
23 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

EU FP7-288307 Pharaon Project: Parallel and Heterogeneous Architecture for Real-Time Applications / Hector,
Posadas; Eugenio, Villar; Florian, Broekaert; Michel, Bourdelles; Albert, Cohen; Antoniu, Pop; Nhat Minh, Le; Adrien,
Guatto; Lazarescu, MIHAI TEODOR; Lavagno, Luciano; Andrei, Terechko; Miguel, Glassee; Daniel, Calvo; Edouardo de
las, Heras. - ELETTRONICO. - (2013), pp. 371-378. (Intervento presentato al convegno 2013 Euromicro Conference on
Digital System Design tenutosi a Los Alamitos, CA, USA nel 4-6 settembre 2013) [10.1109/DSD.2013.47].

Original

EU FP7-288307 Pharaon Project: Parallel and Heterogeneous Architecture for Real-Time Applications

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/DSD.2013.47

Terms of use:

Publisher copyright

©2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2527498 since: 2020-07-02T02:03:53Z

IEEE

EU FP7-288307 PHARAON project
Parallel and heterogeneous architecture for real-time applications

Hector Posadas, Eugenio Villar
University of Cantabria Santander

Santander, Spain
{posadash,villar}@teisa.unican.es

Florian Broekaert, Michel Bourdelles
Thales Communications & Security SA

Gennevilliers, France
florian.broekaert thalesgroup.com

Albert Cohen, Antoniu Pop, Nhat Minh Lê, Adrien

Guatto
INRIA and École Normale Supérieure

Paris, France

Mihai T. Lazarescu, Luciano Lavagno
Politecnico di Torino

Torino, Italy

Andrei Terechko
Vector Fabrics

Eindhoven, The Netherlands

Miguel Glassee
IMEC

Leuven, Belgium

Daniel Calvo, Edouardo de las Heras
Tedesys

Santander, Spain

Abstract—In this article, we present the work-in-progress of
the EU FP7 PHARAON project, started in September 2011.
The first objective of the project is the development of new
techniques and tools capable to assist the designer in the devel-
opment of parallel embedded systems, from executable specifi-
cations to target-specific implementation and debugging on a
multicore platform. This tool chain will offer and implement
several parallelization strategies, reflecting the functional and
non-functional constraints of the system, and driving the de-
signer into incremental parallelization and adaptation steps.
The second objective of the project is to develop monitoring
and control techniques in the middleware of the system capa-
ble to automatically adapt platform services to application
requirements and therefore reduce power consumption trans-
parently.

Keywords-component; UML; parallelisation; OpenMP; low-
power; ressource management; profiling; multiprocessor

I. INTRODUCTION

The PHARAON project is a European collaborative ini-
tiative between universities, research labs and industrial
companies. It is sponsored by the European Commission,
which supports part of the costs and assists partners in the
project management. The first section provides a general
presentation of the project. Section 2 describes the use cases
driving the project. Section 3 surveys our proposed design
flow. Detailing this flow, the fourth section presents the High
Level System component approach (UML/MARTE) as well
as its associated code generator, and the fifth section de-
scribes the parallelisation and performance analysis tools.
Section 6 presents the runtime power management method-
ology and tools. Finally the conclusion highlights the project
perspectives.

A. Context and objectives

The latest and greatest embedded systems integrate a
wide range of very complex functionalities. A smart phone,

for example, is capable to communicate through 3G and
WIFI connections. It integrates phone services with high
performance graphics and sophisticated software applica-
tions such as real-time video and audio. To support this ap-
plication load, new devices make use of recent parallel ar-
chitectures capable to deliver enough processing power. But
these changes have two negative effects. First, the develop-
ment of parallel software, capable of exploiting multiple
processor cores, is much more complex and therefore more
expensive than traditional sequential software, which in-
creases the product cost. Second, the increased quality of
service requires more energy and hence is associated with a
reduction of autonomy. The newest smart phones can run
for at most about three days in standby mode while former
simple phones did not need a recharge for an entire week.
The PHARAON project will develop new techniques and
tools that will offer the possibility to reduce the software
development cost (25% targeted in the project) and increase
the autonomy of embedded systems by nearly 20%.

B. Consortium

PHARAON is coordinated by a large company Thales
Comunications & Security. Tedesys and Vector Fabrics are
two SMEs completing the industrial partners. Academic
partners are made of Politecnico di Torino, Ecole Normale
Supérieure and University of Cantabria. Finally, the re-
search institute Interuniversitair Micro-Electronica Centrum
is completing the consortium.

C. Technical approach

The PHARAON project targets the development of two
different sets of techniques and tools, both aiming at best
exploiting the low-power capabilities of modern multi-core
processors, tackling both the programming and runtime
power management challenges mentioned previously. The
first set will directly impact the design of the application.

The objective is to assist the designer in finding the most
adequate software architecture taking into account hardware
constraints.

To do so, tools will be capable to evaluate the parallel
structure of an application and propose improvements. A
tool will also be capable to handle communications between
different processors and generate the multi-processor em-
bedded code. The second set of techniques and tools will
impact the runtime behavior of the application. The objec-
tive is to adapt the performance of the platform, (frequency
& voltage for example) in order to consume only the re-
quired energy. A reconfiguration system and a low power
scheduler will be integrated with other run-time components
on top of the platform.

II. USE CASES

The efficiency of the techniques and tools developed in
this project is showcased on three example applications
from two different domains: software defined radio and im-
age processing.

A. Radio applications

Two complementary radio applications are studied. The
first application consists of the implementation of a physical
layer (PHY) with real-time reconfiguration and multi-stream
capabilities. The platform architecture for the implementa-
tion of PHY is shown in Fig.1 0. It contains digital front-end
DIFFS connected to antennas, a baseband processor
ADRES and an outer modem OMD containing Forward
Error Correcting (FEC) blocks. The data is exchanged be-
tween blocks in a flexible and programmable way through
the 256-bit wide AMBA AHB buses and the interconnect
controllers (ICC). All these platform blocks contain proprie-
tary domain-specific processors which can be programmed
by the ARM processor in the Control plane. Using this ver-
satile feature, the platform is capable of handling multiple
and/or concurrent data streams. For example, our wireless
receiver platform can switch from receiving a WLAN 11n
packet to receiving a LTE Cat 4 packet in 52µs by reconfig-
uring all of the components’ firmwares.

Figure 1. IMEC COBRA Software Defined Radio platform

The second application (Fig.2) concentrates on the im-
plementation of the upper protocol layers. It handles IP
packets, relies on TDMA (Time Divion Multiple Access)
and targets an ad hoc network. The use of the PHARAON
workbench will help to improve civil protection services

(police, fire brigades, medical services), by improving the
autonomy and quality of radio communications.

Figure 2. Radio use case #2

Despite the dataflow pipeline appearance of this applica-
tion at high-level, it is essentially control-flow dependent,
with potential cross-layer optimizations and data depend-
ences. Our objective is to provide implementations of these
applications for heterogeneous multicore platforms and op-
timize power consumption based on monitoring data. The
key problem lies in optimizing the distribution of applica-
tions across processing units while respecting the timing and
consumption constraints defined in the application's specifi-
cation. The design flow developed in the PHARAON pro-
ject, and presented in section 3, will help the system engi-
neers to analyze the applications and to find an optimal in-
tegration for a targeted platform.

B. Maintaining the Integrity of the Specifications

Our third example is an advanced 3D stereoscopic appli-
cation (Fig.3), with real-time and high definition constraints,
used in automotive domain for humans/obstacle detection.

Figure 3. Stereovision use case

The application infers the 3D scene geometry from the
images provided by two twin cameras under a known con-
figuration. Several steps are required in order to compensate
the distortion introduced by the physical characteristics of
the sensors, to align the images and find the depth map with
enough accuracy to be used in safety critical environments.
The application of the design flow described in section 3 will
allow finding the optimal architectural solution to be imple-
mented on a multicore platform. This use case should
demonstrate the impact of our system design flow in critical
aspects of embedded systems design.

III. PHARAON SYSTEM DESIGN FLOW

The targeted design flow in PHARAON drives the design
from UML specifications to implementation of cross-

compiled code onto the platform. As depicted in Fig.4, the
proposed flow starts designing the application with a high
level description component based approach
(UML/MARTE) with properties structured via XML files.
During this step, different deployment strategies can be test-
ed and a coarse grained parallelisation (between compo-
nents) can be done.
For each component, the associated business code (C/C++
files) has to be developed accordingly the targeted hardware
resource. Then, a code generator is developed to automati-
cally generate the wrapper codes required to allocate and
run the SW component in the HW platform and interconnect
the business code. It also produces the executable files that
are used as inputs in the four different stages of the tool-
chain.

In a first stage, the C code to be parallelized is extracted
from the UML model and sent to a performance simulator.
This simulator then generates a timing and power analysis
of the bloc to be used in the next stage.

In the second stage, the parallelisation tool optimizes the
internal code of each component. Basing its analysis on the
C code entry and performance information, the paralleliza-
tion tool generates a parallel code integrating
OpenMP/Openstream directives.

In a third stage, the optimized code is simulated on the
performance evaluation tool to obtain the information re-
quired for run-time optimization. Alternatively, the code can
be implemented and measured onto the physical platform.

Finally, different runtime managers (Reconfiguration
manager & low-power scheduler) are deployed in the physi-
cal platform in order to reduce power consumption while
ensuring required application performance. Here, perfor-
mance and power traces collected by the performance simu-
lator help to refine the power management strategy.

Figure 4. PHARAON design flow

IV. HIGH LEVEL SYSTEM METHODOLOGY

A. UML/MARTE modeling

In order to support all the different stages of the flow, a
powerful high-level modeling methodology has been de-
fined. Based on UML, it follows a component-based ap-
proach, applying the Model-Driven Architecture (MDA) 0
principles to the development of HW/SW embedded sys-
tems. Additionally, we chose the standard MARTE profile
to handle all the specific characteristics related to embedded

systems. Moreover, the proposed methodology is software-
centric since it considers application-specific HW only
when speed or power constraints coming from the designer-
supplied mapping of software components to application
processors are not met.

Following the proposed methodology, designers can
completely describe the system, enabling automatic genera-
tion of input data and code required by the different tools of
the design flow. For such purpose, designers must describe
in different views the system functionality (Fig.5), the target
platform and the resource allocation.

Figure 5. Excerpt of the stereovision application structure

However, since the methodology has to support quite
different tools, we have to extend the previous
UML/MARTE approaches in several ways. The main issues
the flow has to cover are heterogeneity, parallelization, sup-
port for different I/O schemes and run-time management.
Thus, specific improvements are being proposed for all of
these points.

In order to support adequate mappings to heterogeneous
systems, three major issues have been detected. First, it is
required to generate different executables with the compo-
nents mapped to each resource. Second, it is required to
ensure the correct access to shared information, maintaining
the memory architecture of the original source code. And
third, the model must handle multiple files for the same
component, each one optimized for each possible mapped
resource, including files for host simulation.

In order to solve the first two points, the system mapping
(Fig.6) is performed in two steps: first components are
mapped to memory spaces and then these memory spaces
are mapped to resources. As a result, different executables
are generated for the system, one for each memory space.
More details can be found in 0. Additionally, to support
different files for the same component, different attributes
have been added to the “file” stereotype.

Figure 6. Platform mapping example

Moreover, the information described in the UML model
also enables the automatic generation of ad-hoc communica-
tions infrastructures. To optimize it, different channel seman-
tics has been added to MARTE profile 0. This allows de-
signer to optimize the system concurrent architecture in a
coarse grain, by modifying the relationships between the
system components. Finally, different efforts have been
started to enable automatic I/O integration and run-time
power management support.

B. Code generator

From the information included in the UML/MARTE
graphical model, the inputs for the different tools of the flow
are created. This generation process is performed in two
steps. First, an Eclipse plugin has been developed, capable
of transforming the graphical model into a set of XML files.

From these files, the generator produces a set of C files
that includes the code initializing all the components
mapped on each memory space, the C wrappers that enable
the communication among the application components, the
different agents handling incoming requests and the compi-
lation scripts.

The interface wrappers use the facilities provided by a
communication library developed to implement the final
communication mechanisms. These wrappers are imple-
mented in a three layer structure, in order to have enough
flexibility to support multiple communication semantics and
mappings. One layer implements communication semantics.
Characteristics such as synchronous or asynchronous calls,
fifos, data joining or splitting and synchronized or priorized
accesses from different clients are implemented in this step.
Then, argument are adapted to be transferred depending on
the communication type (within the memory space, in dif-
ferent spaces of the same OS, in different OSs or resource
types,…). Finally, the infrastructure obtains from the com-
munication library the generic transfer functions for the re-
quired communication types required on each case.

This infrastructure has been applied to the stereovision
use case, enabling the exploration of different platforms,
and supporting the generation of optimized code for this
platforms. Some results can be seen in the next table.

TABLE I. EXECUTION TIMES OF THE STEREOVISION USE CASE

HW platform Original code (sec) Optimized code (sec)
I/O type Test-bench Camera Test-bench Camera

PC simulation 16.3 - 25.2 -
Beagle: no Neon
compilation flags 305.2 313.9 199.7 202.9

Beagle-Panda: no
Neon comp. flags 278.7 286.8 164.8 165.8

Beagle: Neon compi-
lation flags 84.7 85.2 68.8 74.8

Beagle-Panda: Neon
comp. flags 23.5 26.6 31.3 32.40

SPEAr-600 262.6 265.8 - -

V. PARALLELISATION TOOLCHAIN AND PERFORMANCE

ANALYSIS

A. PAREON performance simulator

Within the PHARAON project the performance analysis
of C applications on the target hardware platform is per-
formed by the Pareon tool, which also estimates energy con-
sumption. The estimates are fed into the parallelization tool
to parallelize performance and memory bottlenecks of the
program, while tracking effects on power consumption. Fur-
thermore, the energy estimates are used by the low power
scheduler that can select the most power-efficient operating
mode of the system. The modelled target hardware is an
ARM Cortex A9 and Intel Core 5 multicore processors.

The Pareon tool is a collection of command line inter-
face (CLI) tools and a GUI. Within the PHARAON project
the CLI tools are used in the automated PHARAON tool-
chain, while the GUI enables human inspection of the mod-
elling results. The input to the tools is the source code of a C
or C++ program. The input program should comply with the
ANSI C99 or ANSI C++98 standards and may contain se-
lected POSIX function calls. The vfrcc compiler translates
the input source code into a generic executable for an inter-
mediate instruction set architecture, which is independent of
the target processor. Then the generic executable is run in
the Pareon simulator in the provided execution environment,
including necessary test data, input files, environment varia-
bles, etc. During the execution various statistics such as
instruction counts and memory behaviour are collected. Fi-
nally, the pareon report command converts these statistics
into estimates for a particular hardware target platform and
generates an XML output file with performance and power
estimates of the input program.

The internal Pareon toolflow for performance analysis is
shown below in Fig.7 and an extensive documentation of
the Pareon functionality is available online at 0.

Figure 7. Pareon performance analysis toolflow

In contrast to gate-level back-annotated timing and power
modelling tools in the EDA industry, the performance anal-
ysis in Pareon is much faster. It delivers the throughput of
only few hundred times slower than real-time execution
compared to EDA tools, which are orders of magnitude
slower. Furthermore, in contrast to state-of-the-art profile-
based optimizing compilers, the Pareon can model non-
existing chip configurations, for example, with more proces-
sor cores than what's available on the market today.
Another important feature of the tools for design space ex-
plorations is that the modelling of different platforms or

operating conditions can be done with a single simulation
step. Based on this simulation step the necessary statistics
are gathered of the program execution and after that the ac-
tual estimates are quickly computed using properties of the
target hardware.

B. Parallelisation toolset

The toolset supports the parallelization of sequential C
software that can include significant control decisions, and
pointer and dynamic memory operations. It can help dis-
cover both task and data parallelization opportunities, for
any parallelization technique.

Figure 8. Parallelization toolset flow

The toolset flow shown in Fig. 8 is divided in four stages:
(I) source instrumentation, (II) run-time collection and com-
paction of execution data, (III) execution data graphical
visualization and analysis, and (IV) source code paralleliza-
tion. It is controlled from the Code::Blocks C/C++ IDE that
supports also cross-referencing the execution trace data vis-
ualized in stage III with the sequential C project source.

The sequential source annotation in stage I supports run-
time data dependency collection by means of a special li-
brary. Then these data are saved and used by the graphical
visualization and analysis interface.

 This interface compactly displays in a graph format both
the execution profile and the data dependencies to facilitate
the search for parallelization opportunities. The nodes are
data-processing program elements like statements, loops,
function calls, while the edges are the data dependencies
between them. The call stacks are also represented, and the
nodes can fold an entire execution rooted on them, like for
loops and function calls.

Fig. 9 shows an analysis view for the Stereo Matching
application presented in Section 2.2. The rectangular nodes
are folds of loops, the elliptic are function call folds.

Two of the loop folds, with stronger colourization, in-
clude 53% and 18% of program execution. This makes
them significant candidates for parallelization especially
since they have no strong data dependency between them

Figure 9. Analysis of the Stereo Matching application

C. OpenMP extension for data-flow and stream
parallelism

OpenStream (http://www.di.ens.fr/OpenStream) is a
stream programming language, designed as an incremental
extension to the OpenMP parallel programming language 0.
It allows to express arbitrary task-level data flow depend-
ence patterns. Programmers expose task parallelism and
provide data-flow information to the compiler through com-
piler annotations (pragmas), used to generate code that dy-
namically builds a streaming program.

The language supports nested task creation, modular
composition, variable and unbounded sets of produc-
ers/consumers, and first-class streams. These features, ena-
bled by our original GCC-based compilation flow, allow
translating high-level parallel programming patterns into
efficient data-flow code.

Data-flow execution is essential to reduce energy con-
sumption, one of the primary focuses of the PHARAON
project, by reducing the severity of the memory wall. This
is achieved in two complementary ways: (1) thread-level
data flow naturally hides latency; and (2) decoupled produc-
er-consumer pipelines favor on-chip communication, by-
passing global memory. Key to the efficient execution of
OpenStream programs is our optimized runtime system,
providing low-overhead synchronization and work-stealing
scheduling.

Figure 10. Speed-up comparison OpenStream and StarSs

Work stealing is a central component of the OpenStream
run-time library, allowing for efficient lock-free scheduling

of lightweight tasks. The dynamic scheduler has been ported
to the x86 and ARM architectures, with a focus on correct-
ness and performance. Improving on Chase and Lev's con-
current doubly-ended queue, OpenStream includes a state-
of-the-art work stealing implementation. The ARM version
of the algorithm is specifically optimized for its weak
memory model. Moreover, based on recent progress in the
formalization of memory consistency, we established the
first proof of the relaxed double-ended queue for such a
processor 0.

Our experiments show that the optimized ARM code, of
which two versions have been written in C11 and native
inline assembly, generally outperforms the original sequen-
tially consistent Chase-Lev in a variety of benchmarks, in-
cluding a selection of standard fine-grained task-parallel
computations (Fig.11). These results provide the foundation
for a robust parallel library, and pave the way for further
research into correct lock-free algorithms for run-time sup-
port.

Figure 11. Speed-up Vs Seq-Cst on various benchmarks

OpenStream originated from the TERAFLUX FP7 project.
In PHARAON, it is being ported to embedded ARM multi-
core platforms and extended to support

D. Data-flow synchronous programming of parallel
embedded systems

The PHARAON project also investigates longer-term
research directions, such as the design and implementation
of safety-critical embedded software running on parallel
multicore processors. Heptagon is a data-flow synchronous
language devoted to the design and implementation of em-
bedded software. Its ancestors Lustre and Scade have met a
large success in the field of safety-critical real-time systems,
offering a clean semantics, with a robust, efficient, and
traceable compilaton flow, while enforcing bounded re-
source and bounded reaction-time guarantees. However,
compilation schemes for such languages lead to very effi-
cient, but sequential code. Various distribution and parallel-
ization approaches can be applied a posteriori, at the price of
performing a non-modular and hardly scalable static analy-
sis of the generated code to guarantee efficiency and cor-
rectness. We provide a clean alternative to these approaches,
giving the designer explicit control on the desynchronization
and on the distribution of the program (or model) 0.

Classical issues are summed up in the classical slow_fast
example sketched in Fig.12 and Fig.13. A slow process

communicates with a faster one at the rate of the slow pro-
cess. Parallel execution is clearly possible, from the obser-
vation of the dependence graph, but the effective distribu-
tion mandates decoupling processes executing at different
rates. Usual synchronous compilation leads to poor perfor-
mance with the fast process waiting for the completion of
the slower one, as seen on the first figure. To leverage all
the advantages of Heptagon while allowing for parallel code
generation, we extend it with futures. At the source code
level, futures may be seen as simple annotations leaving the
functional semantics of the program unchanged.

During the compilation phase, they are key to enable
asynchronous calls while preserving memory boundedness.
As seen in the second figure, our example can be efficiently
compiled to parallel code by adding lightweight, semantics-
preserving future annotations.

Figure 12. slow_fast async flow

Figure 13. slow_fast sync flow

Operations on arrays are frequent in embedded applica-
tions, as example applications studied in the PHARAON
project show. It is thus very important when designing a
dedicated programming language to offer high-level support
together with efficient compilation techniques. In practice,
this means reducing the number of array copies. The Hepta-
gon compiler implements original techniques to this aim,
based on a programmer-guided, modular inter-procedural
memory allocation procedure 0.

Finally, we are now studying the marriage of the data-
flow synchronous paradigm with computational models
dedicated to high-performance regular algorithms, such as
SDF/CSDF graphs, with the intuition that the result will be
more than the sum of its parts. We believe that considering
communication rates as a first class citizen of a language's
semantics is key to next generation tools for embedded plat-
forms, reconciling programmer productivity, efficient and
predictable compilers and analyzers, and parallel hardware.

VI. RUNTIME POWER MANAGEMENT TOOLS (RTPM)

Global run-time management methodology used in the
context of PHARAON project consists of two phases:
- Phase 1: A full design space is explored for each appli-

cation at design time to derive set of optimal design
points. This phase is out of scope of this paper.

- Phase 2: Critical decisions about all active applications
are taken at run time. This run-time phase is explored in
PHARAON project.

A. RTPM approach

During the application run, there are various opportuni-
ties which can be exploited by global run-time manager to
optimise application and hardware platform performance.
As depicted by Fig. 14, we propose run-time decisions dur-
ing the lifetime of applications to be organized into two lay-
ers: coarse grained level L1 decisions triggered by dynamic
events and fine grained level L2 decisions to improve appli-
cation performance.

Figure 14. RTPM architecture

L1 decisions include optimal selection of application
configurations and then mapping one or more tasks in those
configurations on the platform resources. These decisions
are more costly to perform and usually involve reconfigura-
tion of platform hardware. They are triggered by dynamic
events generated due to change in the environment e.g. user
moves from roaming with LTE network into a WiFI
hotspot. On the other hand, L2 decisions correspond to fine-
tuning application performance. The control knobs available
with the platform (e.g. DVFS) and with the application-
specific parameters (e.g. changing frames per second con-
straint in MPEG4 encoder to trade-off quality with perfor-
mance) are tuned iteratively to optimize application and
platform performance.

B. Decision making at run-time

During application run, there are various opportunities to
optimise application and hardware platform performance.
Global Run-time Manager (GRM) can decide to change

platform and application parameters at run-time to exploit
these opportunities. GRM needs to do this decision-making
in a systematic way by using coarse-grained and fine-
grained decisions Following is a high-level algorithm for the
runtime decision making which will typically run on the
controller of the hardware platform. In PHARAON, this
run-time decision-making flow is enabled by using pro-
posed RTPM architecture (Fig.14).

Inputs:

a) Hardware platform information e.g. available resources –
both computation and communication, different knobs on
those resources that can be tuned

b) Application information e.g. constraints – both hard and
soft, multiple optimal operating points and their corre-
sponding resource usage, Quality of Service (QoS) of ap-
plication runs

c) External inputs regarding environment changes e.g. some
additional sensors to indicate such changes or the sensors
could be built-in on the hardware platform

1. Decide platform resource allocation to applications

2. Select the optimum operating configuration for each ap-
plication using allocated resources

3. Decide for each application, how the platform resources
will be allocated for each task of the application

4. Perform (partial or full) dynamic reconfiguration of the
platform to place application code on those chosen re-
sources

5. Start executing the application

6. Monitor observable performance parameters both for ap-
plication and platform

7. Perform fine-tuning of platform DVFS modes depending
on actual application slack time

8. In case of environment change or a dynamic event or ina-
bility to achieve expected performance, go to Step 1

9. Go to Step 6.

C. Low-Power scheduler

The low-power scheduler is part of layer 2, as presented
in section 6.1. It takes as input the selected application mode
defined by the reconfiguration manager (see section 6.2),
and accounts for the predefined SW and HW configurations.
The SW configuration includes the application mode, asso-
ciated deadline, and segment timing tables, while the HW
settings consist of the active core count, voltage and fre-
quency mode, as well as task affinity to specific cores.
The low-power scheduler developed as part of PHARAON
combines a classical Earliest Deadline First (EDF) policy
with Dynamic Voltage and Frequency Scaling (DVFS)
mechanisms.

As depicted in Fig.15, the power management policy re-
lies on the notion of Actual Execution Time (AET). The
application AET is monitored and compared to the Worst
Case Execution Times (WCET). In order to reduce power
consumption while complying with the application deadline,
the scheduler attempts to minimize application idle times by
spreading tasks over as many active cores as possible within
the SMP, as it lowers voltage and/or frequency.

The results in terms of energy savings depend on how of-
ten idle times occur, as well as their durations---which may
be large if the WCET differs widely from the AET, and are
thus very application-specific. For example, our H264 codec
sample, running on an ARM Cortex A8, shows improve-
ments ranging from 20% to 80% depending on the desired
QoS.

Figure 15. DVFS scheduling compared to regular scheduling

The first task of an application is executed with the core
configuration as initially applied by the dynamic reconfigu-
ration operation. During the execution of a task, modifica-
tions of the core state may then only occur at certain specific
points, termed segment boundaries. A segment is a section
of code under timing constraint, which exports timing in-
formation at runtime. This decomposition enables the
scheduler to identify and monitor the different execution
paths taken by a task, in order to maintain an accurate vision
of the work already accomplished and the work that remains
to be done in a given task. This reporting is achieved
through specific additional APIs, in conjunction with an
extension of POSIX threads, allowing timing annotations on
thread-based tasks.

From a user perspective, to benefit from this runtime, ap-
plications have to be instrumented with segments through
the aforementioned API calls. Splitting a task into segments
constitutes a trade-off. More segments help the scheduler
track progression better, but incurs more timing overhead.
In addition to these API hooks, the low-power scheduler
requires a user-supplied segment table, which maps the
name of all the segments in the application to their associat-
ed WCET, at the different core operating points, as well as
their deadlines.

For portability reasons, the current version of the sched-
uler has been written to run in user space. It requires a FIFO
priority-based host scheduler, hardware support for DVFS
capacities, as well as POSIX threads for the application in-
terface. An implementation in kernel space could be built on
the same principles.

In the case of PHARAON, experiments are conducted on
a multicore Cortex-A9 platform, running Linux-SMP, using
the CPUfreq framework for DVFS. By relying on CPUfreq,
we leverage the standardized hardware abstraction of Linux,

making the approach transparently compatible with future
HMP platforms with big.LITTLE architectures.

As part of the PHARAON project, applications defined in
section 2 are currently being manually instrumented with
the timing APIs. Simultaneously, more ongoing work fo-
cuses on: (1) automatically generating these calls based on
the code generator presented in section 4.2; (2) estimating
the application segment WCET via the Pareon tool; (3) inte-
grating the APIs in the OpenStream runtime.

VII. CONCLUSION

Various tools, techniques and runtime to help application
mapping on multiprocessors platforms have been presented.
Results should benefit to reduce development time, increase
performance and reduce power consumption. To ease the
usage of this methodology, information related to tools are
integrated in the UML models in order to generate automati-
cally relevant data used by tools and runtime.

ACKNOWLEDGMENT

This work has been performed in the framework of the EU
FP7-288307 funded project PHARAON.

REFERENCES
[1] Pareon doc, http://www.vectorfabrics.com/docs/pareon/current/

[2] Nhat Minh Lê, Antoniu Pop, Albert Cohen, and Francesco Zappa
Nardelli. Correct and efficient work-stealing for weak memory
models. In Symp. on Principles and Practice of Parallel
Programming(PPoPP), Shenzhen, China, February 2013.

[3] Antoniu Pop and Albert Cohen. OpenStream: Expressiveness and
data-flow compilation of OpenMP-streaming programs. ACM
Transactions on Architecture and Code Optimization (TACO),
January 2013. Selected for presentation at the HiPEAC 2013 Conf.

[4] Albert Cohen, Léonard Gérard, and Marc Pouzet. Programming
parallelism with futures in Lustre. In ACM Conf. on Embedded
Software (EMSOFT), Tampere, Finland, October 2012. Best paper
award.

[5] L. Gérard, A. Guatto, C. Pasteur et M.Pouzet. Modular Memory
Optimization for Synchronous Data-flow Languages. In Languages,
Compilers and Tools for Embedded Systems (LCTES), Taipei,
Taiwan, June 2012, Best paper award.

[6] J. Declerck, P. Avasare, M. Glassee, A. Amin, E. Umans, A.
Dewilde, P. Raghavan, M.Palkovic, “A flexible platform architecture
for Gbps Wireless Communication”, International Symposium on
System-on-Chip (SoC), Tampere, Finland, 2012.

[7] D. C. Schmidt, “Model-driven Engineering” IEEE Computer, vol. 39
no. 2, pp. 25-31, 2006

[8] H. Posadas, P. Peñil, A. Nicolás, E. Villar
"Automatic synthesis of Embedded SW Communications from
UML/MARTE models supporting memory-space separation", XXVII
Conference on Design of Circuits and Integrated Systems, DCIS'12.
2012-11

[9] P. Peñil, H. Posadas, A. Nicolás, E. Villar
"Automatic synthesis from UML/MARTE models using channel
semantics", International Workshop on Model-Based Arquitecting
and Construction of Embedded Systems, ACES-MB 2012. 2012-09

