
13

Spatial distribution of Room Acoustics
Parameters

The distribution acoustical quality inside concert spaces is not uniform
(Akama et al. 2010, de Vries et al. 2001, Pelorson et al. 1992, Fujii et al.
2004). Source to receiver distances, as well as local conditions such as vicin-
ity of sidewalls, balcony overhangs and balcony fronts make for substantial
di↵erences between listening positions. These di↵erences can be measured
by using the standard ISO 3382-1 room acoustic parameters. These mea-
surements show that the di↵erences between these listening positions can
very well go beyond the JNDs (Barron 2005, Akama et al. 2010).

A clear objective of good acoustic design is to provide optimal acoustics
to all listening positions inside a room. In this chapter we will look at the
distribution of parameters in concert spaces and how room shape influences
this distribution.

13.1 Past studies on distribution

Several studies have been made as to the variability in room acoustical pa-
rameters in di↵erent positions in concert spaces, in other words on their
spatial distribution (Akama et al. 2010, de Vries et al. 2001, Pelorson et al.
1992, Fujii et al. 2004). In these studies distribution maps and histograms
of di↵erent acoustical parameters are plotted in order to study their dis-
tribution. Although the object of the study is not a statistical fact, but a
physical phenomenon at di↵erent points in the space, statistical methods
such as histograms can be employed to best understand this distribution.
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Akama et al. studied the spatial distribution for three di↵erent con-
cert halls of varying shape, volume, and seating capacity. They measured
the impulse response in almost every seating position in these rooms, and
plotted both distribution maps and histograms of the distribution of several
monaural parameters at mid frequencies. They calculated the width of the
distribution for 90% of the values and found that this width is several times
bigger that the JND, especially for EDT and C80 where it could reach more
that 5 times the JND, less so for RT where it could reach less than 3 times
the JND (Akama et al. 2010).

Akama et al. also performed normality tests on the histograms for RT ,
EDT and C80 values in these three rooms. Normality tests are meant to
study the distribution in a histogram and determine wether or not the distri-
bution can be considered normal. They found that many of the distributions,
especially those involving C80 at mid frequencies, could not be said to have
normal distributions.

Fujii et al. measured the impulse responses in many listening positions
in two Japanese concert halls with similar shape but with di↵erent volume,
seating capacity and surface types in their sidewalls (one more irregular than
the other) (Fujii et al. 2004). They plotted distribution maps for the Sound
Pressure Level (SPL), subsequent reverberation time (Tsub), Initial Time
Delay Gap (�t1) and IACC. They confirmed that distributions of these
parameters are wider their respective JNDs. They also concluded that the
scattered reflections of the sidewalls of one of the rooms had an influence on
the distribution, particularly by decreasing SPL and increasing �t1 values
near the walls.

13.2 Measurements of Distribution

The ISO 3382-1 standard (ISO 3382-1:2009 International Standards Organi-
zation, 2009) parameters all measure values for single points in the room. So
in order to quantify their distribution inside the room we need to resort to
statistical or mathematical methods. This section discusses several methods
for the study and quantification of this distribution. Additionally we look
into the distribution of optimal values inside the room, rooms should not
only be acoustically as uniform as possible, they should uniformly distribute
optimal acoustics.
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13.2.1 Average values

It is very common for acousticians to display room measurements in terms
of whole room averages. They convey a general description of the room in a
single, easy to understand value. However, mean values can be misleading
because they can be the result of very di↵erent values. This might not
be the case for reverberation times, but many other acoustical parameters
such as Clarity and Sound Strength can vary greatly inside a single room
(Barron 2005, 2013). This also means that two very di↵erent halls can share
the same mean values. Barron makes the example of two british halls, one
with favorable subjective impressions, and the other very much unliked by
audiences, and points out that this could not be predicted by their average
objective values. This means that their average values are quite similar
despite their very di↵erent subjective impression(Barron 2005).

13.2.2 Standard deviation

The ISO 3382-1 standard (ISO 3382-1:2009 International Standards Orga-
nization, 2009) cites the Standard deviation (�) as a way to describe spatial
variance. The standard deviation is good way to present measurements in
a room. For example, the mean value of C80 for all listening positions, ac-
companied by the standard deviation of those values from the mean, paints
us a much clearer picture of how the clarity parameter is distributed inside
this room.

It is worth noting that standard deviations have very little meaning
in non-normal distributions. When we have asymmetrical distributions in
terms of their mean value, the standard deviation can be misleading, and
should not be taken into consideration. As we have seen above, not all
distributions of acoustical parameters inside concert spaces are normal dis-
tributions. Hence the standard deviation is not a perfect indicator of distri-
bution.

When we study how optimal values of acoustic parameters are spatially
distributed inside the room (uniformly or not), the standard deviation is
not a viable option. If we consider two rooms with the same average C80

but with di↵erent standard deviations, we can be sure that the room with
the lowest standard deviation is the more uniform room. But if we want
to figure out which room has the largest distribution of optimal C80 values,
and the optimal C80 is not equal to the two rooms average C80 values, then
the standard deviation is not going to help us. It could be the case that the
room with the highest standard deviation has more listening positions with
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optimal C80.
Comparisons between rooms are quite useful in the design of a new room,

especially if one considers the use of optimization or automated search al-
gorithms. Uniformity for uniformity’s sake is not enough to design a room.
We need the evenly distribute an optimal value (typically a value related
to subjective preference). The use of optimal values to determine a room’s
form presumes an agreement among the designers about these optimal val-
ues. Currently acousticians do not agree upon definite optimal values for
most of the performance parameters contained in ISO 3382-1, and more im-
portantly many lack criteria for preferred values (Bradley 2011). There is
also disagreement on the correct parameters to use. However, since all cur-
rent parameters describe the acoustical quality in a single point in the room,
they all have a need for uniformity measures. They all also need optimal
values relating to subjective preferences, so in order to design a room, an
agreement among the people involved has to be reached.

13.2.3 Percentage of satisfied receivers

Barron (Barron 2005) proposed the use of the percentage of “satisfied” re-
ceivers as another possible number to describe the acoustic quality of a
whole room. Receivers will be considered satisfied in a di↵erent way for each
performance parameter in question. Generally speaking a receiver will be
considered satisfied when it obtains a parameter value within a pre-selected
optimal range. For example, if we select an optimal range of EDT from 1.8
to 2.2 seconds, then we will consider satisfied all of the receiver positions in
which we can measure an EDT within that range. Some acoustic param-
eters are frequently studied in relation to the source-receiver distance. In
this case the determination of a satisfied receiver can be made by means of
a function that considers the source-receiver distance. For example, Barron
proposes a minimum acceptable sound strength G value that is in relation
to the source-receiver distance (Barron 2005). That value is determined by
equation 12.6. So in this case we would consider satisfied receivers who
obtain a G value equal of higher than Gmin. In order for the percentage
of satisfied receivers to work properly, a high number of measurements are
required. This costly and labour intensive, but this can be expected on any
measure of spatial distribution.

The percentage of satisfied receivers seems to be a good way of compar-
ing rooms in terms of the spatial distribution of sound quality, the room
with the highest percentage should be considered the best room. Since it
is a percentage, it also has the advantage of communicating quite well the
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degree in which the room is uniform or dis-uniform. The percentage of satis-
fied receivers however does not consider the degree in which the dissatisfied
receivers are dissatisfied. Since this percentage looks only into the number
of receivers that lie inside an optimal range, it does not measure the di↵er-
ence between the measured data and the optimal values, we do not get an
idea of how far the unsatisfied are from being satisfied.

Figures 13.1 and 13.2shows an analysis of the unsatisfied receivers for a
series of di↵erent shoebox rooms (A,B,C and D) with various room length
to width ratios and heights. The analysis consists in the incremental widen-
ing of the optimal range from which the percentage of satisfied receivers is
calculated. In the x axis we see how this range increases in size, and in the y
axis we see the percentage of satisfied receivers corresponding to each range.
By plotting the percentage as it increases with the wider ranges we get an
clear picture of how close or how far receivers were from the original range.
In other words, the faster the rate of increment of the percentage, the less
unsatisfied the unsatisfied receivers are.

The first issue we can discuss about this graphs is the fact that the rate of
increment of each room. We can see that the rates are always not constant,
we see the percentage increase in curves with varying slope angles. If we
look at the curves for EDT we can see that rooms C and D have higher
initial numbers of satisfied receivers, but A and B have a very high rate
when compared to C and D. So we can say that C and D have unsatisfied
receivers that are more unsatisfied that those from A and B.

If we look at the case of C80 this behavior is perhaps even more evident.
Rooms B and C have a higher initial percentage than room A, but room A
has a much higher rate of increment, to the point that room A surpasses
rooms B and C after a few range increments and reaches 100% first than
them. We can generalize the results of this study by saying that a higher
number of satisfied receivers does not guaranty that the unsatisfied receivers
will be less unsatisfied. On the contrary, it could be argued that, in some
cases, a high percentage of satisfied receivers is achieved at the expense of
the unsatisfied ones. So if we have to compare rooms A and B for example,
it’s not so easy to say which is best, one that has a good number of satisfied
receivers and the rest are completely unsatisfied (room B), or one that has a
lower number of satisfied but the unsatisfied are not that unsatisfied (room
A).

The unsatisfied analysis reveals that there is no straight forward relation-
ship between the percentage of satisfied and the status of the unsatisfied.
Hence, there is a need for a more precise tool in the study of the distribution
of optimal values inside rooms. One that includes the unsatisfied receivers
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in the equation.

13.2.4 Histograms Study

We have seen above that past studies on the distribution of acoustic param-
eters inside rooms employ the use of statistical tools such as histograms in
their studies. We will begin this section by plotting the histograms for our
test rooms A, B, C and D.

Figures figs. 13.3 to 13.7 show histograms of the distribution of RT ,
EDT , C80, G and LFearly values at mid frequencies in rooms A, B, C
and D. In the x axis they show the respective parameter values discretized
in small sections and in the y axis they show the occurrence or frequency
in which these values fall into. The charts also show the width of 90%
of the distribution. We can also see in grey the optimal values for each
parameter suggested for the symphony concert hall. The optimal values for
each parameter and the source of the value (name and publication of author
who suggested it) are presented in the following table:

Parameter Optimal Range Reference

RT 1.8 to 2.2 (s) (Barron 2009a)
EDT 1.8 to 2.2 (s) (Barron 2009a)
C80 -2 to 2 (dB) (Barron 2009a)
G Barron’s min G curve to 1 (dB) (Barron 2009b)
LFearly 0.1 to 0.35 (Barron 2009a)

RT histograms are shown in figure 13.3, they show that the distributions
are usually very uniform, it is widely known that RT is mostly uniform
throughout the room. With the exception of a few outliers in room B, most
of the RT values lie within 2-3 JNDs from each other. In addition, the
distributions seem to be symmetrical. Other parameters have less uniform
and symmetrical distributions.

Figure 13.4 shows the EDT distributions, they show much wider distri-
butions in terms of their JNDs, form 8 to 15 JNDs in width. We can also
note that distributions are not very symmetrical.

Figure 13.5 shows the C80 distributions. Looking at these histograms
we can explain the results of the unsatisfied analysis shown in figures 13.1
and 13.2. We can see why rooms B and C have a higher initial percentage
of satisfied receivers. Many of their listeners lie inside the optimal range,
but they are distributed in a wide area (12.5 and 9.4 JNDs respectively).
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Figure 13.1: Unsatisfied analysis for RT , EDT , C80 and LFearly for rooms
A and B.
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Figure 13.2: Unsatisfied analysis for RT , EDT , C80 and LFearly for rooms
C and D.



Room A has a narrower distribution of 8.5 JNDs but it is not centered in
the optimal range, however it is very close to the optimal values, hence its
unsatisfied receivers are not as unsatisfied as those in rooms B and C. We
can also see that these distributions are quite asymmetrical and far from a
normal distributions.

13.2.5 Di↵erence weighted sum

Based on Ando’s theory of subjective preference (Ando 1983) Beranek de-
vised an “objective method” that rated rooms according to the mean values
of orthogonal objective attributes (Beranek 2004), in Beranek’s case they
were IACC, �t1, Gmid, EDT , BR and SDI. As it was outlined above, his
rating is based on a weighted sum of 6 parameters. The rating method can
be outlined with the following set of equations:

S = S1 + S2 + S3 + S4 + S5 + S6 (13.1)

where S is the total subjective preference of an acoustical environment
and Sith is determined by:

Si = ai|xi|3/2 (13.2)

where:

x1 = 1� IACCearly

x2 = log(�t1/�t1,pref )
x3 = Gmid �Gmid (dB)
x4 = log(EDT/EDTpref )
x5 = log(BR/BRpref )
x6 = log(SDI/SDIpref )

(13.3)

where IACC, �t1, Gmid, EDT , BR and SDI are the average values
of those parameters, IACCpref , �t1,pref , Gmid,pref , EDTpref , BRpref and
SDIpref are the optimal or preferred ranges of values of the same parame-
ters, and where:
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Figure 13.3: Histograms of the distribution of RT for rooms A, B, C and D.
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Figure 13.4: Histograms of the distribution of EDT for rooms A, B, C and
D.
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Figure 13.5: Histograms of the distribution of C80 for rooms A, B, C and
D.
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Figure 13.6: Histograms of the distribution of G for rooms A, B, C and D.
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Figure 13.7: Histograms of the distribution of LFearly for rooms A, B, C
and D.



a1 = 1.2
a2 = 1.42
a3 = 0.04 for Gmid < 4.0

= 0.07 for Gmid > 5.5
a4 = 9 for EDT < 2.0

= 12 for EDT > 2.3
a5 = 10 for2.2 sec
a6 = 1

(13.4)

An important detail to take note of in this formulation is that Beranek
is using the average value of each parameter and uses that value to calculate
the total subjective preference S. Beranek publishes a series of graphs that
show the weighed value of Si for possible average EDT values. Figure 13.8
shows the graph for S4, the graph for EDT .

Figure 13.8: Beranek’s weight factor Parabola for EDT .

With this formulation, Beranek considers all values inside the preferred
range to have equal subjective significance, while values outside of the pre-
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ferred range obtain exponentially lower Si scores. This exponential decay
in subjective preference is also present in Ando’s 1983 study. He explains
this decay and his subsequent use in subjective preference calculations by
means of figure 13.9 (a and b) and the following caption:

“Scale values of subjective preference obtained by the paired-
comparison test for simulated sound fields in an anechoic cham-
ber. Di↵erent symbols indicate scale values obtained from dif-
ferent source signals (Ando 1983). Even if di↵erent signals are
used, a consistency of scale values as a function of each factor is
observed, fitting a single curve”.

(Ando 2007)

Concert Hall Acoustics Based on Subjective Preference Theory 10.1 Theory of Subjective Preference for the Sound Field 357

mately by

[Tsub]p ≈ 23(τe)min . (10.6)

The total amplitudes of reflections A tested were
1.1 and 4.1, which cover the usual conditions of sound
fields in a room. Recommended reverberation times for
several sound sources are shown in Fig. 10.6. A lec-
ture and conference room must be designed for speech,
and an opera house mainly for vocal music but also
for orchestra music. For orchestral music, there may
be two or three types of concert hall designs accord-
ing to the effective duration of the ACF. For example,
symphony no. 41 by Mozart, Le Sacre du Printemps by
Stravinsky, and Arnold’s Sinfonietta have short ACFs
and fit orchestra music of type (A). On the other hand,
symphony no. 4 by Brahms and symphony no. 7 by
Bruckner are typical of orchestra music (B). Much
longer ACFs are typical for pipe-organ music, for ex-
ample, by Bach.

The most preferred reverberation times for each
sound source given by (10.6) might play important
roles for the selection of music motifs to be performed.
Of interest is that the most preferred reverberation
time expressed by (10.6) implies about four times
the reverberation time containing the source signal
itself.

Magnitude of the Interaural
Cross-Correlation Function (IACC)

All individual data indicated a negative correlation
between the magnitude of the IACC and subjective pref-
erence, i. e., dissimilarity of signals arriving at the two
ears is preferred. This holds only under the condition
that the maximum value of the IACF is maintained at
the origin of the time delay, keeping a balance of the
sound field at the two ears. If not, then an image shift of
the source may occur (Sect. 10.4.2). To obtain a small
magnitude of the IACC in the most effective manner, the
directions from which the early reflections arrive at the
listener should be kept within a certain range of angles
from the median plane centered on ±55◦. It is obvious
that the sound arriving from the median plane ±0◦ makes
the IACC greater. Sound arriving from ±90◦ in the hor-
izontal plane is not always advantageous, because the
similar detour paths around the head to both ears cannot
decrease the IACC effectively, particularly for frequency
ranges higher than 500 Hz. For example, the most effec-
tive angles for the frequency ranges of 1 kHz and 2 kHz
are centered on ±55◦ and ±36◦, respectively. To real-
ize this condition simultaneously, a geometrical uneven
surface has been proposed [10.43].

10.1.3 Theory of Subjective Preference
for the Sound Field

Theory
Since the number of orthogonal acoustic factors of the
sound field, which are included in the sound signals
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Figure 13.9: Ando’s weight factor Parabola for Listening Level LL (a)and
�t1 (b).

In other words, Ando found that subjective preference decays in an ex-
ponential way as parameter values move away from preferred parameter
values. This way of quantifying decay gives us an opportunity to measure
more accurately the level of satisfaction of any listening position, based on
the distance between the measured value and the preferred value and Ando’s
curve.

In this PhD thesis an equation to study the spatial distribution of sound
quality in concert halls based on the di↵erence of measured and optimal
values is proposed. Using Ando’s theory as employed by Beranek, we sum
the weighted di↵erences of optimal and parameter values, for all receivers in
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the room. More accurately, we calculate the integral of a function f(i) that
is determined by the rooms distribution multiplied by a weighting factor
determined by Ando’s curve. Figure 13.10 shows the distribution function
f(i) for the EDT parameter in rooms A, B, C, and D.

The total distribution score Di for each parameter i will thus be deter-
mined by the following equation:

Di =

Z +1

�1

f(i) · Si dx (13.5)

where Si is the subjective weighting curve determined by:

Si = |xi|3/2 (13.6)

and where the xi values are:

x1 = log(EDT/EDTpref )
x2 = C80 � C80pref

x3 = G�Gpref

x4 = log(LFearly/LFearlypref )

(13.7)

where EDT , C80, G and LFearly are the measured parameters values
and EDTpref , C80pref , and LFearlypref are the mid points of the preferred
parameter ranges. As already mentioned the G parameter is considered
in respect to the source-receiver distance d, so Gpref is calculated using
Barron’s formula (see equation 12.6). The values for Si can also be expressed
by the curves in figure 13.11.

The preceding formulation can be simplified in order to avoid the ap-
proximation of the histogram into f(i). The actual values measured in the
room can be used in the following set of equations:

Di =
1

n
·

nX

i=1

Si,n =
1

n
·

nX

i=1

(|xi,n|)3/2 (13.8)

where n is the number of receivers measured in the concert hall. The
room that obtains the highest Di value is considered the room with the most
uniform distribution of optimal parameter i values.

If we use equation 13.8 to study C80 for rooms A, B, C and D we get
di↵erent results than those obtained by looking at the percentage of satisfied
receivers. Figure 13.12 shows normalized values for both measurement types
for C80 in our test rooms. The comparison shows that the relationship
between these rooms has changed substantially. Room A for example is
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Figure 13.10: Distribution functions f(i) for the EDT parameter of rooms
A, B, C and D.
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Figure 13.11: Proposed weight factor curve for EDT , C80, G and LFearly.



much closer to rooms B and C, gaining a lot of distribution fitness. Room B
on the other hand looses distribution fitness in the new measurement. This
new measurement seems to better reflect what wee see in the unsatisfied
analysis (figures 13.1 and 13.2) and the histograms for C80 (figure 13.5).

Figure 13.12: Percentage of satisfied receivers for C80 and D2 comparison.

The formulation proposed in this PhD research di↵ers from Beranek’s
and Ando’s in that it takes into account room distribution (all of the mea-
sured values in the room) and not just the room average values.

13.2.6 Discussion

When it comes to expressing room parameters in a single value, or just
a few numbers we can employ di↵erent techniques. While very common,
the mean value is appropriate only for Reverberation Times, and not for
other parameters that have a greater variation inside the room. The mean
value accompanied by the standard deviation is a much better choice, but
its di�cult to make comparisons based on those numbers if the means are
di↵erent. It is also not statistically correct to use standard deviations in
non-normal distributions.
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Comparisons can be made by using optimal values as references. Bar-
ron’s percentage of satisfied receivers while having advantages lacks infor-
mation about the unsatisfied receives. We can say that using the percentage
of satisfied receivers has the added value of communicating to the designers
the extent to which the receivers are inside the optimal range quite clearly.
On the other hand the standard deviation is not as clear as to how much
improvement it would still need to obtain an acceptable result.

The percentage of satisfied receivers however, fails to inform about the
conditions of receivers outside the optimal range. As figures 13.1 and 13.2
suggests, rooms can have high numbers of satisfied receivers at the expense
of unsatisfied ones, distributing sound quality unevenly. A new approach
is proposed, making use of the di↵erence between measured values from
all positions in the room, and weights them according to Ando’s theory of
subjective preference(Ando 1983).

13.3 Parametric study of concert Hall Types

Klosak and Gade studied the e↵ect of shoebox room proportions (width/length)
have in acoustical parameters by means of computer simulations of 24 dif-
ferent rooms (Klosak & Gade 2008). They plotted mean values of several
acoustic parameters accompanied by their standard deviations and the 90th
percentile. They found that the proportions of the room had a significant
influence on the distribution of acoustic parameter values.

Bradley(Bradley 2011) describes four main categories of acoustical pa-
rameters: Decay times, clarity measures, sound strength and measures of
spatial e↵ects. In this section we will investigate the distribution inside con-
cert halls by means of a parametric study using one parameter from each
of these four categories. A large number of computer simulations of concert
halls were made for each room typology, and each one of the simulation
results was analyzed with the di↵erence weighted sum method described
above.

13.3.1 Selection of Types

The most built room type across the last century has been the shoebox, and
in recent years the vineyard room has been increasing in popularity(Meyer
2013). This PhD thesis presents a parametric study of the distribution of
acoustical parameters in shoebox, fan shaped and hexagonal rooms.
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Each typology is studied in terms of their form, volume and proportions.
The variations in shape are di↵erent for each typology and will be detailed
bellow, but all the rooms studied have the same audience area, so a com-
parison of results between room types is also possible. These room types
were selected because of their use in concert halls throughout the world, and
because their geometry makes it possible to make such a parametric study.

Many variations of each room type will be computationally generated
and studied for later comparison. Only the general geometry of the room
will be studied, no balconies canopies or surfaces will be included in the
simulations. All of the room types will include a 10% inclination in the
audience area.

While vineyard rooms are also an important type in today’s concert
halls, their geometry is far more complicated to study. There are too many
variations of vineyards to include in a single study, their geometry is hard
to describe by using few variables. For this reason they were left out of this
study.

13.3.2 Methodology

Geometry Parametrization

Figure 13.13(a) shows the parametrization of the shoebox room geometry.
audience area remains fixed as geometry in plan is changed, Y decreases as
X increases. The two geometric parameters that determine the shape of
each shoebox room are the height of the room (Z) and the width/length
ratio (X/Y ).

Figure 13.13(b) shows the parametrization of the fan shaped room ge-
ometry. Also in this case audience area remains fixed, so as X1 increases
X2 decreases. The room length (Y ) remains unchanged. The two geometric
parameters that determine the shape of each fan room are the height of the
room (Z) and the X1/X2 ratio.

Figure 13.13(c) shows the parametrization of the hexagonal room geome-
try. In order to maintain audience area fixed in this type of room the room’s
length (Y ) decreases as the room’s width at the center of the room (X1)
increases. The room’s width at the ends of the room (X2) remains fixed.
The two geometric parameters that determine the shape of each hexagonal
room are the height of the room (Z) and the width (at mid room)/length
ratio (X1/Y ).

224



Type V1 Dom V2 Dom Step Size
Shoebox X 15 to 35m Z 15 to 25m 1m
Fan X1 13 to 35m Z 15 to 25m 1m
Hexagonal Y 20 to 50m Z 15 to 25m 1m

Table 13.1: Parameter domain and discretization for each room type.

Fitness landscapes

The parametric study was done by calculating the acoustic parameters for
a series di↵erent rooms of varying shape, and comparing results. Since each
concert hall typology was parametrized using 2 variables (V1 and V2), the
di↵erent room shapes studied can be expressed as a combination of V1 and
V2. If we create a grid made up of V1 in its X axis and V2 in its Y axis, we
can plot the performance of these rooms in the Z axis and create what is
known as a fitness landscape. Table 13.1 shows the variable domains for V1

and V2 for all room types as well as the size of the variation for each variable
at each step.

Acoustical simulation

The acoustical simulations were done with Pachyderm Acoustical Simulation
(van der Harten 2011) plugin for Rhinoceros. Pachyderm Acoustical Simula-
tion is a collection of acoustical simulation algorithms for use in Rhinoceros,
ranging in purpose from prediction to auralization. Among its features are a
growing number of simulation algorithms that can be performed using mesh
or NURBS models. Pachyderm combines the source image method with a
the ray-tracing technique.

Room materials study

The prime goal of this chapter is to understand the influence of room shape
in the distribution of acoustical parameters inside performance spaces. But
room shape is not the only factor that a↵ects this issue and it is not easy to
study room shape independently. We can understand this di�culty by look-
ing into Sabine’s formula ⇤. It teaches us that reverberation times depend
on room volume and total absorption area, which in turn depends on the

⇤see formula 12.1 on page 192
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room’s surfaces area and the materials of these surfaces. A room’s shape af-
fects its volume and the area of its surfaces, so in order to study room shape
we would have to keep the materials absorption coe�cient fixed. However,
keeping absorption fixed would not be su�cient to maintain a fixed total
absorption, in order to do so material surfaces would also have to be fixed.
This means that, if we want to study the e↵ects of only the room’s shape,
we would have to use geometries that had the same room surfaces as well
as keep materials fixed.

Klosak and Gade studied the e↵ect of shoebox room proportions (width/length)
have in acoustical parameters by means of computer simulations of 24 dif-
ferent rooms (Klosak & Gade 2008). They plotted mean values of several
acoustic parameters accompanied by their standard deviations and the 90th
percentile. They used 3 groups of shoebox rooms that kept room surfaces,
materials and volume fixed, consequently also keeping the reverberation time
fixed. The only modification between rooms inside each group was the width
to length ratio. They reported noticeable changes in acoustical parameters
and their distribution inside these rooms.

The study presented in this chapter involves room changes that go be-
yond the width/length ratio, they also include room volume and total sur-
face area. But in order to do this we need to clarify the influence of the
material in sound quality distribution. Figures 13.14 and 13.15 shows two
sets of histograms for the distribution of C80 in rooms A, B, C and D. The
first set (seen in the left column) shows the histograms of the rooms with
a fixed absorption coe�cient for all of the surfaces in the room excepting
the audience. The absorption coe�cient for those surfaces in this set was
fixed at 10%. The second set of histograms (seen in the right column) show
the histograms for the same rooms but with a variable material absorption
coe�cient. The materials are set in such a way as to keep reverberation time
fixed with the changing of the room’s surfaces and volume. In other words,
the absorption coe�cient for these rooms is selected by using the following
equation:

aroom,f =
( 0.161·VRTf

)� (Saudience · aaudience,f )
Sroom

(13.9)

where aroom,f is the absorption coe�cient for frequency f of all the
surfaces in the room except the audience area, V is the room volume, RTf

is the desired reverberation time for frequency f , Saudience is the surface
area of the audience, Sroom is the sum of all areas of all the surfaces of
the room and aaudience,f is the absorption coe�cient of the audience for
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frequency f . For the 500Hz and 1000Hz octave bands RTf = 2 seconds †.

Figure 13.14: Histograms for rooms A and B for C80 distribution with fixed
and variable material absorption coe�cient.

These rooms all belong to the same shoebox parametric model explained
above, hence they all share the same rules. Most importantly, in all of these
rooms the audience area is kept constant. For these reasons we can say that
Rooms A, B, C and D serve as a guide of what is happening with all of the
rooms in terms of the material’s influence.

†This value was taken from (Barron 2009a).
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Figure 13.15: Histograms for rooms C and D for C80 distribution with fixed
and variable material absorption coe�cient.



Figures 13.14 and 13.15 is organized in such a way as to have room A
with fixed absorption on the left and room A with variable absorption on
the right of the same row. This is the same for rooms B, C and D, thus
facilitating comparisons. By comparing the histograms on the left with those
on the right we can see that the distributions for these two rooms are similar,
they have a very similar 90% width to JND ratio. The comparison reveals
one important di↵erence, room distributions are traslated from the other as
is evident by comparing how they relate to our optimal range. With the
exception of room A, all histograms on the right have similar distributions
to those on the left but with higher C80 values. Room A seems to show no
movement and very little variation in width to JND ratio.

The fact that the distribution is very similar tells us that the material has
little influence in the distribution of acoustic parameters, but only on their
position from optimal values. This is also true for EDT , G, LFearly and
T30 with di↵erent degrees. In some cases the influence of material is more
present in distribution, but generally speaking we can say that material does
not have the largest importance.

This fact should not be completely surprising, given what we know about
RT and room shape. Barron (Barron 2009a) explains that the most impor-
tant factors in the determination of RT in a room are room volume and
audience area. As we have discussed above, our parametric model keeps
audience area constant throughout the variations, including those for rooms
A, B, C and D. That leaves only room volume as the determining factor for
RT , and leaves out material absorption.

Material selection for parametric study

Having studied the influence of materials in the distribution, and seen how
the most important factor is not material but room shape, we can decide
wether to use a fixed material absorption or to change material to keep
reverberation time fixed. Since material absorption a↵ects not distribution
but values in relation to the optimal range, we have to conclude that in order
to find the shape that best obtains the best distribution of optimal values
we need to study the combination of material and shape. For this reason,
keeping the material fixed would strongly limit the scope of the study.

In this chapter we chose to change the absorption coe�cient of the room’s
surfaces (with the exception of the audience) using the approach described
in equation 13.9. Because this approach keeps reverberation times fixed, we
can exclude RT as a parameter to study and concentrate on EDT ,C80, G
and LFearly.
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The di↵usivity of the room’s surfaces also influences the distribution
of sound quality. However in this case, since it has little influence on the
reverberation time, we decided to keep a scattering coe�cient fixed at 50%
for the room surfaces, except for the audience. The audience was given a
70% scattering value. These numbers have been taken from (Lam 1996).

13.4 Case Study 6: Parametric Shoebox, Fan
and Hexagon

Case study 6 is the typological parametric study developed with the method
described above. The subject of this case study are the 3 room typologies
presented above. In this case, the search process is not done via a MOGA
but with an exhaustive search algorithm and the fitness landscape technique.
This is due to the fact that this problem is subdivided into room types, and
each room type has only 2 variables. Hence an exhaustive search within
normal variable domains is not too time consuming, and it allows us to
better understand and diagram the problem.

The parametric study results are studied in two ways:

� Comparisons within room types. This is a comparison of rooms in
the same type, we study the incidence of the room variations in shape
has on the distribution of quality for all four of the acoustic objective
parameters.

� Comparisons between types. This is a comparison of the distribution of
acoustic parameters between the 3 di↵erent room types. The purpose
is to examine the particular qualities that make each type better or
worse in each acoustic parameter distribution.

Each comparison has its own representation method.

13.4.1 Comparison within room types: Fitness land-
scapes

The concept of the fitness landscape was explained in section 10.1.3. In this
comparison we use a fitness landscape for each acoustical parameter and
each room type.
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Shoebox Rooms

Figure 13.16 shows the fitness landscapes for EDT , C80, G and LF in the
shoebox room type. As shown in table 13.1, the shoebox rooms have two
variables: x1 that represents the room width, and x2 that represents the
room height. All landscapes thus have the x1 variable in the x axis and x2

in the y axis. The z axis of the landscapes vary, each one indicates a di↵erent
acoustic parameter. The first one (upper left) shows D1, the second (upper
right) shows D2, the third (lower left) shows D3 and the fourth shows D3 ,
all calculated with equation 13.8.

Figure 13.16: Fitness landscapes for the shoebox room type for EDT , C80,
G and LFearly.

Shoebox rooms show sensitivity to both room width/length ratio and
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height when it comes to EDT , C80 and G, while LFearly seems to be only
a↵ected by the width/length ratio. This is a reasonable result since LFearly

is the only parameter that is completely independent of reverberation.
C80 and G have the highest values when rooms are long, narrow and not

very high, while EDT shows a preference towards short,wide and also not
very high rooms. The overall trend shown in the landscapes for C80 and
G seems to be very similar, but it can be argued that for di↵erent reasons.
In the case of G the preference can be explained by the room volume, G
values tend to be lower as volume increases. And since this parameter has
no maximum optimal value, the higher the G the better the D3. In the
case of C80 this can be explained by the presence of higher early reflections
when the rooms are narrow. This is perhaps most important in our case
study because there are no other surfaces in the room that provide early
reflections, apart from the sidewalls and the ceiling, there are no canopies
or balcony overhangs. In the absence of early reflections C80 values tend to
be low, and EDT values tend to be high (Barron 1995). That also explains
why EDT preference goes towards wider rooms. Taller rooms have too
much reverberation, and therefore, too long EDTs for our optimal range
(1.8-2.2s).

Early Lateral Fractions are at their highest D4 values when the rooms
are narrow, regardless of room height.

Fan shaped rooms

Figure 13.17 shows the fitness landscapes for EDT ,C80, G and LF in the
fan shaped room type. In the case of the fan shape room, table 13.1 shows
that the variables for the fan are: the room’s width at the end of the room,
and the room’s height. All landscapes thus have the x1 variable in the x axis
and x2 in the y axis. In the same way as the shoebox example, the z axis
represents distribution values for our four acoustical parameters calculated
with equation 13.8.

It is important to notice the way these room’s geometry changes in plan
when x1 increases. When x1, 24m is low, the room is an inverted fan, when
x1 = 24m it is a shoebox, and when x1 > 24m it is a fan shaped room. This
is shown in small plan views in figure 13.13(b).

The most important variation this progression in the angle of the side-
walls from the point of view of the sound source. When the room has a
regular fan shape the sidewalls open up from the stage towards the room,
when it is an inverted fan the walls are closed towards the room. An open an-
gle towards the room produces a higher number of early reflections arriving
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Figure 13.17: Fitness Landscapes for the Fan shaped Room Type for EDT ,
C80, G and LFearly.



the audience. While a closed angle is synonymous with higher reverbera-
tion. This behavior is shown in figure 1.3 on page 23. It shows the spatial
distribution of the G parameter in 4 variations of hexagonal room with equal
room height. High G values are represented in blue and lower ones in red.
We can see that an open angle around the stage increases G values in the
last rows of the room. We can also see that parallel sidewalls around the
stage have the opposite e↵ect, regardless of the angle of the sidewalls around
the audience.

This behavior explains the results obtained in this parametric study of
the fan shaped rooms. Room height x2 also has a big importance in the
results of some parameters. D2 and D3 values are at their highest when
an open angle is present around the stage and the room is low, showing
little contrast between C80 and G (as seen in the shoebox example). EDT
seems to have a lower sensitivity to the room shape in plan than it has on
room height, however, we find the highest D1 values when the inverse fan is
present and the room is low. This is consistent with Barron’s explanation
on EDTs (Barron 1995) and the fact that inverse fans have lower early
reflections.

Room height has a low but present incidence on LFearly values, and the
highest D4 values are found when room is a tall and open fan.

Hexagonal Rooms

Figure 13.18 shows the fitness landscapes for EDT , C80, G and LF in the
hexagonal room type. The two variables for this room type (seen in table
13.1) are the room length x1 and room height x2. These are the two variables
plotted in the x axis and y axis of the landscapes in figure 13.18. As usual
the z axis describes Di.

Also in this case the variation in plan is important to understand the
results. As seen in figure 13.13(c), as room length increases, room width at
the middle of the room decreases to maintain audience a fixed area. Room
withs at both ends of the room are always fixed. This means that sidewall
angles in plan vary significantly as x1 increases. In this case there is never a
closed angle from the stage towards the audience, as was the case in the fan
shaped rooms. The angle becomes closer to parallel sidewalls as the room
length increases, but never getting to the point of becoming parallel.

Results in this study seem to be related in good measure to that move-
ment in plan, showing a higher number of early reflections and a higher G
when the room becomes narrower and sidewall angles become more closed,
but never flat. Room height also has an important role in the results of all
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Figure 13.18: Fitness Landscapes for the Hexagonal Room Type for EDT ,
C80, G and LFearly.



parameters with the exception of D4. As seen in the previous types, D2 and
D3 values seem to be very much related.

D1 results show an interesting trend in plan. D1 values tend to be high
either when x1 values are low or high, but not in mid values. D1 values
are lowest when the rooms are high, but they are also low when x1 are
close o 35 meters. Shoebox rooms have high D1 values when they are very
wide, this can also explain why they are high when rooms are wide in the
hexagonal rooms. High D1 values when x1 values are high are harder to
explain. Results suggests that rooms in x1 mid range that are not ideal,
they seem to have too little lateral reflections but not a high reverberation,
while narrow hexagonal rooms regain lateral reflections and reverberation
seems to be near optimal.

Also in this case, D4 values are almost unrelated to room height, they
vary only with x1 values. As is the case with D1, D4 numbers are highest
in two di↵erent sets of rooms. When x1 is close to 25 and 50 meters, D4

numbers are high. The D4 landscape suggests that a good lateral energy is
achieved either in very narrow rooms (as seen in the shoeboxes) or in rooms
that have an optimal opened angle around the stage (as seen in the fan
shaped rooms). Interestingly, when the room is too wide, the angle around
the stage is of no help to improve lateral energy and D4. This could also
be related to the angle around the audience, but with a lesser degree of
importance.

13.4.2 Comparison between types: Pareto fronts

A more direct comparison between the di↵erent types can be seen by study-
ing their Pareto fronts. Since all room types were studied with the same
objective functions (D1,D2,D3 and D4), we can plot an objective space con-
taining all of the room types, and in the objective space, single out the
non-dominated individuals. Since there are 4 objective functions, it is not
possible to have a single graph representing all functions, objective spaces
will be shown in pairs of functions.

Reverberation vs. Clarity

Figure 13.19a shows the Pareto fronts of all 3 room types for the EDT and
C80 parameters. We can see that shoeboxes have the highest D1 values and
both shoeboxes and fans have high D2 values. Hexagonal rooms have lower
values for both D1 and D2.
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(a) EDT vs. C80

(b) EDT vs. G

Figure 13.19: Pareto Fronts comparisons of the shoebox, fan shaped and
hexagonal rooms.
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(a) EDT vs. LF
early

(b) C80 vs. G

Figure 13.20: Pareto Fronts comparisons of the shoebox, fan shaped and
hexagonal rooms.
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(a) C80 vs. LF
early

(b) G vs. LF
early

Figure 13.21: Pareto Fronts comparisons of the shoebox, fan shaped and
hexagonal rooms.



There is contrast between D1 and D2, especially in the shoebox and fan
shaped rooms. As we saw before, hexagonal rooms have two separate group
of solutions with high D1 values. This is visible also in this figure. Shoebox
rooms seem to have a more continuous Pareto Front.

If we had to select a room type based on D1 and D2 we would surely
not choose the hexagonal type, but between the shoebox and the fan, the
choice is not clear. There is a group of shoebox and hexagonal rooms that
are non-dominated between each other.

Reverberation vs. Sound Strength

Figure 13.19b shows the Pareto fronts of all 3 room types for the EDT and
G parameters. All 3 room types have individuals with a perfect D3 value
(D3 = 0. This means that those rooms have G values that are all above
Barron’s minimum G curve. However, the highest values for D1 are found
in rooms that do not have a perfect D3 score. Hence there is some contrast
in this objective space, especially so for shoebox and fan shaped rooms.

As seen in the previous comparison, D1 values are highest among shoebox
rooms, but some of them are dominated by fan and hexagonal rooms on the
basis of D2. There seems to be more solutions with a good compromise
between D1 and D2 in fan shaped rooms, some of these are inverse fans.

Reverberation vs. Lateral Fraction

Figure 13.20a shows the Pareto fronts of all 3 room types for the EDT and
LFearly parameters. Most shoebox rooms have considerably lower D4 values
than hexagonal and fan shaped rooms. This seems to suggests that good
lateral energy distribution is most present when sidewalls are not parallel.
Only very narrow shoeboxes have good D4 values, but they do not have high
D1 values.

Pareto front shapes in this case are almost orthogonal for hexagonal and
fan shaped rooms, indicating little contrast, especially when compared to
shoeboxes, they have a linear and almost 45 degree Pareto front. This shows
that there is little possibility of achieving a good compromise between D1

and D4 in the shoebox type.

Clarity vs. Sound Strength

Figure 13.20b shows the Pareto fronts of all 3 room types for the C80 and
G parameters. This graph shows very little contrast between these two
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functions. This behavior was already seen in the fitness landscapes for all
three room types. Many rooms in all types have a perfect D3 score. In this
case, those rooms with perfect D3 scores also include the best D2 rooms
(especially in the fan shaped and hexagonal rooms), further confirming the
lack of contrast between these two functions.

This direct Pareto comparison shows that fan shaped rooms dominate all
other types. Fans that are open towards the room and have a short height
seem to have better distributions of C80 and G optimal values than all other
rooms in this case study.

Clarity vs. Lateral Fraction

Figure 13.21a shows the Pareto fronts of all 3 room types for the C80 and
LF parameters. This graph shows that in all room types these two functions
are contrasting, perhaps more evidently so in fan shaped rooms. The fan
type contains both the best performing room for D2 and for D4. Moreover,
the Pareto optimal rooms in the fan type dominate all other rooms from
the shoebox and fan shaped types. In other words, a Pareto Analysis of all
types for D2 and D4would place only fan shaped rooms in the front.

Shoebox rooms are generally better at distributing optimal C80 values
that the hexagonal shaped rooms and they have very similar values when it
comes to lateral energy. Therefore we see shoebox rooms dominate hexago-
nal rooms in this pair of functions.

Sound Strength vs. Lateral Fraction

Figure 13.21b shows the Pareto fronts of all 3 room types for the G and
LFearly parameters. These two functions show contrast, in all three types
there seems to be an almost orthogonal relationship between D3 and D4.
We can see that the rooms that best distribute lateral energy, and therefore
have higher D4 values, are not the ones with a perfect D3 score.

Reverberation, Clarity, Sound Strength and Lateral Fraction

The previous comparisons and Pareto fronts were made by considering pairs
of objective functions. They help us understand the relationship between
these functions and the three room types in great detail. But we are also
interested in considering all fitness functions at the same time. While it
is not possible to visually represent the Pareto front shape resulting from
considering all functions in a four function problem such a this one, we can
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still study the Pareto front in other ways. Figure 13.22 shows the shape of
the rooms in the Pareto front for the four fitness functions. The following
table shows the room type and x1 and x2 values for the Pareto rooms:

Shoebox Fan Hexagonal
X1 X2 X1 X2 X1 X2

15.0 21.0 13.0 16.0 27.0 15.0
25.0 15.0 14.0 16.0 28.0 15.0
25.0 16.0 15.0 15.0 48.0 15.0
26.0 15.0 18.0 16.0 49.0 15.0
26.0 16.0 19.0 15.0
27.0 15.0 19.0 16.0
28.0 15.0 21.0 15.0
28.0 16.0 27.0 15.0
29.0 15.0 29.0 16.0
30.0 15.0 30.0 15.0
31.0 15.0 30.0 16.0
31.0 16.0 31.0 16.0
32.0 15.0 32.0 16.0
33.0 15.0 33.0 16.0
34.0 15.0 33.0 17.0
35.0 15.0 33.0 18.0
13.0 15.0 34.0 15.0

34.0 16.0
35.0 15.0
35.0 16.0
35.0 17.0
35.0 18.0
35.0 19.0
35.0 20.0
35.0 22.0
35.0 23.0

We can see that the Pareto front is comprised of rooms in all three
types. Fan shaped rooms are the most present in the Pareto front, followed
by shoebox, and then we see just a few hexagonal rooms. We can also see
that most Pareto rooms are low. Rooms from 15 to 17 meters in height
comprise about 90% for the front, rooms higher than 17 meters are mostly
dominated rooms.

The shoebox rooms that belong to the Pareto front are mostly wide and
mid width rooms, there are only two very narrow and long rooms. We saw
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Figure 13.22: Pareto front rooms for the four fitness functions D1, D2, D3

and D4. Shoebox rooms in dark gray, fan shaped rooms in medium gray
and hexagonal rooms in light gray.



above that wide shoeboxes have high D1 values, and have the fairly high D2

values as well. Most of them range from 25 to 35 meters in width, meaning
a variation also in length (from 50 to 40 meters). These are quite significant
di↵erences in plan between rooms.

Fan shaped rooms also vary greatly in plan. Most rooms in this type are
regular fans, but there are seven inverse fans in the Pareto front. The most
significant di↵erence between the fan rooms in the front is the angle between
their sidewalls. Inverse fans have a place in the front thanks to their high
D1 values, while regular fans have very high values in all other functions.

The are four hexagonal rooms the front, two of them are very wide with
very open sidewalls, the other two are very narrow, with nearly parallel
sidewalls. These two groups correspond to the two groups seen in the fitness
landscapes, they have high D1 and D4 values.

13.5 Conclusions

Case study 6 presents a parametric study of three concert hall types by
means of their distribution of acoustic objective parameters. Distribution
of acoustic quality is studied with the method described in chapter 13.
The most significant geometrical aspects of three concert hall types are
parametrized into three parametric models. These parametric models do
not comprise all of the possible variations within these concert hall types.
Since only two parameters were used to describe each room type, not all
variations of the concert hall geometry were included.

Fitness landscapes and Pareto fronts were plotted from the distribution
analysis performed on all three concert hall types. A comparative analysis
of room types is made from these figures, and some specific geometrical
attributes important to sound quality are derived.

Results show that a particular set shoebox, fan and hexagonal shaped
rooms have distinct advantages over all other rooms in the study. The
information provided to us by this search process would be of fundamental
importance if we were to proceed with these study in a design process. The
information obtained by this study could be interpreted in four ways in order
to proceed:

� A shoebox from the Pareto set is selected and its acoustic distribution
is further improved by including other features in the room.

� A fan shaped room from the set is selected and further developed.
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� An hexagonal room from the set can be chosen and further developed.

� A more detailed study of all three types is carried out including other
variables or di↵erent parametric models.

The first possibility is the selection and further development of the shoe-
box room. If we look at the values shown in the objective spaces comparisons
for the shoebox, we can see that the shoeboxes are most deficient when it
comes to D4 and D2. It could be argued that by selecting a narrow shoebox,
and studying sidewall modifications (such as side balconies or reflectors) im-
provements to D4 and D2 could generate an optimal room.

The second possibility is the selection and improvement of a fan shaped
room. In this case the most important improvement necessary for the fan
rooms is their D1 values. Reverberation can be improved by slight mod-
ifications in the room materials, especially in the audience seats. Also, a
furtter refinement of the room dimensions, leading to higher volumes can
also improve reverberation without dramatic changes to other distribution
values.

The third possibility involves the selection of an hexagonal room. Narrow
hexagonal rooms are the ones with the highest values in their type for all
functions. They also rank very highly when compared to all types when it
comes to D3 and D4. Interestingly, this type needs improvement both in
reverberation and clarity. It is therefore di�cult to visualize a clear step for
improvement, but a study in greater detail in the sidewall angles around the
stage might be good start.

The fourth possibility is that of creating a new search process with dif-
ferent, perhaps more detailed parametric models, using the information ob-
tained in this study. For example, there is a way of significantly improving
the performance of hexagonal rooms by including more control over sidewall
angles and room width. As we saw in the fitness landscapes, hexagonal
rooms were too wide or too open in some instances. A parametric model
that works on these variables can probably obtain better results, giving de-
signers more options. Di↵erent angles for stage and audience sidewalls are a
great possibility of hexagonal rooms. This was not included in the present
parametric study.
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Acoustic simulation of complex shapes
in concert halls

Ray tracing acoustic simulation (Krokstad et al. 1968) has been used for
predicting the room impulse response for a number of years and represents an
important method that is present in most of acoustic simulation packages.⇤

When it comes to describing the geometry of curved surfaces commercial
acoustic simulation software depends on their discretization into small pla-
nar segments. This is partly because planar segments are needed to use the
Image Source Method, partly because other more precise geometrical models
are not easily implemented. These kind of segmented surfaces are sometimes
called meshes, and they are the kind of surface geometry contained in DWG
and DXF files, popular formats used for importing of geometry into com-
mercial acoustic simulation software.

The advent of advanced computational geometry, in particular the use
of NURBS, give us the possibility to better represent free-form complex and
curved geometry. This presents the opportunity to significantly improve
raytracing simulation models by accurately representing curved geometry,
as has been recommended by researchers in the past (Kuttru↵ 1993, Ver-
cammen 2010, Mommertz 1995). This chapter conducts a comparison of
simulations done with and without the use of NURBS for a series of curved
surfaces in order to understand the potential of this new possibility. In so
doing we can demonstrate that with NURBS geometry we can correctly cal-

⇤The contents of this chapter were published in the proceedings for the AIA-DAGA
symposium on acoustics in Merano in 2013 (Méndez Echenagucia, Astolfi, Shtrepi, van der
Harten & Sassone 2013c)
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culate reflection angles for curved surfaces of any kind, without resorting
to discretizations. We also show, as previously seen in (Kuttru↵ 1993, Ver-
cammen 2010), that with raytracing algorithms, using mesh geometry can
that give out erroneous results, especially with regards to concave surfaces,
resulting in the failure to detect sound concentrations.

14.1 Sound reflection from convex surfaces

In order to study the potential of NURBS surfaces in acoustic raytracing
simulation, we turned to theoretical studies (Kuttru↵ 1993) and (Vercam-
men 2010) of sound fields of curved surfaces and compare their findings to
results obtained with a NURBS raytracing acoustic simulation algorithm
developed for this PhD thesis. A cylinder, a sphere and an ellipsoid serve
as examples of concave surfaces studied in these research papers, and they
are reproduced here as described bellow. Figure 14.1 shows the geometric
and acoustic setup for all three geometry cases.

14.1.1 The Image Sources Method

In the case of Image sources, a number of flat segments that gives a good
approximation to the correct sound pressure in the centre can be estimated
(Kuttru↵ 1993, Vercammen 2010, 2012). This number of segments is fre-
quency dependent and can be rather large, especially in the case of double
curvature surfaces. In this chapter the image source method will not be
considered, since this method is not possible with NURBS, due to the fact
that there are an infinite number of image sources, and no flat segments.

14.1.2 The raytracing NURBS simulator

The studies described in (Kuttru↵ 1993, Vercammen 2010, 2012) call for
a first order raytracing simulation of concave perfectly reflective surfaces.
Such an algorithm was written with the use of NURBS geometry, inside
Rhinoceros.

As explained above, Rhinoceros is a commercial Computer Aided Design
package that is used in various fields, particularly those who employ complex
curved surfaces, as it is capable of representing and operating on NURBS
geometry. Rhinoceros also allows the user to customize its functionality by
creating commands by calling a series of Rhinoceros functions. This is done
through scripts that can be written in Visual Basic or Python programming
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Figure 14.1: Cylinder (a), Sphere (b) and Ellipsoid (c) Geometry and acous-
tic setup for NURBS and Mesh raytracing analysis.



Languages. In this case a Python class containing a series of functions was
written.The class of functions is able to cast rays into NURBS or mesh
geometry and to plot their path, as well as create spherical receivers that
can detect the energy inside each ray. The sound power in each ray can be
described by:

Pi = P/N (W) (14.1)

where Pi is the power of the ith ray, P is the source power and N is the
number of rays (Cingolani & Spagnolo 2005). The developed ray tracer does
not take air attenuation or absorption from reflections into account, since
this is not a part of this study, and the source is always considered to be
omnidirectional. In (Cingolani & Spagnolo 2005) we find that the ray power
detected by the source can be normalized in relation to the ray length inside
the receiver volume. In this case the sound power in each ray will be:

Pi,m =
li,m
Dm

·
 
P

N

!
(W) (14.2)

where Pi,m is the power of the ith ray in the mth receiver, li,m is the ith
ray segment inside the mth receiver volume, Dm is the receiver diameter.
The intensity at the receiver will be:

Ii =
Pi,m ·�t · c

Vm
=

Pi,m · li,m
Vm

(W/m2) (14.3)

where Vm is the mth receiver volume, c is the sound speed and �t is
travel time of the ray inside the receiver volume (Xiangyang et al. 2003,
Vercammen 2012). From the sound intensity we can calculate the mean
squared sound pressure with:

p2rms = ⇢c

NX

i=1

Ii = ⇢c

NX

i=1

Pi,m · li
Vm

(14.4)

where ⇢ is the air density. Since no absorption or attenuation is consid-
ered in the concave surfaces examples in (Kuttru↵ 1993, Vercammen 2010,
Mommertz 1995) the ray tracer developed for this PhD thesis makes no
considerations regarding sound frequencies. All of the simulations in this
chapter assume conditions in which the rules of geometrical acoustics can
be applied.
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Figure 14.2: Infinite Cylinder with 10 meter radius - mean squared sound
pressure in relation to receiver distance from cylinder centre. All receivers
with a 0.8 m diameter.

14.2 Cylinder Study

Kuttru↵ describes in (Kuttru↵ 1993) a perfectly reflective infinite cylinder
with a source at its centre axis. Considering only the first reflection and
discarding direct sound, he then calculates the root mean squared sound
pressure in various receiver positions near the focusing area of the cylinder.
In the present chapter we consider receivers in the same plane as the source
(figure 14.1(a)). We first carry out simulations with the NURBS ray tracer
using this cylinder as a case study. Figure 14.2 shows the mean squared
sound pressure in a series of receivers close to the sound source as estimated
by the raytracer for a NURBS cylinder as well as cylinder polygons of in-
creasing number of faces using equations 14.3 and 14.4. The results are also
compared with a geometrical approximation of the correct results near the
source as described in (Kuttru↵ 1993). This approximation is defined by
the following equation:

p2rms =
⇢c · P

4⇡ · a · z (14.5)

where a is the cylinder radius and z is the receiver distance from the
source.
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Figure 14.3: Sphere study - Percentile energy in relation to receiver distance
from centre for NURBS and mesh geometry, with various receiver radii.

The geometrical approximation is not valid at the centre point (source
position) because it results in infinite pressure. We can see that the NURBS
results are close to the geometrical approximation, and we can also see that
the number of faces necessary to approximate the NURBS result is over
1000 faces. This number is considerably lower if we use the Image Sources
method (Kuttru↵ 1993). Like in any ray tracing simulation, the results are
dependent on the receiver radius. A larger receiver volume will be able to
detect a larger number of rays. Di↵erent acoustical simulators use di↵erent
approaches from the one employed in this chapter, and their accuracy varies
with changing rooms, receiver positions and ray paths (Xiangyang et al.
2003). This issue is not addressed in this PhD thesis, it is merely noted as
part of the observations taken in the simulations.

14.3 Sphere Study

In (Vercammen 2010, 2012) Vercammen illustrates another case study of
sound concentration from concave surfaces, this time involving a perfectly
reflective sphere with a sound source at its centre (figure 14.1 (b)). Like in
the cylinder example, only the first reflection is taken into account, attenu-
ation, absorption from reflections and direct sound energy are neglected. In
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this case we can expect 100% energy to return to the sphere centre, which
provides us the opportunity to test the di↵erent geometrical models. Figure
14.3 shows the results of the NURBS and Mesh simulations with di↵erent
receiver radius using:

Ptot =
NX

i=1

Pi,m =
NX

i=1

li,m
Dm

 
P

N

!
(W) (14.6)

Where Ptot is the total energy detected by the receiver. The y axis in
Figure 14.3 reports a the percentage of emitted energy P that is detected
by the receiver Ptot. Results outside the sphere centre vary with receiver
size as bigger receivers will detect more rays. However, if all reflections are
calculated correctly, in the exact sphere centre all rays should go through the
receiver perpendicularly and li,m must be equal to Dm making li,m/Dm = 1.
Thus with the correct ray reflection angles, the receiver size in the centre of
the sphere is not relevant to the result. Figure 14.3 shows that at the sphere
centre all NURBS calculations converge into 100% energy, proving a correct
reflections in this geometrical model. Mesh calculations on the other hand,
di↵er from receiver size and are far from 100% energy at the centre.

The root mean squared sound pressure in the focal point is explained in
(Vercammen 2012) and calculated as follows:

p2rms =
1

2
p̂k2(1� cos✓m)2 (14.7)

where p̂ (N/m) is the amplitude descriptor that represents the pressure
at 1 meter from the monopole source, k is the acoustic wave number and
✓m is the opening angle of the spheric segment, in the case of the full sphere
✓m = ⇡.

Formula 14.7 takes into account sound frequency by introducing the wave
number k. Considering a frequency of 1000Hz, for a sphere and p̂ = 1(N/m)
we get a ms pressure value of 73.27 (Pa2), corresponding to an SPL of 112.6
(dB). Vercammen suggests a frequency dependent receiver diameter of �/2.
If we carry out this experiment in the center with a receiver of �/2 = 17
cm an SPL of 120 dB is obtained. The receiver diameter to best approach
the correct value has a diameter of 40 cm with an SPL of 112.7dB. As
it is pointed out in (Vercammen 2012) this calibration of receiver size is
impossible in cases where the exact value is unknown beforehand. However
with a �/2 receiver diameter a good approximation can be made.

Figure 14.4 shows the influence of receiver sizes in the sphere case study
by plotting SPL in various receivers near the centre. NURBS geometry
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Figure 14.4: Sphere with a 10 m radius SPL (dB) in relation to receiver
distance from centre with various receiver radius.

results are compared to a geometrical approximation described in (Vercam-
men 2012) and then converted to SPL. As in the cylinder example, this
geometrical approximation is not valid in the centre, for the centre values
we use:

p(z)2rms =
1

2
p̂/z2 (Pa) (14.8)

14.4 Ellipsoid Study

A similar series of simulations is done using an ellipsoid surface, the object in
this case being to study the number of flat surfaces necessary to approximate
the result obtained at the focusing area by the NURBS surface in a double
curvature case. The sound source was placed in one of the ellipsoid’s foci,
and the receivers in the axis of the second focus (figure 14.1 (c)). Like in
the case of the sphere, here too we can conclude that all rays should pass
through a single point, in this case the focus opposite the source, therefore
the receiver at this focus should detect 100% of the energy emitted by the
source. Figure 14.5 shows that a mesh model with 10.000 faces has a result
that is still far from correct, not reaching 20%. Mesh geometry with more
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Figure 14.5: Ellipsoid study resutls Percentile energy in relation to receiver
distance from ellipsoid focus, for NURBS and Mesh geometry with various
number of mesh faces. All simulations done with a receiver of radius 0.5.



than 10.000 faces were not investigated for computational complexly reasons.
NURBS geometry on the other hand shows a perfect 100% result when the
receiver is placed in the second focus point.

14.5 Concave Surface Study Conclusions

The results of the concave examples show that NURBS representation of
curved surfaces significantly improve the capability of acoustic simulation
to predict sound concentration, because ray reflections are exact in curved
surfaces without need for discretization.

The amount of planar sections required for accurate results in a ray-
tracing model is not frequency dependent (Vercammen 2010), and it is also
dramatically larger for double curvature surfaces when compared to single
curvature.

Comparing results from the NURBS simulations to various mesh sim-
ulations, it’s evident that increasing the number of segments improves the
results, but in order to achieve reasonable results, the number of segments
becomes unfeasibly large for current computational tools.
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15

Early Sound Analysis of concert halls

When it comes to the design of concert halls and auditoria, the collaboration
between architects and acoustic consultants can be di�cult if one considers
that they are both trying to define the form of the room but with completely
di↵erent and sometimes contrasting priorities⇤.

As shown in previous chapters, computational acoustic simulation soft-
ware is capable of estimating the impulse response and room acoustics pa-
rameters at receiver positions for diverse rooms with a good degree of accu-
racy. However these tools on their own do not give designers an idea as to
the direction to take to improve results, nor do they help explore new room
shapes.

Recent designs for concert halls around the world by renowned designers
have prominently featured complex curved geometry. Concert hall designers
have long employed convex surfaces in concert halls and concave surfaces in
outdoor concert spaces, their potential to distribute energy where is needed
has been proven by many examples (Vercammen 2012). Like any concave
surface, complex double curvature surfaces need to be carefully studied and
optimized to obtain desirable sound reflections and avoid sound concentra-
tions.

In this chapter a form exploration tool is proposed, that can help design-
ers and acoustic consultants interact with complex geometry and generate
forms that can potentially distribute early sound energy in an optimal way.

⇤The contents of this chapter were published in the proceedings of the International
Symposium on Room Acoustics 2013 in Toronto (Méndez Echenagucia, Astolfi, Shtrepi,
van der Harten & Sassone 2013b)
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15.1 Room Shape and Early Sound

Early reflections in concert spaces have been determined to be crucial to
the overall acoustic quality by many researchers in the past (Barron 1971,
Marshall 1994, Jurkiewicz et al. 2012, Patynen et al. 2013), and the char-
acteristics of early sound are very dependent on the room shape, while the
late sound energy is more dependent on average room absorption (Bradley
2011).

15.1.1 Insu�ciency of Room Acoustics Parameters

ISO 3382-1 acoustic parameters are commonly used for the design of concert
halls, but they are perhaps not detailed enough to describe the early portion
of the sound that arrives at the listeners. Researchers have said that these
indexes are insu�cient to describe in detail the early sound, and that there
are rooms with identical index values at various positions that have quite
di↵erent subjective perceptions (Patynen et al. 2013, Bradley 2011, Bassuet
2011).

15.1.2 Studies and visualization methods of early sound

Research on the perception of early sound showed the importance of the
first milliseconds in the overall perception of sound. Pioneering work by
Haas determined echo audibility thresholds and the precedence e↵ect (Haas
1951). He emphasized the importance of the first 30 milliseconds and the
subjective perception of loudness. Barron later studied the e↵ects of a single
first reflection from side walls and ceilings (Barron 1971). He was able to
study specific thresholds, source broadening and subjective impressions for
side walls and ceilings. This study emphasized the importance of early
lateral reflections.

Hidaka et al. published a comparison between shoebox and vineyard
rooms that highlighted the importance of energy arriving in the first 80 mil-
liseconds (Hidaka et al. 2008). They state that successful rooms show high
sound strength in this first 80 milliseconds, corresponding a good amount
of early reflections, and a high Gearly, this is also mentioned by Bradley
in (Bradley 2011). Hidaka et al. go on to say that before the first 80 mil-
liseconds (for the 500 and 1000 Hz frequency bands) reflections angles and
localization are perceived more accurately, reflections after 80 milliseconds
are perceived by listeners as enveloping energy.
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Di↵erent methods have been developed to study and visualize early
sound. They show di↵erent levels of detail and have di↵erent specific pur-
poses, but they all give us information about the early sound that we do
not find in ISO 3382-1 acoustical indexes (Marshall 1994, Patynen et al.
2013, Bassuet 2011, Krokstad et al. 1968, Oguchi et al. 1988). Some of
these studies have been done using measured impulse responses in existing
concert halls to better understand their objective qualities while others are
especially developed for design purposes and employ computational acous-
tic simulations. These methods help us understand di↵erences in acoustical
qualities, but they do not have ideal or optimal values for design purposes,
as they have not all been compared to ideal existing conditions.

15.1.3 Uniform distribution of sound energy in time
and space: A multi-objective problem

Acoustics parameters and measurements can be quite detailed when it comes
to the distribution of energy in time. Early to late ratios (C50,C80) for
example are widely used and optimal values have been prescribed, but all
of these indexes take single receiver positions into account. However, as
previously stated and studied in the distribution chapters, the overall quality
of a room cannot be summarized by index values in one single position, or a
few advantaged positions close to the sound source. A good room considers
the quality in all listening positions.

The distribution of sound energy in space and time poses a complex geo-
metrical problem, reflections have to be directed in such a way as to provide
sound energy uniformly over space and with time intervals in such a way
as to satisfy subjective preferences. With a limited amount of energy being
emitted by a given source, our goal is to generate room shapes that produce
plenty of reflections in desirable time intervals over the whole listening area.
We can say that room shapes that direct energy to the audience in the first
milliseconds are in direct contrast to shapes that direct energy later in time.
Hence, generating forms that evenly distribute energy in time and space is
a multi-objective problem.

15.1.4 Time-Windows

In their pioneering paper in raytracing acoustical simulation, Krokstad et al.
proposed the subdivision of sound reflections in rooms into “time-windows”
that contain the reflections inside given time intervals (figure 15.1)(Krokstad
et al. 1968). We can also consider receiver dependent time-windows in which
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Figure 15.1: Krokstad’s Time-Windows - An example of a spatio-temporal
analysis.



time intervals are calculated from the arrival of the direct sound to each
particular receiver. Time is counted by the algorithm from the arrival time
of the direct sound of each receiver. By dividing the energy that arrives at
the listening positions into time window we can study how rooms distribute
energy in time, and evaluate the uniformity of this energy in the space of
the audience area.

15.2 Tool for the uniform distribution of early
sound in concert spaces

In this chapter a multi-objective genetic algorithm capable of finding room
shapes that evenly distribute sound reflections in time and space using a
NURBS based raytracing acoustic simulator is presented. This tool follows
the same basic method described above in the structural case studies, with
the exception that the fitness functions is calculated by a raytracing simula-
tor and an acoustic study both developed for this PhD thesis by the author.
A MOGA coupled with a parametric model and the acoustic simulator are
employed to search for high-performing solutions.

15.2.1 The Ray tracing NURBS simulator

In the previous chapter a NURBS ray-tracing acoustic simulator was pre-
sented for the study of concave surfaces. The raytracer developed for this
PhD thesis was also employed in the study of early reflections and complex
curved geometry presented in this chapter. As was previously stated a class
of python functions in combination with Rhinoceros comprises the raytracer.
This class is able to cast rays into complex and free-form NURBS geometry
and to plot their path, as well as create flat receivers that can detect ray
reflections inside their area. The algorithm separates the reflected sound
rays into time-windows that are calculated after the arrival time of the di-
rect sound for each receiver. Since this study is about sound reflections,
the direct sound rays are deliberately taken out of the simulation. Rays are
reflected from the room surfaces until the travel time of the ray exceeds the
time windows considered in the study, or until the ray reaches the audience.
This means the rays are only allowed to reach the audience area once.
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15.2.2 Acoustical fitness functions

MOGAs are capable of optimizing several objectives or fitness functions,
through the combination of design variables. Fitness functions and design
variables need to be well formulated by the designer in order for the MOGA
to properly search for optimal solutions. In this chapter we are studying the
distribution of sound energy in time and space, so we formulated 3 fitness
functions based on the time-windows explained above.

The first fitness function considered a time-window from t0 to t1 in mil-
liseconds (where instant t0 is considered to be after the arrival of direct
sound), the second from t1 to t2, and the third from t2 to t3.

The specific values for t1, t2 and t3 should be chosen in the basis of the
specific case being studied, for example, cases involving ceilings, side-walls,
canopy reflectors or balconies can have di↵erent windows into account. The
actual number of time-windows can also be specifically taylored for each
design problem.

The uniform distribution of energy in space is the objective of each Fit-
ness Function. For each time window the following equation was used to
estimate the ideal amount of reflections for each receiver:

Rr =
Rtot

Nw ·Nr
(15.1)

where Rr is the ideal number of reflections for each receiver inside a
time-window, Rtot is the total number of rays emitted by the source, Nw is
the number of time-windows and Nr is the number of receivers. With this
ideal value of reflections in each receiver, we can calculate an error function
that tells us how far is the room from an ideal reflection pattern for that
time window:

Etot =
NrX

i=1

|Rr �Ri| (15.2)

where Etot is the total error for the time-window and Ri is the number of
rays in the ith receiver. Equation 15.2 describes the fitness function that was
used for each time window. The use of the absolute value of the di↵erence
Rr � Ri means that the fitness function evaluates if the solution given errs
by giving each receiver too many or too few ray reflections.

The minimization of these 3 fitness functions guarantees that the room
shape found in the process delivers an equal amount of ray reflections in
each time-window and also in each receiver. Thus ensures that the room
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will provide sound reflections in all time windows, and that there will be no
sound concentrations or shadowed areas anywhere in the audience area.

15.3 Case Study 7: Complex curved ceiling
for a concert hall

The potential of the proposed design tool is explored by studying a shoebox
concert hall with a curved reflective ceiling. The object of the study is to
generate ceiling shapes that evenly distribute early sound energy oven the
audience space and over 3 separate time-windows. The above mentioned ray-
tracing algorithms for NURBS surfaces and the early sound analysis tools
were employed, in combination with NSGA-II and a parametric model.

s

20 m

15˚

A1

B1 C1

42 m

C2B2

A2

A3

B3 C3

Figure 15.2: Parametric model for the acoustic ceiling case study.

15.3.1 Parametric Model

In any MOGA a set of design variables is needed to search for optimal
solutions. In the case of acoustic geometry, design variables should define
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Variable Control Points Movement Axis Range of Movement
x1 A1 and C1 Z 5 to 20m
x2 B1 Z 5 to 20m
x3 A2 and C2 Z 10 to 20m
x4 B1 Z 10 to 20m
x5 A3 and C3 Z 10 to 20m
x6 B3 Z 10 to 20m

Table 15.1: Design variables, axis of movement and range of movement.

the changing geometry we want to evaluate, (for example we can use height,
width and length dimensions for shoebox optimization). The case study
presented in this chapter works with NURBS geometry to generate complex
curve reflecting surfaces. These surfaces are specified by control points, and
each control point is defined by its X, Y and Z coordinates. The case study
described bellow employs fixed values of X and Y for all control points, and
the Z values of these points are our design variables. Figure 15.2 shows the
shoebox with a curved reflective ceiling defined by 9 control points. Design
variables in geometric problems are always confined to a domain or range
of movement, in order to limit the search possibilities, saving calculation
times, and also to avoid undesired geometry.

Table 15.1 shows the design variables for the present study, their move-
ment coordinates and range of movement. This parametrization of the shoe-
box ceiling ensures that the MOGA is capable of generating single and
double curvature surfaces, both concave and convex towards the audience.
Surfaces will always be symmetrical in the longitudinal axis of the room,
and the area of ceiling above the stage can reach a height of just 5 meters if
desired. If all design variables are equal, a flat ceiling is obtained, thus this
study also considers the possibility that curved surfaces are not better than
flat ones.

A single omnidirectional spherical source was employed. The audience
has an inclination of 15 degrees from the stage plane. The audience area
was subdivided into 40 flat segments of equal width and length.

15.3.2 Fitness functions

The total error function described in equation 15.2 was used as a fitness
function for 3 di↵erent time-windows. The time-windows used in this case
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study are described in the following table:

Time-window tstart (ms) tend (ms)
1 0 80
2 80 120
3 120 200

Since there are 3 time-windows in this problem, there are 3 fitness func-
tions. As we have seen above, NSGA-II can handle a high number of fitness
functions and is capable of finding a Pareto set for the problem. The multi-
objective problem studied in this case study can therefore be described with
the following set of equations:

Case Study 7

8
>>>><

>>>>:

Minimize f1(x) = Etot,0�80,
Minimize f2(x) = Etot,8�120,
Minimize f3(x) = Etot,120�200,
subject to 5  x1,2  20.

10  x3�6  20.

(15.3)

15.3.3 Genetic algorithm inputs

NSGA-II explores 100 generations with 10 individuals in each generation.
The overall genetic inputs for this case study is as follows:

Case Study 7
Population Size (N) 10
Number of Variables 6
Number of binary digits 8
Variable Domains x1,2 2 [5, 20] x3�6 2 [10, 20]
Mutation Probability (pm) 0.2
End Condition End after 100 generations

15.3.4 Results

Figures 15.3 and 15.4 show the ray distribution in the audience area for the
3 time windows of a series of room shapes, all belonging to the Pareto Front
of solutions found by our design tool. We can see that the shapes obtained
by the MOGA are varied and leave plenty of options for the architect and
acoustical consultant to consider. Fitness values for each window are better
in some individuals that in others, this is due to the fact that optimizing

264



rays for one window means there are fewer rays left over for the others,
hence this is a true multi-objective problem with contrasting functions.

Solution 8 has the minimum value for window 1 and has good values
for the other time windows, however it does neglect the first rows in the
second window. Solution 5 has the minimum value for window 2, but it
causes sound concentration in the first rows for window 3. Solution 3 has
the minimum value for window 3 and has also good values for the other two
windows. Solutions 0 and 2 are good intermediate solutions that have low
Etot values for all 3 windows.

15.3.5 Conclusions

An interactive acoustic search design tool is presented. It is capable of
generating surface shapes that evenly distribute reflected rays in given time-
windows and receiver areas.

Di↵erent shapes are better at distributing energy in particular time-
windows than others, geometrical characteristics benefit certain areas of the
room, and designers can consider the advantages of all suggested geometry.

Results show that the fitness functions formulated in the case study were
in fact contrasting functions, hence a multi-objective approach is necessary
to minimize all of them.

The e↵ects of such distribution of sound energy towards the generally
absorptive audience area has on later sound energy and reverberation needs
to be further investigated.

Future research in this method should consider side-walls to study the
0-30 time-window (precedence e↵ect, see (Haas 1951)).

More complex geometries and other concert hall typologies could be ex-
plored using the above described method, in order to study innovative room
configurations. The possibility of incorporating the spatial aspects of early
sound into this approach is also an interesting topic for further studies.
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Figure 15.3: Distribution of reflected rays inside time-windows of a Pareto
set of solutions for a Shoebox room with a reflective curved ceiling - Gener-
ated Curved Ceiling Shapes.



118 128 157

solution 9

66 137 140

solution 8

138 149 108

solution 7

114 115 200

solution 6

/VNCFS�PG�3FnFDUJPOT

127 66 289

solution 5

0 - 80 ms 80 - 120 ms 120 - 200 ms

error = 

0 - 80 ms 80 - 120 ms 120 - 200 ms

error = 

0 - 80 ms 80 - 120 ms 120 - 200 ms

error = 

0 - 80 ms 80 - 120 ms 120 - 200 ms

error = 

0 - 80 ms 80 - 120 ms 120 - 200 ms

error = 

Figure 15.4: Distribution of reflected rays inside time-windows of a Pareto
set of solutions for a Shoebox room with a reflective curved ceiling - Gener-
ated Curved Ceiling Shapes.


