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Abstract. Within a research work aimed to  better understand frost weathering mechanisms of rocks, laboratory tests have been designed specifically to asses a theoretical model of crack propagation due to ice segregation process in water-saturated and thermally-microcracked cubic samples of Arolla gneiss. As the formation and growth of microcracks during freezing tests on rock material is accompanied by a sudden release of stored elastic energy, the propagation of elastic waves can be detected, at the laboratory scale, by acoustic emission (AE) sensors. The AE receiver array geometry is a sensitive factor influencing source location errors, for it can greatly amplify the effect of small measurement errors. Despite the large literature on the AE source location few attention, at our knowledge, has been  paid to the description of the experimental design phase. As a consequence, the criteria for the sensor positioning are often not declared and not related to the further location accuracy. In the present paper a tool for the identification of the optimal sensor position on a cubic shape rock specimen is presented. The optimal receiver configuration is chosen studying the condition numbers of each of the kernel matrix, used for inverting the arrival time and finding the source location, obtained for properly selected combinations between sensors and sources positions.
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List of symbols

The following symbols are used in this paper:
i, j


indexes counting the i-th and j-th AE transducers

ti


arrival time to the i-th transducer

tj


arrival time to the j-th transducer

t0


source origin time


(x0, y0, z0)

source spatial coordinates

(xi, yi, zi)

i-th transducer spatial coordinates

(xj, yj, zj)

j-th transducer spatial coordinates

v 


velocity


ai,j, bi,j, ci,j, di,j, pi,j
auxiliary  parameters that depend on known values related to transducers i and j
p


vector containing theoretical model quantities related to transducers i and j
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p

 


vector containing actual measured quantities related to transducers i and j
q


vector of unknown parameters

H


kernel matrix of physical and mathematical information for the selected problem


e 


vector of the measurement departure s from the theoretical model

H+


pseudo-inverse of the matrix H

k(H) 


condition number of the matrix H

||H||


L2-norm of the matrix H

max


maximum singular values of H

n


smallest non-zero singular value of H

p


small deviation in p vector

q


small deviation in q vector

p||


L2-norm of p 

q||


L2-norm of q 

U


matrix of the left singular vectors of the matrix H
V


matrix of the right singular vectors of matrix H
S


matrix of the singular values n of the matrix H 
I


identity matrix
x


grid node spacing
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estimated or hypothesized average wave velocity
t


accuracy of the first arrival time picking
K


matrix of condition numbers

k


condition number 

kopt


condition number of the optimal transducer configuration
1 Introduction
Acoustic Emission (AE) location to monitor the evolution of fractures within rocks, either on site or in laboratory, has become quite a common field of investigation (e.g. Lockner, 1993; Amitrano 2006; Lei et al 2004; Girard et al 2013). The formation and growth of microcracks in rock material is accompanied by a sudden release of stored elastic energy that propagates as elastic waves, then, in principle, a suitable array of AE sensors would allow to detect the propagating elastic waves and locate the AE sources. 

Source location techniques applied in laboratory tests involve the use of a number of AE sensors placed around the specimen under study (Hardy, 2003). Five factors influencing source location errors have been identified in a U.S. Bureau of Mines Study (Swanson et al 1992):

1. biases of the numerical source location technique;

2. receiver array geometry; 

3. uncertainties in receiver positions;

4. errors in picking arrival times;

5. uncertainties in seismic velocity structure.

The receiver array geometry plays a major role in the source location error. Each array has its own limits and error boundaries and, as a consequence, the suitability of a specific array should be investigated before its use. 
Over the last 20 years considerable research, especially applied to site experiments, has indicate the critical importance of transducer array geometry on the accuracy of AE source location (Ge and Hardy 1988, Ge and Mottahed 1994). These studies established that the governing equations associated with the arrival-time-difference approach represent hyperboloids, and that the studying of the hyperbolic field allows the role of array geometry to be interpreted without the introduction of arbitrary assumption (Hardy, 2003).

However, even if the uncertainty in AE source location due to a lack of sensor positioning design is only one of the sources of error, , little attention seems usually paid, as far as the laboratory tests are concerned, to the design of sensor positioning., A surely incomplete, although indicative, review of the literature on this subject of the last two years is referred to in the following.

A part from the lab studies, that need reproducing site condition and are consequently forced to respect the sensor geometry feasible on site condition (e.g. Damani et al 2012; He et al 2011), other works, in which the sensor location is mainly left to the experimenter, do not refer to a detailed explanation on the sensor position criterion (Ting et al 2012; Vidya et al 2013). 
Many experimenters seem to follow a common sense taking into account that, if the source originates within the boundaries of the array, the location may be very accurate. As a result, it emerges a good spatial distribution around the centre of the specimen, even if a scientific criterion is not followed, or mentioned (Ishida et al 2012; King et al 2012). As a consequence, the resulting spatial distribution is often apparently efficient (Davi et al 2013; Petružálek et al 2013) but there is no assurance that it is suitable to minimize the amplification of location errors. A careless setup could make useless the information derivable from one or more sensors. 
In the present paper a tool for the identification of the optimal sensor position on a cubic shape rock specimen, monitored with an acoustic emission (AE) array during a campaign of laboratory tests, is presented. This study took place in occasion of a research having the purpose of investigating the mechanisms of frost weathering in thermally-microfractured hard rocks. 
As the mechanical breakdown of macroscopically unfractured rock is the manifestation of the growth and interconnection of microfractures, monitoring the microcracking activity during freezing tests has been considered a powerful technique to study fundamental details of frost weathering (Hallet et al 1991). 

The importance of a correct receiver array distribution in minimizing the AE source location and the details of the adopted procedure for the experimental design, together with the technical problems and limits of the proposed method, will be evidenced. Future perspective of the proposed procedure in the frame of other AE laboratory investigations are outlined in the concluding section.

2 Material 
The experiment which was the occasion of this study involved a 150mm-cubic shape specimen of Arolla gneiss, taken in Val Pelline (Aosta Valley, Italy), which have been subjected to thermal treatments in order to induce damage by heating and increase the fracturing degree of the material. The ultrasonic wave velocity has been determined by measuring the travel time of a pulse along the axis of the specimen. After the thermal cycles, the P-wave velocity values were nearly equivalent in the three principal directions: in this context, at least as a first approximation, the velocity field has been assumed to be both isotropic and homogeneous, i.e., the signals propagate along straight raypaths in all directions at a single velocity value.

The laboratory tests was planned to froze unidirectionally the sample, while temperature and acoustic emissions were monitored. The lower half of the sample have been maintained at temperatures below 0°C using a cooling plate (simulating permafrost) and its upper half was subjected to different temperature gradients (simulating seasonal thawing of the overlying active layer), ensuring a fixed temperature gradient.  With this setup a critical volume, where the AE source were likely to occur, was expected to be roughly a horizontal prism corresponding to the central 3/5 of the cube.  By recording the arrival times of AE signals at transducers mounted on the sample, it was possible to locate the microcrack damage that occurred during the process as a function of time and temperature: in this manner, information concerning the complete nucleation and growth history was obtained. Installing a receiver array (that could be comparable to an antenna), which could completely scan the whole volume to be monitored for AE sources with a constant sensitivity, is very important but difficult to achieve in practice. Receiver positions are typically constrained by available access due to the presence of other laboratory equipment. Poor array geometries and/or poor coverage by adequate geometries, can greatly amplify the effect of small measurement errors and lead to inaccuracies in locations. The experiment was carried out with 8 sensors and 5 surfaces of the cubic sample were available for positioning the sensors (the sample was placed on a basal cooling plate, so the lower surface was not available). 
3 Method
The travel time ti from the source to the i-th receiver in a homogeneous medium is:
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where 
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 are the spatial coordinates of the transducers and of the source respectively; ti is the measured arrival time of the compressional wave generated by the transient event at each station, v is the velocity value  assumed to be, for simplicity, both isotropic and homogeneous and t0 is the unknown time in which the energy is released by the source (hereafter event time). Similar equations, which are a nonlinear combination of spatial coordinates, can be written for each transducer.  
The problem can be linearized with a procedure that does not involve the calculation of any Jacobian matrix and higher order terms truncation. If the equations pertinent to two different receivers are firstly squared and then subtracted, the Arrival Time Difference (ATD) approach can be profitably used. 
The governing equations associated with the ATD approach represent hyperboloids (Ge & Hardy, 1988, Ge & Mottahed, 1994, Hardy, 2003). The array geometry itself does not induce any errors: it merely amplifies errors already present. The essence of this amplification in terms of geometry is that the source is incorrectly located on an adjacent hyperboloid rather than on the one associated with the true source. Thus, the density of hyperboloids in the region of the true source is a measure of potential source location accuracy. Moreover the effect of array geometry on source location accuracy is a result of the non-uniformity of the hyperbolic field, which makes the location error heavily dependent on the position of the true source relative to the array.

Let’s consider two receivers, i (selected as reference receiver) and j: 
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Expanding and simplifying:
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Finally, 
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Let’s write:
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Then a, b, c, d, and p are auxiliary parameters that depend on known values related to receivers i and j. Equation (4) is a linear equation in terms of the event time t0 and source position x0, y0, and z0. It can be written for each receiver j with respect to a reference receiver i (supposed to be the receiver 1) as:
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(6)

being the length of p equal to the number of transducer minus one.

The location requires the solution of the inverse problem that is finding the vector of unknown parameters q=
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In an isotropic velocity medium, three-dimensional surfaces of constant relative arrival time, or isochrons, can be constructed for each pair of receivers (Swanson et al 1992). This three-dimensional hyperboloid surface, which is symmetric about the line connecting the receivers, is a solution to equation (2). The infinite number of possible solutions for the source location on the hyperboloid surface is reduced by considering additional isochron surfaces from other receiver pairs. The mathematical solution for the event location can be graphically interpreted as the point of intersection of all of the isochron surfaces. When errors in travel time are added to the exact relative-arrival-time data, the isochron surfaces do not intersect at a point, but instead cluster throughout a volume that could be considered as a location uncertainty volume. The size, shape, and orientation of this volume depend not only on the magnitude of the errors, but also on the angle of isochron surface intersection: the geometry of the receiver array determines these angles (Swanson et al 1992).

A minimization of the location uncertainty volume can be achieved by minimizing measurement errors and selecting  such a receiver geometry that the events to be located are completely surrounded with a three-dimensional distribution of receivers. 

The linearization of a nonlinear-equations system leads to a linear problem (equation (6) that, in matrix notation, can be summarized in explicit form:
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where p is the column vector of length M (number of receivers-1) containing the theoretical model quantities, q is the column vector of length N  containing the values to be determined. H is a matrix MxN (sometimes referred to as kernel matrix) containing all the physical and mathematical information for the selected problem (equations 5a,b,c,d).

Actually it can be assumed that the measured vector
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 is equal to the model vector p plus a vector e whose components represent the departure of the measurements from the model (Nelson & Yoon, 2000).

Thus:
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(2)
The solution for the modeled vector q that ensures the "best fit" to the measured data has to be sought. The traditional approach to this kind of problems is to find the "least-squares'' solution for the vector q which ensures the minimization of the sum of the squared errors ("residuals'') between the measured outputs and the model outputs. 
The optimal estimate of the vector q that minimizes a cost function related with the error vector e, is given by
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where H+ = [HTH]-1HT is the pseudo-inverse of the matrix H.

The sensitivity of the solution for q to small deviations or errors in 
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, is determined by the condition number of the matrix H which has to be inverted (Nelson & Yoon, 2000).

The condition number is defined by:
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where 
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denotes the L2-norm of the matrix H. The L2-norm of H turns out to be equal to the largest singular value of H and is also equal to the square root of the largest eigenvalue of the matrix HTH.

Thus, in terms of the singular value decomposition, 
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= λmax, where λmax is the maximum singular values of H. The L2-norm of H+ is given by 1/λn, where λn is the smallest non-zero singular value of H, and therefore the condition number can be written as
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A simple argument can be used to demonstrate the importance of the condition number to the sensitivity of the solution 
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 to errors, for example, in the measurement of 
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Let’s assume that small deviations of 
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 produce small deviations q in the solution,
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A useful property of the matrix L2-norms is that 
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And, using the definition of the condition number, 



[image: image34.wmf](

)

k

dd

*

£×

qp

H

q

p


(14)

This important and well-established result demonstrates clearly that the sensitivity of the solution q is determined by the condition number of the matrix H to be inverted: a large ratio of maximum to minimum singular value of H will greatly amplify small perturbations in 
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 (Nelson & Yoon, 2000).

The condition number k also captures the transition from invertible to noninvertible matrices (Santamarina & Fratta, 2005). A matrix is noninvertible when k = ∞. On the other hand, a matrix is ill-conditioned when k is very large; in this case, numerical inaccuracies become important to the solution, and errors in the data are magnified during inversion. Condition number permits the assessment of the kernel matrix before data acquisition.

To find the maximum and the minimum singular values, one can proceed as follows. The H matrix can be decomposed into three matrices, according to the singular value decomposition (Golub & Kahan, 1965), in the form:







H = USVT





(15)
and comprises the matrix S of N singular values λn of the (MxN) matrix H. The columns of the U matrix (MxM) comprise the left singular vectors of the matrix H, whilst columns of the V matrix (NxN) comprise the right singular vectors of the matrix H. The matrices U and V are unitary and have the properties UTU=UUT=I and VTV=VVT=I. The condition number can be obtained searching the maximum and the minimum among the singular values in the S matrix and computing the ratio between the maximum and the minimum. 
4 Proposed solution for an optimal distribution of 8 sensors on 5 free surfaces 
3.1 Constraining hypothesis
In order to select the optimum array geometry, the surfaces and the volume of the sample have been discretized. 
The 5 free surfaces of the sample have been discretized with a grid whose nodes identify possible positions for the receivers. To determine the node spacing, the accuracy of the acquisition system and the uncertainties of localization have to be considered: the node spacing should take into account both the accuracy of the first arrival picking, which depends essentially by the signal-to-noise ratio of the recorded traces, and the average velocity value. The node spacing x could, at a first approximation, be set equal to:
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where 
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is the estimated or hypothesized average wave velocity value and t is the accuracy of the first arrival time picking. The sampling interval of the acquired signals was1s,then, assuming that the arrival times can be read with accuracy of 1s and considering an average velocity value equal to about 3.5·103 m/s (i.e. the average velocity value computed during the ultrasonic tests performed on the saturated sample subjected to the thermal treatments), a maximum error in the source location equal to 0.35 cm would result. However, a grid with step 3.75 cm , that in our case means roughly ±5Δx, has been selected according to an average signal-to noise (S/N) ratio estimated in previous tests. As the sample was a 15 cm wide cube the grid divided each surface into 16 squares. Excluding the squares on the edges (figure 1), 45 possible sensors positions, corresponding to the nodes of the grid, have been identified, , . In the central volume of the sample where, in this particular case, the ice segregation phenomenon and the resulting microcracks propagation should likely occur, 108 possible AE source positions have been considered. Three planes of potential AE sources have been hypothesized, placed at 3, 6 and 9 cm below the top surface. Each plane has been discretized with a grid with a square mesh size of 3 cm, identifying 36 nodes corresponding to the potential AE sources for that level. 

The combination of the 45 sensor positions taken 8 at a time gives a number of possible octets equal to about 2·108. To compute the kernel matrix and then the k-value matrix (k-matrix), each octet has to be combined with each one of the 108 source positions. Thus 2.3·1010 k-values, among which the lowest values have to be selected, should be computed. As a consequence, this deterministic method would have been time consuming and  should have required huge computational efforts. 

To reduce the total possible sensor positions, a number of constraining hypotheses was introduced. 

The first imposed constrain derives from the observation that three-dimensional source location can be very accurate if the sources are within the boundaries of the sensor array. Generally as the source moves from the centre of the array the source location error increases. Thus, having 8 sensors and 5 faces, to obtain a suitable sensor distribution on the specimen and to avoid the presence of un-instrumented faces, configurations with more than 2 sensor per face have been excluded.
Furthermore when the transducers of an array lay on a plane, the source location error increases with the distance of the source from the array plane. According to this consideration other geometrical constrains were imposed. In a 3D problem, once three sensors lie on a plane, a straight line, which the source location belongs to, orthogonal to the plane, is completely defined. Any other sensor should be used to fix the third dimension coordinate, i.e. the distance of the source from the plane. As a consequence it is desirable that: a) no more than three  sensors lie all along the same plane; b) no array made of three co-planar sensors lie on parallel planes. Then the 45 possible positions were combined, three by three, in order to identify all the obtainable planes. Fixed an arbitrary initial tern, an iterative process allowed to collect all the terns identifying non-parallel planes and, as a consequence, the sets of points (corresponding to sensor positions), among the total 45, which do not belong to the same or parallel planes. Taking into account the uncertainty in time reading, theoretical geometrical planes has not been considered, but “thick planes”, approximately as thick as Δx. 
These sets of position were then combined, taken 8 points each time, obtaining 504 octet of sensors.
As a result of the application of these constraining criteria the size of the H matrices to be evaluated dropped from  2∙108 to about 5∙104.
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Figure 1. 45 sensor positions identified on 5 surfaces (upper surface, F1, and 4 lateral surfaces, F2 to F5) of a 15cm-cubic shape sample: they correspond to the nodes of a 3.75 cm-step grid. The lower surface (the grey one), is not available because the sample is placed on a cooling plate during the tests
3.2 k-Matrix computation
The condition number has been then calculated coupling each sensor octet to each source position and the results have been stored in a k-matrix K [108x504]. In figure 2 the frequency distribution of the values stored in K is shown: on the histogram, values corresponding to the maximum and to the minimum (dashed line), and to the arithmetic mean (black solid line) of the condition number have been plotted; the one -interval (one standard deviation) from the average value of the distribution has also been identified (gray solid lines).
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Figure 2. The frequency distribution of  K: on the histogram, values corresponding to the maximum and to the minimum (dashed line), and to the arithmetic mean (black solid line) of the condition number have been plotted; the value of one -interval from the arithmetic mean  has been also identified (gray solid lines).
Three k-classes have been then identified: the white one, which contains k-values smaller then mean value minus the standard deviation (k<1.5), the gray one, which contains k-values between 1.5 and the mean (1.5<k<2.6), and the black one, which contains k-values greater than the mean (k>2.6).

The K-matrix containing the condition number computed combining all the possible combinations between identified octets of sensors and potential source positions, was plotted by giving to each k-value the colour of the corresponding class. The resulting image is shown in figure 3.

[image: image40.png]=
g
2
=
2
QL
<
@
2
=
=]
w

‘T w owennm
., .—mi"“,_n-- valn
. =", :

[ T uh E T
1 e e
lll.l.l'lmilul'r- e AU T
ST TR it [TPT0 YL [T

i e
DR LA TR ol

dE W e

i i e T

50
Legend

2l .Jiﬁ e
bk oty v lmydn
R Y, T

.’ -k

150 200

b )
otk LT T |" gy ';ll.nr.
MW g s L
RSN LT
i w0 e R

anila 0 Mmoot

P, ol ‘.

S 1M &.*‘nh"‘

RO P Y
S et = v

250 300 350

Octets of semsors

Hl k>2.6





Figure 3. K-matrix plot, containing the condition number corresponding to all possible combinations between octets of sensors and potential source positions. To each k-value, the colour of the corresponding class has been given.

The figure 4 shows the K-matrix sorted in order to have along each column (corresponding to an octet of sensors) all cells white, gray and black, respectively, grouped together: this means that the identification of the source position is lost, but the display of the acceptability of a specific sensor configuration results immediate. In fact the column order has been given growing, from the column with the minimum sum of all the 108 k-values, to the one with the maximum sum.

The selection of the optimal sensor configuration can be performed on the base of the observation of the sorted K-matrix. The best configuration is the one allowing the minimization of the condition number for all the potential source position, corresponding to the first column of the sorted K-matrix. The absolute minimum value of the condition number (kopt) has been computed with the 156th configuration and for a source point placed at 6 cm depth.
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Figure 4. K-matrix sorted in order to have along each column (corresponding to an octet of sensors) all cells white, gray and black respectively grouped. The columns order has been given growing, from the column with the minimum sum of all the 108 k-values, to the one with the maximum sum. To each k-value, the colour of the corresponding class has been given (see figures 2 and 3)
Four optimal configurations have been analyzed: the one with the minimum sum, the one with the minimum k-value, and two intermediate configurations. On the sorted K-matrix, these configurations correspond to column 1, 16, 70 and 156 respectively. In table 1 (rows 1 to 4) sensor positions are reported for each configuration: each number corresponds to a node in the grid that discretized the sample (see figure 1).
In figure 5 the four box plots are shown: they graphically depict 4 groups of condition number data (corresponding to the 4 sensor configurations identified as optimal) through their five-number summaries: the smallest observation, the 25th percentiles, the median, the 75th percentiles, and largest observation; they also indicate which observations might be considered outliers.

The configuration number 1, which corresponds to octet of sensors designed on the flat representation of the cubic sample  of figure 6 has been chosen as the optimal configuration: as it can be seen from the box plot in figure 5, this configuration ensures a low condition number for all source locations;  the 156th configuration allowed to compute the absolute minimum condition number for a source position located in the middle of the sample, while for other source positions, the condition number increases and reach the maximum value in comparison with the other optimal selected configurations.
Another interesting configuration is shown in the last row of table 1. It allows to compute an average k-value, over the 108 possible sources, which is double  than that of configuration number 1. This means that in this latter case the array geometry doubles the location error in comparison with the optimal selected configuration. It has to be evidenced that the sensor placement could seem as well spatial distributed as the configuration number 1. It is also worthy to note that 43 configurations over 504 have k>2kopt. As a consequence, it could be difficult determining the efficiency of the array geometry without the analysis of the resulting k-values.
It has to be underlined that in any case condition number values are always lower than 13; this means that the applied constrains (see Section 1) were effective.

5 Proposed solution for an optimal distribution of 8 sensors on 4 surfaces 
In laboratory, the various AE transducers types, selected according to the characteristics and aims of the research activity, may be installed in a variety of ways depending on the sensor typology and the environment of the test specimen or structure. Uniaxial tests are probably the most common type carried out in the rock mechanics laboratory. In this case the transducers can be mounted directly on the lateral surfaces of the specimen. In order to verify the applicability of the proposed methodology to the case of a generic laboratory test providing the use of a uniaxial instrumentation that precludes the availability of the superior face, the case of a cubic-shape sample with only the lateral surfaces available has been considered.
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Figure 5.  The four box plots graphically depict 4 groups of condition number data (corresponding to 4 sensor configurations) through their five-number summaries: the smallest observation, the 25th percentiles, the median, the 75th percentiles, and largest observation; they also indicate which observations might be considered outliers. On the sorted K-matrix, these configurations correspond to column 1, 16, 70 and 156.
Table 1. Sensor position configurations and arithmetic k-value mean, corresponding to column number 1, 16, 70, 156 of the sorted K-matrix.

	ID column (sorted K-matrix)
	Sensor position
	Arithmetic mean k-value
	

	1
	7
	8
	16
	22
	32
	34
	37
	45
	1.8
	

	16
	2
	10
	19
	20
	31
	34
	37
	45
	1.9
	

	70
	4
	5
	13
	22
	23
	32
	37
	45
	2.1
	

	156
	4
	5
	13
	19
	20
	31
	29
	40
	2.3
	

	461
	1
	2
	10
	7
	8
	18
	14
	25
	3.6
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Figure 6. a) Optimal sensors configuration (black circles) that optimize the inversion giving the lowest uncertainties propagation for sources located in the central 9 cm thick horizontal slice of the cube volume; b) 3D scheme of the resulting sensor positions on the specimen.

4.1 Constraining hypothesis
The 4 lateral free surfaces have been discretized by the grid with step 3.75 cm, defined and described in the previous section, identifying 36 possible sensor positions. The node numeration has been maintained unchanged in order to be able to perform a comparison between the optimal sensor distribution resulting considering 5 free specimen surfaces: the nodes from 1 to 9, belonging to the upper face, has not been considered in the definition of the possible sensor positions.  
To reduce the total possible sensor positions, a number of constraining hypotheses was introduced, following the same criterion described in the previous section for the case of 5 instrumented faces. The difference with the previous case, however, was the unavailability of the upper face: the inevitable geometrical symmetry obtained, makes the coexistence of the two constraining hypotheses impossible. In this case, in fact, configurations with more than 3 sensor per face have been excluded, and it was allowed that the sensors lied along parallel planes.
4.2 K-Matrix computation
Also in this case, the condition number has been then calculated coupling each sensor octet to each source position and the results have been stored in a matrix K [108x36]. In figure 7 the frequency distribution of the values stored in K is shown. It is possible to note how the frequency distribution of the condition number has a more elongated tail: because of the lack of the upper face the problem is worst conditioned: both the maximum and the minimum k-value are greater than the previous configuration. 
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Figure 7. The frequency distribution of  K: dashed lines correspond to the maximum and the minimum k-value, black solid line to the arithmetic mean, and the gray solid line to the value of the -interval from arithmetic mean.
In figure 8 the image of the K-matrix containing condition numbers computed following the classification explained above, is shown. 

Figure 9 shows the K-matrix sorted in order to have along each column (corresponding to an octet of sensors) all cells white, gray and black, respectively, grouped together. 

Two optimal configurations have been graphically analyzed with two box plots (figure 10): the one with the minimum sum and the one with the minimum k-value. On the sorted K-matrix, these configurations correspond to column 1 and 4, respectively. The configuration number 1, which corresponds to octet of sensors designed on the flat representation of the cubic sample  of figure 11, has been chosen as the optimal configuration. In the first row of table 2 the corresponding sensor positions are reported: each number corresponds to a node in the grid that discretized the sample (see figure 1).

Also in the case of 4 free lateral surfaces it is possible to notice that the optimal sensor distribution can be obtained from the computation of the condition number for a set of source points. The first selected configuration ensure a better distribution of the condition numbers considering different source position. The median (horizontal solid line inside the box plots in figure 10) is rather in a central position between the 25th and 75th percentiles. Moreover the computed k-values are less dispersed around the median value.

In the case of 4 lateral instrumented surfaces too, the computed condition numbers are always very low. This confirm that the geometrically-based constrain assumptions are able to exclude cases carrying the k-values higher than 13. Comparing the results with 5 free surfaces to these latter ones  it is possible to notice a strong decreasing of the total number of suitable octets (504 vs 36), an increasing of the standard deviation of the condition number and, as a consequence, of the k-value intervals adopted to class the results into the white, gray and black classes.
In the second row of table 2 the configuration with an average k-value twice the one identifying the optimal configuration, is shown. In this case only 3 configuration over the 36 have k>2kopt. In fact, the presence of only 4 free surfaces for the sensor placement, combined with the geometrically-based constrains, reduces many possible combinations which could lead to the increment of the k-values.
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Figure 8. K-matrix plot, containing the condition number corresponding to all possible combinations between octets of sensors and potential source positions. To each k-value, the colour of the corresponding class has been given. White: k-values smaller then mean value minus the standard deviation (k<1.48); gray: k-values between 1.48 and the mean (1.48<k<3.18); black: k-values greater than the mean (k>3.18).
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Figure 9. K-matrix sorted in order to have along each column (corresponding to an octet of sensors) all cells white, gray and black respectively grouped. The columns order has been given growing, from the column with the minimum sum of all the 108 k-values, to the one with the maximum sum. To each k-value, the colour of the corresponding class has been given.
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Figure 10.  The two box plots graphically depict 2 groups of condition number data (corresponding to the selected optimal sensor configurations) through their five-number summaries: the smallest observation, the 25th percentiles, the median, the 75th percentiles, and largest observation; they also indicate which observations might be considered outliers. On the sorted K-matrix, these configurations correspond to column 1 and 4.
Table 2. Sensor position configurations and arithmetic k-value mean, corresponding to column number 1 and number 35 of the sorted K-matrix.
	ID column (sorted K-matrix)
	Sensor position
	Arithmetic  k-value mean
	

	1
33
	13

10
	25

11
	19

19
	20

25
	31

32
	35

36
	36

41
	44

43
	2.1

4.2
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Figure 11. a) Optimal sensors configuration (black circles) that optimize the inversion giving the lowest uncertainties propagation; b) 3D scheme of the resulting sensor positions on the specimen.
6 Optimal distribution of the minimum number of sensors on 4 surfaces
The minimum number of sensors, being four the unknowns 
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, given equation 7, is five. When only the four lateral surfaces of the sample are free, installing one transducer in the middle of each surface plus a sensor in a randomly selected position could seem enough to minimize the location error amplification. This solution, often adopted when the minimum number of sensors necessary for the source location is used, encloses as much as possible the centre of the specimen, warranting the lost of a perfect geometrical symmetry. The average k-values obtained with this configuration for the 108 previously selected sources results equal to 3.7 (table 3, row (a)). Introducing the above described constraining hypotheses to avoid the lying of the 4 central sensors on the same plane in the middle of the sample, and selecting the optimal configuration minimizing the k-values computed for the 108 sources, the placement showed in figure 12 is identified. For this configuration the average k-value is 2.2 (table 3, row (b)) which means a reduction of the location error amplification, due to the transducer array geometry, of about the 40%. 

Table 3. Sensor position configurations and arithmetic k-value mean corresponding to (a) a hypothesized configuration; (b) a computed configuration, minimizing the k-values for the 108 selected sources.
	Configuration 
	Sensor position
	Arithmetic  k-value mean
	

	(a)
	14
	23
	32
	41
	44
	3.7
	

	(b)
	19
	34
	14
	41
	30
	2.2
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Figure 12. a) Hypothesized sensor configuration on the base of a common sense; a1) 3D scheme of the sensor placements corresponding to the hypothesized configuration (a) (see table 3); b) Optimal sensors configuration (black circles) that optimize  the inversion giving the lowest uncertainties propagation; b1) 3D scheme of the sensor placement corresponding to the computed optimal sensor configuration (b) (see table 3).
7 Conclusions 
A method that allows the estimation of an optimal array configuration of AE sensors on a cubic specimen has been proposed. The method minimizes the effect of small measurement errors on the inaccuracies in sources location when working with the ATD approach in a supposed homogenous isotropic medium. 
To reduce the number of possible configurations some constraining hypothesis, based on geometrical and physical considerations, have been introduced. The possible source and sensor positions have been identified discretizing the sample volume; the spatial resolution has been computed considering the sampling frequency, the accuracy in arrival-time reading and the average P-wave velocity. 
As indicator of a good sensor configuration the condition number of the kernel matrix that has to be inverted for the source location, has been selected. The paper shows that by imposing appropriate constraining hypotheses, low values of the conditions number can be obtained: as a consequence the inaccuracies in source location are not greatly amplified by the array geometry.

The method, of course, works also with different specimen shapes, different number of sensors and different volume discretization. It is also evident that there exist both a minimum and a maximum number of sensors, given the volume size, the p-wave velocity in the rock and the arrival time reading uncertainties. The minimum number of sensors, working with the ATD approach, is five. On the other hand the maximum number is more complex to be defined. It can be intended as the number of sensors beyond which no “useful” information is added or is a linear combination of other information. It depends mainly on the arrival time reading uncertainty and p-wave velocity. However it is clear that this maximum exists and that it is likely not very huge. 

Furthermore it is evidenced that the method is simple and can be used in all cases in which the laboratory tests require a design for AE-sensors positioning coupled with other equipments that reduce, for example, the surface that can be used for placing the receivers.
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