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Figure 4.17. Laminate beam structure with one fiber/matrix cell included
under torsion loading.

Torsion

Lamina Ei/E Eax,i/Eax Es,i/Es

1 0.353 0.508 0.319
2 0.302 0.021 0.358
3 0.345 0.471 0.323

E × 102 [mJ] Eax × 104 [mJ] Es × 102 [mJ]
Laminate 7.330 9.671 6.071

Table 4.11. Strain energy distribution in a laminate beam under torsion F = 1 N load.

Bending

Lamina Ei/E Eax,i/Eax Es,i/Es

1 0.451 0.499 0.116
2 0.099 0.003 0.772
3 0.450 0.499 0.113

E × 101 [mJ] Eax × 101 [mJ] Es × 102 [mJ]
Laminate 5.798 5.077 6.833

Table 4.12. Strain energy distribution in a laminate beam under bending F = 5 N load.

82



4 – The CW approach for the evaluation of integral quantities

Figure 4.18. Axial stress distribution at the clamped cross section for the laminate beam
(one fiber/matrix cell included) under bending and torsion loadings.
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4 – The CW approach for the evaluation of integral quantities

the total, axial and shear strain energy of the whole cell for both the loading cases. Also

Torsion

Ei/E Eax,i/Eax Es,i/Es

Matrix 0.875 0.008 0.883
Fiber 0.125 0.992 0.117

E × 103 [mJ] Eax × 105 [mJ] Es × 103 [mJ]
Cell 2.582 2.977 2.515

Table 4.13. Strain energy distribution in a fiber/matrix cell included in a laminate beam
under d torsion F = 1 N loads.

Bending

Ei/E Eax,i/Eax Es,i/Es

Matrix 0.026 0.015 0.741
Fiber 0.974 0.985 0.259

E × 102 [mJ] Eax × 102 [mJ] Es × 104 [mJ]
Cell 2.322 2.289 3.432

Table 4.14. Strain energy distribution in a fiber/matrix cell included in a laminate
beam under bending F = 5 N loads.

in this case, concerning the bending load, the fiber is the component related to the axial
strain energy while the matrix that related to the shear strain energy absorption. When
subjected to torsional load the fiber absorbs the 99,2 % of the cell while the 88,3% of the
shear energy is absorbed by the matrix. Evaluations of the FI* for the maximum stress
criteria are provided for the fiber/matrix cell in Table 4.15. Through the CW approach,

FI* - MS

Bending Torsion
Matrix 0.055 0.147
Fiber 0.266 0.190
Cell 0.182 0.173

Table 4.15. MS Failure index integrated over the fiber,matrix and whole cell subvolumes
under bending F = 5 N and torsion F = 1 N loads.

in a realistic structural configuration failure parameters can be evaluated on components
properly refining the model. For the laminate (b), fiber/matrix cells are included in the
ply as shown in Figure 4.19. A different mesh of the fiber cross-section is provided as
depicted in Figure 4.20 while the mesh of the whole laminate is obtained by means of 184
L9 elements on the cross-section and 4 B3 along the beam axis. The structure is clamped
at y = 0, a bending loading is applied at the free tip in the center of the second ply, F =
5 N. As in the previous case, results are shown in terms of strain energies in Table 4.16
where first, each lamina is chosen as structural subvolume then, each of the eight fibers
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4 – The CW approach for the evaluation of integral quantities

Figure 4.19. Second laminated beam model - laminate (b).

Figure 4.20. Laminate beam structure with eight fiber/matrix cells included
under bending loading.
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and the related portion of matrix are taken into account. Results are in agreement with

Lamina Ei/E Eax,i/Eax Es,i/Es

1 0.462 0.493 0.295
2 0.096 0.003 0.610
3 0.442 0.504 0.095

E × 101 [mJ] Eax × 101 [mJ] Es × 102 [mJ]
Laminate 5.949 5.052 8.616

Table 4.16. Strain energy distribution in a laminate beam with 8-fiber/matrix cell
included under bending F = 5 N.

the laminate (a) under bending. For both laminate models, comparison to solid results
are provided in Table 4.17. Then, evaluations of the FI* according to the maximum stress

Model E × 103 [mJ] DOFs

Single Cell
CW 5.798 17202
Solid 5.946 155403

Eight Cells
CW 5.949 21033
Solid 6.004 386085

Table 4.17. CW vs Solid. Total energies.

criteria are provided for the fiber/matrix cell in Table 4.18.

FI* - MS

Cell Fiber Matrix
1 0.293 0.441 0.070
2 0.310 0.469 0.071
3 0.315 0.476 0.074
4 0.312 0.469 0.077
5 0.312 0.469 0.077
6 0.315 0.476 0.074
7 0.310 0.469 0.071
8 0.293 0.441 0.070

Table 4.18. MS Failure index integrated over the fibers, matrix and whole cells
subvolumes under bending F = 5 N.
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Chapter 5

A multiscale approach using the
CW cells at the microscale level

A hierarchical multiscale approach for the analysis of fiber-reinforced composite structures
is presented in this chapter. A two-scale analysis is proposed; the 1D CUF is used to model
the microscale while 3D solid elements are used at the macroscale. The present approach
has been implemented in Abaqus environment through a user subroutine UMAT. In section
5.1 the information-passing scheme and the boundary conditions applied at the microscale
are introduced. Numerical results are provided in section 5.2 where the present approach
is used to perform linear analysis.

5.1 Introduction

In chapter 3 it has been shown how different scales can be simultaneously modeled refining
the macroscale model in specific regions. In the CW approach three scales have been con-
sidered where the 1D-CUF has been used at each level. A hierarchical multiscale modeling
strategy is herein presented. Since scales are hierarchically included in this method, many
dimensional levels can be considered by means of different mathematical tools from the
molecular dynamics to the continuum mechanics. Nevertheless, the computational cost
of the analysis strongly depend on the scales involved in the investigation, a compromise
between accuracy and efficiency is then required. Despite the increasing development
in computer hardware, the computational effort of these methods is still prohibitive for
extensive applications. The reduction of the computational time and cost required to
perform failure analysis is still a challenging task. For this reason, the present approach
focuses on two scales; a micro- and macro-levels are taken into account by carrying out un-
coupled analysis, results are bridged by introducing a proper information-passing scheme.
In order to reduce the computational cost of the model, 1D elements have been used at
the microscale by means of the CUF while, at the macroscale, 3D elements have been
adopted. This approach is based on the micromechanics assumption that in the whole
structure a repeating unit cell can be identified. For this reason, entities at the microscale
previously addressed as “cells” are herein also referred as Repeating Unit Cells (RUCs).
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5 – A multiscale approach using the CW cells at the microscale level

The macroscale, characterized by the global dimension of the structure to be analyzed, is
described as continuum through a homogenized 3D model. The finer scale is character-
ized by the dimension of the fiber diameters, at this level, the material heterogeneity is
introduced modeling the components. The latter scale can be either used to provide the
macroscale homogenized stiffness or to model the damage and failure mechanisms within
the constituents. If it is used to achieve the former goal, from the knowledge of the mate-
rial properties at the finer scale the overall behavior of the coarse scale can be predicted to
perform linear analysis. If used for the latter, the failure mechanism of the macroscale is
obtained as natural evolution of phenomena occurring at the microscale. In the following
sections the present multiscale approach is used to perform linear analysis, results of the
progressive failure analysis are presented in chapter 6. In the framework of hierarchical
multiscale approaches, many different theories have been developed in the last years. A
comprehensive overview on two scales analyses is given by Abaudi [57] where the capability
in providing the response of elastic, thermoelastic, viscoelastic, and viscoplastic composites
has been demonstrated. The initial yield surfaces, strength envelopes, and fatigue failure
curves can also be provided through this approaches. Similar methods have previously
been developed for aligned short-fiber composites [58]. A review of the Method of Cells
(MOC) appeared in [57], and detailed description and application of the method were
given in [59]. The MOC was further generalized and reformulated by Paley and Aboudi
[40] and [60] and referred as Generalized Method of Cells. Recently, the Integrated Finite
Element Method (IFEM) has been introduced for performing progressive failure analy-
sis in fiber reinforced composite structures where both the macro and the microscale are
modeled by using 2D and 3D FE. As well as in IFEM, the present work is developed in
the framework of the finite element analysis where the macroscale is modeled using the
ABAQUS commercial code with 3D elements, while the 1D Carrera Unified Formulation
(CUF) is adopted to model the microscale. Since the 1D CUF provides results with ac-
curacy comparable to the solid element modeling, in future works it will be also possible
to use it to model both the macroscale and the microscale and have the Integrated CUF
(ICUF). In particular, the 1D unified formulation with the LE polynomials, described in
section 2.3.2, has been exploited to obtain advanced displacement-based theories. The
order of the formulation is a free parameter of the analysis. Using the UF, the stress and
strain fields are provided with a significant reduction of DOFs involved. Once a refined
description of the stress and strain within the constituent phases is provided, progressive
failure analysis can be performed as proposed in section 6.3. Informations obtained by
results at the fine scale are passed back to the macroscale assuming that each point can be
represented by a unit cell containing fiber and matrix phases as shown in Figure 5.1 where
<>=

∫

V
dV , is the integral of the stress components at the microscale, and dV indicates

the volume of the RUC. The far field strain at the integration points can be applied to
the cells by means of two different sets of boundary conditions, the linear displacement
field and the Periodic Boundary Conditions (PBC). Both set of boundary conditions can
be utilized to calculate the homogenized stiffness tensor and update the global state of
stress on the cell at the following iteration; an iterative algorithm to solve for the stress
field is used. Within similar multiscale approaches progressive failure analysis have been
performed using the GMC and the IFEM. A failure criterion at the microscale is used to
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5 – A multiscale approach using the CW cells at the microscale level

determine the failure initiation directly on the components. If such criterion is satisfied,
the stiffness of the cell can be progressively reduced. The degraded stiffness is then used to
update the global stress on the cell and therefore on the macroscale in which, a loss in the
stiffness of the composite is recorded. A detailed description of the failure introduction in
the present approach is described in section 6.3 where numerical results are also provided.
In the present approach, since the macroscale is modeled in ABAQUS environment, the

Figure 5.1. Two scales analysis obtained using the 1D CUF at the microscale.

material model has been introduced through a user subroutine (UMAT). The UMAT can
be used to define the mechanical constitutive behavior of a material, it will be called at
all material calculation points of elements for which the material definition includes a
user-defined material behavior. Using the UMAT, the Jacobian matrix of the constitutive
model at the microscale, ∂∆σ

∂∆ε
, has to be provided where, ∂∆σ are the stress increments

and ∂∆ε are the strain increments at each step. The matrix ∂∆σ
∂∆ε[I,J ] defines the change

in the ith stress component at the end of the time increment caused by an infinitesimal
perturbation of the jth component of the strain increment array. Since no assumptions are
made on the stress and strain states, this is a 6× 6 matrix. The global value of the stress
on the cell to pass back to the macroscale can be evaluated by means of the numerical
integral approach described in chapter 4.

5.1.1 Boundary conditions

In a hierarchical multiscale perspective, the correct imposition of boundary conditions at
the microscale is of primary importance to solve the problem correctly and passing the
informations through the different scales. According to the FE discretization of the cell at
the microscale with 1D LE elements, Boundary Conditions (BC) are applied to constrain
the stiffness matrix and the loading vector of the linear system to be solved described in
chapter 2.
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5 – A multiscale approach using the CW cells at the microscale level

Linear displacement field

Assume a cell of dimensions l1, l2, l3 respectively in x-,y-,z-directions as shown in Figure
5.2. A linear displacement field can be imposed on the cell as in Equation 5.3 where 9

d

l2

l1

l3

x, u

y, v
z, w

Figure 5.2. Microscale dimensions and reference system for a generic RUC.

coefficients a11, a12, a13, a21, a22, a23, a31, a32, a33. have to be determined.










u(x,y,z) = a11x + a12y + a13z

v(x,y,z) = a21x + a22y + a23z

w(x,y,z) = a31x + a32y + a33z

(5.1)

Since the macroscale far field strain is known and the geometrical relations are given:

εxx = ∂u
∂x

= a11; εyy = ∂v
∂y

= a22; γxy = ∂u
∂y

+ ∂v
∂x

= a12

εzz =
∂w
∂z

= a33; γxz =
∂u
∂z

+ ∂w
∂x

= a13 γyz = ∂v
∂z

+ ∂w
∂y

= a23
(5.2)

we can impose:

ωz =
∂v
∂x

− ∂u
∂y

= 0; ωx = ∂v
∂z

+ ∂w
∂y

= 0 ωy = ∂u
∂z

+ ∂w
∂x

= 0
(5.3)

and determine the 9 coefficients. The BC are enforced by means of lagrange multipliers,
the stiffness matrix is then modified as reported in Equation 5.4 and the force vector as
shown in Equation 5.5.

[K] →

[

Kii BT

B 0

]

(5.4)

where B is the identity matrix with dimension NLM ×NLM , where NLM is the number of
Lagrange Multipliers λi, i = 1,...,NLM .

[F ] →

[

Fi

λj

]

(5.5)
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The total number of degree of freedoms, DOFs’, is DOFs′ = DOF +NLM .

a11 = εxx

a12 =
γxy
2

a13 = γxz
2

a21 =
γxy
2

a22 = εyy

a23 =
γyz
2

a31 = γxz
2

a32 =
γyz
2

a33 = εzz

(5.6)

Periodic boundary conditions

Periodic Boundary Conditions (PBC) can also be applied to model the periodicity of the
microscale. When the periodicity is enforced it is assumed that the displacement field
at opposite faces of the cell is the same. That is, each cell could be placed close to each
other as it is since the deformed shapes match. Displacement u,v,w of the boundary nodes
of each cell are constrained as shown in Equations 5.7, 5.8 and 5.9 respectively for sides
1, 2 and 3. Sides refer to the cell faces as shown in Figure 5.3 where l1, l2, l3 are the
characteristic lenghts of the cell respectively in x-, y- and z-directions.

Side 1 :











u(l1,y,z)− u(0,y,z) = ε11 l1

v(l1,y,z)− v(0,y,z) = 2 ε12 l1

w(l1,y,z)− u(0,y,z) = 2 ε13 l1

(5.7)

Side 2 :















u(x,l2,z)− u(x,0,z) = 2 ε21 l2

v(x,l2,z)− v(x,0,z) = ε22 l2

w(x,l2,z)− u(x,0,z) = 2 ε23 l2

(5.8)

Side 3 :











u(x,y,l3)− u(x,y,0) = 2 ε31 l3

v(x,y,l3)− v(x,y,0) = 2 ε32 l3

w(x,y,l3)− u(x,y,0) = ε33 l3

(5.9)

Since the LE formulation is exploited, PBC are directly enforced on the structural nodes
of the RUC. A basic example is presented as follows where a square homogeneous RUC
is taken into account as shown in Figure 5.4. The 1D LE mesh is obtained using 1 L9
element on the cross-section while 1 B3 element is used along the beam axis. Considering
the equivalent 3D volume given by the virtual extrusion of the cross-section geometry
along the beam axis there are 27 structural nodes of which. the nodes (1,...,9)′ belong to
the first beam element node, the nodes (1,...,9)′′ and (1,...,9)′′′ respectively to the second
and the third element nodes. PBC of side 1 is applied on nodes i: 5′,6′,7′ and respectively
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d

l2

l1

l3

x, u

y, v
z, w

Side 1

Side 2

Side 3

Side 1

Figure 5.3. PBC side notations.

j: 3′,2′,1′, Side 2 on nodes i: 3′,4′,5′ and j: 1′,8′,7′, while Side 3 on nodes i: 1′′′,...,9′′′ and
j: 1′,...,9′. The displacement field for a single fiber/matrix RUC is shown in Figure 5.5
where respectively the ux (u), uy (v) and uz (w) components are obtained applying the
strain ε = 1× 10−6. The PBC are implemented by means of the penalty approach in the

Side 1
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8
’’’

1
’’’

9
’’’

2
’’’

4
’’’

3’’’

1 B3

1 L9

Figure 5.4. PBC applied on a square homogeneous RUC, 1 L9 (cross-section) and
1 B3 (beam axis) elements.

FEM framework. PBC reported in Equations 5.7, 5.8 and 5.9 are multipoint constrain
boundary conditions:

β1iui(x,y,z) + β2juj(x,y,z) = β0i i,j = 1,...,N (5.10)
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u
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-085 10×
-08-08

4 10×
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-08
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Figure 5.5. Displacement field (u,v,w) on the single fiber/matrix cell due to the PBC.
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where β1i = 1 β2j = −1 and N is the number of constrains. Introducing this set of
constraints, the stiffness matrix and the force vector are shown in Equations 5.11 and 5.12
where C is a penalty value properly chosen depending on the maximum value of the actual
stiffness matrix.

[K] →

[

Kii + Cβ2
1i Kij + Cβ1iβ2j

Kji + Cβ1iβ2j Kjj + Cβ2
2j

]

(5.11)

[F ] →

[

Fi + Cβ0iβ1i
Fj + Cβ0iβ2j

]

(5.12)

5.2 Numerical Results

Numerical results for two different case studies are herein presented. A noched laminate
is analyzed in section 5.2.1 while an open hole plate is taken into account in section
5.2.2. Both the notched and the open hole plates are subjected to uniaxial tension. The
macroscale is modeled in Abaqus environment while for the microscale cells are described
through the 1D CUF with LE polynomials. Results are compared with an equivalent
homogenized model.

5.2.1 Notched laminate subjected to uniaxial tension

A one layer notched laminate subjected to uniaxial tension is herein analyzed. The lami-
nate geometry is shown in Figure 5.7; dimensions are reported in Table 5.1. The macroscale
mesh is obtained as shown in Figure 5.9 by means of solid 8 nodes elements (C3D8). Dif-
ferent unit cells are taken into account at the microscale level. First, a single Fiber/Matrix
cell depicted in Figure 5.6 a is taken into account. Then a Hexagonally Packed cell is con-
sidered as shown in Figure 5.6 b. In the first case, the cell is square with l1 = l3 = 0.1 mm,
l2/l1 = 10. The fiber νf and matrix νm volume fractions are νf = 50.3%, νm = 49.7%.
The hexagonally packed cell dimensions are l1 = 0.1 mm, l3 = 0.13 with l2/l1 = 10,

Figure 5.6. Single Fiber/Matrix RUC (20 L9) and Hexagonally Packed cell (40 L9) meshes.

the fiber and matrix volume fractions are νf = 39 %, νm = 61 %. Material properties
are respectively Ef = 250634 MPa, νf = 0.2456 for the fibers and Em = 3252 MPa,
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h
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1

3

2

h

t

l

Figure 5.7. Notched one layer laminate geometry.

[mm]

l 21.65
h 6.35
t 0.13
h1 0.22
h2 0.12
h3 0.38
h4 0.05

Table 5.1. Notched laminate dimensions.

νm = 0.355 for the matrix portions. The laminate is clamped at one end while diplace-
ment u = 0.01 mm is applied to the opposite side of the structure as shown in Figure 5.8.
PBC are applied at the microscale. The Abaqus solid mesh is provided in Figure 5.9. A

Figure 5.8. Macroscale boundary conditions for the notched laminate model.
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Figure 5.9. Abaqus C3D8 solid mesh.

linear analysis is performed in multiscale perspective and compared with an homogenized
model. At each integration point of the solid elements the 1D CUF cell is called to solve
the boundary problem and compute the average value of the stress to pass back to the
macroscale. The Newton’s algorithm is used to solve the linear system in Abaqus. The
constitutive equations are implemented through a UMAT subroutine where the Incremen-
tal Jacobian matrix has to be defined. For the present case study usign the fiber/matrix
cell the Jacobian matrix is reported in Equation 5.13.

∂∆σ

∂∆ε
=

















127073 5328 5335 0 0 0
5328 13370 4732 0 0 0
5335 4732 1339 0 0 0
0 0 0 6903 0 0
0 0 0 0 6916 0
0 0 0 0 0 5075

















(5.13)

The correspondent values for the macroscale elastic properties are:

E11 = 123935 [MPa]
E22 = 11603 [MPa]
E33 = 11626 [MPa]

ν12 = ν13 = 0.294
ν32 = 0.343
G12 = 6904 [MPa]
G23 = 5075 [MPa]
G13 = 6916 [MPa]

(5.14)
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The Jacobian Matrix for the hexagonally packed cell is shown in Equation 5.15.

∂∆σ

∂∆ε
=

















80475 4032 4015 0 0 0
4032 8318 4455 0 0 0
4015 4455 8249 0 0 0
0 0 0 4473 0 0
0 0 0 0 4374 0
0 0 0 0 0 4562

















(5.15)

The correspondent values for the macroscale elastic properties for the hexagonal packed
cell are:

E11 = 77933 [MPa]
E22 = 5868 [MPa]
E33 = 5819 [MPa]

ν32 = ν13 = 0.3165
ν12 = 0.3152
G12 = 4473 [MPa]
G23 = 4374 [MPa]
G13 = 4562 [MPa]

Figure 5.10. Maximum principal stress distribution: multiscale analysis applied at
the notched laminate case study.

Figure 5.11. Maximum principal stress distribution obtained through the homogenized
model for the notched laminate case.
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Figure 5.12. Maximum principal stress distribution in the notched are: multiscale analysis.

Figure 5.13. Maximum principal stress distribution in the notched area: homogenized model.
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5.2.2 Open hole plate subjected to uniaxial tension

Numerical results for an open hole plate are herein presented. The geometry of the struc-
ture is shown in Figure 5.2.2 where the length, l, is equal to 150 mm, the width, w, is
equal to 100 mm and the tickness of the plate, t, is 5 mm. The characteristic dimen-
sion w/D = 5 with d diameter of the open hole. The same material properties of the
notched laminate analyzed in 5.2.1 have been considered. In Figure 5.2.2, 5.2.2 and 5.2.2
results are shown in terms of stress distribution between the multiscale approach and the
homogenized model.

d

w

t

l

Figure 5.14. Open hole plate under tension.
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Figure 5.15. Open Hole laminate solid macroscale mesh.
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(a)

(b)

Figure 5.16. σ11 obtained through a multiscale analysis with the single fiber/matrix cell
at the microscale (a) and through the homogenized model (b).
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(a)

(b)

Figure 5.17. σ22 obtained through a multiscale analysis with the single fiber/matrix cell
at the microscale (a) and through the homogenized model (b).
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(a)

(b)

Figure 5.18. σ12 obtained through a multiscale analysis with the single fiber/matrix cell
at the microscale(a) and through the homogenized model (b).
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