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Abstract—Alice is an engineer who ventures into the research

world of Life Sciences. To her eyes, Life Sciences researchers

work backwards compared to what happens in her world. It

appears that their research methodology has a number of issues

that may limit its potential. Nevertheless, she also becomes aware

that a different set of problems arises if her own traditional

top-down engineering approach is applied to Life Sciences. This

paper discusses how we see the role of Systems and Computa-

tional Biology as a fundamental methodological “middle-ground”

between these two (apparently) distant worlds.

I. INTRODUCTION

The typical way the Life Science world sees the role of
Computer Science is a “tool” to analyze laboratory data. At
a first glance this role is a reasonable one, since computers
play a significant part in interpreting and statistically analyzing
biological data. Computers started to become necessary (and
not only sufficient) when Biologists were not able anymore
to manually “infer” plausible hypotheses and models from
the huge amount of data becoming available thanks to high-
throughput biotechnologies, and even more from the use of the
web as a main “big data” repository. Nevertheless, there is a
wide gap between what computer science is doing for the Life
Sciences research community, and what it could do. This is
due not to technical reasons, but to a methodological problem
based on a bottom-up approach where where computation is
mostly used to “make sense” of lab data. In this paper we ask
ourselves: is this the only plausible, or the most efficient and
effective, approach for the engineeering and computer science
world to assist the type of work Life Science researchers
are doing? What is it exactly, that they are doing? To some
extent, in our opinion, the effort to formalize the results of an
experiment should be comparable to the one required for the
data analysis done to design the experiment itself; nevertheless
this habit requires an engineering frame of mind that is often
missing or neglected in the Life Science community.

II. BIOLOGY IS REVERSE ENGINEERING

First of all, let’s try to better understand and formalize
the type of research most scientists are doing in the Life
Sciences world. Biologists are not designing a system like
most engineers do. They are instead trying to understand how

a certain biological system works. In the engineering world,
this task is known as Reverse Engineering, a concept very
clear to engineers but not so easy to understand for other
scientists, especially in its implications. “Reverse engineering
is the process of discovering the functional principles of a
device, object, or system through analysis of its structure,
function, and operation” [6]. Life Sciences are “the” Reverse
Engineering sciences by definition: their task is to understand,
model, and predict the dynamics of the biological systems that
allow, define, and regulate life.

One key concept to understand about reverse engineering
is that designing a system and reverse engineering it are
two opposite tasks whose complexity may differ in orders
of magnitude. Considering this, the question we now ask
is: should the complexity (in mathematical terms) of the
system under investigation drive the methodological approach
followed to reverse engineer it?

Answering this question is fundamental because it could
have important consequences not only on the way research
is planned, but already on how IT Professional curricula that
focus on Life Sciences are designed and organized. The choice
of a methodological approach is not only a consequence of the
notions scientists learned during their studies, but even more
of the forma mentis that a particular course of studies shaped
in each of them.

Since we started applying Computer Engineering to Life
Sciences, we observed a definite cultural gap between biolo-
gists and engineers. Biologists seem to be very comfortable
with ambiguity, whereas engineers always expect to achieve
established knowledge and certainty. The methodological dif-
ferences between these two are planted during undergraduate
and graduate studies. Engineers are trained to work top-down,
with an approach which is focused towards modeling as much
as possible, stopping only when the model is detailed enough
to make all the available results and knowledge smoothly
work together. Biologists are taught a bottom-up approach,
analytically and precisely studying very specific and controlled
problems, but lacking reliable methodological tools that allow
them the generalization of their findings and the understanding
of the higher-level dynamics of the systems under study. What
is important to understand is if the success of one approach or
the other is an “absolute” characteristic of the approach itself,
or if it depends on the complexity and properties of the system
under study.

A. An Example: Nyquist, a movie plot, and genetic regulation

To better understand why the question posed in the previous
section is so important, let’s make a very simple example. In
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most engineering fields, a common problem is the determi-
nation of the sampling frequency necessary to reconstruct a
signal (of any kind). The Nyquist-Shannon law comes to help
basically stating that, to obtain a reliable signal reconstruction,
the sampling frequency has to be greater than the double of the
signal frequency (or signal dynamic). Let’s “translate” this into
a simpler example, maybe not technically completely correct,
but easier to understand for those readers that are not familiar
with signal reconstruction problems.

Let’s assume that our task is to figure out the plot of a
movie, without seeing the whole movie, but only screenshots
of it. The question is: how often should we grab a screenshot
(the sampling rate) to be able to reliably reconstruct the plot
of the movie? The answer only depends on how often a
significant event takes place in the plot. If, for example, we
assume that two consecutive significant events never take place
less than 10 minutes apart, then the Nyquist law tells us that
we need to get a screenshot at most every five minutes in order
to be able to reliably infer anything about the plot.

We used this example, despite not being completely the-
oretically correct, because it is closely related to a typical
“bioinformatic” problem, that is the understanding of the wide
range of mechanisms that are used by cells to increase or
decrease the production of specific gene products (proteins).
The “expression” of a gene is the process by which the infor-
mation encoded in a gene is used to synthesize a functional
gene product, e.g. a protein. Genes are not expressed all the
time; instead, the level of expression of a gene depends on
the expression level and the interactions among the products
of several other genes. The most effective way to represent this
network of interactions is by using graphs, where each node
is a gene, and each edge connecting two genes represents a
direct regulatory interaction between them. The topologies of
these networks are static (they do not change in time), but the
expression profile of each gene does change in time depending
on the status of the other nodes, and represets the network
dynamics. Biotechnologies (e.g., microarrays) allow to take
“snapshots” of the expression levels of thousands of genes at
different sampling rates. The problem can be then formalized
as: given a set of snapshots of the expression levels of a group
of selected genes taken at variable time intervals (usually
minutes or hours), is it possible to reconstruct the network
of interactions that models the system dynamics? Using the
analogy introduced before, each gene expression profile is
like a movie screenshot, and the final network topology (and
consequently, dynamics) is the movie plot.

Before even considering the different approaches proposed
to “build” the gene interaction network from the expres-
sion profiles, we ask the following question: if the current
biotechnologies allow to photograph the gene expression for
example every 10 minutes, will this sampling frequency be
compatible, following the Nyquist-Shannon law, with the
network operating frequency? Because, in this example, the
network would be “reconstructable” only if its “frequency” is
in the range of tens of minutes. So, what is the frequency
at which a gene regulatory network works? In our discussion
with several researchers we still haven’t found a clear and
definite answer. No one, to the best of our knowledge, ever
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Figure 1. Sampling frequencies

seriously considered this question in these terms. Apparently
the dynamics of some genes are in the order of seconds, others
work in the order of minutes, others of hours... so what is the
accuracy in reconstructing a network in this way, without even
taking into account the fact that if the sampling frequency is
incompatible with the system dynamics, then no expression
sample can be reliably used? Does it make sense to identify
drug targets, associate pathologies with genes, or design a
therapy with data that give no guarantee of revealing anything
about the real systems’ functionality? For further discussions
about these issues, a recent and interesting article specifically
focused on the reverse engineering of regulatory systems can
be found in [1].

III. METHODOLOGIES: BOTTOM-UP VS TOP-DOWN

The final goal of both bottom-up and top-down approaches
to Reverse Engineering is to construct a reliable model of the
system under investigation. Modeling is a way to encapsulate
part of the real world in terms of mathematical relationships.
The key points of both approaches are summarized in Figure
2.

The bottom-up approach works extremely well with linear
systems. Linear systems are subject to the principle of super-
position that states that the net response at a given place and
time caused by two or more stimuli is the sum of the responses
which would have been caused by each stimulus individually.
So that if input A produces response X and input B produces
response Y then input (A + B) produces response (X + Y). The
direct consequence of this property is that it is possible to study
the dynamics of the whole system by studying, individually,
the dynamics of each component. Linear systems are easy
to understand also for non-mathematicians and are easy to
visualize. For this reason a large part of the Life Sciences
world, and particularly the medical one, still reasons in linear
terms, neglecting the fact that probably only a few of the
biological systems are truly linear. The main obstacle appears
when it is time to merge all experimental observations to
build a higher-level model (the “up” part of the methodology).
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Figure 2. Top-down vs Bottom-up

If the system is not linear but complex, this step is not
guaranteed to be possible since the superposition property does
not hold anymore. Complex (non-linear) systems are much
more difficult to understand or visualize. They consist of many
diverse and autonomous (but interrelated and interdependent)
components or parts linked together through many (usually
dense) interconnections. They cannot be described by a single
rule and, importantly, they exhibit properties that emerge from
the interaction of their parts and that cannot be predicted only
from the properties of each individual part. What happens is
that often observations that “do not make sense” are discarded
as “lab errors”, or results are manipulated to make everything
fit together. Nevertheless, this failure in the abstraction process
may not be caused by errors made during the research, but
instead by a limitation of the methodology itself, which is
intrinsically unable to elucidate some of the most important
functional properties of the system. In this situation, a bottom-
up approach has strong limitations, clearly demonstrated by
huge variations in the results of lab experiments. In the
medical world, the bottom-up approach has a very misleading
characteristic that makes its use very “tempting”: it is able
to show early insights on the system behavior. The mistake
is to consider these insights reliable enough to produce a
higher-level model (or even a therapy for a disease), whereas
it is very likely that some key dynamics of the system are
missed because of the specificity of the observations, or, worse,
because the complexity itself hides the basic mechanics.

The top-down approach has its limitations too. Since it
works on abstractions and inferences, the conclusions reached
are often general enough to try to explain the overall mechan-
ics but their basis often lies on computational assumptions
that may be incorrect. The top-down solution risks, therefore,
to provide, in the first phases, limited correlation with ex-
perimental data and, consequently, the potential benefits of
the approach may not be immediately evident. There is also

the risk, while refining the model, to increase its complexity
to the point where it is not computationally manageable
anymore. However, this risk is mitigated by the steady in-
crease in the computational power of modern computers.
The implementation cost of a top-down approach is also
likely to be higher, since it may require several iterations
and refinements to correctly adapt the model to the available
experimental data. Moreover, often some model features may
not be comprehensively confirmable by experimental evidence,
and this constitutes the primary reason for the skepticism
that Life Sciences researchers have towards Systems and
Computational Biology. On top of this comes the fact that
top-level approaches may provide models that may not be
easily transposable to real applications or therapies, whereas
medical and biological research need methodologies that can
be quickly translated into new drugs and treatements.

IV. THE ROLE OF SYSTEMS BIOLOGY

For a long time it was assumed that the two approaches dis-
cussed in the previous section could be pursued independently,
and would eventually meet in the middle. This proved true
in the reverse engineering of linear or almost linear systems
but it showed huge limitations for complex systems. Even
BigPharma companies are understanding that the integration of
the two approaches is the only way to provide new momentum
to the drug target discovery market that, currently, is stagnant
because of the lack of new molecules and targets to test.

Systems and Computational Biology are not only the latest
fashion in biology, but a necessary step to overcome the
limitations of both methodological approaches and to find a
“middle ground”. They constitute the best option to create
a feedback loop between modeling and laboratory experi-
ments. As presented in Figure 3, Systems and Computational
Biology are the disciplines that should, starting from high-
level hypotheses and models, drive the experimentation and
laboratory phases. By closing the methodological gap between
top-down and bottom-up, they can establish a loop that has the
potential of getting the best advantages of both approaches,
while overcoming most of their limitations.

V. THE CASE OF BIOLOGICAL NETWORKS

A very good example of how an “engineering mind” can
(and did) contribute to biological research, is the field of
biological networks, where graphs and network structures are
used to model interactions and relationships among biological
entities. These models are now more and more used to discover
emergent properties among genes, proteins and other rele-
vant biomolecules referred to specific phenotypes or diseases.
Nevertheless, the idea of correlating biological properties to
topological features of a network did not come directly from
the Life Science world. It was actually born almost by chance
thanks to the fact that two scientists, Oltavi, a cell biologist and
Barabasi, a physicist, were neighbors. At the time, Barabasi
had already shown that the internet is a non-random network,
and that its connectivity structure influences its function. One
year later, in 1999, they proved that the metabolic pathways
of yeast define a network whose structure is very similar to
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Figure 3. The role of System and Computational Biology

the internet. From that moment, several theoretical studies
confirmed that biological networks share many features with
other types of networks such as computer or social networks,
and, even more importantly, they make several mathematical
and computational methods of the graph theory applicable to
biological studies [2] [11]. Probably the keystone in Network
biology can be found at the turn of the century when three
scientists, in a now classical Nature paper titled “Surfing the
p53 network” [20], were able to explain the tumor-suppressor
role of the gene p53 (which was found mutated in about 50%
of cancer patients) by analyzing its network topology. They
wrote that “The cell, like the Internet, appears to be a ‘scale-
free network’”, and “one way to understand the p53 network
is to compare it to the Internet”. The surprising point here
is that in 1999 more than 15.000 articles had already been
published on p53 and its role in cancer biology, yet, after
20 years of research, some aspects of p53 biology were still
missing and they could be unveiled thanks to a methodology
that had nothing to do with the traditional biological research
approach.

Since then, the computational analysis of biological net-
works has become increasingly used to mine the complexity
of cellular processes and signaling pathways. From simple
statistics gathered from PubMed, it appears that the scientific
communities of both areas are steadily converging on this
approach. The literature describing promising applications of
network analysis in biology is growing at an exponential rate,
as shown by the increase in the number of papers yearly
indexed by Pubmed for “network biology”: 407 in 2000, 1018
in 2004, 2342 in 2010, and 2558 in 2012.

To better understand the potential of Networks Biology, it
is probably worth clarifying some of its basic characteristics.
Since a Complex System shows properties that cannot be
understood from the isolated study of its components, the main
contribution of the network model is that it provides a way to

study interactions.
Many types of biological networks do exist, depending on

the information associated to their nodes and edges. In general,
they can be classified as directed or undirected networks
([16]). In directed networks, nodes are molecules, while edges
indicate causal biological interactions among nodes (e.g., tran-
scription and translation regulations (Li et al., 2012)). Instead,
in undirected networks, an edge indicates a shared property,
such as sequence similarity [13], gene co-expression ([17],
[3]), protein-protein interaction ([5]), or term co-occurrence
in the scientific literature ([9], [8]).

In general, there are two main approaches to network anal-
ysis: the topological analysis, that tries to identify recurrent
network sub-structures and correlate them with particular func-
tional characteristics of the system, and the dynamic analysis,
which focuses instead on the study of the evolution of the
network in time. In the following two subsections we will
show some examples of how the results of these network
analysis approaches, when applied to biological networks,
can actually provide biologically meaningful infromation that
could not be easily identified using a straight bottom-up
laboratory-based approach. One of the key points of this paper
is to show how more holistic approaches have the potential not
only to support the biological research, but also to boost it and
to suggest new and previously unseen directions.

A. Topological network analysis

To give the reader a general idea of the main achievements
in this field, we focus on three well known topological features
of a graph: hubs, cliques, and graphlets. Their identification
in biological networks allows the unveiling of interesting
biological mechanisms that emerge from the interaction of the
network components, which would be impossible to observe
by studying each network node individually.

Hubs: hubs are nodes with a very large number of con-
nections (input and/or output) w.r.t. the average number of
connections of the other nodes. In a protein interaction net-
work, where nodes are proteins and two proteins are connected
if some kind of direct or indirect interaction between them
has been observed in laboratory, hubs are nodes with a lot of
different molecular partners, and therefore very likely implied
in the majority of the cellular processes. Also, proteins found
in many different macromolecular complexes, represented
as hubs in the interaction network, could be either a key
component of a single molecular complex, or elements shared
in many different molecular complexes where they work as
switches used to coordinate the activation or repression of dif-
ferent molecular processes. An important consequence of these
observations is that any alteration of the hubs of a protein-
protein interaction network is predicted to have large effects on
the cell biology, in the same way the hacking of a hub server
on the internet would cause a wide network malfunction.
This assumption, known as “centrality-lethality rule”, has been
extensively explored in the lab by experimentally knocking-
down protein interaction hubs and quantitatively assessing
the effects in different models [12]. Going a step further in
the reasoning, it has also been hypothesized that mutations
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affecting these proteins should be particularly related to the
apperance of diseases. Some experimental validation of this
prediction has been indeed obtained: Rambaldi and his group
provided evidence [18] that virtually all proteins having a
degree higher than 80 in the human protein-protein interaction
network are target of known cancer-related mutations. Simi-
larly, Ortutay and Vihinen [15], after building an interaction
network comprising all human proteins involved in immune
response, found that the network hubs included known disease-
causing genes as well as 26 new genes related to primary
immunodeficiency. In a further example, Chang and colleagues
[4], found new gastric cancer candidate markers by looking at
hubs in a protein-protein interaction network built from genes
differentially expressed in the patient tissues. This is a very
good example of a possible role of Systems Biology as an
input to the experimental research, and not viceversa.

Cliques: cliques are sets of nodes where each node is con-
nected to all the others. In biological networks cliques proved
to be extremely important to identify molecular complexes
and/or functional modules. In 2003 Spirin and Mirny wrote
a paper [19] describing the presence of densely connected
modules in protein-protein interaction networks, i.e., neigh-
borhoods whose internal connectivity was very high compared
to the average network connectivity. Thanks to this fact, the
authors were able to identify a full set of previously unknown
functional modules and molecular machineries. This startling
seminal work was very important because it was able to shift
the concept of biological network analysis from a single node
centrality to a community of nodes. This trend culminated
in several complex applications of clique analysis, such as a
recent work which nicely illustrates how the mitotic spindle
functioning is regulated by a cascade of events which involves
cliques (i.e. molecular complexes) instead of single proteins
[5].

Graphlets: in easy terms, graphlets are small connected net-
work subgraphs with a predetermined number of nodes. Their
biological meaning in networks is relatively new and there are
obviously fewer examples. One significant paper discussing
the biological meaning of the graphlet degree signature was
published by Milenkovic [14]. The results obtained by the
authors are somehow superior in generality to other topological
features, and uncover the real potential of the network analysis
approach in biology. In the paper the authors observe how in
a human protein-protein interaction network oncogenes have
a very similar graphlet degree signature, which is different
from that of genes unrelated to cancer. This observation was
so true that it allowed them to use this signature to identify
new possible oncogenes. If this finding will be confirmed by
other researchers, it will be the proof that the detailed topology
around a node in a global protein-protein interaction map is
important in determining the function of the corresponding
protein at least as its sequence and three-dimensional structure.
This result is even more important if we consider the fact
that protein-protein interaction networks are only very abstract
models of all the interactions which have been observed,
without spatial and temporal resolution, and do not correspond
to any real physical entity.

B. Analysis of network dynamics

Very interesting biological insights have been recently ob-
tained from the study of the biological network dynamics.
For some networks it is possible to define, for each node, a
“status”, i.e., a condition that can be correlated to a biological
condition. For example in Gene Regulatory Networks each
node is a gene with an expression level (it’s status) correspond-
ing to the gene’s transcription rate. The connection between
two genes models the causality between them: the expression
of gene A directly causes the activation (expression) of gene
B. The collection of the status of all the nodes of a network
constitutes the network status. In biological systems, the
need to understand the evolution of the network status (the
network dynamics) starting from different initial conditions is
becoming evident because, inside a cell, decisions are reached
and actions are taken by methods that are exceedingly parallel
and extraordinarily integrated.

In biological networks, as well as in many other fields
where networks are used for modeling, the key to understand
the behavior of these complex systems is to identify and
study their attractors. An attractor is a state towards a system
evolves. Attractors are stable states that “attract” the system
dynamics. When a system evolves, the collection of states in
which the system transits can either settle to one particular
state (point attractor), repeatedly return to a group of states
(periodic attractor), or not clearly return to a defined set of
states (strange attractor). Chaos and complexity theory are
changing the way scientists think about the evolution of com-
plex systems. Recently, the study of attractors, state spaces,
and state trajectories has been applied to Gene Regulatory
Networks with interesting results which seem to provide a
plausible explanation to complex mechanisms, like cell differ-
entiation, and unexpected reactions of tumor cells to standard
therapies. For example, in [10] the authors introduce the idea
of “Cancer Attractors” that consider tumors as a particular
natural state of cell regulation that is normally inaccessible
and hidden underneath layers of complex molecular networks.
The study of the Gene Regulatory Networks’ dynamics could
potentially show us how cancer states can be reached, but
also how they could be, in some way, avoided. But what
is fascinating about this paper is that the idea of Cancer
attractors provides a simple formal framework able to explain
several complex and unexpected behaviors of cancer cells that
traditional biology has not been able to explain yet.

Similarly fascinating works, as the one published by Enver
[7], are able to explain how a population of stem cells can
diversify in completely different phenotypes (like epithelial
cells, nervous cells, cardiac cells, and so on). The idea is
that this transition is allowed by the evolution of a regulatory
network through several transformations, so that once fully
differentiated, it allows the regulatory network to settle into a
set of possible attractors that is different for every cell-type,
thus allowing the expression of different phenotypes in the cell
behavior and morphology.

These pioneering works show that to fully understand the
nature of cellular functions, it is necessary to study the
behavior of genes in a holistic, rather than in an individual
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manner, because the expressions and activities of genes (and
consequently of the cell) are not isolated or independent
of each other. Moreover, this type of “translation” of well
established approaches into a new field of research (Life
Sciences) is exactly the type of objective that the engineering
community should promote to actively support research in the
medical/biological community.

VI. CONCLUSIONS

In this paper we discussed some of the methodological
challenges that the Life Science world is experiencing fol-
lowing the huge amount of lab data that it is now possible to
collect. Understanding the mechanisms that regulate life not
only requires more and more advanced lab techniques, but
also a shift in the research methodology used to build models
and analyize data. The typical bottom-up approach followed
by biologists lacks generality as much as the engineers’
top-down approach lacks specificity. The optimal solution is
probably a new modus operandi able to integrate specific
observations made by biologists with functional modeling as
seen in engineering.

We are already seeing the first applications of network
analysis in human therapy. In particular, although network
science is still in its infancy, it is currently shifting from
a better understanding of why a given drug works or not,
to the identification of new therapeutic interventions. As an
example, consider the case of multi-drug therapy, which is
a very active field of research and experimental work, due
to its high potential in overcoming several obstacle to the
effective pharmacological treatment of different conditions.
As opposed to the classical “magic bullet” pharmacological
paradigm, aiming to the ultra-specific targeting of a single
protein, a new kind of approach to the design of a therapy is
emerging, which is based on simultaneously targeting several
molecular processes. The topological and dynamical analysis
of the molecular network underlying a specific disease is the
only way to implement such an approach because it allows to
look for modulators acting on different network areas so to
simultaneously attack different cellular pathways.

In this paper we wanted to discuss some of the methodolog-
ical issues that, as engineers, we observed when approaching
the Life Science world, in order to make readers aware of the
great opportunities this research field can offer to the expertese
accumulated by researchers in different fields. Understanding
the extreme complexity and beauty of life cannot be a task left
to biologists, but has to be a multidisciplinary effort, where
the best of each research methodology and tool has to be
gracefully integrated.
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