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a b s t r a c t

The static response of beam structures to inertial loads is investigated in this work. Refined beam models are adopted for the analyses due to the 
ineffectiveness of classical theories in dealing with three-dimensional (3D) phenomena. The Carrera Unified Formulation (CUF) has therefore been used to 
develop higher-order beam theories without the need of any ad hoc assumptions on the kinematics of the model. According to CUF, the 3D displacement 
field is expressed as the expansion, above the beam cross-section, of the generalized displacements, which lie along the beam axis. Different classes of 
refined one-dimensional (1D) models can be formulated, depending on the cross-sectional functions used for the expansion of the generalized unknowns. 
The weak form of the principle of virtual displacements is used in this paper and 1D finite element (FE) arrays are written in the form of fundamental 
nuclei, which do not depend on the class of the beam theory. Both closed and open thin-walled beams are considered in the proposed analysis, and the 
effects of uniform as well as arbitrarily distributed load factors are investigated. Non-structural masses are also contemplated. The results are compared 
with those obtained using solid finite elements from a commercial FE code. Attention is focussed on the need to adopt refined models because of the 
inability of classical beam theories to foresee cross-sectional deformations, shear effects, and bending-torsion couplings caused by non-symmetric inertial 
fields.

1. Introduction

In engineering practice, problems involving inertial loads and
non-structural masses are of special interest. An important exam-
ple is that of aerospace engineering. In aeronautical structure 
design, applied loads are, in fact, usually prescribed in terms of load 
factors, whereas non-structural masses are commonly used in 
finite element (FE) models to incorporate the weight of the engines 
and fuel. Moreover, non-structural mass distributions are 
occasionally employed to tune the inertial properties of the one-
dimensional (1D) “stick” models of wings. Simplified 1D models are 
preferred in preliminary analyses in many fields of engineering due 
to their computationally efficiency and ease of use. However, it is 
well known that classical beam theories are not suitable for those 
problems that involve cross-sectional deformations, shear, and 
torsional effects, such as in the case of non-homogeneous 
distributions of acceleration fields. A brief overview of on classical 
and refined beam theories is given hereafter.

The classical and best-known beam theories are those by Euler 
[1] – hereafter referred to as EBBM – and Timoshenko [2,3] –

hereafter referred to as TBM. The former theory does not account 
for transverse shear deformations, whereas the latter assumes a 
uniform shear distribution along the cross-section of the beam, 
together with the effects of rotatory inertia. These models yield 
reasonably good results when slender, solid section, homogeneous 
structures are subjected to bending. However, the analysis of deep, 
thin-walled, open section beams may require more sophisticated 
theories to achieve sufficiently accurate results, see [4]. Over the 
last century, many refined beam theories have been proposed to 
over-come the limitation of classical beam modelling. Different 
approaches, including the introduction of shear correction factors, 
the use of warping functions based on de Saint-Venant's solution, 
the variational asymptotic method (VAM), the generalized beam 
theory (GBT), and others have been used to improve beam models. 
A general review of beam modelling, in which static, buckling, free-
vibration and wave propagation analyses are taken into account, 
w a s p r o p o s e d b y K a p a n i a  a n d R a c i t i [5,6]. S o m e 
s e l e c t i v e  r e f e r e n c e s  and noteworthy contributions are 
discussed briefly b e l o w .

The early investigations focused on the use of appropriate shear 
correction factors to increase the accuracy of classical 1D formula-
tions, see, for example, Timoshenko and Goodier [7], Sokolnikoff 
[8], Stephen [9], Hutchinson [10], and the recent work by Nguyen 
et al. [11]. However, a review paper by Kaneko [12] and a recent 
paper by Dong et al. [13], have highlighted the difficulty of defining 
a universally accepted formulation for shear correction
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factors. Another important class of refinement methods reported in 
the literature is based on the use of warping functions. The 
contributions by El Fatmi [14,15], Ladevèze et al. [16], and Ladevèze 
and Simmonds [17] are some excellent examples. The asymptotic 
type expansion, in conjunction with variational meth-ods, was 
proposed in the work by Berdichevsky et al. [18], in which a 
noteworthy review of previous works on beam theory develop-
ments is also given. Some recent valuable contributions on VAM 
are those by Rajagopal and Hodges [19], Wang and Yu [20], Yu and 
Hodges [21,22], and Kim and Wang [23]. The generalized beam 
theory was originally proposed by Schardt [24,25]. GBT improves 
classical theories through the use of a piece-wise beam description 
of thin-walled sections. GBT has been widely employed and 
extended in various forms by Silvetre [26], Nunes et al. [27], 
Silvestre and Camotim [28], and De Miranda et al. [29].

The response analysis of beam structures to load factors via 
higher-order theories is addressed in this paper. To the best of the 
authors’ knowledge, a lack of papers on the static analyses of beams 
under arbitrary acceleration fields through refined models exists in 
the literature. This kind of analysis, in fact, requires the adoption of 
refined models, because of the inadequacy of EBBM and TBM 
theories to deal with non-classical effects. The Carrera Unified 
Formulation (CUF) is used in the present work to develop higher-
order beam models, without the need of a priori kine-matics 
assumptions. CUF was initially devoted to refined plate and shell 
theories, see [30–32]. In recent works [33,34], CUF has been 
extended to beam modelling. Two classes of CUF 1D models have 
been proposed: the Taylor-expansion class, hereafter referred to as 
TE, and the Lagrange-expansion class, hereafter referred to as LE. TE 
models exploit N-order Taylor-like polynomials to define the 
displacement field above the cross-section with N as a free 
parameter of the formulation. The capacity of CUF TE models to 
deal with arbitrary geometries, thin-walled structures and to 
identify local effects is well known for both static [35,36] and free-
vibration analyses [37–39]. The LE class is based on the use of 
Lagrange-like polynomials to discretize the cross-section 
displacement field. LE models have only pure displacement 
variables. Static analyses of isotropic [40] and composite structures 
[41] have revealed the capacity of LE models to deal with open 
cross-sections, arbitrary boundary conditions and to obtain layer-
wise descriptions of the 1D model. LE models have recently been 
adopted successfully for the component-wise analysis of 
aeronautical structures [42,43] and civil engineering constructions 
[44,45].

Both TE and LE refined 1D models are used in this work and a
finite element approximation is adopted along the beam reference
axis to carry out the analysis of structures with arbitrary cross-
section geometries and loading conditions. The FE approach can be
used, in conjunction with CUF, to formulate stiffness matrices, load
vectors derived from arbitrary acceleration fields, and non-
structural masses in terms of fundamental nuclei, which do not
depend upon either the order or the class of the beam theory that
is implemented. Both open and closed homogeneous isotropic
thin-walled structures subjected to inertial loads are analysed
through the proposed methodology and the results are compared
with those obtained using the MSC Nastran& commercial finite
element method (FEM) code.

2. The 1D unified formulation

The notation assumed in this paper is hereinafter introduced. 
The adopted coordinate frame is presented in Fig. 1. Let u be the 
transposed displacement vector:

uðx; y; zÞ ¼ fux uy uzgT ð1Þ

In the framework of the CUF, the displacement field above the
cross-section is the expansion of generic functions, Fτ ,

uðx; y; zÞ ¼ Fτðx; zÞuτðyÞ; τ¼ 1;2;…;M ð2Þ
where Fτ vary over the cross-section. uτ is the displacement vector
and M stands for the number of terms of the expansion. According
to the generalized Einstein notation, the repeated subscript, τ,
indicates summation. The choice of Fτ determines the class of the
1D CUF model that has to be adopted. TE (Taylor expansion) 1D
models are based on polynomial expansions, xi zj, of the displace-
ment field above the cross-section of the structure, where i and j
are positive integers. For instance, the displacement field of the
second-order (N¼2) TE model is expressed by

ux ¼ ux1 þxux2 þzux3 þx2ux4 þxzux5 þz2ux6

uy ¼ uy1 þxuy2 þzuy3 þx2uy4 þxzuy5 þz2uy6

uz ¼ uz1 þxuz2 þzuz3 þx2uz4 þxzuz5 þz2uz6 ð3Þ
The order N of the expansion, which can be set as an input of the
analysis, is arbitrary and it defines the beam theory. Classical
EBBM and TBM beam theories can be obtained as special cases of
the linear

fi

(N¼1) TE model as shown in [34].
The re ned TE models described above are characterized by 

degrees of freedom (displacements and N-order derivatives of 
displacements) with a correspondence to the axis of the beam, see 
Fig. 2. The expansion can also be made by using only pure 
displacement values, e.g. by using Lagrange polynomials as cross-
section functions Fτ. This class of CUF models, which is referred to 
as LE (Lagrange expansion), was recently introduced in [40], where 
triangular three- (L3) and six-node (L6) elements as well as 
quadrilateral four- (L4), nine- (L9) and 16-node (L16) elements 
were used to discretize the displacement unknowns on the cross-
section of beam structures. In this paper, L9 polynomials are used. 
In the case of an L9 element the interpolation functions are given 
by

Fτ ¼ 1
4
ðr2þrrτÞðs2þssτÞ; τ¼ 1;3;5;7

Fτ ¼ 1
2
s2τ ðs2�ssτÞð1�r2Þþ1

2
r2τ ðr2�rrτÞð1�s2Þ; τ¼ 2;4;6;8

Fτ ¼ ð1�r2Þð1�s2Þ; τ¼ 9 ð4Þ
where r and s vary from �1 t o  þ1, whereas rτ and sτ are the 
coordinates of the nine points whose locations in the natural 
coordinate frame are shown in Fig. 3. The displacement field given
by an L9 element is therefore

ux ¼ F1ux1 þF2ux2 þ⋯þF9ux9

uy ¼ F1uy1 þF2uy2 þ⋯þF9uy9

uz ¼ F1uz1 þF2uz2 þ⋯þF9uz9 ð5Þ
where ux1 ;…;uz9 are the displacement variables of the problem
and represent the translational displacement components of each
of the nine points of the L9 element. The beam model can be
further refined by discretizing the beam cross-section with a

x

z

y

Fig. 1. Coordinate frame of the beam model.
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number of L-elements as shown in [40]. For instance, different 
cross-sectional meshes in the case of a square section beam are 
shown in Fig. 2b–d.

2.1. Finite element formulation

The FE approach is adopted to discretize the structure along the
y-axis. This process is conducted via a classical finite element
technique, where the displacement vector is given by

uðx; y; zÞ ¼ Fτðx; zÞNiðyÞqτi ð6Þ
Ni stands for the shape functions and qτi for the nodal displace-
ment vector,
qτi ¼ fquxτi quyτi

quzτi
gT ð7Þ

For the sake of brevity, the shape functions are not reported here. They 
can be found in many books, for instance in [46]. Elements with four 
nodes (B4) are adopted in this work, i.e. a cubic approximation along 
the y-axis is assumed. The choice of the cross-section dis-
c r e t i z a t i o n f o r t h e L E c l a s s 
( i . e . t h e c h o i c e o f  t h e t y p e ,  t h e n u m b e r 
and the distribution of cross-section elements) or the theory order, N, 
for the TE class is completely independent of the choice of the beam 
finite element to be used along the axis of the beam.

The stiffness matrix of the elements and the external loadings
vector are obtained by means of the principle of virtual displace-
ments

δLint ¼
Z
V
ðδϵTrÞ dV ¼ δLext ð8Þ

where Lint stands for the strain energy, Lext is the work of the
external loadings and δ stands for the virtual variation. ϵ and r are

the strain and stress vectors, respectively. The virtual variation of
the strain energy is rewritten using the constitutive laws, the 
linear strain-displacement relations and Eq. (6)

δLint ¼ δqT
τiK

ijτsqsj ð9Þ
where Kijτs is the stiffness matrix in the form of the fundamental
nucleus. The derivation of the FE fundamental nucleus of the
stiffness matrix is not repeated here for the sake of brevity, but it is

given in [34], where more details about CUF can also be found. 
However, the components of the matrix Kijτs are given in the
following in the case of isotropic material:

Kijτs
xx ¼ ðλþ2GÞ

Z
Ω
Fτ;x Fs;x dΩ

Z
l
NiNj dyþG

Z
Ω
Fτ;z Fs;z dΩ

Z
l
NiNj dy

þG
Z
Ω
FτFs dΩ

Z
l
Ni;yNj;y dy

Kijτs
xy ¼ G

Z
Ω
FτFs;x dΩ

Z
l
Ni;yNj dy

Kijτs
xz ¼ λ

Z
Ω
Fτ;x Fs;z dΩ

Z
l
NiNj dyþG

Z
Ω
Fτ;z Fs;x dΩ

Z
l
NiNj dy

Kijτs
yx ¼ G

Z
Ω
Fτ;x Fs dΩ

Z
l
NiNj;y dy

Kijτs
yy ¼ G

Z
Ω
Fτ;z Fs;z dΩ

Z
l
NiNj dyþG

Z
Ω
Fτ;x Fs;x dΩ

Z
l
NiNj dy

þðλþ2GÞ
Z
Ω
FτFs dΩ

Z
l
Ni;yNj;y dy

Kijτs
yz ¼ G

Z
Ω
Fτ;z Fs dΩ

Z
l
NiNj;y dy

Kijτs
zx ¼ λ

Z
Ω
Fτ;z Fs;x dΩ

Z
l
NiNj dyþG

Z
Ω
Fτ;x Fs;z dΩ

Z
l
NiNj dy

Kijτs
zy ¼ G

Z
Ω
FτFs;z dΩ

Z
l
Ni;yNj dy

Kijτs
zz ¼ ðλþ2GÞ

Z
Ω
Fτ;z Fs;z dΩ

Z
l
NiNj dyþG

Z
Ω
Fτ;x Fs;x dΩ

Z
l
NiNj dy

þG
Z
Ω
FτFs dΩ

Z
l
Ni;yNj;y dy ð10Þ

where G and λ are the Lamé's parameters. If Poisson's ratio ν and
Young modulus E are used one has

G¼ E
2ð1þνÞ and λ¼ νE

ð1þνÞð1�2νÞ
The fundamental nucleus has to be expanded according to the

summation indexes τ and s in order to obtain the elemental
stiffness matrix. It should be noted that Kijτs does not depend

(-1, 1)

(-1, -1)

(1, 1)

(1, -1)

(0, 1)

(0, -1)

)0 ,1()0 ,1-(
(0, 0)

r

s

1 2 3

4

567

8 9

Fig. 3. Cross-sectional L9 element.

TE model:
N=1 (9  DOFs)
...
N=3 (30 DOFs)
...

LE model,
1x1 L9 discretization
(27DOFs)

LE model,
1x2 L9 discretization
(45DOFs)

LE model,
2x2 L9 discretization
(75DOFs)

Fig. 2. Differences between the TE and LE models.
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either on the expansion order or on the choice of the Fτ expansion
polynomials. These are the key-points of CUF which allows, with
only nine FORTRAN statements, the implementation of any-order
of multiple class theories.

The loadings vector which is variationally coherent to the
model can be derived with relative ease in the case of a generic
concentrated load P acting on the application point ðxp; yp; zpÞ:
P¼ fPux Puy Puz gT ð11Þ

Any other loading condition can be similarly treated. The virtual
work due to P is

ð12ÞδLext ¼ δuT P

After using Eq. (6), Eq. (12) becomes

δLext ¼ FτNiδqT
τiP ð13Þ

where Fτ and Ni are evaluated in ðxp; zpÞ and yp, respectively. The
last equation allows the identification of the components of the
nucleus which have to be loaded, that is, it allows the proper
assembling of the loading vector by detecting the displacement
variables that have to be loaded. In the next section, the attention
is focussed on the special case of inertial loads.

2.2. Load factors and non-structural masses in the framework of CUF
theories

When using classical beam theories, translational as well as
rotational load factors are usually applied with respect to the
reference axis – or with respect to the shear axis if transverse
stresses are also included. In this paper, the capability of the
present refined beam models to take into account the effects due
to 3D distributions of inertial loads is investigated. Let the
following acceleration field be applied to the structure:

€u0ðx; y; zÞ ¼ f €ux0 €uy0
€uz0 gT ð14Þ

The virtual variation of the external work, δLext , due to the
acceleration field €u0 is given by

δLext ¼
Z
V
ρδuT €u0 dV ð15Þ

where ρ is the density of the material. Eq. (6) is substituted into Eq. 
(15). It reads

δLext ¼ δqT
τi

Z
Ω
ρFsFτ

Z
y
NiNj dy

� �
dΩ

� �
€qsj0

ð16Þ

where the term between square brackets is the fundamental
nucleus of the mass matrix Mijτs. The virtual variation of the
external work is therefore written as

δLext ¼ δqT
τi M

ijτs €qsj0
¼ δqT

τiP
iτ
ine ð17Þ

where Piτ
ine is the nucleus of the loading vector due to the

acceleration field.
€In the present work, rigid rotational accelerations θ0 are also 

applied in order to provide comparisons with classical analyses. In 
this case, the loading vector is computed as above and by 
considering the acceleration field of Eq. (14) as

€θu€ 0 ¼ 0 � R ð18Þ where R is the distance vector between the center 
of the rotation and the loaded cross-sectional point in the case of LE 
models. In the case of TE models, the rigid rotational accelerations 
are directly applied to the degrees of freedom uz2 and ux3 (see Eq. 
(3)), which are responsible for the rigid rotation of the cross-
section about the y-axis. However, it should be underlined that 
arbitrarily 3D distributed accelerations can be applied for both TE 
and LE.

In the present paper, the effect due to non-structural masses is
also investigated. The non-structural masses can, in principle, be
arbitrarily placed into the 3D domain of the beam structure. In the
framework of the CUF, this is realized by adding the following term
to the fundamental nucleus of the mass matrix:

mijts ¼ I½Fτðxm; zmÞFsðxm; zmÞNiðymÞNjðymÞ� ~m ð19Þ
where I is the 3�3 identity matrix and ~m is the non-structural
mass applied at point ðxm; ym; zmÞ.

3. Numerical results

The proposed beam formulation when dealing with load
factors and non-structural masses is evaluated in this section
and the results are compared with classical beam theories and
solid FE models from the commercial code MSC Nastran&. Various
homogeneous cross-section geometries made of an isotropic
material are analyzed. The material adopted is an aluminium alloy
and it has the following characteristics: Young modulus, E, equal to
75 GPa; Poisson ratio, ν, equal to 0.33 and density ρ¼ 2700 kg=m3.
Unless differently specified, 10 B4 elements were used along the
beam axis in the case of CUF models. The capability of the present
1D CUF theories to deal with refined solutions is demonstrated.
Particular attention is focussed on the response to load factors of
both closed and open thin-walled beams.

3.1. C-section beam

The analysis of a cantilever C-shaped beam was carried out as
the first assessment. The cross-section of the structure is shown in
Fig. 4

t
. The geometrical data are as follow

L 
s: b¼0.5 m, a ¼ h ¼ 2b

and ¼0.1 m. The length of the beam, , is equal to 20 m. An
inertial load was uniformly applied to the whole structure. The
magnitude of the applied acceleration was equal to 1g, with g the
gravitational acceleration constant. The load was directed towards
the negative direction of the z-axis.

Table 1 shows the maximum value of the vertical displacement,
which is measured at ð0; L;hÞ. Classical theories, EBBM and TBM,
are given in the first rows for comparison purposes. Results by TE
models from quadratic (N¼2) to high-order polynomials (N¼9)
are considered. As far as the LE model is concerned, six L9
elements were used on the cross-section as shown in Fig. 5. Last 
rows of Table 1 contain the results by solid models from MSC
Nastran&, which were obtained by using 8-node CHEXA elements.
In particular, Solid A model was built with a mesh having the same
nodes layout and the same number of degrees of freedom (DOFs)
of the LE model. On the other hand, Solid B had a finer finite

z

x

h

a

b

t

Fig. 4. Cross-section of the C-shaped beam.

4



element mesh. In the third column of Table 1, the number of DOFs 
is also given for each model implemented. The following com-
ments can be made:

� Classical beam theories are not effective in analysing the
mechanical behaviour of the C-shaped thin-walled beam
undergoing an uniform acceleration load; cross-section in-
plane distortions are, in fact, neglected by EBBM and TBM.

� Increasingly accurate results are obtained as the theory-order
(N) for TE models rises. However, Table 1 shows that 
higher-order TE models give errors ranging from 28% 
(N¼2) to 5%(N¼9) with respect to the solid solution.

� The proposed LE model is able to detect the MSC Nastran& solid
result.

� If displacements are compared, the proposed LE model seems
to not improve solid models in terms of computational costs for
the problem under consideration. In fact, displacement results
by the 6 L9 model and Solid A are comparable.

Table 1
Maximum value of the vertical displacement, uzðmÞ, at ð0; L; hÞ, for
the C-shaped beam under uniform inertial loading condition.

Models �uz � 102 DOFs

Classical models
EBBM 6.069 93
TBM 6.088 155

TE
N¼2 6.023 558
N¼4 6.399 1395
N¼6 7.242 2604
N¼7 7.557 3348
N¼8 7.796 4185
N¼9 7.919 5115

LE
6 L9, Fig. 5 8.277 3627

MSC Nastran
Solid A 8.243 3627
Solid B 8.370 177,000

Fig. 5. Distribution of L9 elements above the cross-section of the C-shaped beam.

Fig. 6. Position of the non-structural masses for the C-shaped beam: (a) Case A and (b) Case B.

Table 2
Vertical displacements, uz (m), at the tip cross-section for the C-shaped beam
undergoing acceleration loads and non-structural masses.

Models Case A Case B DOFs

�uz @ ð0; L; hÞ �uz @ ða; L; hÞ �uz @ ða; L; hÞ

Classical models
EBBM 0.122 0.122 0.122 93
TBM 0.122 0.122 0.122 155

TE
N¼2 0.122 0.121 0.121 558
N¼3 0.123 0.122 0.122 930
N¼4 0.129 0.122 0.122 1395
N¼5 0.135 0.123 0.123 1953
N¼6 0.146 0.126 0.126 2604

LE
6 L9, Fig. 5 0.167 0.127 0.127 3627

MSC Nastran
Solid A 0.166 0.127 0.126 3627
Solid B 0.169 0.128 0.128 177,000

Undeformed
TE, N=5

LE
Nastran

z

x

Fig. 7. Tip cross-section deformation for the C-shaped beam (Case A). Comparison
between CUF and Nastran Solid B models.
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In the second analysis case, a uniform load factor n¼2 w a s
applied in the negative direction of the z-axis and a non-structural
mass equal to 40 kg was added at the coordinates ð0; L; hÞ as shown
in Fig. 6a (Case A). The vertical component, uz, of the displace-
ments was measured at two different points on the tip cross-
section and they are reported in the second and the third columns
of Table 2. In Case B, the same uniform load factor n¼2 as above
was applied and the non-structural mass was placed as in Fig. 6b. 
For this configuration, the vertical displacement was measured at

ða; L; hÞ and it is shown in the fourth column of Table 2. The
number of the DOFs for each model implemented is also given in
the last column of Table 2.

Fig. 7 shows the deformed configuration of the tip cross-section
from fifth-order (N¼5) TE, LE and MSC Nastran& Solid B models
for Case A. For the same loading condition, cross-sectional dis-
tributions of axial, syy, and transverse shear stresses, syz, 
are shown in Figs. 8 and 9, respectively. Stress components for 
Case B are given in tabular form, see Table 3. It should be 
underlined that

� Unlike classical beam theories, higher-order TE and LE models
are able to foresee cross-sectional deformations.

� Even tough high order of expansions are used, TE models are
not able to deal with non-structural masses that are placed far

from the beam reference axis; both displacements and stress 
distributions are in fact not in good agreement with respect to 
the solid model.

� The results from the LE model match the MSC Nastran& Solid B
solution both in terms of displacements and stress components.

� The 
fi

computational efficiency of LE models is evident when
stress eld components are accounted for. In fact, it is
worth noting that Solid A model, which has the same DOFs of 6 
L9 model, is completely inefficient for the computation of 
stresses.

3.2. I-shaped beam

A cantilevered I-shaped beam was subsequently considered. 
The cross-section geometry is shown in Fig. 10. The length of the 
structure, L, is equal to 3 m. The dimensions a and b are 0.2 m and 
0.3 m, respectively. The thicknesses of both the flanges and the
web are t¼0.05 m.

The structure was subjected to a unitary uniform load factor
(1g) directed along the negative direction of the z-axis in the first 
analysis case, and the results are shown in Table 4. Both displace-
ment and stress components are given along with the number of 
DOFs for each models implemented. In particular, the vertical
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Fig. 8. Distribution of axial stresses, syy, at the clamped end (y¼0) of the C-shaped beam (Case A): (a) Solid A model, (b) Solid B model, (c) LE 6 L9 model and (d) TE 
N¼5 model.
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displacement uz at ða; L; bÞ, the normal stress syy at ða=2;0; bÞ, and
the shear stress syz at ða=2; L=2;0Þ are reported. Both classical and
fi fire ned TE models are considered in the rst rows of Table 4. The

results by the LE model are shown in row 11. The LE model was 
discretized by means of 7 L9 elements on the cross-section as 
shown in Fig. 11. A MSC Nastran& solid model was also built by 
means of 8-node CHEXA brick elements and the results are given 
in the last row for comparison purposes.

In the second analysis case, a non-structural mass equal to
20 kg was placed at ða; L; bÞ. The structure was subjected to the

same acceleration as above (n¼1) and the results by different
models are shown in Table 5. The following comments arise from
the analysis:

� Displacement results from classical, refined TE and LE models
are in good agreement with the solid solution; even if classical
EBBM theory is considered, the committed error ranges from
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Fig. 9. Distribution of transverse shear stresses, syz, at the mid-span (y¼L/2) cross-section of the C-shaped beam (Case A): (a) Solid A model, (b) Solid B model, (c) LE 6 L9
model, and (d) TE N¼5 model.

Table 3
Stress components syy (MPa) at ða;0; hÞ and syz (MPa) at ða�t=2; L=2;h=2Þ.
C-shaped beam (Case B).

Models syy � 10�1 syz DOFs

Classical models
EBBM 9.748 0.000 93
TBM 9.748 �0.521 155

LE
6 L9, Fig. 5 8.451 �2.703 3627

MSC Nastran
Solid A 6.427 �1.344 3627
Solid B 8.906 �3.012 177,000

b

a

t

z

x

Fig. 10. Cross-section of the I-shaped beam.
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2.6% (uniform load factor without non-structural mass) to 4.8%
(with structural mass) with respect to the solid FEM model.
This is due to the fact that the analysed structure is more rigid
in the cross-sectional plane if compared to the C-shaped beam
of the previous section.

� Higher-order models are needed to correctly detect the stress
state. In particular, as it is known, classical beam models are
completely inadequate when shear stress components have to
be computed.

� LE models detect the solid solution both in the case of symmetric
and un-symmetric loading conditions. Displacement and stress
results by the LE model agree in fact with those by the reference
solution and a very few DOFs are used.

3.3. Closed and open hollow-rectangular beams

A cantilever closed hollow-rectangular cross-section was ana-
lysed. In Fig. 12 the cross-section of the beam is shown. The
geometrical data are as follows: a¼0.8 m, h¼0.2 m and t¼0.01 m.

fiThe length of the beam, L, was equal to 3.2 m. In the rst analysis case, 
the structure underwent a uniform gravity acceleration load. A 
comparison between different models is proposed in Table 6. 
C l a s s i c a l a s w e l l a s r e fined TE and LE beam models are 
compared to MSC Nastran& solid solution. The solid model was 
obtained by using the same brick elements as in the previous analysis 
cases. The LE model was obtained by using 10 L9 elements above the 
cross-section as shown in Fig. 13a. In Fig. 13a different notation with 
respect to Figs. 5 and 11 was used. In particular, the Lagrange points on 
the cross-section are not shown in Fig. 13 for the sake of clarity. A non-
structural mass was applied next. The two following cases were 
addressed: in Case A the non-structural mass was
placed at ða; L; 0Þ as shown in Fig. 14a; in Case B (Fig. 14b) the mass 
was placed at ða=2; L; hÞ. The weight of the non-structural mass
was equal to 10 kg. Table 7 collects the results from all the models 
implemented. Fig. 15 shows the tip cross-section deformation by 
LE models and MSC Nastran& solid model. Two different LE 
discretizations were addressed in this analysis case. Both a 10 L9 
(Fig. 13a) and a 16 L9 (Fig. 13b) mesh were in fact considered. The 
following comments are noteworthy:

� Classical models are not able to foresee the mechanical beha-
viour of the hollow-rectangular beam.

� A TE model with at least a sixth-order expansion (N¼6) is
necessary if a uniform gravity load is considered.

Table 4
uz (m) at ða; L; bÞ, syy (MPa) at ða=2;0; bÞ, and syz (MPa) at ða=2; L=2;0Þ. I-shaped
beam undergoing a unitary load factor.

Models �uz � 103 syy �syz � 10 DOFs

Classical models
EBBM 0.306 1.530 0.000 93
TBM 0.310 1.530 0.395 155

TE
N¼2 0.306 1.728 0.415 558
N¼4 0.310 1.952 1.039 1395
N¼6 0.311 2.108 1.145 2604
N¼7 0.311 2.117 1.016 3348

LE
7 L9, Fig. 11 0.312 2.107 0.961 4185

MSC Nastran
Solid 0.314 1.923 1.020 127,800

Fig. 11. Distribution of L9 elements above the cross-section of the I-shaped beam.

Table 5
uz (m) at ða; L; bÞ, syy (MPa) at ða=2;0; bÞ, and syz (MPa) at ða=2; L=2;0Þ. I-shaped
beam undergoing a unitary load factor and a non-structural mass.

Models �uz � 103 syy �syz � 10 DOFs

Classical models
EBBM 0.373 1.782 0.000 93
TBM 0.378 1.782 0.460 155

TE
N¼2 0.375 2.013 0.483 558
N¼4 0.382 2.250 1.210 1395
N¼6 0.384 2.432 1.334 2604
N¼7 0.385 2.441 1.181 3348

LE
7 L9, Fig. 11 0.388 2.430 1.045 4185

MSC Nastran
Solid 0.392 2.218 1.262 127,800

t

a

h

z
x

Fig. 12. Cross-section of the hollow-rectangular beam.

Table 6
Vertical displacement, uz (mm), at ða; L;0Þ. Hollow-rectangular beam undergoing a
uniform gravitational load.

Models �uz DOFs

Classical models
EBBM 0.589 93
TBM 0.593 155

TE
N¼2 0.573 558
N¼4 0.601 1395
N¼6 0.619 2604
N¼7 0.624 3348
N¼8 0.624 4185
N¼9 0.626 5115

LE
10 L9, Fig. 13a 0.626 5580

MSC Nastran
Solid 0.630 38,400
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� Higher-order TE models can be effective when non-structural
masses are placed so that torsional effects are predominant
(Fig. 14a).

� If the non-structural mass is placed as in Fig. 14b, local
phenomena occur and TE models are ineffective.

� Very good results are obtained by LE models both in the case of
uniform and non-uniform loading conditions. However, if local
effects occur, sufficiently enriched cross-sectional discretiza-
tions are needed to correctly detect the MSC Nastran& solid 
solution, as shown in Fig. 15.

A uniform angular acceleration was then applied to the struc-
ture. The magnitude of the acceleration was equal to �103 rad s� 2 

with respect to the y-axis. Table 8 quotes the cross-sectional 
displacement components 

fi

measured at ð0; L; 0Þ. It is clear that TE
models are completely inef cient for the problem under consid-
eration. This aspect is also confirmed by Fig. 16, in which the 
deformed configuration of the tip cross-section by both TE and 
LE models are compared to the MSC Nastran& solid solution.

An open hollow-rectangular beam as shown in Fig. 17 was 
addressed as the last example. The cross-sectional dimensions are the 
same as the closed hollow-rectangular beam discussed above. The only 
difference is that, in this case, a cut was made along the whole length of 
the beam. First, the structure underwent the following two point loads:
one point load ðFx ¼ � 500 NÞ was applied at ð0; L; 0Þ and one load 
(Fx¼500 N) was applied at ða; L; 0Þ. Horizontal displacements were 
measured at ða; L; 0Þ and the results are shown in Table 9.

The last analysis is focussed on the application of a non-
uniform acceleration field to the open hollow-rectangular beam. 
Two non-structural masses equal to 10 kg were added as shown in 
Fig. 18 and the following acceleration was applied:

€ux0 ðx; y; zÞ ¼
1 g x4

a
2

� �

�1 g xoa
2

� �
8><
>: ð20Þ

The results are shown in Table 10, where LE models are compared 
to solid MSC Nastran& solution. Fig. 19 compares the deformed

configuration of the tip cross-section between the LE and solid
model. From the analyses conducted it is clear that the present
refined beam theories are able to deal with both uniform and non-
uniform acceleration fields, since 3D-like phenomena can be
detected. However, the following comments are worthy of
investigations:

� LE models have to be preferred to TE models when rotational
accelerations are accounted for or local phenomena occur.

� Classical and TE models are not suitable in the case of open
cross-sections subjected to two opposite forces. Conversely, LE
models are able to deal with cut cross-sections.

Fig. 13. Distribution of L9 elements above the cross-section of the hollow-rectangular beam: (a) 10 L9 and (b) 16 L9.

Fig. 14. Non-structural masses above the tip cross-section of the hollow-rectangular beam: (a) Case A and (b) Case B.

Table 7
Hollow-rectangular beam under uniform gravitational load. Effect due to the non-
structural mass on the vertical displacement, uz (mm), and on the shear stress,
syz (MPa).

Models Case A, Fig. 14a Case B, Fig. 14b DOFs

�uz @
ða; L;0Þ

�syz @
ða; L=2; h=2Þ

�uz @
ða=2; L; hÞ

�syz @
ða; L=2; h=2Þ

Classical models
EBBM 0.680 0.000 0.680 0.000 93
TBM 0.686 0.047 0.686 0.047 155

TE
N¼2 0.665 0.087 0.662 0.081 558
N¼3 0.694 0.313 0.691 0.307 930
N¼4 0.697 0.323 0.694 0.308 1395
N¼5 0.719 0.290 0.718 0.275 1953
N¼6 0.720 0.288 0.724 0.275 2604
N¼7 0.730 0.240 0.767 0.228 3348
N¼8 0.731 0.237 0.817 0.227 4185

LE
10 L9,
Fig. 13a

0.748 0.251 0.813 0.243 5580

16 L9,
Fig. 13b

0.759 0.268 1.006 0.254 8928

MSC Nastran
Solid 0.761 0.259 1.062 0.254 38,400
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� Even tough acceleration fields that are non-constant above the
cross-section are applied, LE models are able to replicate the
MSC Nastran& solid results with very few degrees of freedom.

4. Conclusions

The effects of load factors and non-structural masses on the static
response of beam structures have been investigated in the present
paper. The analyses have been carried out by means of refined beam
theories based on the Carrera Unified Formulation (CUF). CUF is a
hierarchical formulation that allows higher-order displacement fields
to be developed with no a priori kinematics assumptions. According
to CUF, the displacement field is an expansion of generic functions
above the cross-section. Different classes of refined beam models can
be obtained, depending on the choice of the expanding functions. In
this paper, both TE and LE refinedmodels, which are based on Taylor-
like and Lagrange polynomials, respectively, have been implemented.

Undeformed
LE, 10L9
LE, 16L9

Solid

Fig. 15. Deformed tip cross-section of the hollow-rectangular beam undergoing 
inertial load and non-structural mass (Case B, Fig. 14b).

Table 8
Hollow-rectangular beam under uniform angular acceleration. Displacements
components (mm) at ð0; L;0Þ.

Models ux uz DOFs

TE
N¼2 0.124 �0.504 558
N¼3 0.125 �0.521 930
N¼5 0.123 �0.681 1953
N¼6 0.126 �0.695 2604

LE
10 L9, Fig. 13a �0.343 �2.453 5580
16 L9, Fig. 13b �0.509 �3.120 8928

MSC Nastran
Solid �0.533 �3.418 38,400

Undeformed
TE,  N=6
LE, 16L9

Solid

Fig. 16. Deformed tip cross-section of the hollow-rectangular beam undergoing
uniform angular acceleration load.

z
x

Fig. 17. Cross-section of the open hollow-rectangular beam.

Table 9
Horizontal displacement component, ux (mm), at ða; L;0Þ,
open hollow-rectangular beam undergoing point loads.

Models �ux DOFs

Classical models
EBBM 0 93
TBM 0 155

TE
N¼2 0.002 558
N¼6 0.004 2604
N¼8 0.004 4185
N¼9 0.005 5115

LE
10 L9, Fig. 13a 0.598 5580
16 L9, Fig. 13b 0.603 8928

MSC Nastran
Solid 0.611 38,400

1g 1g

z

x

Fig. 18. Open hollow-rectangular beam with two non-structural masses under-
going a non-uniform acceleration field.

Table 10
Open hollow-rectangular beam undergoing non-uniform acceleration load. Dis-
placement components (mm) at ð0; L;0Þ.

Models �ux �uy �uz DOFs

LE
10 L9, Fig. 13a 0.261 0.020 0.232 5580
16 L9, Fig. 13b 0.273 0.021 0.242 8924

MSC Nastran
Solid 0.248 0.019 0.229 38,400
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From the results that have been obtained, it is possible to draw the 
following conclusions:

� Classical beam theories are not suitable for the problems under
consideration; classical theories are in fact not able to detect
non-classical effects due to non-symmetric geometries or to 
load factors whose distribution above the cross-section is not 
con-stant. In general, arbitrary acceleration fields are considered 
as a combination of transversal and rotational load factors 
applied with reference to the shear axis, if classical beam 
theories are considered. Obviously, 3D effects cannot be 
detected.� The adoption of refined models is therefore compulsory to
detect local effects and the mechanical response of thin-walled
beams subjected to rotational as well as non-uniform accelera-
tion fields.

� Generally, higher-order TE models can be used if uniform load
factors are applied and simple geometries are considered.

� As a general guideline, LE models are preferable to TE models,
when bending/coupling effects play an important role, local
deformations cannot be neglected, and an accurate description 
of the stress state is needed.

� From a comparison with the results obtained from solid
element models, it is clear that LE theories provide good
accuracy for all the assessed problems and the computational 
cost of the present beam formulation is considerably lower 
than those incurred for 3D solutions.
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Undeformed
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Solid

Fig. 19. Tip cross-section deformation of the hollow open beam subjected to 
non-uniform acceleration load and non-structural masses.
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