus the contracted power of all interrupted medium-voltage and high-
voltage customers. PrT is the total rating of all medium-voltage/low-voltage 
transformers plus the total contracted power of all medium-voltage and high-voltage 
customers connected to the system. 

Based on the dataset that we can get from the DSOs, here only the TIEPI can be 
used to compare the performance of SDN1 and SDN2. The statistical chart is shown 
in Fig. 6-15. 
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network and its specifics like: branch length, loop and antenna are analyzed and 
some interest conclusions have been proposed. In order to further analyze the 
performance of power distribution network, the wiring cost (length) is use as the 
object of the optimization, the edge shuffling and vertex shuffling methods are used 
to analyze their optimality. The Monte-Carlo (MC) scheme is also adopted to 
increase the accuracy. It’s noticed that there exist some differences in performance 
optimality of distribution networks. However, the difference is just in wiring cost or 
economic point of view. What we more care about is the reliability analysis of power 
systems. Therefore, on the one hand, the spatial constraints of each power 
distribution network are studied and we try to use it to explain the difference 
mentioned above. On the other hand, the reliability data of SDN1 and SDN2 
networks are collected and compared. More meaningful conclusion is found that if 
the wiring cost of a network achieves its optimal then its resilience to the 
malfunctions is higher than the one that can’t get its optimal wiring cost. Although 
this result is not strong enough, we would dig into the reason for this problem in our 
future works. 
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power transmission networks when buses are attacked selectively in decreasing 
order of some topologically and electrically defined values. It seems that hierarchy 
increases as the network is being attacked and a low variability of hierarchy implies 
an increased probability of accumulated major events. This conclusion extends the 
application of hierarchy conception to vulnerability analysis of power systems or 
even the whole complex network research.  

Last but not least, complex network methodology was extended to power 
distribution networks. The pure topological properties of some real distribution 
networks of Spain and the Netherlands were studied. Furthermore, the spatial 
network model was built up for these networks and their spatial properties were also 
analyzed. In order to investigate the relationship between performance and topology, 
the edge shuffling and vertex shuffling method were used to analyze the wiring cost 
and the performance optimality. In the meantime, the real malfunctions data was 
used to verify our simulation results aforementioned. 

Although we tried to cover a whole picture of applying complex network in the 
emerging power system vulnerability analysis, and many aspects and characteristics 
of power systems have been revealed from a new perspective as complex systems, 
a lot more extensive features can be exploited using similar method developed from 
complex network theory, and those are considered as a promising future work. Our 
future works are summarized as the following: 

- Although in this thesis, the PTDF (or power flow equivalent) is introduced into 
traditional pure topological method. And the power grid is not just abstracted 
as simple undirected graph but the flow based flow. Our research is still in 
the static analysis scope. The future object should be involving dynamic 
features in our study. For example, batch of papers have addressed that the 
Kuramoto oscillators applied in complex network to analyze its 
synchronization property. A natural thought is that using this kind of oscillator 
to replace the synchronous generator to simplify the synchronization stability 
problem of power systems. Therefore, if we can introduce dynamic features 
into the application of complex network methodology to power systems, the 
models or the metrics based on complex network theory will be closer to 
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power system reality. 
- How to connect the topological (or extended) metrics with the empirical data 

(malfunctions data is used in this thesis) is an interesting and promising work 
which is worth of more attention to be paid. On the one hand, this linkage can 
prove the correctness and validity of using complex network theory to power 
systems. On the other hand, this linkage would help us to discriminate the 
vulnerability form component to the whole network in power networks. 
Although this dissertation proposed a linkage between extend topological 
metrics with the malfunctions data of UCTE major power networks (France, 
Germany, Italy and Spain). More types of dataset and more different real 
power networks are needed to verify our proposed method. Or even more 
novel methods are needed. 

- Because in this thesis we have found something about the relationship 
between hierarchy and reliability of power networks. Which means hierarchy 
will affect the spread of failure in the network. Therefore, we have the reason 
to pay more attention on the studying of this mechanism. A new cascading 
model involving this hierarchy coordinates could be as a first start. 

- Modeling power grids as spatial network is a new perspective applying 
complex network method in power systems. Accept the results addressed in 
the thesis, more works could be done such as how the space constraint 
influence the wiring of a network so that influence its performance. 

 


