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Summary

This thesis deals with soft-information based decoding for optical and quantum commu-

nication application which uses low number of photon either at the transmitter for security

reasons or at the receiver because of some extreme optical environment.In this thesis, both

single photon and multi-photon transmission will be considered when characterizing the

quantum communication system in the context of the proposed QKD protocol. When re-

ferring to multi-photon transmission, coherent states will be considered, generated using

weak laser pulses (WLP) sources.

The main part of the thesis is focused on soft information based information reconcilia-

tion for Quantum Key Distribution (QKD). A novel composite channel model for QKD is

identified, which includes a parallel of private quantum channel and a public classic chan-

nel. The information is transmitted on private quantum channel and redundancy on the

public classical channel. The Log-Likelihood Ratios, - also called soft-metrics - derived

from the two channels are jointly processed at the receiver, exploiting capacity achiev-

ing soft-metric based iteratively decoded block codes. The performance of the proposed

mixed-soft-metric algorithms are studied via simulations as a function of the system pa-

rameters.

Other low photon number applications have also been considered, such as weak-laser

pulses (WLP) communication.In both Quantum Key Distribution (QKD) and high-photon

efficiency optical communications with direct detection, the transmission channel is typi-

cally modeled either as a Binary Symmetric Channel (BSC), or a Poisson Photon Channel

(PPC) with binary input, and the sufficient statistic at the channel output is typically ob-

tained with a simple hard decision on the received random variable. The availability of

public side-channel information typical of QKD applications, or the multilevel character-

istic of the Poissonian output of weak-energy optical links may however allow the use

of soft metrics and of soft-metric-based iteratively decoded error correcting codes, which

may be useful to counteract the channel errors typical of such low-energy channels.

In this thesis we will indeed show how soft-metric based metrics can be obtained in the

considered scenarios, and how capacity achieving Forward Error Correcting (FEC) codes

such as soft-metric based Low Density Parity Check (LDPC) codes and polar codes can

be employed over QKD and Poisson cannels, exploring the limits of the achievable perfor-

mance gains. We show that the classical channel capacity of the suggested BIMO model
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is higher than the capacity of the BSC model, and that the use of the BIMO model allows

to feed the channel decoder with soft information, in the form of Log-Likelihood Ratios

(LLRs), achieving a significant reduction in Bit Error Rate (BER) and Frame Error Rate

(FER) with respect to classical hard-metric-based schemes which should be used in con-

junction with a BSC channel model. Furthermore, the possible application of soft-metrics

to information reconciliation protocols is discussed, with the goal of designing QKD pro-

tocols able to take advantage of the available soft-information. In particular, the use of

FEC codes for information reconciliation could lead to QKD protocols able to minimize

the interaction between transmitter (Alice) and receiver (Bob), allowing for higher quan-

tum bit-error-rates.

This thesis also offers a preliminary investigation on the use of FEC LDPC codes for

information reconciliation when the underlying channel is a Q-ary DMC, for QKD ap-

plications based on higher photon flux levels with spatial entanglement of twin beams in

PDC, and shows that acceptable error reconciliation efficiency values are obtained with

reasonable complexity.

In general, the availability of the soft-metric allows for the use of advanced iterative soft-

decoding techniques during the information reconciliation phase, significantly reducing

the residual bit and frame error rates with subsequent impact on the achievable secret key

rates which is, as said before, is one of the fundamental performance guideline in QKD.

The proposed protocol, while having a negligible cost, can reduce the residual FER in

QKD systems, largely reducing the interaction required between the two parties involved,

increasing the key rate and protecting the secrecy of the information exchanged
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Chapter 1

Introduction

“Photonics is the optical equivalent of light. Photonic systems uses light, instead of

electricity, to process, store and transmit energy. Photonics is a pervasive technology,

which is capable of of significantly influencing communications and information systems

worldwide”.[1]

1.1 Motivation

Communication is the Key of almost all sorts of human interests, businesses and concerns,

that is why , since very long there has been a lot of work done in developing its technolo-

gies. The development and maturity in electronics and electromagnetic technology in the

past century has led to the improvement in speed and coverage of communications. The

high bandwidth demands for all sorts of communications and most importantly internet,

grew by the end of twentieth century. Optical communications became the solution be-

cause it can use the large bandwidth availability and high speed of light.

Optical communication (OC) uses light to transmit information, which travels faster and

provides larger bandwidth. Photons(i.e., light pulses) are very difficult to generate, mea-

sure and control, and hence has been used to transmit secret information. Optical commu-

nication can be achieved through fiber-optics as well as free-space technology. Over the

internet today, a large number of photons per information bit are used to transport infor-

mation. The optical communication technology needed to generate, measure and control

the optical pulses with such large number of photons is quite mature, and has several

commercial and military applications.

However, most long distance communication schemes used today employ relatively weak

laser sources with small mean photon count at the receiver and non-photon number dis-

criminating detectors with acceptable dark count rates and detector dead-times. Also for

several diplomatic and military applications low number of photons in a single pulse must
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1 – Introduction

be measured in order to decode an information bit. These low number of photon appli-

cations are being developed and deployed. More specifically these low energy optical

communication applications can be divided into[2]:

• Quantum communication.

• Stressed free-space optical communication.

• Low probability of intercept(LPI) optical communication.

Quantum communication take into account the transfer of quantum information be-

tween two locations, where the quantum nature of information is maintained. Today,

it is vital to ensure the secrecy of information being transmitted, not only for military

and diplomatic communication, but also in every day life. With the growth of computer

networks for business transactions and confidentiality of information, there is an ever in-

creasing need for encryption to insure the security of information being transmitted.

Cryptography is the science to encrypt and decrypt data by using some algorithms. En-

cryption is the process of encoding the original information (plaintext) in such a way that

only the authorized party can read it, the unreadable data is called ciphertext . Hence,

cryptography provides the advantage of making the information transfer over insecure

networks confidential. The process of converting the ciphertext back to plaintext is called

decryption.

Before transmission, an encryption algorithm and a secret key is used to encrypt the data.

The authorized recipient uses the same key to decrypt the information. The security of

this schemes is based on the distribution of the key to the legitimate recipients. Hence,

the Key distribution is the vital problem.

Classical conventional key distribution techniques depends on complex mathematical ap-

proaches. and its security is based on unproven assumptions and depends on the technol-

ogy available to an eavesdropper.

Quantum Key Distribution (QKD) is a technology to distribute, or rather generate, secure

random keys between two communicating parties using optical fiber or free-space as a

communication channel. The randomness and secrecy of the key is guaranteed by the

laws of quantum physics. It exploits the fact, that measurement of the state of the quan-

tum system cannot be done without perturbing it. QKD is combined with conventional

key distribution techniques(dual key agreement) to produce as secure key as the strongest

of the two original keys. Hence, contrary to its classical counterpart it provides uncondi-

tional security, independent to the technological progress.

Quantum Key Distribution has matured enough and is ready for commercialization. There

has been a great interest in experimental QKD, with the longest distance achieved upto

now of 148.7 km of Telecom fibers[3] and a transmission distance of the quantum bits

of 144 km in free-space [4], [5]. QkD is also available commercially. Although a lot of

research has been done on the security aspect of QKD there is still an enormous amount
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1 – Introduction

of work that needs to be accomplished to create a truly secure and reliable system. With

the commercial availability of quantum key distribution systems and hardware for secure

data transmissions, it is extremely important that the details of quantum key distribution

systems are explored and completely characterized.

Since the quantum bit error rate of a quantum channel used for QKD is high, as it uses

the fairly lossy fibre optic or even more lossy free-space medium, error correction and

detection protocols are very critical for its proper operation. Therefore, information rec-

onciliation in QKD requires more attention. Error detection is also an important aspect

in determining the presence or absence of an eavesdropper in the system. It is important

to use good codes that has better error correction and detection capabilities. Now a days,

LDPC and polar codes are believed to be capacity approaching and achieving respectively.

There are two types of decoding techniques: 1) hard decoding and 2) soft decoding. In

hard decoding the decoder takes fixed set of values(i.e, 0 and 1), while the input to a soft

decoder may take a range of values in-between. So in soft decoding there is an extra

amount of information that is associated to the reliability of the input information. The

extra information gives a better estimates of the original data. So a soft decision decoding

performs better than hard decoding in the presence of corrupted data [6].

1.2 Purpose

The focus of this research activity is to work on pragmatic information reconciliation ap-

plied to QKD schemes based on single photon or weak pulse laser (WPL) sources, so as

to use feed-forward techniques which minimize the interaction between transmitter and

receiver.

The core ideas of the thesis are employing Forward Error Correction (FEC) coding as

opposed to two-way communication for information reconciliation in QKD schemes, ex-

ploiting all the available information for data processing at the receiver including infor-

mation available from the quantum channel, since optimized use of this information can

lead to significant performance improvement, and providing a security versus secret-key

rate trade-off to the end-user within the context of QKD systems.

Moreover, as shown by accurate experimental studies, the communication channel used

for quantum key exchange is not able to reach high levels of reliability (the Quantum Bit

Error Rate -QBER may have a high value), both because of the inherent characteristics of

the system, and of the presence of a possible attacker. In order to obtain acceptable resid-

ual error rates, it is necessary to use a parallel classical and public channel, characterized

by high transmission rates and low error rates, on which to transmit only the redundancy

bits of systematic channel codes with performance possibly close to the capacity limit.

Furthermore, since the more redundancy is added by the channel code, the more the cor-

responding information can be used to decipher the private message itself, it becomes

3
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necessary to design high-rate codes obtained by puncturing a low-rate mother code, pos-

sibly achieving a redundancy such that elements of the secret message cannot be uniquely

determined from the redundancy itself, so for that purpose we designed high rate LDPC

codes. Using high rate codes increases the security with trade-off to performance.

Other low photon number applications have also been considered, such as weak-laser

pulses (WLP) communication. For that purpose, a low-complexity photon-counting re-

ceiver has been considered which may be employed in long-distance amplification-free

classical optical communication schemes, and which is typically modeled as an equiva-

lent Binary Symmetric Channel (BSC). We have developed a time varying Binary Input-

Multiple Output (BIMO) channel model for this low-complexity photon-counting re-

ceiver, and analyzed its performance in presence of soft-metric based capacity approach-

ing iteratively decoded error correcting codes, such as soft-metric based Low Density

Parity Check (LDPC) codes and polar codes. We show that the classical channel capacity

of the suggested BIMO model is higher than the capacity of the BSC model, and that the

use of the BIMO model allows to feed the channel decoder with soft information, in the

form of Log-Likelihood Ratios (LLRs), achieving a significant reduction in Bit Error Rate

(BER) and Frame Error Rate (FER) with respect to classical hard-metric-based schemes

which should be used in conjunction with a BSC channel model.

1.3 Outline

This thesis is organized as follows. The first chapter provides the motivation and purpose

behind this thesis.

In the second chapter a brief background on the description of low number of photon com-

munication applications have been given. The basis of classical cryptography are shortly

reviewed, followed by a short introduction to quantum cryptography, the structure and

functioning of a generic QKD protocol is discussed, using as a model one of the most fa-

mous protocol invented until now, the BB84 Protocol. In this Chapter particular attention

is paid to the Information Reconciliation stage, highlighting the weakness of performing

such an important task interactively between sender and receiver.

Third chapter introduces capacity achieving codes, such as Low Density Parity Check

(LDPC) codes and polar codes, its structure and the advantages of working with capac-

ity achieving codes in the context of practically any communication system, presenting

a condensed overview of the belief propagation algorithm used by the LDPC decoders,

channel polarization and successive cancellation decoding algorithms used by polar codes

, which is the core of soft-information processing techniques.

In the fourth Chapter, a composite channel model for quantum key distribution is iden-

tified: formed by the parallel of the private (quantum) channel and a classic channel. A

novel technique for forward error correction based information reconciliation is proposed,

exploiting capacity achieving soft-metric based iteratively decoded block codes. The core
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ideas of this chapter are:

a employing FEC coding as opposed to two-way communication for information recon-

ciliation, minimizing the interactions between transmitter and receiver;

b exploiting all the available information for data processing at the receiver including

information available from the quantum channel;

c use of quantum communication schemes whereby photon counting receivers are used

and the modeling of the BIMO Quantum-DMC channel.

Chapter 5 presents the potential improvements in key transmission rate in a Quantum Key

Distribution (QKD) scheme whereby photon-counting detectors are used at the receiver.

The classical capacity of such system is derived, showing the potential gains that photon

counting detectors can provide in the context of a realistic cost-effective scheme from an

implementation point of view.

Chapter 6 offers a preliminary investigation on the use of FEC LDPC codes for informa-

tion reconciliation when the underlying channel is a Q-ary DMC, for QKD applications

based on higher photon flux levels with spatial entanglement of twin beams in PDC, and

shows that acceptable error reconciliation efficiency values obtained with reasonable com-

plexity.

In the chapter 7 the performance results are presented. The performance obtained for

weak energy optical communication simulating only the quantum channel and for the

mixed-soft metric algorithms for QKD are studied via simulations as a function of the

system parameters, in the presence of LDPC and Polar codes, in particular the achievable

Bit Error Rates (BER) and Frame Error Rates (FER) are presented and confronted for

different models of the quantum channel.

In the Last chapter a short conclusions of the thesis have been presented.
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Chapter 2

Background

Optical communication is any type of communication in which light is used as a signal

carrier, instead of electrical current. The merits of optical communication include high

bandwidth, exceptionally low loss, great transmission range and no electromagnetic in-

terference.

When we think about light we don’t really think about what it is made of. For long, sci-

entist tried to resolve if light was a wave or a particle. Eighteenth century’s physicists

strongly believed that light was made of basic units, but certain properties like refraction

caused light to be reclassified as a wave. Thanks to Einstein and other renowned physi-

cists who resolved the issue.

Photons are the rudimentary particle of light. Photons have a unique property in that they

are both a particle and a wave. This is what allows photons unique properties like refrac-

tion and diffusion.

Because light is another form of energy it can be transferred or converted into other types.

In the case of the photoelectric effect the energy of light photons is transferred through

the photons bumping into the atoms of a giving material. This causes the atom that is hit

to lose electrons and thus make electricity.

2.1 Weak energy optical communication

Over the internet today, a large number of photons per information bit are used to trans-

port information. The optical communication technology needed to generate, measure

and control the optical pulses with such large number of photons is quite mature, and has

several commercial and military applications.

In binary optical communication, the logical information is encoded onto two different

states of the radiation field. After the propagation, the receiver should perform a mea-

surement, aimed at discriminating the two signals. Currently, most of the long-distance

amplification-free optical classical communication schemes employ relatively weak laser
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sources with small mean photon count at the receiver. The same is true for quantum-

enhanced secure cryptographic protocols. This low number of photon applications are

being developed and deployed. More specifically these low energy optical communica-

tion applications can be divided into:

• Stressed free-space optical communication.

• Low probability of intercept (LPI) optical communication.

• Quantum communication.

The ideal technology for these limited number of photon application will be to use

single photon detector, which can reliably detect the presence of optical pulses and convert

its energy to electrical signals. There is an active research in the development of single

photon detectors, and the development and deployment of optical communication systems

using low number of photons rely on the enhancement of this technology[2].

2.1.1 Stressed free-space optical communication

As the name suggest the optical communication takes place under some extreme condi-

tions. These stressed conditions affect the number of photons available at the receiver.

The extreme conditions may be very large distance between the transmitter and the re-

ceiver or the stressed optical environment, such as, communication under water, in fog

or smoke, where there are scattering loses and which effects the transmission of photons.

In this scenario, a very large number of photons per pulse are used to encode the optical

signal but, very low number of photons is available for detection at the receiver because

of the nature of the link between the transmitter and the receiver.

For example, in satellite-earth optical communication the distance between transmitter

and receiver is very large, this very large distance reduces the number of photons avail-

ability for reception. The sensitivity of the communication receiver becomes more impor-

tant as the distance increases and the data rate that can be supported ultimately decreases.

Photons counting detectors especially single photon detectors provides the improved sen-

sitivity and stressed free-space optical communication application can take advantage of

it.

2.1.2 Low probability of intercept (LPI) optical communication

In most communication scenarios, it is desirable to transmit the information secretly and

securely i.e., military applications. In low probability of intercept (LPI) optical communi-

cation, the transmitter intentionally generates encoded optical pulses that contain a single

or, at most, a few photons in order to minimize the probability that an eavesdropper will

be able to detect the presence of the communication link.
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2.1.3 Quantum communication

Quantum communication is the art of transferring quantum information between two lo-

cations. In Quantum communication the most important factor is to maintain the quantum

nature of information being transmitted.

Photons are the only appropriate system for long distance quantum communication now

a day. Other systems have also been studied deeply, such as atoms or ions, however cur-

rently and in the near future their adaptation for quantum communication applications is

not feasible[7]. The loss of photons in the quantum channel is one of the drawback of

photon-based applications, which limits the bridgeable distance for single photons to the

order of 100 km with present silica fibers and detectors[8]. In principle, this problem can

eventually be overcome by subdividing the larger distance to be bridged into smaller sec-

tions over which quantum entanglement1 can be teleported2. The subsequent application

of so called “entanglement swapping”[9] may result in transporting of entanglement over

long distances. Quantum entanglement effects are used to create a binary communication

system that works across infinite distances. Consequently, it is of strategic importance to

develop the technology to send photons from one location to a distant one while preserv-

ing its truly quantum nature.

Quantum communication is a very broad field however; the most important sub-field is

quantum cryptography which has a very well-known application called Quantum Key

Distribution (QKD), which will be described later.

The subject of quantum communications brings together ideas from classical informa-

tion theory, computer science, and quantum physics. Classical information theory and

quantum mechanics fit together very well. In order to explain their relationship, an in-

troduction to classical information theory is given, along with the principles of quantum

mechanics. Before going in details of quantum cryptography and QKD a brief overview

of classical cryptography along with some quantum mechanics will be presented in the

next section.

1Quantum entanglement is a quantum mechanical phenomenon that transpires when groups of particles

are produced or interacted in such a way that the quantum state of each particle must subsequently be

described relative to the other, even though the individual objects may be spatially separated.
2Quantum teleportation is a process by which quantum information (e.g. the exact state of an atom or

photon) can be transmitted (exactly, in principle) from one location to another, with the help of classical

communication and previously shared quantum entanglement between the sending and receiving location.

<http://en.wikipedia.org/wiki/Quantum_teleportation>
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2.2 Classical Cryptography

2.2.1 Introduction

Secure communications and cryptography is as old as civilization itself. The Greek Spar-

tans for instance would cipher their military messages and, for Chinese, just the act of

writing the message constituted a secret message since almost no-one could read or write

Chinese. When Julius Caesar sent messages to his generals, he didn’t trust his messen-

gers, so he replaced every alphabet with a shift of 3 (i.e., in his messages with a D, every

B with an E, and so on) through the alphabet. The one who knew the shift by 3 rule could

decipher his messages.

Today, secure communication is not only important for some military or diplomatic ap-

plications, but cryptography is also becoming vital in everyday life. With the growth

of computer networks for business transactions and communication of confidential in-

formation there is an ever increasing need for encryption to ensure that the information

exchanged is secure and cannot be acquired by third parties.

Cryptography is the study and operation of encoding and decoding secret messages to

ensure secure communications. The main objective is to allow two participants, a sender

and an intended recipient who share no information initially to be able to communicate in

a form that is inscrutable to third parties. In addition, it is also important to authenticate

the messages exchanged so that they may not be altered during the communication. Both

of these aims can be fulfilled with provable security if the sender and the recipient are in

possession of a shared, secret “key”.

A key, which is a truly random sequence and deliver no useful information itself, is a

part of information that controls the operation of a cryptographic algorithm. In encryp-

tion, a key specifies the particular transformation of plaintext into ciphertext, or vice versa

during decryption. Keys are also used in other cryptographic algorithms, such as digital

signature schemes and message authentication codes.

The sender and intended recipient should be able to agree and possess secret key mate-

rial in such a way that third parties (“eavesdropper”) cannot acquire, not even partially.

Cryptography until the mid-1980 was founded on computational complexity of certain

trap-door one-way functions that are easy to compute in one direction, but very difficult

in the opposite direction. It is provably impossible to establish a secret key with con-

ventional communications, so key distribution has relied on the conditional security of

“difficult” mathematical problems in public key cryptography.

The search for unbreakable codes is one of the oldest themes of cryptographic research,

but until the last century all proposed systems have ultimately been broken.

In 1917, Gilbert S.Vernam proposed an unbreakable cryptosystem, hence called the Ver-

nam cipher or One-time Pad [10]. The One-time Pad is a special case of the substitution
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cipher3 , where each letter is advanced by a random number of positions in the alphabet.

These random numbers then form the cryptographic key that must be shared between the

sender and the recipient. Even though the Vernam cipher offers unconditional security

against adversaries possessing unlimited computational power and technological abili-

ties, it faces the problem of how to securely distribute the key. In 1949, Shannon proved

that the one-time pad is information-theoretically secure, no matter how much computing

power is available to the eavesdropper [11]. That is, if the key is truly random, never

reused and kept secret, the one-time pad provides perfect secrecy (the only crypto-system

with perfect secrecy).

Despite Shannon’s proof of its security, the one-time pad has serious drawbacks in prac-

tice:

• it requires a perfectly random key;

• secure generation and exchange of the key must be at least as long as the message;

One time pads require extremely long keys and are therefore prohibitively expensive in

most applications. These implementation difficulties have led to one-time pad systems

being impractical and are so serious that they have prevented the one-time pad from being

adopted as a widespread tool in information security.

There are two main branches of cryptography: secret (symmetric) key cryptography and

public (asymmetric) key cryptography.

2.2.2 Secret-Key Cryptography

In secret key cryptography, a single common key is used for both encryption and decryp-

tion. As shown in Figure 2.1, the sender uses the key (or some set of rules) to encrypt

the plaintext and sends the ciphertext to the receiver[12]. The receiver applies the same

key to decrypt the message and recover the plaintext. Because a single key is used for

both functions, secret key cryptography is also called symmetric encryption. With this

form of cryptography, it is obvious that the key must be known to both the sender and

the receiver; that, in fact, is the secret. Secure key distribution is the main problem of

secret-key cryptosystems. The security of communications is reduced to the security of

secret-key distribution.

2.2.3 Public-Key Cryptography

A new surge of interest in cryptography was triggered by the upswing in electronic com-

munications in the late 1970. It was essential to enable secure communication between

3The substitution cipher is a well-known classical cipher in which every plaintext character in all its

occurrences in a message is replaced by a unique ciphertext character
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Figure 2.1: Secret Key Cryptography

users who have never met before and share no secret cryptographic key. But the question

was how to distribute the key in a secure way. The solution was found by Whitfield Diffie

and Martin E. Hellman, who invented public-key cryptography in 1976 [13]. The ease

of use of public-key cryptography, in turn, stimulated the boom of electronic commerce

during the 1990s.

Public-key cryptography requires a key pair: the public key and the private key. The

recipient of a message generates two keys, reveals the public key through a trusted au-

thority and keeps his private key in a secret place to ensure its private possession. In this

algorithm anyone can encrypt a message using the public key, however, only the authen-

tic recipient can decrypt the message using his/her private key. Figure 2.2 describes the

Public Key Cryptography[12]

Figure 2.2: public Key Cryptography

Modern public key Cryptography until the mid-1980 was founded on computational

complexity of certain trap-door one-way functions that are easy to compute in one di-

rection, but very difficult in the opposite direction. It is, e.g., very easy to multiply two
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prime numbers, but to factor the product of two large primes is already a difficult task.

Other public-key cryptosystems are based, e.g., on the difficulty of the discrete logarithm

problem in Abelian groups on elliptic curves or other finite groups. To a large extent

computational complexity is still the backbone of modern cryptography, hence, Public-

key cryptography cannot provide unconditional security.

Today the most widely used public-key system is the RSA cryptosystem, invented in 1977

by Ronald Rivest, Adi Shamir and Leonard Adleman [14]. RSA exploits the difficulty of

factoring large numbers, it uses a public key N which is the product of two large prime

numbers (called “modulus”). Using this key, anyone can encrypt a message. However, in

order to invert the algorithm it is necessary to know the prime factors of the modulus.

The possible construction of a quantum computer represents a menace to the security of

public-key cryptography. The decryption using a quantum computer would take about the

same time as the encryption, thereby making public-key cryptography worthless. Algo-

rithms capable of doing so have already been developed[15] and first experiments with

small-scale quantum computers successfully pave the way to more sophisticated devices

[16]. For example, one way to crack RSA encryption is by factoring N , but with classi-

cal algorithms, factoring becomes increasingly time consuming as N grows large; more

specifically, there is not any known classical algorithm that can factor N with a complex-

ity O((logN)k) for any k. By contrast, Short’s algorithm can crack RSA in polynomial

time.

2.3 Quantum Cryptography

2.3.1 Introduction

It has been said that the security of conventional cryptographic techniques relies on the

assumption of limited advancement of mathematical algorithms and computational power

in the foreseeable future, and also on limited financial resources available to a potential

adversary. Computationally secure cryptosystems, no matter whether public- or secret-

key, will always be at the mercy of mathematical and/or computational breakthroughs,

which are difficult to predict and may even be hidden. In addition, steady progress in

code-breaking allows the adversary to reach back in time and break older, earlier cap-

tured messages encrypted with weaker keys. As a consequence, periodic re-encryption or

re-signing certain sensitive documents is necessary, along with the requirement to care-

fully sort information according to the used cryptosystem.

Another common problem of conventional cryptographic methods is the so-called side-

channel cryptanalysis. Side channels are undesirable ways through which information

related to the activity of the cryptographic device can leak out. The attacks based on side-

channel information do not assault the mathematical structure of cryptosystems, but their

particular implementations. It is possible to gain information for instance by measuring
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the amount of time needed to perform a certain operation, by measuring power consump-

tion, heat or electromagnetic radiation.

Quantum mechanics offers a solution for the secure key distribution in cryptosystems.

While the security of classical cryptographic methods can be undermined by advances

in technology and mathematical algorithms, the quantum approach can provide uncon-

ditional security. In quantum mechanics the security is guaranteed by the Heisenberg

uncertainty principle, which does not allow us to discriminate non-orthogonal states with

certainty. Within the framework of classical physics, it is impossible to reveal possible

eavesdropping, because information encoded into any property of a classical object can

be obtained without affecting the object itself. All classical signals can be monitored

passively. In classical communications, one bit of information is encoded in billions of

photons, electrons, atoms or other carriers. It is always possible to passively listen in, by

splitting part of the signal and performing a measurement on it. Quantum cryptosystems

eliminate this side channel by encoding each bit of information into an individual quan-

tum object, such as a single photon. Single photons cannot be split, copied or amplified

without introducing detectable disturbances.

It is important to notice that quantum mechanics does not prevent eavesdropping; it only

allows one to detect the presence of a possible eavesdropper. Since only the cryptographic

key is transmitted, no information leakage can take place when someone attempts to listen

in. Eavesdropping causes discrepancies between measurements and when discrepancies

are found, the key is simply discarded and the users may repeat the procedure to generate

a new key.

2.3.2 Quantum Key Distribution (QKD)

In the early 1980s, Bennett and Brassard proposed a solution to the key distribution prob-

lem based on quantum physics[17]. They presented a protocol that allows users to es-

tablish an identical and purely random sequence of bits at two different locations, while

revealing any eavesdropping with a very high probability. This idea, independently redis-

covered by Ekert a few years later[18], was the beginning of quantum key distribution,

which was to become the most promising element of quantum cryptography4.

Quantum Key Distribution (QKD) is a technology to distribute, or rather generate, secure

random keys between two communicating parties using optical fiber or free-space as a

communication channel. It has been said that QKD has emerged in the last decades as

one of the most important applications of quantum mechanics. Hence, in this paragraph

the basic configuration and elements of such an important application will be introduced.

4For some authors, quantum cryptography and quantum key distribution are synonymous. For others,

however, quantum cryptography also includes other applications of quantum mechanics related to cryptog-

raphy, such as quantum secret sharing or every other possible tasks related to secrecy that are implemented

with the help of quantum physics.
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Alternative introductions to this subject are available in many sources, ranging from books

[19],[20],[21],[22] to other review articles [23],[24],[25].

2.3.2.1 Generalities

The general setting of QKD is shown in Figure 2.3. The two authorized parties, wishing

to share a secret message are traditionally called Alice and Bob. Alice, the sender, is the

one who starts a key transmission, while Bob, the receiver, is the one who receives the

quantum states and extracts the key sent by Alice. This is just a convention used in the

field, but not a strict definition. The third important character is the eavesdropper, Eve,

who is trying to intrude in the QKD and gain information about the key generated by Alice

and Bob. Alice and Bob share a quantum secure channel, on which they send the quan-

tum signals; and a classical public channel, on which they can send classical messages

possibly back and forth. The classical channel needs to be authenticated; this means that

Alice and Bob identify themselves, a third party can listen to the conversation but cannot

participate in it. The quantum channel however, is open to any possible manipulation.

The task of Alice and Bob is that of guaranteeing security against a possible eavesdropper

that taps into the quantum channel and listens to the exchanges on the classical channel.

In order to guarantee the security, either the authorized partners are able to create a secret

key (a common list of secret bits known only to them) or they shall abort the protocol.

Therefore, after the transmission of a sequence of symbols, Alice and Bob must estimate

how much information about their set of bits has leaked out to Eve. In classical commu-

nications, such an estimate is obviously impossible, when Eve listens to the exchanges

on the classical channel the communication goes on unmodified. This is where quantum

physics comes into play: in a quantum channel, the leakage of information is directly

related to the degradation of the communication quality.

Choice of photons (light)

In general, quantum information processing can be implemented with any quantum state

of matter including energy state of ions, atoms, polarization states of light, electron spins,

etc. Abstractly, this is also the case for QKD: one could imagine performing a QKD exper-

iment with electrons, ions, and molecules; however, light is the only practical choice since

it does not interact much with the environment leading to what is called de-coherence. In-

deed, the task of key distribution makes sense only if Alice and Bob are separated by

a macroscopic distance; if they are in the same room, there are much easier ways of

generating a common secret key. Since, at any practical distance of interest, light propa-

gates faster and with smaller de-coherence than matter, photons are the information car-

riers of choice. Various properties of photons can be employed to encode information

for QKD, such as polarization, phase, quantum correlations of Einstein-Podolsky-Rosen
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Figure 2.3: Quantum key distribution comprises a quantum channel and a public classical

authenticated channel. As a universal convention in quantum cryptography, Alice sends

quantum states to Bob through a quantum channel. Eve is suspected of eavesdropping on

the line.

(EPR) pairs, and wavelength or quadrature components of squeezed states of light. It is

also well known that light does not interact easily with matter.

The way losses affect QKD varies with the type of protocol and its implementation.

Losses impose bounds on the secret key rate and on the achievable distance and may

also leak information to the eavesdropper, according to the nature of the quantum signal

(for coherent pulses this is certainly the case while for single photons it is not). Another

difference is determined by the detection scheme. Implementations that use photon coun-

ters rely on post-selection. If a photon does not arrive, the detector does not click and the

event is simply discarded. On the contrary, implementations that use homodyne detec-

tion always give a signal, therefore losses translate into additional noise. QKD is always

implemented with light and there is no reason to believe that things will change in the

future. As a consequence, the quantum channel is any medium that propagates light with

acceptable losses, typically either an optical fiber or just free space, provided a line of

sight path exists between Alice and Bob.

2.3.2.2 The BB84 Protocol

The first and probably most famous QKD protocol is the so-called BB84 protocol, which

can help one to understand the basic QKD concepts. Suppose Alice holds a source of

single photons. The spectral properties of the photons are sharply defined, so that the
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only degree of freedom left is the polarization5. Alice and Bob align their polarizers6 and

agree to use either the horizontal or vertical (+) basis (rectilinear), or the complementary

basis of linear polarizations, i.e., +45/− 45 degrees (×) (diagonal). The transmitted bits

are “prepared” at the transmitter (using the states of the selected basis) and “measured” at

the receiver.

Specifically, the bits are encoded as follows:

|H〉 → 0+ |+45〉 → 0×

|V 〉 → 1+ |−45〉 → 1×

where both bit values 0 and 1, are encoded in two possible ways in non-orthogonal

states, since |±45〉 =
√
2/2(|H〉 ± |V 〉) It is important to notice that these four states

satisfy the following relations:

〈H |V 〉 = 〈−45 |+45〉 = 0 (2.1)

〈H |H〉 = 〈V |V 〉 = 〈+45 |+45〉 = 〈−45 | −45〉 = 1 (2.2)

〈H | ±45〉2 = 〈V | ±45〉2 = 1/2 (2.3)

The theory of quantum-mechanics states that:

• Measurements performed in the basis identical to the basis of preparation of states

will produce deterministic results (Equation 2.1 and Equation 2.2);

• Any measurements in the diagonal basis on photons prepared in the rectilinear basis

will yield random outcomes with equal probabilities and vice-versa (Equation 2.3);

Once Alice and Bob have agreed on the coding, the BB84 protocol can be summarized

by the following steps:

1. Key Transmission: Alice, the sender, generates a sequence of N random bits for

transmission and chooses the encoding basis (rectilinear or diagonal) in a random

and independent way for each bit. Physically this means that she transmits photons

in the four polarization states shown in Figure 2.5 equally frequently. Bob, the

receiver, randomly and independently of Alice, chooses his measurement basis,

either rectilinear or diagonal. Statistically, Alice and Bob’s bases match in 50% of

the cases. At the end of this stage Alice and Bob will share what is called the raw

key.

5Usually the way to encode the information being sent over the quantum channel is through the trans-

mission of photons in some polarization states. The direction of the polarization encodes a classical bit.
6A polarizer is an optical filter that passes light of a specific polarization and blocks waves of other

polarizations.
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Figure 2.4: The four states of the BB84 Protocol.

2. Basis Announcement: Alice and Bob communicate over the classical channel and

compare the basis used for each transmitted and detected photon. Whenever their

bases coincide, Alice and Bob keep the bit whereupon it becomes part of the cryp-

tographic key after reconciliation and privacy amplification. The bit is discarded

when they chose different basis, when Bob’s detector fails to register a photon due

to the imperfect efficiency of detectors, or when the photon was lost somewhere

along the way. Any potential eavesdropper, can only learn if Alice and Bob chose

the same basis, but cannot determine whether Alice originally sent a “0” or “1”.

This step is called sifting. At the end, Alice and Bob have a string of bits of approx-

imately N/2 bits, called the sifted key.

3. Error Estimation: Alice and Bob disclose part of their strings, a subset of the

bits of size K, and estimate the error rate in the quantum channel. If Eve tries to

eavesdrop on the quantum channel, she cannot passively monitor the transmissions.

Instead she can intercept the photons sent by Alice, perform measurements on them

and resend them. However, since Alice had chosen her encoding bases randomly

Eve has to guess. Half the times Eve will guess the basis right and resend correctly

polarized photons, while in the other 50% of the cases, she measures in the wrong

basis, producing errors. When Alice and Bob reveal a random sample of the bits

of their raw keys, they discover these errors. Alice and Bob use a predetermined

“failure” error threshold (emax) to decide whether or not an eavesdropper is present.

In the literature, the most common failure error rate chosen is greater than or equal

to 0.15 [50]. At 0.15 error rate, an eavesdropper could have intercepted over half

of the bits transmitted. Both Alice and Bob compute the observed error-rate e and
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Figure 2.5: The BB84 Protocol.

accept the quantum transmission if e < emax. In this case they remove the K bits

announced from the raw key. Otherwise if e > emax Eve is suspected of tampering

with the channel, and the cryptographic key is thrown away. Thus, no informa-

tion leak occurs even in the case of eavesdropping. It should be mentioned that

no physical apparatus is perfect and noiseless. Alice and Bob will always find dis-

crepancies, even in the absence of Eve. As they cannot tell errors stemming from

eavesdropping from the noise of the apparatus, they conservatively attribute all the

errors in transmissions to Eve. The actual error rate stems from both noise in the

channel and possibly, interference from an eavesdropper.

4. Reconciliation and Privacy Amplification: If there are errors however, Alice and

Bob have to correct them and have to eliminate the information that could have been

obtained by Eve. Information reconciliation is a form of error correction carried out

on Alice and Bob’s keys, in order to ensure both keys are identical. It is conducted

over the public channel and as such it is vital to minimize the information sent about
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each key, since any such information is totally accessible by Eve. In the earlier ver-

sions of the complete protocol, Alice and Bob perform the error correction through

an interactive reconciliation protocol called Cascade. This is a simple protocol that

leaks an amount of information close to the theoretical bound of an almost ideal

protocol, when the error probability is below 15%. Cascade was presented in [51]

as an improvement of the procedure suggested in [52].Cascade operates in several

rounds. During each round, Alice and Bob divide their raw keys into blocks, and

disclose the parity of each block and compare them. If the parity bits do not match

then a binary search is performed in order to find and correct the error. After all

blocks have been compared, Alice and Bob both reorder their keys in the same ran-

dom way, and a new round begins. If an error is found in a block from a previous

round that had correct parity then another error must be contained in that block; this

error is found and corrected as before. This process is repeated recursively, which

is the origin of the name cascade. At the end of multiple rounds, Alice and Bob

have identical keys with high probability, however Eve has additional information

about the key from the parity information exchanged.

Once the Information reconciliation has been performed, Alice and Bob share what

is known as the reconciled key. Privacy amplification is a method for reducing (and

effectively eliminating) Eve’s partial information about Alice and Bob’s key. This par-

tial information could have been gained both by eavesdropping on the quantum channel

during key transmission (thus introducing detectable errors), and on the public channel

during information reconciliation (where it is assumed Eve has access to all the parity in-

formation). Privacy amplification uses Alice and Bob’s key to produce a new, condensed

key, in such a way that Eve’s amount of information about the new key is negligible. This

can be done using universal hashing functions, chosen randomly from a publicly known

set. The size r of the secret key that Alice and Bob can distill depends on the kind, as

well as the amount, of information available to Eve. It is important to notice that the final

distilled key has a very short length when compared to the initial key size, as shown in

Figure 2.6.

From the description of the BB84 protocol, it can be observed that, although the secu-

rity of QKD relies on the laws of quantum mechanics, a considerable part of the protocol

utilizes the classical communication channel and classical techniques exclusively. Once

the raw key has been transmitted over the quantum channel, a secret key is distilled using

classic post-processing techniques that require interaction. In the process, some informa-

tion about the key is exchanged via the public channel in order to correct the errors and

eliminate the possible information that Eve may have derived. Information reconciliation

is a mechanism that allows for elimination of the discrepancies between two correlated

variables. It is an essential component in every key agreement protocol where the key has

to be transmitted through a noisy channel. Hence, it is important to explore other classical

techniques in the context of QKD systems, to minimize the information exchanged over
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Figure 2.6: Distillation process and key length in BB84 Protocol.

the public channel so jeopardizing the provable security that quantum physics guarantees

can be avoided.
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Chapter 3

Capacity achieving Codes

A communication system is generally designed for the transmission of data reliably over

a noisy channel. Channel encoding and decoding are very important in a communication

system with a noisy channel. The channel encoder adds redundancy to the data for the

reliable communication over a noisy channel. The channel decoder reproduces the data

sent over the channel from the channel output. In this chapter we will describe some

channel codes that are believed to be capacity approaching and capacity achieving for

certain channels.

3.1 Preliminaries

3.1.1 Shannon’s noisy channel coding theorem

In 1948, Claude E. Shannon published his seminal paper [26] on the mathematical the-

ory of communication, which gave birth to information theory. In this paper, Shannon

presented and formalized the concept of information, and substantiated the limits of max-

imum amount of reliable information transfer over unreliable channels. This theorem

establishes that it is possible to communicate digital information almost error-free up to

a computable maximum rate, over a communication channel with any given degree of

noise.

The Shannon capacity of a communication channel with a certain level of noise is the the-

oretical maximum information transfer rate of the channel. Shannon proved that reliable

transmission is possible for rates below the capacity, and is not possible for rates above

capacity. The whim of capacity is defined purely in terms of information theory. As such

it does not guarantee the existence of transmission schemes that achieve the capacity.

The theorem describes the maximum possible efficiency of error-correcting methods ver-

sus levels of noise, interference and data corruption.
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3 – Capacity achieving Codes

The Shannon theorem states that given a noisy channel with channel capacity C and infor-

mation transmitted at a rate R, then if R < C there exist codes that allow the probability

of error at the receiver to be made arbitrarily small.

On the contrary, if R > C, all codes will have a probability of error greater than a certain

positive minimal level (that increases as the rate increases). So, information cannot be

guaranteed to be transmitted reliably across a channel at rates beyond the channel capac-

ity. The theorem does not address the rare situation in which rate and capacity are equal.

Shannon also introduced the concept of codes as (finite) sets of vectors over the input

alphabet, which is to be transmitted. To achieve reliable communication, it is impera-

tive to send input elements that are correlated. We assume that all the vectors have the

same length, and call this length the block length of the code. If the number of vectors is

K = 2k then every vector can be described with k-bits. If the length of the vectors is n,

then in n times use of the channel k-bits have been transmitted. We say then that the code

has a rate of Rc =
k
n

bits per channel use.

Let suppose that a codeword is sent, and a vector over the output alphabet is received. If

the channel is lossy and allows for error, then in general it cannot be said with absolute

certainty which codeword was sent. However, the most likely codeword that was sent can

be found, in the sense that the probability that this codeword was sent given the observed

vector is maximized. To find such a codeword, we can simply list all the K codewords,

and calculate the conditional probability for the individual codewords. We can then find

the vector or vectors that yield the maximum probability and return one of them. This

decoder is called the maximum likelihood decoder.

Shannon proved the existence of codes with rates arbitrarily close to capacity for which

the probability of error of the maximum likelihood decoder goes to zero as the block

length of the code goes to infinity.

Codes that approach the capacity of the channel are good from a communication point

of view. However, along with achieving capacity, if these codes are to be used for com-

munication, fast algorithms for encoding and decoding are needed. In the sections below,

Low Density Parity Check codes (LDPC) and Polar codes that approach the capacity of

the channel will be described.

3.1.2 Binary Discrete Memoryless Channel (B-DMC)

A channel is mathematically defined as a set of possible inputs to the channel X , a set of

possible outputs to the channel Y , and a conditional probability distribution P (y|x). The

simplest class of channels is discrete memoryless channels (DMC).

In information theory symmetric B-DMCs are an important class of channels defined

as: Definition. A symmetric binary discrete memoryless channel (B-DMC) is a B-DMC

W : {0,1} → Y with the additional property that there exists a permutation over the

outputs of the channel π : Y → Y such that π = π − 1 and P (y|0) = P (π (y) |1).
An important example of B-DMCs is binary symmetric channels (BSC).
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3.1.2.1 Binary Symmetric Channel (BSC)

A BSC is a kind of communication channel with binary inputs and outputs respectively. A

probability p is associated with BSC is called the crossover probability. This means, with

a probability p, a bit sent through the BSC is flipped. And conversely with a probability

1 − p a bit sent through the BSC passes unchanged. The pictorial description is given in

Figure 3.1

Figure 3.1: Binary Symmetric Channel with crossover probability p

3.1.2.2 Mutual Information and Bhattacharyya parameter

The two important parameters of symmetric B-DMC’s are defined as:

• Mutula Information: The mutual information of a B-DMC with input alphabetX =
{0,1} is given as:

I (W ) ,
1

2

∑

y∈Y

∑

x∈X
W (y|x) log W (y|x)

1
2
W (y|0) + 1

2
W (y|1) (3.1)

I (W ) is the measure of the rate of a channel. For a symmetric B-DMC reliable

communication is possible at any rates up to I(W).

• Bhattacharyya Parameter: The Bhattacharyya parameter is defined as:

Z (W ) ,
∑

y∈Y

√

W (y|0)W (y|1) (3.2)

Z(W ) is an upper bound on the probability of maximum-likelihood (ML) decision

error for uncoded transmission over W , Hence it is the measure of reliability if the

channel.
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3.2 Low Density Parity Check (LDPC) Codes

This section describes the characteristics of a class of capacity achieving block codes, the

Low-Density Parity-Check (LDPC) codes. LDPC codes are a class of linear block codes

whose name comes from the characteristic of their parity-check matrix which contains

few ones in comparison to the number of zeros. Their main advantage is that they provide

a performance which is very close to the capacity for a lot of different channels and there

are linear time complexity decoding algorithms available for them. Furthermore, they

are suited for implementations that make heavy use of parallelism. LDPC codes can be

represented through a matrix as well as a graph.

3.2.1 Matrix representation

An (n,k) LDPC code is represented by a parity check matrix which consists ofm = n−k
rows and n columns, where n is the codeword length, k the number of information bits

and m the number of redundant bits. For example, the matrix defined in Equation 3.3 is a

parity check matrix H with dimension n× k for a (8,4) LDPC code.

H =









0 1 0 1 1 0 0 1
1 1 1 0 0 1 0 0
0 0 1 0 0 1 1 1
1 0 0 1 1 0 1 0









(3.3)

We can define two numbers describing the matrix H , wr, that indicates the number of 1’s

in each row and wc that indicates the number of 1’s in each column. For a matrix to be

called low-density the two conditions wc ≪ n and wr ≪ m must be satisfied. In order to

achieve this, the parity check matrix should usually be very large (so the example matrix

presented above is not really low-density).

3.2.2 Graphical representation

In a Tanner Graph representation of a (n,k) LDPC code, the n nodes related to the rows

of the parity check matrix are denoted as Variable Nodes or Bit Nodes (V-nodes). On the

other hand there are m nodes, called Check Nodes (C-nodes), that are related to the rows

of the H matrix, i.e., the m parity check equations of the code. An edge on the Tanner

Graph connects a V-node to a C-node only if the corresponding element is a “1” in the

parity check matrix H . From the parity check matrix H of Equation 3.3, we have n = 8
V-nodes connected to m = 4 C-nodes. Figure 3.2 shows the Tanner graph representation

of the parity check matrix of Equation 3.3. Notice that the bit nodes values connected

to same check node must sum to zero. Similarly, a Tanner graph can also be constructed

from the columns of H .
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Figure 3.2: Tanner Graph representation of the LDPC code corresponding to the parity

check

In a Tanner graph like the one in Figure 3.2 it is possible to identify close cycles. The

marked path c2 → f1 → c5 → f2 → c2 is an example of a short cycle. Those should

usually be avoided since they are bad for decoding performance.

3.2.3 Encoding

In an (n,k) LDPC code, if the rank of the H matrix is r, then n − r information bits can

be transmitted per codeword. Accordingly the code rate is given by,

Rc = k/n = (n−m)/n ≤ (n− r)/n (3.4)

where the inequality holds when all m rows are linearly independent.

LDPC codes are encoded using the generator matrix G spanning a space which is the

orthogonal complement of the space spanned by the parity-check matrix H , so that

GHT = 0. (3.5)

G and H can be derived from each other using Gaussian elimination. If the code is

systematic, the matrix H can be expressed as,

H =
[

In−k|P
]

(3.6)

where I is a (n− k)× (n− k) identity matrix and P is the (n− k)× k parity matrix.

The generator-matrix G can be written in the systematic form as

H =
[

P T |Ik
]

(3.7)
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where represents the k × (n− k) transposed parity matrix. If we consider a sequence

of information bits x that contains k bits, the encoding process is achieved by simply

multiplying this sequence by the generator matrix to get the codeword,

C = xG (3.8)

3.2.4 Decoding

The iterative decoding algorithm used for LDPC codes is well known as the Sum Product

Algorithm (SPA), Belief Propagation Algorithm (BPA) or Message Passing Algorithm

(MPA). The term message passing refers to the fact that during each round messages in

the form of probabilities (or beliefs) are passed from V-nodes to C-nodes and vice versa.

An important aspect of iterative decoding is that message to be sent from the ith V-node Vi
to the jth C-node Cj must not take into account the message sent in the previous iteration

from Cj to Vi. The same rule holds for messages to be sent from Cj to Vi.
The Belief Propagation Algorithms (BPA) is an important class of message passing algo-

rithm where the messages passed along the edges of a Tanner Graph are probabilities (or

beliefs) [27]. More precisely, the message passed from the V-node Vi to the C-node Cj is

the probability that Vi has a certain value, given its own noisy observed value, and all the

values received in the previous iteration from its neighboring C-nodes (two nodes are said

to be neighbors if they are connected to the same edge of Tanner graph) excluding Cj .

Similarly, the message passed from Cj to Vi is the probability that Vi has a certain value

given all the messages passed to Cj in the previous iteration from neighboring V-nodes

other than Vi.
The aim of the belief propagation algorithm is to compute the A-Posteriori Probability

(APP) that a given bit in the transmitted code-word C = [c0c1...cn−1] equals 1, given the

received sufficient statistic samples Y = [y0y1...yn−1], i.e., the APP probability

pi = Pr (ci = 1|Y ) (3.9)

or the APP ratio (also called Likelihood Ratio (LR)),

l(ci) =
Pr(ci = 0|Y ))
Pr(ci = 1|Y ) (3.10)

The LR can be iteratively computed exploiting the code’s Tanner graph. In one half

iteration, each V-node processes its input messages (probabilities or LLRs) and passes

its resulting output messages to the neighboring C-nodes. In the other half iteration the

C-node passes its messages to the V-nodes. After a pre-defined number of iterations, or

after some stopping criteria have been met, the decoder computes the APP (A-Posteriori

Probabilities), or LLR (Log Likelihood Ratios) from which decisions on the bits can be

taken.
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Let fk
ij and gkji be the messages from Vi to Cj and Cj to Vi in kth iteration, respectively.

The belief propagation algorithm in probability domain can be described as,

1. Initialization:

f 0
ij (0) = 1− pi (3.11)

f 0
ij (1) = pi (3.12)

2. C-node update:

gkji(0) = 1/2 + 1/2Πi∈fj/i

(

1− 2f
(k−1)
ij (1)

)

(3.13)

where f(j/i) is the set of all V-nodes connected to Cj excluding Vi, and,

gkji(1) = 1− gkji(0) (3.14)

3. V-node update:

fk
ij(0) = 1−Aijf

0
ijΠj∈gi/jg

k
ji(0) (3.15)

where g(i/j) is the set of all C-nodes connected to Vi excluding Cj , and,

fk
ij(1) = Aijf

0
ij(1)Πj∈gi/jg

k
ji(1) (3.16)

where Aij are constants, which satisfy

fk
ij(0) + fk

ij(1) = 1 (3.17)

4. Soft Decision:

F k
i (0) = Aif

0
ij(0)Πj∈gig

k
ji(0) (3.18)

F k
i (1) = Aif

0
ij(1)Πj∈gig

k
ji(1) (3.19)

where gi is the set of all C-nodes connected to Vi, and Ai is chosen to satisfy,

F k
i (0) + F k

i (1) = 1 (3.20)
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5. Hard Decision:

c̃ (i) =

{

1, ifF k
i ≫ 0

0, otherwise

If c̃HT = 0, or maximum number of iterations is reached, stop, else go back to step

2), where c̃ is the decoded codeword.

As it can be seen above, the decoding process involves the multiplication of probabilities,

which have high computational complexity. With the increase in number of iterations a

log domain manipulation is required to decrease the complexity, by converting multipli-

cations to additions.

In log domain the algorithm can be described as follows, first we define:

L(ci) = log
Pr(ci = 0|Y )
Pr(ci = 1|Y ) (3.21)

L(fij) = log
fij(0)

fij(1)
(3.22)

L(gij) = log
gij(0)

gij(1)
(3.23)

L(Fi) = log
Fi(0)

Fi(1)
(3.24)

1. Initialization:

L0(fij) = L0(ci) (3.25)

2. C-node update: From equation 3.13 and 3.14 we get

1− 2gji(1) = Πi∈fj/i (1− 2fij(1)) (3.26)

Now since tanh[1
2
log(a

b
)] = 1 − 2b and using equation 3.22 and 3.23, 3.26 can be

written as,

tanh

[

1

2
Lk(gij)

]

= Πi∈ fj/itanh

[

1

2
L(k−1)(fij)

]

(3.27)

Equation (3.27) still involves multiplication and a complex tanh(.) function that

needs to be simplified. Let us represent L(fi) in its sign and magnitude form; in

particular, let Θij represent the sign of L(fij), and δij represent the magnitude of

L(fij). Using these, equation 3.27 becomes,
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tanh

[

1

2
Lk(gij)

]

= Πi∈ fj/iΘ
(k−1)
ij .Πi∈fj/itanh

[

1

2
δ
(k−1)
ij

]

(3.28)

Then,

Lk(gij) = Πi∈fj/iΘ
(k−1)
ij .2tanh−1.log−1.log

[

Πi∈fj/itanh

[

1

2
δ
(k−1)
ij

]]

(3.29)

= Πi∈fj/iΘ
(k−1)
ij .2tanh−1.log−1.

∑

i∈fj/i

log

[

tanh

[

1

2
δ
(k−1)
ij

]]

(3.30)

Let γ be a map from the real numbers [−∞,∞] to F2× [0,∞] defined by γ(x) :=
(sgn(x)− log(tanh((|x|)/2))), whereby,

sgn (x) =

{

1, if x ≥ 1

0, otherwise

Equation (3.30) can be written as,

Lk(gij) = γ−1





∑

i∈fj/i

γ
(

δ
(k−1)
ij

)



 (3.31)

3. V-node update: Dividing equation 3.16 by 3.15 and taking log, we have,

Lk(fij) = L0(ci) +
∑

j∈gi/j

Lk(gji) (3.32)

4. Soft Decision:

L(Fij) = L0(ci) +
∑

j∈gi

L(gji) (3.33)

5. Hard decision:

c̃ (i) =

{

1, ifLk
i < 0

0, otherwise

If c̃HT = 0, or maximum number of iterations is reached, stop, else go back to step

2), where c̃ is the decoded codeword.
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3.2.5 Density Evaluation (DE)

As stated previously, the asymptotic performance of LDPC codes, when the codeword

length tends to infinity, has been studied using an analytical technique called density evo-

lution (DE) or Gaussian approximation [27],[28],[29].

The density evolution computes the probability density function (PDF) of the messages

defined by the message-passing algorithm on Tanner graphs at any iteration. From [31],

“Asymptotically, the actual density of the messages passed is very close to the expected

density. Tracking the expected density during the iterations thus gives a very good picture

of the actual behavior of the algorithm[28]”. Two assumptions are made for the calcula-

tion of density evolution [29],

• The independence condition assures that the messages passed on the Tanner graph

are statistically independent;

• For infinite code length, the factor graph can be viewed as a cycle free graph.

In general, an LDPC code ensemble is specified by a degree profile (λ,ρ). Its cor-

responding generating functions are λ(x) =
∑dvmax

i=2 λix
i−1 and ρ(x) =

∑dcmax

i=2 ρix
i−1

where λi(ρi) is the fraction of edges with variable (check) node of degree i and dvmax

(dcmax) is the maximal variable (check) node degree (number of edges connected to it),

respectively.

Let ςck denote the common density function of the messages gkji sent from C-nodes to

V-nodes at round k and let ς denote the density of the messages f 0
ij , i.e., the likelihood of

the messages sent at iteration 0 of the algorithm. Then the update rule for the densities in

equation 3.31 implies that the common density ςvk+1
of the messages sent from V-nodes

to C-nodes at round k+1 conditioned on the event that the degree of the node is d, equals

ς ∗ ς(d−1)
ck , where (ς ∗ ςck)(τ) =

∫

(ς(σ)ςck(τ − σ))dτ is the convolution over some group

G0 of ς andςck [29]. Using γ(x) defined above, let Γ (γ(x)) be the density of γ(x). Using

equation 3.31 and the independence assumption, it can be shown that

ςck = Γ−1(ρ(Γ (ςvk))) (3.34)

where Γ is the Laplace transform of the expected densities derived in[28],[29]. From

this, the following recursion formula can be obtained for density evolution (DE):

ςvk+1
= ς ∗ λ(Γ−1(ρ(Γ (ςvk)))) (3.35)

The convolution can be efficiently computed using Fourier transform F , so the DE

can be expressed as

ςvk+1
= ΓF−1(F(ς)λ(F(ςck))) (3.36)
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From density evolution together with Fourier transform techniques, asymptotic thresh-

olds below which belief propagation decodes the code successfully, and above which be-

lief propagation does not decode successfully, can be derived [27],[28],[29].

The asymptotic performance of LDPC is characterized by finding the maximum channel

parameter (threshold σ∗) such that if σ < σ∗ then limk→∞ P k
e = 0,and P k

e is the expected

fraction of incorrect messages at the kth iteration.

3.3 Polar Codes

Polar codes were introduced by Arkan in [30]. Polar codes are linear block codes which

provably achieve the capacity of symmetric B-DMC’s.

Polar codes uses the concept of channel polarization described below. The idea of polar

codes is to create from N independent copies of a B-DMC W through a linear trans-

formation, another N different channels
{

W
(i)
N : 1 ≤ i ≤ N

}

, such that as N grows

large these synthesized channels are polarized. i.e., their mutual information are close

to either 0 or 1. It is shown that the fraction of indices i for which I
(

W
(i)
N

)

is close to

1 is I (W ), and the fraction of indices i for which I
(

W
(i)
N

)

is close to 0 is 1 − I (W )

asymptotically. Hence some channel becomes good and some channels become worst.

The encoding/decoding complexity of the codes is O (NlogN).

3.3.1 Channel Polarization

Channel polarization is an operation which produces N channels
{

W
(i)
N : 1 ≤ i ≤ N

}

,

fromN independent copies of a B-DMCW such that the new channels are synthesized in

the sense that their mutual information is either close to 0 (Bad, noisy channels) or close

to 1 (good, noiseless channels). Channel polarization consists of two phases [30],[31],

1. Channel Combining: In channel combining phase, a recursive mechanism is ap-

plied to combine copies of a B-DMC in n steps to form a vector channelWN , where

N = 2n. The channel combining can be described through the following transfor-

mation:

W2 (y1,y2|u1,u2) = W (y1|u1 ⊕ u2)W (y2|u2) (3.37)

it can be seen from Equation 3.37 that a new vector channel of size 2 is created

from combining two separate channels i.e., W2 : {0,1}2 → Y 2. Since the linear

transformation between (U1,U2) is a one-to-one mapping:

I (U1,U2; Y1,Y2) = I (X1,X2; Y1,Y2) = 2I (W ) (3.38)
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Figure 3.3: Channel Combining

For a general N = 2n channel combining can be done as:

WN

(

Y N |UN
)

= WN/2

(

Y N/2|UN
o ⊕ UN

e

)

WN/2

(

Y N
N/2+1|UN

e

)

(3.39)

where WN = {W1,W2,...,WN}, UN
o = {u1,u3,...,uN}, UN

e = {u2,u4,...,uN}.

2. Channel Splitting: In channel splitting, WN is split back into N channels W
(i)
N :

{0,1} → Y N × {0,1}i−1 ,1 ≤ i ≤ N .

Equation 3.38 can be written using chain rule as:

I (U1,U2; Y1,Y2) = I (U1; Y1,Y2) + I (U2; Y1,Y2,U1) (3.40)

I (U1; Y1,Y2) is the mutual information of the channel between U1 and Y1,Y2, with

U2 considered as noise. I (U2; Y1,Y2,U1) is the mutual information of the channel

between U2 and Y1,Y2 given that U1 is known [31]. Let the two splitted channel be

denoted as W− and W+, their transition probabilities can be expressed as:

W− (y1,y2|u1) =
1

2

∑

u2∈{0,1}
W (y1|u1 ⊕ u2)W (y2|u2) (3.41)

W+ (y1,y2,u1|u2) =
1

2
W (y1|u1 ⊕ u2)W (y2|u2) (3.42)

The two splitted channels have the following properties[30]:

(a)

I
(

W+
)

+ I
(

W−) = 2I (W ) (3.43)

(b)

Z
(

W−) ≤ 2Z (W )− Z (W )2 (3.44)
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(c)

Z
(

W+
)

= Z (W )2 (3.45)

I
(

W+
)

+ I
(

W−) = 2I (W ) (3.46)

This way, the channel is splitted into the channel set {W+,W−}. As U2 is consid-

ered as noise, the W+ is set to be the error-free channel, while W− is noisy.

For N = 2n the splitting can be done through:

W i
N

(

yN1 ,u
i−1
1 |ui

)

,
∑

uN
i+1→XN−1

1

2N−1
WN

(

yN1 |uN1
)

(3.47)

In this way the channel combined in the first phase (WN : UN → Y N ), is splitted

into the polarized channel set W i
N : 1 ≤ i ≤ N with the transition probability of

Equation 3.47.

After splitting the channel W i
N in the set has input U i and output (yN1 ,u

i−1
1 ) with the

form: W i
N : U → Y N ×X i−1

3.3.2 Encoding

Polar codes are linear codes, i.e., any linear combination of codewords is another code-

word of the code. The polar transform is to apply the transform G⊗n
2 , the nth Kronecker

power to the block of N = 2n bits U.

G2 =

[

1 0
1 1

]

(3.48)

For code length N = 2n , n = 1,2, , and information length K, the code rate is Rc =
K/N .

A binary source block uN1 which consists of K information bits and NK frozen bits1 is

mapped to a code block xN1 via via xN1 = uN1 GN . The matrix GN = RNG
⊗n
2 , where

G2 is defined in Equation 3.48, and RN is the bit-reversal permutation matrix. The binary

channel xN are then sent into channels which are obtained by N independent uses of W
[30],[32].

1 For the transmission of a K bits binary message block , the K most reliable polarized channels W
(i)
N

with indices i ∈ I are picked out for carrying information bits; and transmit a fixed bit sequence called

frozen bits over the others. The index set I ∈ {1,2,,N} is called information set and |I| = K . And the

complement set of I is called frozen set and is denoted by F .
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3.3.3 Decoding

Arikan mentioned in [30] that, Polar codes can be decoded using successive cancellation

(SC) decoding algorithm. Let ũN1 denote the estimate of the information block uN1 . After

receiving the output yn1 the bits ũi are determined successively with i = 1,2,...N as:

ũi =

{

Li

(

yN1 ,ũ
i−1
1

)

if i ∈ I

ui if i ∈ F

where

Li

(

yN1 ,ũ
i−1
1

)

=







0 if
W

(i)
N (yN1 ,ũi−1

1 |0)
W

(i)
N (yN1 ,ũi−1

1 |0)
≥ 1

1 otherwise

The block error rate (BLER) of this SC decoding is upper bounded by

PSC (N,I) ≤
∑

i∈I
Pe

(

W
(i)
N

)

(3.49)

For more details and proofs about polar codes see [30].
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Chapter 4

Soft-Metric based decision in QKD and

Poisson photons channels

4.1 Overview and System Model

In chapter 2 an overview of weak energy optical communication and QKD systems has

been given. Since the number of photons in all the optical communication scenarios dis-

cussed so far is quite low, either at the transmitter or at the receiver, because of the extreme

conditions or the security constraints, the receiver needs to be very sensitive, and the in-

formation it collects needs to be carefully processed. Single photon detectors can provide

the required sensitivity [2].

In binary optical communication, the logical information is encoded onto two different

states of the radiation field. After the propagation, the receiver should perform a mea-

surement, aimed at discriminating the two states. Currently, most of the long-distance

amplification-free optical classical communication schemes employ relatively weak laser

sources with small mean photon count at the receiver. The same is true for quantum-

enhanced secure cryptographic protocols.

In fact, laser radiation, which is described by coherent states, preserves its fundamental

properties also in presence of losses. On the other hand, operating in the regime of low

number of detected photons gives rise to the problem of discriminating the signals by

quantum-limited measurements [33, 34]. Indeed, the binary discrimination problem for

coherent states has been thoroughly investigated, both for its fundamental interest and for

practical purposes [35], [36], [37], [38], [39], [40].

It should be mentioned however that in order to exploit the phase properties of coherent

states, one should implement phase sensitive receivers [41, 42] with nearly optimal per-

formances also in presence of dissipation and noise [38], [43]. This is a challenging task,

since it is generally difficult, and sometimes impossible, to have a suitable phase reference

in order to implement this kind of detection scheme.
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The simplest choice for a detection scheme involving radiation is given by direct mea-

surements through energy detectors, namely detectors which only detect the presence or

the absence of radiation (on/off detectors) with acceptable dark count rates and detector

dead-times. A natural step forward in the evolution of such schemes would be to employ

photon counting detectors at the receiver.

The first QKD protocols were based on interactive error correction schemes [50], [51],

[52] (like the Cascade algorithm), specially because BB84-like schemes are based on a

highly interactive process that requires many communication rounds. BB84-like protocols

for error correction and information reconciliation in QKD systems are not very efficient

in terms of throughput (distilled key per second) since a lot of information is discarded to

ensure that the information Eve can possibly know is canceled from the final secret key.

More recently Forward Error Correction (FEC) schemes have been suggested [53], [53],

[54], [55],[56], which can avoid re-transmission, increasing the system efficiency, and

must be decoded by decoders exploiting the information available at the output of both

the quantum and the public channel. In practice, the FEC block code must operate on an

equivalent composite parallel channel formed by the quantum and the public channels, as

shown in Figure 4.1, where the k information bits (the sifted key) are transmitted over

the quantum private channel, while the m = n − k redundancy bits are transmitted over

the classical public channel. The eavesdropping on the secure channel in Figure 4.1 is

shown as a dotted line, because if the system is properly designed and the channel QBER

is periodically monitored, the presence of Eve can be detected, as previously described,

and the information leaked to Eve can be made arbitrarily small, as if the eavesdropper

did not exist. Given this hypothesis, we will from now on focus on the overall channel

model linking Alice to Bob, neglecting the presence of Eve.

It is in this scenario that modern Forward Error Correction (FEC) schemes may offer

an interesting solution. The idea is to make use of FECs inherent advantage of requiring

a single channel use to reconcile the set of transmitted and received bits (”qubits” in the

case of QKD).

Since extremely low residual Bit Error Rate (BER) must be achieved (theoretically, error

free decoding is needed), capacity achieving codes with acceptable decoding complexities

and with very long code-length n have been considered in the information reconciliation

literature. LDPC codes constitute a possible interesting option. Furthermore, in order to

minimize the quantity of information derived by Eve from the public channel, the code

rate Rc = k/n must be maximized, and it must be larger than 0.5. The description of

the appropriate models for all the involved channels in Figure 4.1 (and in particular, the

private and the public channels) will be given in the next sections.

In Quantum Key Distribution (QKD) and high-photon efficiency optical communications

with direct detection, the transmission channel is typically modeled either as a Binary

Symmetric Channel (BSC), or a Poisson Photon Channel (PPC) [55] with binary input,

and the sufficient statistic at the channel output is typically obtained with a simple hard
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Figure 4.1: System model in a QKD system.

decision on the received random variable. The availability of public side-channel informa-

tion typical of QKD applications, or the multilevel characteristic of the Poissonian output

of weak-energy optical links may however allow the use of soft metrics and of soft-metric-

based iteratively decoded error correcting codes, which may be useful to counteract the

channel errors typical of such low-energy channels.

In this chapter we will show how soft-metric based metrics can be obtained in the consid-

ered scenarios [55], and how capacity achieving Forward Error Correcting (FEC) codes

can be employed over QKD and Poisson cannels. Furthermore, the possible application of

soft-metrics to information reconciliation protocols is discussed, with the goal of design-

ing QKD protocols able to take advantage of the available soft-information. In particular,

the use of FEC codes for information reconciliation could lead to QKD protocols able

to minimize the interaction between transmitter (Alice) and receiver (Bob), allowing for

higher quantum rates.

4.2 Information Reconciliation

The problem of information reconciliation in QKD schemes can be seen as the source

coding problem with side information, as shown in Figure 4.2. Let X and Y be two

of correlated variables belonging to Alice and Bob, and x and y their outcome strings,

through information reconciliation it is possible to eliminate the discrepancies between x
and y and agree on a string S (x), with possibly S (x) = x.

Thus, as shown by Slepian and Wolf [57], the minimum information I that Alice
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Figure 4.2: Source coding with side information.

would have to send to Bob in order to help him reconcile Y and X is Iopt = H (X|Y ).
Taking into account that real reconciliation will not be optimal, a parameter f > 1 is used

as a quality figure for the reconciliation efficiency:

Ireal = fH (X|Y ) > Iopt

4.3 Soft Metric Based QKD protocol

In any QKD scheme in general, Alice wants to transmit a plaintext message secretly to

the receiver Bob. The secret key that will be later used for encryption is transmitted on

a secure private (quantum) channel, which is secure because of the quantum mechanical

properties. But the quantum channel may have a non-negligible bit error rate, that will be

denoted as QBER, while comparatively the bit error rate on the public classical channel

is typically very low, so that information reconciliation needs to be performed, typically

using as media the more reliable (but not secure) public channel. After both Alice and

Bob have knowledge of the secret key, Alice will encrypt the plaintext using the secret

key according to the encryption rule of the system, and send the encrypted message to

Bob, while Eve will not be able to recover the transmitted message, condition that Eve

does not have the knowledge of the secret key.

As mentioned earlier, the problem of information reconciliation will be considered as if

it were the source coding problem with side information. It is focused on effective FEC

which exploits the “soft-metric” available at the exit of both the quantum and the public

channel.

In Figure 4.3 the model for an equivalent systematic block-code in QKD system is pre-

sented. A composite channel is shown, which is formed by the parallel of the public

and the quantum channels. The information and redundancy bits transmitted by these two

communication channels constitute the codewords of an equivalent systematic block code.

Alice divides the original information bit stream into blocks of finite length nq which will

be encoded in a redundant way into codewords of length n. The information bits (nq bits

per codeword) are transmitted over the quantum private channel, while the redundancy

bits (r = (n − nq) bits per codeword) are transmitted over the classical public channel.
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The code rate (or information rate) is equal to Rc = nq/n which is the proportion of the

data-stream(nbits) that is useful (non-redundant)1.

Figure 4.3: Equivalent systematic block-code in QKD system.

The redundancy allows the receiver to detect and correct errors without re-transmission,

using Forward Error Correction techniques. In this context, iterative belief propagation

algorithms can be used to decode the codewords sent by Alice at the receiving stage, with

a maximum likelihood decoding rule.

As previously mentioned, powerful capacity achieving or capacity approaching LDPC or

polar codes with possibly long information blocks have been selected to make the quan-

tum channel more reliable. This choice is motivated by the characteristics of LDPC and

polar codes of being decodable in a time linearly proportional to their block length (when

iterative belief propagation techniques are used), so that acceptable decoding complexities

can be achieved also for large block lengths.

To minimize the quantity of information derived by Eve from the public channel the

code rate must be maximized. In Figure 4.4 the rate code along with the number of

available information and redundancy bits are highlighted, for a code with a rate equal to

nq/(nq + r) = nq/n. It is important to notice that at the input of the LDPC decoder, there

will be n total available bits, i.e. n corresponding log-likelihood values.

The transmission rate on the QKD secret channel is generally very low since the technol-

ogy is very complex, while the actual data rate on the public channel can be very high. It

is therefore important to analyze the achievable overall QKD system rate. Furthermore,

in practical cases, the quantum bit error rate on the secret channel is typically high when

compared to the bit error rate of the public channel.

1That is, if for every nq bits of useful information, the coder generates totally n bits of data, of which r

are redundant
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Figure 4.4: Composite Channel model, systematic FEC code with code rate Rc =
nq/(nq + r).

4.3.1 Code Rate and security

The public channel is authentic, Eve can listen to the public channel but can’t do mea-

surements on it. The information transmitted on the classic public channel is completely

visible to the him. While on the other hand Eve can do measurements on the private quan-

tum channel, but by doing so he will perturb the state of the quantum system, and that can

lead to the detection of presence of Eve. In the security analysis it must be assumed that

Eve has perfect knowledge of the code, and therefore of the r parity check equations used

to generate the r parity bits ((n − nq) redundancy bits), that are assume to be received

(eavesdropped) perfectly and without errors. The question then is how much information

can Eve obtain about the nq information bits from the knowledge of the r parity bits.

The r parity check equations represent a system of r linear equations in nq variables over

GF(2). This system in the case of LDPC codes is indeed quite sparse (i.e., few variables

appear in each check equation). The space of solutions of such a system of equations rep-

resents the set of possible data sequences that Eve has access to. One of these solutions is

in fact, the true data transmitted through the private quantum channel. The larger the size

of the space of possible sequences, the more secure is the FEC code used against Eve.

This assumes that Eve does not possess any additional information that may reduce the

space of possible sequences. For instance, if the data transmitted by Alice is not indepen-

dent identically distributed (i.i.d.) (i.e. binary with equal probabilities), Eve can easily

focus on the most probable set of possible solutions of the linear equations. Note that the

structural properties of the particular LDPC code used, ultimately determines the extent

of the security of the system.

Let the data sequence transmitted over the private quantum channel be denoted by the

nq-component vector ~X, and the parity checks transmitted over the classic public channel

by the r-component vector ~P . The amount of information provided about ~X by ~P is the

mutual information I
(

~X,~P
)

= H
(

~P
)

H
(

~P | ~X
)

= H (P ) ≤ r, since H
(

~P | ~X
)

= 0

(i.e., given ~X , the amount of uncertainty remaining about ~P is zero). Remembering that
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the quantum channel operates in conjunction with a classic public channel, together with

the information bits the redundancy (parity check) bits generate an equivalent block code

with rate:

Rc =
nq

nq + r
(4.1)

So long as nq > 0, a secret key can be distilled for a fixed code rate by increasing the

block length. This puts a lower limit on the coding rate 1
1 + r/nq

of 0.5, which nonetheless

is loose since the security of the scheme even at coding rate 0.5 or below ultimately

depends on the particular FEC code being used.

4.4 System Characterization and Channel Models

In this section we present the system level models of the public and private channels in

Figure 4.1.

4.4.1 Classical Communication System

A far as the public channel is concerned, it uses classical communication system with

possibly strong coding so that the BER of the classic channel is very low. Typical Ad-

ditive White Gaussian Noise (AWGN) channel model may be used, as shown in Figure

4.5, where nk is a Gaussian random variable with variance σ2 where for simplicity, a

binary transmission scheme has been considered with the following association between

the information bits bk and the transmitted levels

Figure 4.5: Classic AWGN model for the public channel.

The equivalent channel model shown in Figure 4.6 can be considered to represent a

classic “public” channel in the QKD protocol being proposed.

In this model, when a bipolar transmission scheme is used such as PAM, BPSK or

Gray coded QPSK, the kth transmitted redundant bit is bk ∈ (0,1), the associated kth

transmitted symbol is Xrk ∈ (
√
Eb, +

√
Eb), i.e. Xrk =

√
Eb(2bk − 1), while Nk ∈

N (0,σ2) is a Gaussian random variable with zero mean and variance equals to σ2 =
N0/2 = Eb/2ηs, where ηs = Eb/N0 is the wireless link signal-to-noise ratio, and Yrk is
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Figure 4.6: Classical Communication Channel.

the received sample obtained at the output of the public channel detector.

If soft decoding techniques are used in decoding the capacity achieving block codes, the

channel output must be characterized with a likelihood ratio, i.e., the ratio between the

likelihood (probability) of obtaining a given channel output conditioned on the possible

transmitted bit. Often, the logarithm of this quantity defined as the Log Likelihood Ratio

(LLR) is used. The LLR value for the public channel in Figure 4.5 is [58]:

LLR (Yrk) = log

[

P
(

Xrk = +
√
Eb|Yrk

)

P
(

Xrk = −
√
Eb|Yrk

)

]

= log

[

P
(

Yrk |Xrk = +
√
Eb

)

P
(

Yrk|Xrk = −
√
Eb

)

]

= log

[

P (Yrk |bk = 1)

P (Yrk |bk = 0)

]

(4.2)

Equation 4.2 uses Bayes’ Theorem2. Given the previous hypotheses, the expressions for

the kth trasmitted and received symbols respectively, can be written as:

Xrk =
√

Eb(2bk − 1) (4.3)

Yrk = Xrk +Nk =
√

Eb(2bk − 1) +Nk (4.4)

Yrk are the real signal samples being received, whose conditional probability density

function is given by the Equation 4.5

fy(Yrk|bk) =
1

σ
√
2π
e−

−(Yrk
−

√
Eb(2bk−1))2

2σ2 (4.5)

2Bayes’ Theorem: P (A|B) = P (B|A)P (A)
P (B)
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Finally, replacing the expressions presented in Equations 4.5 into Equation 4.2 the

value of the LLR’s metrics for the symbols received from the public channel can be ex-

pressed as:

This is the soft metric associated to the kth redundant bit, associated to the sample Yrk at

the output of the classic channel.

LLR (Yrk) =
2Yrk

√
Eb

σ2
(4.6)

4.4.2 Quantum Communication System

Many practical scenarios can be consider when modeling a quantum channel: the trans-

mitted qubit can be associated to a single photon or a multi-photon, and different specific

quantum states can be transmitted over the quantum channel (coherent state, entangled

state, squeezed state, etc).

In this thesis, both single photon and multi-photon transmission will be considered when

characterizing the quantum communication system in the context of the proposed QKD

protocol. When referring to multi-photon transmission, coherent states will be consid-

ered, generated using weak laser pulses (WLP) sources.

4.4.2.1 Single-Photon Quantum Channel

When a single-photon is transmitted, the quantum channel can be modeled as a simple

binary channel with error probability equal to the quantum bit error rate (QBER) Q, as

shown in Figure 4.7.

Figure 4.7: Equavelent QKD channel composed of clasical AWGN and Quantum BSC

channel.

The expression for the Log-Likelihood metrics at the output of the quantum channel

represented by the model of Figure4.7 used as input for the soft-metric decoder, is given

by:
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LLR(Yqk) = log

[

P (Xqk = 1|Yqk)
P (Xqk = 0|Yqk)

]

= log

[

P (Yqk|Xqk = 1)

P (Yqk|Xqk = 0)

]

(4.7)

Denoting the k-th transmitted information bit as Xqk ∈ GF (2) = {0,1}, and the

received information bit as Yqk ∈ GF (2) = {0,1} Equation 4.7 can be rewritten as

follows:

LLR(Yqk) = log

[

P (Yqk = 1|Xqk)

P (Yqk = 0|Xqk)

]

=

{

log(1−Q
Q
, if Xqk = 1

log( Q
1−Q

, if Xqk = 0
(4.8)

It is also important to notice that the log-likelihoods (metrics) LLR(Yqk) can only

assume two values, and will therefore be referred to as hard metrics or q-metrics,while

the metrics from the public channel LLR(Yrk) can assume any real value, and are called

soft metrics.

Since these metrics must be jointly used and compared in the LDPC decoder they need

to be compatible and comparable. The equivalent QKD channel composed of classical

AWGN and Quantum BSC channel that will provide us the available bits and metric for

soft decoding can be shown in Figure 4.8.

Figure 4.8: Equavelent QKD channel composed of clasical AWGN and Quantum BSC

channel.
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4.4.2.2 Binary Input Multiple Output (BIMO) Quantum Channel

This section will describe the use of photon counting detectors which generate soft in-

formation at the output of a quantum channel as opposed to quantum binary symmetric

channel which leads to hard decision decoding.

Figure 4.9 represents a sketch of the binary communication scheme based on polarization

degree of freedom of a coherent state |α〉. The information bit k = {0,1} is encoded

by applying the unitary transformation U(φk) to the polarization degree of freedom of a

coherent state |α〉, which is assumed to be initially in the polarization state |+〉 = |H〉+|V 〉√
2

.

This technique is based on the use of a Phase Beam Splitter (PBS) and two photon coun-

ters. The scheme allows one to map the discrete bit value “k” to an optical polarization

quantum bit (or qubit), but at the detection stage can produce a discrete set of real num-

bers, which can also be expressed in the form of Log-Likelihood Ratios (LLR) which can

be used for soft information processing. A possible experimental setup is shown in Figure

4.9, where the polarization degree of freedom φk of a coherent state is associated to the

information bit “k” according to the following encoding rule:

Table 4.1: Encoding rule

k −→ φk

0 −→ π/4
1 −→ 3π/4

So that there is a phase shift of π/2 of the qubit associated with k = 0 relative to

the qubit associated with k = 1. The transformation U(φk) = exp(−φk

2
σ3) is then ap-

plied, where σ3 is the Pauli rotation matrix. This kind of transformation can be realized

by means of a potassium dihydrogen phosphate (KDP) crystal driven by a high voltage

generator and corresponds to change of the polarization from linear to elliptical.

At the detection stage a measurement of the phase shift of the qubit should be per-

formed. This can be implemented as depicted in Figure 4.9 by using a Half-Wave Plate

(HWP) placed in front of a Polarizing Beam Splitter (PBS) with two photon-counters pro-

viding the number of photons in the reflected and transmitted beams, denoted as n0 and

n1 respectively. Let n = n0+n1 denote the total number of detected photons. We assume

this is also the total number of transmitted photons (in the hypothesis that no photon is

lost), which is a Poisson distributed random variable with mean valueE [N ] = Nc = |α|2.
Notice that, due to the weak energy of the transmitted optical signal, the value of Nc is

typically small.

From the knowledge of the photon counts n0 and n1, the actual value of the phase shift

can be obtained by using the Bayesian estimator [34]
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Figure 4.9: The considered low-complexity photon-counting scheme.

φest =

∫ π

0

φpB(φ|n0,n)dφ = E {φ|n0,n} ,

where,

pB(φ|n0,n) = p(k=0|φ)n0p(k=1|φ)n1

N

= p(0|φ)n0p(1|φ)n−n0

N

(4.9)

is the probability density function of the received phase shift given the fact that n =
n0 + n1 photons have been received and n0 photons have been counted at the “k = 0”

output of the PBS. N is a normalization factor such that

∫ π

0

pB(φ|n0,n)dφ = 1,

This scenario generates the equivalent channel model with binary input (the random

variable k), and multilevel output (the couple of random variables n0,n1) shown in Figure

4.10, which will be discussed in what follows.

Evaluation of the Log-Likelihood Ratios

In soft-decoding algorithms, Log-Likelihood-Ratios are typically required, which, for the

channel model shown in Figure 4.10 can be defined as:

LLR(n0,n1) = log

[

p (k = 1|{n0,n1})
p (k = 0|{n0,n1})

]

(4.10)
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where,

p (k|{n0,n1}) = p (φk|{n0,n1}) k = 0,1 (4.11)

is the probability that the transmitted bit was ”k” given the measurement pair(n0,n1).

Using Baye’s theorem, Equation 4.10 can be rewritten as:

LLR(n0,n1) = log

[

p ({n0,n1} |k = 1)

p ({n0,n1}|k = 0)

]

(4.12)

Since coherent states are being used, the number of photons n0 and n1 measured at the

two detectors are uncorrelated and, in particular, are distributed according to a Poisson

statistic. Given φk, the average number N
(h)
k of photons of type k detected at the detector

“h” is given by the expression [33]:

N
(h)
k = Ncp(h|φk) h,k = 0,1 (4.13)

where Nc = |α|2 is the average number of photons of the input coherent state, and

p(0|φk) =
1

2

(

1 + e−∆2

cos (φk)
)

p(1|φk) =
1

2

(

1− e−∆2

cos (φk)
)

(4.14)

Figure 4.10: BIMO channel model of the considered system.

where, to make the analysis more general, it is assumed that during propagation, the

qubit undergoes a phase diffusion process whose amplitude is characterized by the pa-

rameter ∆ (the feasibility of this scheme and its experimental demonstration have been
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thoroughly investigated in [44]).

We have therefore:

p(n0,n1|k) = P (n0,N
(0)
k )P (n1,N

(1)
k ) (4.15)

P (l,N) =
e−NN l

l!
(4.16)

where, P (l,N) = e−NN l

l!
is the Poisson probability distribution. Then, substituting Equa-

Figure 4.11: Equavelent QKD channel composed of classical AWGN and Quantum

BIMO channel.

tion 4.16 into Equation 4.12 the following expression for the LLR can be easily obtained:

LLR(n0,n1) = (n0 − n1)log

(

pii
pij

)

(4.17)

where,

pii = P (0|φ0) = P (1|φ1) =
1

2

(

1 + e−∆2

cos(
π

4
)
)

pij = P (1|φ0) = P (0|φ1) =
1

2

(

1− e−∆2

cos(
π

4
)
)

= 1− pii
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The system described up to this point can be modeled as a Discrete Memoryless Chan-

nel (DMC), and more precisely a Binary Input-Multiple Output (BIMO) channel, with

binary input k and n+ 1 = n0 + n1 + 1 outputs (n0,n1) (where n is a Poisson distributed

random variable) as shown in Figure 4.10. The capacity of this channel is evaluated in the

next chapter.

Finally, the equavelent QKD channel composed of classical AWGN and Quantum BIMO

channel, which will give us the available bits and metric for soft decoding is shown in

Figure 4.11.
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Chapter 5

Capacity of Bayesian Inference

Quantum Channel employing Photon

counting detectors

In Chapter 4.4.2.2 the potential improvements in key transmission rate in a Quantum Key

Distribution (QKD) scheme whereby photon-counting detectors (PCD) are used at the

receiver were discussed. To take full advantage of such detectors, soft information is gen-

erated in the form of Log-Likelihood Ratios (LLRs).

In order to quantify the performance improvement may be achieved by such a detector,

we will determine the capacity of the corresponding optical channel, and the achievable

residual Bit Error Rate (BER) of practical communication schemes on such a channel.

From a telecommunication point of view, the presence of a photon counting detector pro-

vides the possibility of generating at the receiver a soft-metric (as opposed to a hard metric

which essentially indicates the presence or absence of a signal from an on/off detector)

that may be used in iteratively decoded forward error correcting codes.

The receiver introduced in [33] is based on an optical setup for one-parameter qubit gate

optimal estimation [34, 44], where the qubit is a polarization state of coherent states and

the one-parameter gate corresponds to a polarization transformation. In the ideal case,

orthogonal polarization states can be perfectly discriminated. However, in a realistic sce-

nario and especially in free-space communication, non-dissipative noises affecting light

polarization disturbs the orthogonality of the states at the receiver, thus requiring a suitable

detection and strategy for discrimination. It is worth noting that coherent states preserve

their fundamental properties when propagating in purely lossy channels, suffering only

attenuation, thus only the noise affecting the polarization is the most detrimental.

In this chapter the limits of the achievable performance gains when using photon counting

detectors are explored and compared to the case when such detectors are not available.

To this end, the classical capacity of the Bayesian inference channel is found, clearly

showing the potential gains that photon counting detectors can provide in the context of a
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realistic cost-effective scheme from an implementation point of view. While there are bi-

nary communication schemes that can achieve a higher capacity for a given mean photon

count at the receiver compared to the scheme presented here (e.g., the Dolinar receiver

[36]), most such schemes are complex and at times unrealistic from an implementation

point of view.

5.1 Capacity Evaluation

The quantum channel in d-dimensions is often modeled as a completely positive trace

preserving map Ψ . The most common channel model is the depolarizing channel which

depends on one parameter λ mapping a mixed state in Cd into:

ρ −→ λρ +
1− λ

d
I

where I is the d × d identity matrix. For a general quantum channel, let ε denote the

ensemble of input states, and M the measurement or a Positive Operator Valued Measure

(POVM){Ej} at the channel output. The input state ensemble, channel and measurement

together define a classical noisy channel with transition probabilities:

pnm = Tr [Ψ (ρn)Em]

Defining the probabilities over the input state, which we will denote as X , a natural defi-

nition of classical capacity of the quantum channel would be:

Cshan(Ψ ) = sup
ε,M

I(X ; Y )

where Y is the output state and I(X ; Y ) is the Shannon mutual information. The com-

plication in defining the capacity of the quantum channel in contrast with the classical

channel arises in connection with the purely quantum-mechanical effects, which have no

analogue in the classical domain, like for instance the entanglement. In particular, it is

reasonable to assume (which is in fact shown to be true) that the capacity of parallel copies

of a quantum channel with entangled inputs may be larger than the sum capacity of each

channel treated separately. It turns out that for the most common channel model, namely

the depolarizing channel, entanglement buys nothing.

The closest analogue of the binary communication scheme proposed here is the Binary

Phase Shift Keying (BPSK) using coherent states. It is well known that for such a scheme

the Dolinar receiver achieves nearly optimal results with capacity [41],citechap5d:

CBPSK−Dolinar = 1−H2

(

0.5
(

1−
√

1− e−4NC

))
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where, H2(.) is the binary Entropy function. This capacity is close to the ultimate

capacity obtained using an as yet unknown optimal receiver:

CBPSK−Ultimate = 1−H2

(

0.5
(

1 + e−2NC
))

The Dolinar receiver requires a complicated feedback system for its implementation,

hence there is significant difference in the level of the complexity with respect to a photon

counting receiver.

The discussion thus far has been general and focused on quantum channels as trace-

preserving maps. However a much more humble pursuit in can be adopted and that is

modeling an experimental setup using realistic off-the-shelf components, and specifically

calculating the traditional Shannon capacity of the link viewed as a probabilistic transi-

tion mechanism that maps input bits into possibly multi-level outputs used for detection.

In this sense, the channel is modeled as a Binary Input-Multilevel Output (BIMO) Dis-

crete Memoryless Channel (DMC) as previously shown in Figure 4.10, and our goal is

to contrast the capacity of a system employing photon counting detectors to that of the

equivalent Binary Symmetric Channel (BSC) resulting from reducing the photon counts

to presence or absence of signals (i.e., hard decoding).

As noted earlier, the sufficient statistic for detection with photon counting detectors is the

count difference of detector 1 and 0 in Figure 4.9, i.e., (n1 − n0) . The outputs of the two

counters are independently distributed Poisson random variables, i.e.

n1 ∼ Poisson, µ1 = N
(1)
k

n0 ∼ Poisson, µ0 = N
(0)
k

where,

N
(1)
k = Ncp(1|φk)

N
(0)
k = Ncp(0|φk)

N
(0)
k +N

(1)
k = Nc

As a consequence, the difference (n1 − n0) is Skellam distributed, and we have

P (n1 − n0 = m|φk) =

e
−
(

N
(1)
k +N

(0)
k

)

(

N
(1)
k

N
(0)
k

)m/2

I|m|

(

2

√

N
(1)
k N

(0)
k

)
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where, k = 0 or 1, and I|m|(.) is the modified Bessel function of the first kind and or-

der |m|. Note that m itself is an integer that can be positive or negative. Plugging known

values of the parameters, we get:

N
(1)
k

N
(0)
k

=
p(1|φk)

p(0|φk)

N
(1)
k N

(0)
k = N2

c p(1|φk)p(0|φk)

Specializing to the case ”0 is transmitted and is mapped to φ0” we get:

P (n1 − n0 = m|φ0) =

e−Nc

(√
2− e−∆2

√
2 + e−∆2

)m/2

I|m|

(

Nc

√

1− e−2∆2

2

)

similarly for the case “1 is transmitted and is mapped to φ1” :

P (n1 − n0 = m|φ1) =

e−Nc

(√
2 + e−∆2

√
2− e−∆2

)m/2

I|m|

(

Nc

√

1− e−2∆2

2

)

Let X be the random variable associated with the transmitted phase φk (or the transmitted

bit “k”) and Y be the channel output (i.e. our sufficient statistic (n1 − n0). Then, the

formulas above give us the channel transition probabilities for the considered DMC. Using

the classic definition of mutual information:

I(X ; Y ) = H(X)−H(X|Y )
and noting that the input is binary with p(X = 0) = p(φ0) = p, and p(X = 1) =

p(φ1) = 1− p, after some manipulation we have:

p(X = 0|Y = m) =
p

p(1− αm
∆) + αm

∆

p(X = 1|Y = m) =
1− p

p(1− αm
∆) + αm

∆
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where,

α∆ =
(
√
2 + e−∆2

)

(
√
2− e−∆2)

Finally, the conditional entropy based on two parameters, p and ∆ can be written as:

H(X|Y ) =
− e−Nc

∑

m

p.(α∆)
−(m/2)(Bm)log (p(X = 0|Y = m))+

− e−Nc
∑

m

(1− p).(α∆)
(m/2)(Bm)log (p(X = 1|Y = m))

where,

Bm = I|m|

(

Nc

√

1− e−2∆2

2

)

While the BIMO DMC is neither symmetric nor weakly symmetric, it is not difficult

to show that the maximizing input probability distribution is uniform. Hence, p = 0.5
maximizes the mutual information leading to channel capacity. To compare the capacity

of the link employing photon counting detector to that of a simple detector signaling the

presence or absence of signal, it needs to be specified that how such a detector behaves.

It is logical to assume that cross-over probability of the equivalent BSC (i.e. the raw Bit

Error Rate, denoted in the following as QBER) associated with such a receiver can be

obtained as:

QBER =
inf
∑

m=1

P (n1 − n0 = m|φ0) +
1

2
P (n1 − n0 = 0|φ0)

=

inf
∑

m=1

P (n1 − n0 = −m|φ1) +
1

2
P (n1 − n0 = 0|φ1)

(5.1)

Notice that when (n1− n0) = 0 (which for low values of Nc happens often), the detector

chooses at random between k = 0 and k = 1.

Figure 5.1 depicts the capacity of our BIMO DMC and its comparison to the equivalent

Binary Symmetric Channel (BSC) in case of hard decision decoding as a function of the

mean photon count Nc in the case the phase diffusion parameter ∆ is zero.

Figure 5.2 depicts the capacity of our BIMO DMC and its comparison to the equivalent

BSC in case of hard decision decoding as a function of the phase diffusion parameter ∆
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Figure 5.1: Classical capacity of BIMO DMC(solid curve) compared to the equivalent

BSC with transition probability QBER, as a function of mean photon count Nc.

for three different values of the mean photon count Nc.

It can be observed that the BIMO DMC channel offers a capacity improvement over the

equivalent BSC. This improvement could lead to a BER improvement when comparing

the two channels in presence of an error correction code, as it will be shown in chapter 7.

Figure 5.2: Classical capacity of BIMO DMC and equivalent BSC with transition proba-

bility QBER as a function of phase diffusion parameter ∆ for three different values of Nc

(solid line: Nc = 9, dash-dot line: Nc = 6, dash line: Nc = 3).

55



Chapter 6

LDPC Coding for QKD at Higher

Photon Flux Levels Based on Spatial

Entanglement of Twin beams in PDC

Twin beams generated by Parametric Down Conversion (PDC) exhibit quantum correla-

tions that has been effectively used as a tool for many applications including calibration

of single photon detectors. By now, detection of multi-mode spatial correlations is a ma-

ture field and in principle, only depends on the transmission and detection efficiency of

the devices and the channel. In [60], [62], [63], the authors utilized their know-how on

almost perfect selection of modes of pairwise correlated entangled beams and the opti-

mization of the noise reduction to below the shot-noise level, for absolute calibration of

Charge Coupled Device (CCD) cameras. The same basic principle is currently being con-

sidered by the same authors for possible use in Quantum Key Distribution (QKD) [[61],

[59]]. The main advantage in such an approach would be the ability to work with much

higher photon fluxes than that of a single photon regime that is theoretically required for

discrete variable QKD applications (in practice, very weak laser pulses with mean photon

count below one are used). The natural setup of quantization of CCD detection area and

subsequent measurement of the correlation statistic needed to detect the presence of the

eavesdropper Eve, leads to a QKD channel model that is a Discrete Memoryless Channel

(DMC) with a number of inputs and outputs that can be more than two (i.e., the channel

is a Multilevel DMC).

This chapter investigates the use of Low Density Parity Check (LDPC) codes for infor-

mation reconciliation on the effective parallel channels associated with the multi-level

DMC.
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6.1 Introduction

Parametric Down Conversion (PDC) is an effective means of producing entangled pho-

tons. The state produced by spontaneous PDC exhibits perfect momentum phase match-

ing for a plane wave pump field.

The state of a single bipartite transverse mode near degeneracy can be written as:

|ψ (~q)〉 =
∑

n

C~q (n) |n〉i,~q |n〉s, ~−q (6.1)

where, i stands for the idler and s stands for the signal beam. The two modes in Equation

6.1 are entangled in the number of photons in each pair of modes ±~q. Imaging the beams

in the far field of a thin lens of focal length f in a f −f arrangement as depicted in Figure

6.1, leads to an association of each mode to a unique position in the focal plane via the

mapping:
2cf

ωp
~q → ~x

Hence, a perfect correlation should be detected in the photon numbers ni,~x and ns,−~x

Figure 6.1: General block diagram of the experimental setup from [62].

where the center of symmetry relative to which the symmetric positions are identified is

the pump detection plane interception point. In reality, the pump field is not a perfect

plane wave, rather a Gaussian beam with spatial waist wp inducing an uncertainty in the

relative propagation direction of the twin photons on the order of the angular beam-width

of the pump. This uncertainty is the coherence area of the process roughly corresponding

to the transverse size of the mode in the far field and is given by:

Aωh ∼
[

2πcf

ωpwp

]2

The number of spatial modes observed over a detection area that is usually taken to be

much larger than the coherence area is given by Mspatial = Adet,j/Acoh, where j = i or
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s. Similarly, it is assumed that the detection time is much larger than the coherence time

hence the number of temporal modes Mt = Tdet/Tcoh is much larger than one. The total

number of modes in the detection region is Mtot = MspatialMt. The different modes in

a single region are independent and thus the statistics of the detected photons is multi-

thermal with mean value 〈Nj〉 = Mtotηjµ, where, j = i or s, µ is the number of photons

per mode, and ηj is the overall efficiency. The variance of the number of detected photons

is given by:

〈δ2Nj〉 = 〈Nj〉
(

1 +
〈Nj〉
Mtot

)

= 〈Nj〉 (1 + ε) =Mtotηjµ (1 + ηjµ) (6.2)

where ε is the excess noise defined as fluctuations that exceed the Shot Noise Limit (SNL).

The co-variance between the signal and idler photon numbers is given by:

〈δNiδNs〉 =Mtotηjηsµ (1 + µ) (6.3)

The correlation statistic between signal and idler is measured in terms of the fluctuations

of the difference N− = Ns −Ni normalized to the corresponding level of shot noise:

σ =
〈δ2N−〉

〈Ni +Ns〉
= 1− η+ +

η2−
4η2+

(

η+ +
〈Ns +Ni〉
Mtot

)

(6.4)

where, η+ = (ηs + ηi) /2 and η− = ηs − ηi. If the losses are perfectly balanced,

ηs = ηi = η and we get σ = 1 − η depending only on the quantum efficiency. In

the ideal case of perfect efficiency, indeed, σ → 0 while for classical states of light the

degree of correlation is bounded by σ ≥ 1 with the lower limit achieved by coherent

beams leading to σ = 1. The basic requirement on the size of the detection area is that

the number of speckles in the region far exceed the number on the perimeter. A pictorial

representation of this is depicted in Figure 6.2. The core idea of using the spatial en-

tanglement of twin beams for Quantum key Distribution (QKD) stems from the fact that

the correlation statistic generated on two symmetric regions in the CCD focal plane must

exhibit σ < 1. Eavesdropping by Eve will lead to increase in σ above one and is therefore

detectable. Indeed, the extent of interference by Eve may be measured by how much σ
has increased beyond its expected value. Depending on the extent of this interference,

the parties can decide to either continue generating a random key or halt the process all

together. Note that under ideal circumstances σ → 0, while practically, it is always above

zero but hopefully sufficiently below one to allow for secure communication to take place.

This is pictorially depicted in Figure 6.3. In reality, one cannot assert that eavesdropping

Eve will always lead to σ > 1. Even in the simplest situation, Eve can always reduce the

level of eavesdropping for having σ < 1, but then again the information she acquires will

be very small as well.

Eventually, disposing of ideal technologies, Eve can measure a certain number N of pho-

tons and reproduce it by a squeezed source in the photon number even post selected (e.g.,
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Speckle patterns. No. 

of speckles in 

detection area >> No. 

on perimeter. 

Figure 6.2: A detection region identified as a square on the upper right corner whereby

the condition that the number of speckles in the region is much larger than that on the

perimeter is satisfied.

a PDC sources), sending to Bob the signal only when she observes N Photons in the

heralding channel. However, if one could detect quantum correlations in the near field

and in the far field, this would correspond to having two conjugated bases. In this case,

only entanglement should provide strict correlation at the same time in the two measure-

ments, a situation that cannot be reproduced by Eve.

The process of generating a random key based on this core concept is as follows:

• Alice generates the twin beams via PDC and images one of the two beams on its

CCD array and launches the second beam towards Bob;

• both Alice and Bob are assumed to have achieved timing synchronization so they

know the start and end time of each firing of the laser pulses;

• the CCD detection area is partitioned into a number of smaller detection areas we

call super-pixels, say four equal sized regions, satisfying our basic requirement that

the detection area be much larger than the coherence area of the spatial modes;

• Alice and Bob make measurements on one reference quadrant (Alice and Bob’s

reference quadrants are at symmetric positions). Alice sends Bob her measurement

results that Bob uses to estimate σ based on his a-priori knowledge of system level

parameters and experimental setup uncertainties. Bob repeats the same process on

a different set of measurement so that Alice can obtain a similar statistic. If the

measured σ is acceptable by both parties, they continue with the protocol;

59



6 – LDPC Coding for QKD at Higher Photon Flux Levels Based on Spatial Entanglement of Twin beams in PDC

• assuming the measurements made on the reference quadrant in the previous step

indicated that impact of eavesdropping by Eve is tolerable, Alice and Bob make

measurements of the number of the detected photons in the other quadrants. A pair

of quadrants, one at Alice and one at Bob, that are in symmetric regions of their

CCDs focal plane represent a quantum channel between the two parties. In our

example, three of the four quadrants would be used and constitute three parallel

quantum channels that can be used to generate random keys;

• for each of the quantum channels described in the previous step, Alice and Bob

make a measurement of the number of their detected photons and use binning and

associate a unique label to their measurement. Ideally, for each quantum channel,

Alice and Bob obtain an identical sequence of labels in their measurement that

constitute a secret key. In practice, fluctuations in the number of measured photons

lead to discrepancies and the label sequence at Alice and Bob don’t match perfectly,

hence requiring Information Reconciliation (IR) and privacy amplification to lead

to distilled keys that can be used for cryptography.

Figure 6.3: Pictorial representation of the impact of eavesdropping by Eve on the mea-

sured correlation statistic.

6.2 Development of the Channel Model

The aim of this section is to outline in detail the process for generating the binary or

multilevel DMC channel model for each of the parallel quantum channels described in

the previous section. To this end, we need a detailed knowledge of the photon statistics
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in each detection area. As stated previously, the number of modes in a given detection

area is very large. The number of temporal modes is dependent on the duration of the

laser pulse width and the coherence time and is reported to be 5000 in [62]. The number

of spatial modes is dependent on the size of the detection area that carries a trade-off in

terms of the degree of the determination of the Center of Symmetry (CS), requiring a

small detection area, and visibility of the quantum correlation, requiring a large detection

area. The determination of the center of symmetry can be done with high resolution using

small pixels and then performing the experiment with larger pixels.

In the experimental setup presented in [62], the number of spatial modes is about 150.

Given the large number of detected modes, the statistic of the number of detected photons

in a given region is multi-thermal.For a single mode, the thermal distribution is geometric

with Probability Mass Function (PMF) P1 (n) = (1− ζ) ζn, where, the parameter ζ is

related to the mean of the geometric PMF λ via ζ = λ
1+λ

. The photons in different modes

are independent and therefore the PMF of the total number of detected photons in N
modes is the N-fold convolution of the geometric PMF and given by:

PN (k) =
(k +N − 1)!

k! (N − 1)!
(1− ζ)N ζk

The mean and variance of the photon number in this case is given by E [X ] = Nλ and

σ2
X = Nλ (1 + λ).

In each detection region, at either Alice or Bob, the number of photons are counted and

using a binning approach (i.e., multi-level quantization), the bin to which the number of

detected photons belong is identified and the associated symbol is assigned as a com-

ponent of a potential secret key. The Alice and Bob’s measurements on the symmetric

detection regions illuminated by the entangled twin beams may either result in identi-

cal bins, leading to identical symbols, or different bins leading to two different symbols.

The derivation of the channel model requires computation of the probability that a certain

number of photons is detected at Alice, and another number is detected at Bob. Once

this joint probability is known, the computation of the transition probabilities associated

with the resulting DMC modeling the behavior of a fictitious channel we may imagine

exists between Alice and Bob and causes discrepancies between their detected symbols

becomes straightforward.

The problem of determination of the number of detected photons at Alice and Bob is es-

sentially a bipartite detection problem. Let P (n) denote the probability of generation of

n photon-pairs at the source and let Bin (k|n,ζ) denote the binomial PMF:

Bin (k|n,ζ) = n!

k!(n− k)!
ζk(1− ζ)n−k

then the probability of detecting k photons at Alice and m photons at Bob is given by:

P (k,m) =
∞
∑

n=max(k,m)

P (n)Bin (k|n,ζA)Bin (k|n,ζB) (6.5)
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where, ζA and ζB are related to the mean of the geometric PMF for a single mode. Substi-

tuting PN (n) for P () in above expression we get the desired PMF of detecting k photons

at Alice and simultaneously m photons at Bob over our detection area.

6.3 Information Reconciliation

Alice and Bob need to be in possession of identical sequences of symbols before they can

proceed with privacy amplification and generate secure keys for encryption. Information

Reconciliation (IR) is the process of eliminating discrepancies that may exist in the se-

quences at Alice and Bob as much as possible. This is achieved, as seen in the previous

chapters, using error correction coding. The process is not perfect in that there is always

some residual symbol errors left leading to very low symbol and frame error rates. By

selecting a very low frame error rate threshold, one can almost guarantee that the symbol

sequences at Alice and Bob are identical with very high probability. Multitude of error

correction techniques are available for information reconciliation. Broadly speaking, we

can classify the available techniques into

I Forward Error Correction (FEC) techniques, and;

II interactive two-way coding schemes with feedback such as the CASCADE algo-

rithm.

Fundamentally from an information theoretic point of view , there is no advantage to two-

way interactive techniques (this is reinforced in light of the given symmetry of the problem

formulation presented in the introduction section). Either Alice or Bob could initiate an

information reconciliation protocol since their roles are perfectly interchangeable.

There are however some simple criteria one could apply in making the selection of a

suitable technique:

• the code must be systematic since the data block is what Alice and Bob have di-

rect access to, albeit, with possible discrepancies. As previously noted, there is no

channel per-se between Alice and Bob. We may view the discrepancy between their

symbol sequences as having been caused by a fictitious Q-ary DMC;

• any systematic FEC generates coded symbols that need to be communicated across

a classic public channel. We assume the encoding operation is performed at Alice

while decoding is performed at Bob;

• most modern decoding techniques rely on the use of soft-information processing

and this is what we shall assume as well. We have however, two separate channels

that lead to two different soft metrics that would need to be combined in decoding.

The fictitious channel between Alice and Bob is modeled as a Q-ary DMC, the real
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channel over which the coded symbols propagate is a public channel we assume to

be Gaussian.

Given the previous considerations, an LDPC FEC code has been selected for this ap-

plications, given its attractive performances and the availability of low-complexity soft-

decoding algorithms, as discussed in the previous chapters. As an initial simplified

Figure 6.4: The considered Q-ary channel model (Q = 4).

model we will consider a Q-ary DMC channel model (initially with Q = 4) as shown

in Figure 6.4, with input alphabet X = {xk}Qk=1 = {00,01,10,11} and output alphabet

Y = {yk}Qk=1 = {00,01,10,11}. We associate a binary labeling to the Q transmitted

symbols, and denote as pi the probability of having i bit errors in one transmitted Q-

ary symbol (i = 1,2), with the added hypothesis (justified by preliminary tests) that the

probability of having one bit error per symbol is independent on the position of the error

within the symbol. With reference to Figure 6.4 notice that, in the hypothesis of indepen-

dent equally likely transmitted bits, the equivalent bit error probability (i.e. the equivalent

Quantum Bit Error Rate - QBER) is

QBER = P (biterror) = p1 + p2 (6.6)

The Q-ary channel model in Figure 6.4 is used to transmit the k bits that compose the

cryptographic key. After the transmission of the key, and once the presence of Eve has

been excluded as described in Section 6.1, additional m redundancy bits are transmitted

on a parallel ideal Binary Symmetric Channel (BSC), so that the k information bits to-

gether with them redundancy bits represent a n = k+m bits codeword of a rateRc = k/n
code. Note that the above channel model is obtained from proper binning of the photon
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numbers at the transmitter and receiver (i.e., the intervals used to define the channel sym-

bols at input and output can be adjusted to get the transition probabilities that adhere to

the model above). At the receiver a soft metric LDPC decoder is employed, operating

according to a belief propagation strategy, with input soft metrics from the Q-ary channel

evaluated as:

LLR
(

yik
)

= log

(
∑

x∈x(0)i P (yk|x)
∑

x∈x(1)i P (yk|x)

)

(6.7)

where LLR (yik) is the Log Likelihood Ratio (LLR) of the ith bit of the received symbol

yk and x ()i are the symbols of X whose ith bit has weight w. Applying Equation 6.7 to

our channel model we obtain

LLR
(

yik
)

=







+log
(

1−p1−p2
p1+p2

)

, if yik = 0

−log
(

1−p1−p2
p1+p2

)

, if yik = 1
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Chapter 7

Performance results

In this thesis we have considered optical communication scenarios where low number

of photons are transmitted or detected. As described in the previous chapters these low

photon number communication can include both QKD and weak energy optical commu-

nication.

Therefore, in this chapter, the novel protocol for information reconciliation in QKD, and

error correction in the case of both QKD and weak energy optical communication are

validated by means of intensive software simulations under well defined scenarios.

7.1 Simulations Setup

In order to exemplify the performances of capacity achieving iteratively soft decoded

codes for the above mentioned applications, simulation results for the error rates achiev-

able with LDPC code of various rates as a function of various system parameters, such as

the quantum bit error rate QBER and mean photon count Nc will be presented.

QKD: For QKD application we have used the composite channel, which comprises of

a classical public channel and a private quantum channel as shown in Figure 7.1. The

public channel will be modeled as an AWGN channel with a high signal-to-noise ratio

(Eb/No)(since powerful coding is allowed on the public link and therefore possible errors

on this channel may be considered extremely rare). For private channel we considered

different secure quantum channels.

Furthermore, we assume that the information bits are transmitted on a private quantum

channel modeled as in Figure 4.7, Figure 4.10 or Figure 6.4, while the additional redun-

dancy bits are transmitted on a public channel, modelled as an Additive White Gaussian

Noise (AWGN) channel, as shown in Figure 7.1. A block of nq information bits plus the
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corresponding r redundancy bits generate one codeword of a block FEC code with rate:

Rc =
nq

nq + r

Weak Energy Optical Communication: For other low photon application we did the

simulation only on the quantum channel of Figure 4.7 or Figure 4.10 because it does not

need the parallel classical channel. In this case all the information and redundancy bits are

transmitted on a single channel. For these applications we have conducted the simulation

study using both LDPC and polar codes.

For the presentation of the simulation results, two figures will be used: the Bit Error

Rate(BER)and the Frame Error Rate(FER). A single frame is equivalent to a decoded

code block.

Figure 7.1: The composite channel (composed of the parallel secure and public channels)

linking transmitter and receiver in QKD applications.

7.2 Performance Results for Weak Energy Optical Com-

munication

In this section we will describe the performance results obtained through simulation of

different quantum channel models using capacity achieving iteratively decoded channel

codes, i.e., LDPC and polar codes. we used the channels as shown in Figure 4.7 and

Figure 4.10. The LLR’s which gives the soft information to the decoder for these channels

were computed in channel chapter 4. The description of the codes used was given in

chapter 3.

7.2.1 Performance with LDPC codes

First of all we would like to show the code gain that can be achieved by using error

correcting codes as compared to the case when there is no coding, and the performance
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gain is clearly visible in Figure 7.2. Figure 7.3 depicts two sets of simulation results.
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Figure 7.2: BER comparison for rate 0.61 LDPC(408,252) and rate 0.8 LDPC(1000,800)

versus uncoded Quantum BSC and BIMO channels as a function of QBER

Each pair of curves is associated with a residual Bit Error Rate (BER) and Frame Error

Rate (FER) curves. The LDPC code used for error correction is one with nq = 500,

r = 500 and code rate Rc = 0.5. The black pair (labeled “Q-BSC”) is for quantum

channel, modeled BSC with transition probability QBER. In this system, we assume the

receiver does not to use the additional information derived from the knowledge of n0

and n1 , and we use as equivalent channel model, a simple Binary Symmetric Channel

(BSC) with binary input X , binary output Y and cross-over probability QBER, (so that

P (Y = 0|X = 1) = P (Y = 1|X = 0) = QBER ), whose LLR values can be expressed

as Equation 4.7. The red pair (curves labeled “Q-BIMO”) is associated with the use of

a quantum channel modeled as a BIMO DMC as shown in Figure 4.10 with equivalent

un-coded bit error probability QBER and LLR metrics generated via photon counting

according to Equation 4.17. Notice that for the “Q-BIMO” curves the QBER parameter

is actually the cross-over probability of the equivalent BSC as defined in Equation 7.1 for

the BIMO channel.

QBER =

inf
∑

m=1

P (n1 − n0 = m|φ0) +
1

2
P (n1 − n0 = 0|φ0)

=

inf
∑

m=1

P (n1 − n0 = −m|φ1) +
1

2
P (n1 − n0 = 0|φ1)

(7.1)

As is evident from the results there is significant reduction in BER and FER. The Poisson

channel with soft metric performs much better than BSC channel with no soft informa-

tion. Figure 7.4 depicts three sets of simulation results. Each pair of curves is associated
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Figure 7.3: BER and FER performance of BSC and BIMO channels with LDPC code at

rate 0.5.

with residual Bit Error Rate (BER) and Frame Error Rate (FER) values after decoding.

LDPC codes with the following parameters have been considered:

(a) k = 500, r = 500 and code rate Rc = 0.5,

(b) k = 252, r = 156 and code rate Rc = 0.61,

(c) k = 750, r = 250 and code rate Rc = 0.75.

Again here the black pair (labeled “Q-BSC”) is for the the quantum BSC channel and red

pair (labeled “Q-BIMO”) is for BIMO DMC.

The blue curves represent the performance obtainable over a fictitious Additive White

Gaussian Noise (AWGN) channel model with a Signal to Noise Ratio (SNR) that would

yield the considered raw bit error probability QBER if a binary antipodal scheme were

used for data transmission (curves labeled as “Q-AWGN”). As is evident from the results

for the photon counting receiver, there is significant reduction in BER and FER values

when using, the appropriate BIMO channel model and the associated LLR metrics de-

rived in Equation 4.17 instead of the simpler BSC model (notice that the “Q-AWGN”

curves have been only derived for reference, since with the small number of considered

photons the AWGN channel model would not be appropriate).

The FER-BER performance show the improvement that can be achieved with the use of

the BIMO channel model and the associated LLR metrics. For instance in Figure 7.4a at

QBER = 0.1, there is more than three orders of magnitude improvement in BER and

FER when comparing the proposed soft-metric processing versus the reference protocol

whereby the quantum channel is a BSC. This is improvement in performance is the result

of soft decoding instead of hard decoding, because the Q-BIMO channel model provide
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(a) k = 500, r = 500 and Rc = 0.5 (b) k = 252, r = 156 and Rc = 0.61

(c) k = 750, r = 250 and Rc = 0.75

Figure 7.4: BER and FER simulation results for a LDPC code with a) k = 500,r = 500
and code rate Rc = 0.5, b) k = 252, r = 156 and code rate Rc = 0.6 1and c) k = 750,

r = 250 and code rateRc = 0.75, obtained with different models of the quantum channel:

BSC (Q-BSC curves), AWGN (Q-AWGN curves) and BIMO DMC (Q-BIMO curves)

the decoder with soft information, which is not available in the case of Q-BSC channel.

Figure 7.4b and Figure 7.4c compare the FER-BER performance of the considered chan-

nel models and LLR values with LDPC codes with rates 0.61 and 0.75, respectively. It

can be observed that a FER-BER improvement of up to several orders of magnitude can

be obtained in these cases as well. It can also be observed that at higher code rate, the

performances obtainable with the BIMO LLR soft-metrics gets closer to the performance

of the classic AWGN channel metrics (although, as mentioned before, the AWGN model

would not be applicable in the current case).
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Figure 7.5: BER simulation results for a LDPC code with code rate Rc = 0.5,0.61 and

0.75 obtained with different models of the quantum channel: BSC (Q-BSC curves), and

BIMO DMC (Q-BIMO curves)

Figure 7.6: BER simulation results for a LDPC code with code rate Rc = 0.5,0.61 and

0.75 obtained with different models of the quantum channel:AWGN (Q-AWGN curves),

and BIMO DMC (Q-BIMO curves)

Figure 7.5 compares the BER values obtained with the BSC and the BIMO channel mod-

els for different code rates, showing that as expected, for higher rates, a lower QBER
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values is required before significant coding gains can be observed.

From Figure 7.6, we can observe that the BIMO channel can be approximated with an

AWGN channel for high values of Nc, i.e. low values of QBER, while the AWGN model

yields unreliable results with a low mean number of photons Nc, i.e. with high QBER.

This effect is more evident with lower coding rates (as shown below, where the coding

gain becomes apparent at low values of Nc).

7.2.2 Performance with Polar codes

We also did some performance analysis through the simulation of polar codes for various

rates with block length N = 1024 for both BIMO and BSC channels. But here we will

present the results obtained through simulating rate 0.7 polar code. And we will compare

it to LDPC code with rate 0.75 and code length N = 1000.

Figure 7.7 shows the comparison of polar codes and LDPC codes for rate 0.7 using Q-BSC

channel. We have plotted BER and block error rate (BLER) with respect to QBER. We

can see that polar codes performs much better than LDPC on Q-BSC channel. Figure 7.8
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Figure 7.7: Polar codes vs LDPC for BSC at rate 0.7

shows the comparison of polar codes and LDPC codes for rate 0.7 using Q-BIMO chan-

nel. We have plotted BER and FER with respect to QBER. Here we can observe that

LDPC codes performance is quite better than polar code. This may be because polar

codes are channel specific codes and in the code construction process, we have design our

polar codes for BSC channel and then we use Gausian Approximation (GA) technique for

the construction of polar codes for BIMO channel using the same capacity as of BSC.
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Figure 7.8: Polar codes vs LDPC for BIMO at rate 0.7

7.3 Performance Results for QKD

In this section we will describe the performance result obtained by using LDPC codes

for the QKD protocol described in Section 4.The LDPC decoder uses belief propagation

techniques, the values of the soft-metrics (LLRs) derived from the two sub-systems that

form the composite communication channel, are calculated according to the schemes se-

lected to model each one of them. The bit values and the LLRs values after the quantum

and the classical transmission should be passed as an input to the decoder. The number of

iterations for decoding can be selected as well as the minimum number of errors the user

intends to correct. The parity matrix of the LDPC code used in the simulations is chosen

from a set of suggested codes.

In Figure 7.9, the performance of two LDPC codes with rates 0.5 and 0.61 are shown

and compared. we can see that by increasing the code rate BER performances becomes

worst, that is because more information travels on the quantum channel which has high

bit error rate. On the others side the security of QKD increases, since a lower fraction of

bits are revealed on the classic public channel. This results leads us to the conclusion that

we need to use higher rate codes in order to make the QKD protocol more secure. For

this purpose we have done simulation with different high rate codes.

We did the performance analysis of soft metric based QKD protocol using higher rates

codes i.e., LDPC code with rate 0.61 and 0.75 for the composite QKD channel, where for

private channel we used three types of quantum channels: BSC,AWGN and BIMO, the

results are depicted in Figure 7.10 and Figure 7.11.

It is clear from both of these figures that even in the case of QKD, the soft decoding

because of the soft information that photon counting detectors provide, improves the per-

formance. We can see that the BER and FER is much better for Q-BIMO curves (red)
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Figure 7.9: BER and FER performance of two LDPC codes with block length n = 504
and Rc = 0.5 and n = 408 and Rc = 0.61, respectively, as a function of the private

channel QBER.

Figure 7.10: BER and FER performance of LDPC codes with block length n = 408 and

Rc = 0.61, respectively, as a function of the private channel QBER, obtained with dif-

ferent models of the quantum channel: BSC (Q-BSC curves), AWGN (Q-AWGN curves)

and BIMO DMC (Q-BIMO curves).

than Q-BSC curves (black).

Figure 7.12 shows the residual BER on the BIMO channel for different values of mean

photon count Nc. The fact is that as Nc increases QBER decreases and vice versa. so, as

the mean photon count increases the performance improves.

All of the above results were based on the use of 2 level quantum system (i.e., Qubits).
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Figure 7.11: BER and FER performance of LDPC codes with block length n =
1000,nq = 750and Rc = 0.75, respectively, as a function of the private channel QBER,

obtained with different models of the quantum channel: BSC (Q-BSC curves), AWGN

(Q-AWGN curves) and BIMO DMC (Q-BIMO curves

Figure 7.12: BER simulation results for a LDPC code with code rate Rc = 0.5,0.61 and

0.75 obtained with BIMO channel for different values of Nc

Multilevel quantum system (i.e., Qudits) were also considered and an example of 4 level

system as shown in Section 6.3 Figure 6.4 was simulated.

A rate 0.8 (1000,800) LDPC code has been applied to perform IR on the scheme

described in Section 6.3 selecting, for the same overall QBER, different values of p1
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Figure 7.13: BER performances of a (1000,800) binary LDPC over the Q-ary channel in

Figure 6.4 for (2) p1 = (QBER)2 , (3) p1 = (QBER)2/2 and (4) p1 = QBER/2 as

a function of QBER, compared with (1) a BSC with transition probability QBER. In (2),

(3) and (4) p2 = QBER − p1 .

Figure 7.14: Efficiency with LDPC codes for different coding rates. The red continuous

line is a graphical lower bound of the efficiency of the CASCADE IR algorithm.
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and p2 . The decoded Bit Error Rate (BER) performances shown in Figure 7.13 have

been obtained by Montecarlo simulation, showing that the decoded BER depends on the

overall QBER value and not on how the error probability is distributed on the first and

second bit of the Q-ary channel. This proves, in practice, that with the considered binary

FEC LDPC codes the use of a Q-ary channel is equivalent to log2(Q) successive uses of

a BSC with the same value of QBER.

LDPC codes with different rates have then been simulated, obtaining the efficiency of the

considered information reconciliation scheme. The efficiency, defined as [64]

ǫ =
1− Rc

H(X|Y ) =
1− Rc

RcH2(QBER)
(7.2)

is shown in Figure 7.14, where the considered codeword lengths n are always smaller or

equal to 1000. It can be noticed that the proposed scheme allows to achieve efficiency

values better than the CASCADE algorithm with reasonable complexities, proving the

effectiveness of the proposed scheme.
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Chapter 8

Conclusion

In this thesis we have considered the applications of Optical/Quantum communication

where low number of photons are used. For these kind of applications the receiver sen-

sitivity is very important in order to decode the information bit. single photon detectors

technology is the underlying technology for these applications, which offers the required

sensitivity. These application may include Quantum key distribution (QKD), quantum

communication under extreme(stressed) environment and Low probability of intercept

optical communication. For all these applications the use of photons(light) have been

considered because of its underlying advantages.

In any Quantum Key Distribution system, Alice and Bob may use one of two types of rec-

onciliation, in order to preserve the integrity and security of their keys. The first type is

interactive reconciliation, which consists of two-way interaction between Alice and Bob

over a public classical channel for the detection and correction of errors. The second type

of interaction is one-way reconciliation in which a decision is made beforehand regarding

how errors are detected and corrected. Considering the fact that, one-way protocols, by

their nature, tend to reveal less information over the public channel than interactive pro-

tocols where possibly many messages are openly passed back and forth, in this work a

novel information reconciliation and data sifting protocol has been proposed, which uses

Forward Error Correction (FEC), minimizing the exchange of information related to the

secret key that needs to be sent back and forth using the public channel. This protocol, is

based on soft decoding of LDPC codes with mixed-metric inputs, where the information

derived from a private quantum channel and a classic public channel are jointly used for

decoding. The performance of the proposed methods has been studied by simulation, and

the effects of the various system parameters have been considered.

The suggested algorithms can be applied to QKD schemes based both on Single Photon or

WLP sources, with or without decoy states. The difference among the different schemes

is the use of different channel metrics. However, independently from the scheme used,

the protocol allows both parties involved in a quantum key distribution to identify a sifted

secret key with minimum information exchange and reduced computational costs.
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Specifically, in this thesis, the gains that can be achieved in the secret key rates of a QKD

protocol and the performance improvement in other low photon communication scenar-

ios, from the use of more advanced receivers employing photon counting detectors have

been explored, motivated by the fact that the the presence of such detectors allows for the

generation of soft-metrics at the receiver. Within the context of this system, a multi-level

quantum channel BIMO Quantum-DMC has been identified and the evaluation of its the-

oretical capacity bound has been calculated.

The BIMO Quantum-DMC offered a capacity improvement over the equivalent BSC

quantum channel (leading to a BER improvement when comparing the two channel in

presence of an error correction code), translating in a significant reduction of the values

of the BER and FER for several QBER values; meaning that a significant larger portion

of the data after the stages of sifting and reconciliation may be kept There has been much

interest in quantum key distribution.

Experimentally, quantum key distribution over 150 km of commercial Telecom fibers and

over 144 km in atmosphere has been successfully performed. The crucial issues in quan-

tum key distribution are the security and the key rate. All recent experiments are, in

principle, insecure due to real-life imperfections. However with the use of methods like

decoy states, it is possible to make most of those experiments by using essentially the

same set-up. Since the security aspect seems to be improved by the use of such methods,

it is becoming more and more important to obtain elevated key rates from QKD systems to

keep up with the high rates of practically any telecommunication system, this way secure

data transmission may be guarantee by using one time pad encryption algorithms.For this

reason we have use high rate code and obtained the performance in terms of such codes.

This thesis also offers a preliminary investigation on the use of FEC LDPC codes for

information reconciliation when the underlying channel is a Q-ary DMC, for QKD ap-

plications based on higher photon flux levels with spatial entanglement of twin beams in

PDC, and shows that acceptable error reconciliation efficiency values are obtained with

reasonable complexity.

Polar codes have been designed and used for error correction of both single photon

communication(Quantum-BSC) and WLP communication(BIMO Quantum-DMC) chan-

nels with the use of soft decoding. And its performance have been reported.

In general, the availability of the soft-metric allows for the use of advanced iterative soft-

decoding techniques during the information reconciliation phase, significantly reducing

the residual bit and frame error rates with subsequent impact on the achievable secret key

rates which is, as said before, is one of the fundamental performance guideline in QKD.

The proposed protocol, while having a negligible cost, can reduce the residual FER in

QKD systems, largely reducing the interaction required between the two parties involved,

increasing the key rate and protecting the secrecy of the information exchanged
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