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ABSTRACT  

Geophysical surveys on and around the Candia Lake, located NE of Turin (NW 

Italy), in the internal depression of the Ivrea Morainic Amphitheatre (IMA) right frontal 

sector, are reported in this paper. The surveys were intended to obtain a geophysical 

characterization of the lakebed, to investigate the interconnection paths between surface 

water and groundwater and to be used as a first general survey for suggesting the 

geological processes which lead to the actual morphology.  

An extensive waterborne Continuous Vertical Electrical Soundings (CVES) 

survey consisting of 15 profiles, with a total length of about 19 km of acquisition, was 

carried out on the lake surface. The processing of the acquired profiles with a Laterally 

Constrained Inversion (LCI) approach lead to the reconstruction of the lakebed 

sediments distribution, down to 10 meters depth. Self Potential (SP) data recorded on the 

lake surface have also been analyzed. Moreover, to verify the areal distribution of the 

deposits, three Electrical Resistivity Tomographies (ERT) were carried out on land near 

the northern and southern shore of the lake. The combination of the geophysical surveys 

results with hydrogeological information and geological observations and interpretations 

allowed the characterization of the submerged deposits, the probable identification of the 

main areas of groundwater recharge and the preliminary reconstruction of the lake 

genesis.  
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1. INTRODUCTION  

The geological characterization of the bottom sediments of a lake is essential to 

determine the hydrogeological properties of the deposits and to investigate the 

interconnecting relationship between surface water and groundwater. However, 

geological analysis in water-covered areas is difficult and expensive with traditional 

survey techniques. Direct investigations (e.g. logs or cores) are often neither cost-

effective nor reasonably quick and adequate in number to cover the whole surface of a 

basin and to obtain a reliable correlation of data over a wide area. 

Geophysical methods can therefore be very useful to investigate sediments which 

are entirely located beneath a water-covered area. They can be indeed profitably used 

not only as a validation of the results of direct techniques, but also as a tool for planning 

future surveys. Among the available geophysical methods the use of non-seismic 

methods to study shallow inland water is relatively recent. A review of the existing 

methods and case histories can be found in the Special Issue of Near Surface Geophysics 

on Waterborne Geophysics [Sambuelli and Butler, 2009; Butler, 2009]. 

Among the electrical techniques used for waterborne surveys, Continuous 

Vertical Electrical Soundings (CVES) have gained greater attention. The possibility of 

using multichannel resistivity meters makes it  possible to simultaneously perform 

several resistivity measurements, in a fast and cost-effective way. CVES have been 

applied in water-covered areas for different purposes and using different electrode 

configurations. In this respect there is a wide scientific literature. Bradbury and Taylor 

[1984] used the CVES acquisitions with floating electrodes, together with seismic 
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refraction profiles, to study the hydrogeological properties of the bottom sediments of 

Lake Michigan (USA). Loke and Lane [2004] examined three different acquisition 

strategies in an aquatic environment. Their study found that the presence of a water layer 

between electrodes and sediments reduces the depth of investigation. Kwon et al. [2004] 

compared acquisitions from floating and water bottom electrodes, in order to find both 

the minimum electrode spacing and the thickness of the water layer allowing for the best 

results using different electrode configurations. Allen and Merrick [2007], in a study 

focused on the inversion of geoelectric data for hydrogeological purposes, demonstrated 

that using a floating array with exponentially spaced potential electrodes provides the 

maximum resolution with depth. Mitchell et al. [2008], with a combination of stationary 

and towed electrodes floating on the lake surface, used continuous resistivity profiling to 

identify heterogeneities which control seepage at Mirror Lake (USA). Another case 

study with hydrogeological purposes is reported in Kelly et al. [2009]. The authors 

investigated the capability of towed electrical cable to map a known aquifer recharge 

zone and to provide hydrogeological information and electrical properties of the 

sediments. Befus et al. [2012] carried out some resistivity profiles to delineate 

groundwater-lake interactions with floating equi-spaced electrodes. Geological 

characterization of sediments can be deduced from electrical measures as demonstrated 

by Rucker et al. [2011] carrying out an electrical continuous survey with floating 

electrodes set on a cable dragged by a boat through the whole length of the Panama 

Canal. Such data have been used to detail the geological mapping of the region in 

submerged areas to support the project of dredging and widening of the canal. All of 
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these previous studies agree that submerged electrodes allow better penetration in the 

lakebed sediments, while the selection of the electrode array is closely related to the 

purposes of the survey (i.e. depth of investigation and resolution required), in this 

respect an optimum a-priori choice does not exist. However, the use of floating 

electrodes seems preferable, since it is faster and less expensive than submerged ones 

from the acquisition point of view. With the floating cable arrangement, exponentially 

spaced electrodes appear to provide the best resolution with depth. 

Most of multichannel resistivity meters also allow for a contemporary acquisition 

of Self Potential (SP) data; these could be potentially related to water paths since it is 

known that, roughly, water sources generate positive SP anomalies and the opposite 

occurs with water sinks. Recent literature works have underlined the potentiality of the 

SP method from waterborne acquisition for mapping groundwater-surfacewater 

exchanges [Grangeia and Matias, 2012]. Ishido and Pritchett [1999] carried out 

numerical simulation of electrokinetic potentials associated with subsurface fluid flow, 

using SP data which have actually been observed in real geothermal fields. They 

demonstrated that a positive self-potential anomaly is present above the upflow region 

while large negative anomalies appear in the peripheral areas where meteoric water 

flows downward. Goto et al. [2012] analyzed the implications of self-potential 

distribution caused by groundwater flow in a mountain slope. They observed positive SP 

anomalies related to local springs and SP decreasing pattern mainly related to vertical 

infiltration flow in the slope body. Other examples of studies that confirm these 
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correlations between water flow and SP anomalies can be found in Tique et al. [2002] 

and Thompson et al. [2012]. 

We discuss the results of a survey conducted with the CVES method on the 

Candia Lake, located NE of Turin (NW Italy). The main objective of the study was to 

obtain a first assessment on the characterization of the sediments of the basin, in order to 

define nature, composition, geometry and spatial relationships of the detected geological 

bodies for further direct investigations and for suggesting a preliminar basin genesis 

reconstruction. Using a Laterally Constrained Inversion (LCI) approach for the data 

inversion, we managed to obtain 15 resistivity sections that cover almost the entire area 

of the lake. By joining these profiles it was then possible to produce a three-dimensional 

model of the electrical resistivity distribution below the water basin. To verify the results 

of CVES data, two electrical on-land tomographies were also carried out on the northern 

shore of the lake and an additional one was performed on the southern bank. These 

supplementary surveys allowed extending the depth and the area of investigation of the 

previous method, in order to obtain a better correlation of data below the submerged area 

and a first order geological reconstruction based also on field evidences. Another aim of 

the study was to try to understand the hydrogeological dynamics that govern the lake 

basin, by identifying, at least qualitatively, the presence of interconnection paths 

between surface water and groundwater in order to localize areas in which recharge or 

seepage flows are concentrated. To this purpose we also analyzed the Self Potential (SP) 

data automatically collected on the lake surface during CVES acquisition. Since in the 

studied area there is no (or very scarce) availability of direct surveys (e.g. logs or cores), 
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we have tried to obtain as much information as possible from the combined geophysical-

geological surveys. Geological analyses have been based on the stratigraphic setting of 

the Ivrea Morainic Amphitheatre (IMA) frontal sector, on previous studies on the Candia 

Lake and on specific geological surveys. The geological reconstruction finally suggested 

is thus to be intended as a possible interpretation and as a tool for planning and locating 

future direct investigations.   

  

2. GEOGRAPHICAL AND GEOLOGICAL CONTEXT 

The Candia Lake (45° 19’ N, 7° 54’ E) is located in north-western Italy, about 40 

km NE of the city of Turin, in the Candia Canavese municipality, at an altitude of 226 m 

above sea level (Fig. 1). It lies on a fluvial terrace 4-8 m high above the present Dora 

Baltea River alluvial plain, in the frontal sector of the Ivrea Morainic Amphitheatre 

(IMA), between its terminal moraines and the internal plain. 

The IMA is the third largest morainic amphitheatre in Italy, with 505 km
2
 of 

extension. It is characterized by a wide flat internal depression (200 km
2
) encircled by a 

large moraine complex (> 300 km
2
) that was built by the Dora Baltea Glacier during 

successive glacial events which took place from the end of Early Pleistocene to the end 

of Late Pleistocene (900-20 ka BP). The lake basin remained owing to the glacier 

withdrawal from its maximum expansion during the Last Glacial Maximum (LGM). 

Large volumes of water released from the retreating ice mass were collected into a 

depression of the proglacial plain closely to the frontal moraine hills (Fig. 1). 
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The lake has an elongated shape in NE-SW direction, with an area of 1.5 km
2
, a 

5.8 km long perimeter, an average depth of about 4.7 m and a maximum depth, in the 

north-eastern sector, of 7.5 m, for an estimated water volume of about 7.2 Mm
3
. The 

catchment area (about 8.9 km
2
 wide) belongs to the drainage basin of the Dora Baltea 

River that flows across the internal plain and leaves the amphitheatre through the Mazzé 

gorge 5 km SE. The lake has no influent so that the water recharge can be considered to 

be supplied from groundwater and direct rainfalls on the catchment area as also 

underlined by Ciampittiello et al. [2004]. Only a small stream, Rio Traversaro, outflows 

from the north-western edge of the lake and flows towards the Dora Baltea River (Fig. 

1). The lake is bordered on the south by the morainic hills of the right front side of the 

IMA, surrounding its perimeter from W to SE. These are mainly constituted by 

glacigenic deposits referable to the Piverone Alloformation (Late Pleistocene) and to the 

Serra Alloformation (end of Middle Pleistocene) described in Gianotti et al. [2008]. 

These two units are made up of marginal and subglacial tills, forming the frontal 

moraines, with overlapping marginal and proglacial glaciolacustrine deposits, especially 

forming kame terraces (Fig. 2). The glacial deposits show a wide range of variability, 

but they mostly consist of over-consolidated silty fine sands with rare clasts and 

subordinate coarse sand bodies with gravel.  

The moraines immediately south of the Candia Lake have a ENE-WSW trending, 

i.e. parallel to lake basin. Only one of the more internal moraines, very close to the lake, 

has a NW-SE trending, i.e. perpendicular to the lake basin. This moraine aligns with a 

slight narrowing of the lake in the middle part of its southern shore (a in Fig. 2).   
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Some wide terraced plains, corresponding to kame terraces, are distributed at 

250-230 m altitude between the Piverone Alloformation moraines and the Candia Lake. 

They are constituted by glaciolacustrine laminated silts and sands deposited into small 

glacial margin lakes during the slow withdrawal of the glacier front. The plain to the 

north of the lake is instead constituted by glaciofluvial clast-supported coarse sandy 

gravels. 

 

3. DATA ACQUISITION 

On 15 October 2011, following a preliminary survey reported in Sambuelli et al. 

[2011], 15 CVES waterborne profiles were acquired on the Candia Lake (ten of which 

running parallel to the NE-SW elongation of the lake and five crosswise), for a total 

length of approximately 19 km of acquisitions (Fig. 3a). An array of nine electrodes 

fixed on a floating cable dragged by a small boat was used for the survey. The choice of 

a floating cable was mainly due to the feasibility of the survey: the Trapa natans (Water 

chestnut) is indeed widely present in the lake (in 2006 about 500 tons have been 

removed from the lake) and doesn’t allow to freely drag a cable on the bottom of the 

lake. The array (Fig. 3b) has two current electrodes, in the cable part closest to the boat, 

followed by seven potential electrodes. The current electrodes were 16 m apart, while 

the six couples of potential electrodes had exponentially increasing spacing. The first 

potential electrode was 0.5 m from the farthest current electrode. In the continuous 

profiling set up, dipole-dipole array data are collected measuring voltage potential 

differences between subsequent couples of potential electrodes given the same current 
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injecting dipole. The towed cable floated on the lake surface thanks to plastic floaters 

fixed near the electrodes that were fully submerged. The cable was kept stretched by a 

floating anchor fixed at its end. 

We used a multichannel georesistivimeter (Syscal Pro in Sysmar upgrade – Iris 

Instruments) which was able to simultaneously acquire the six potential measurements. 

The resistivity meter was connected to a GPS device, in order to record the spatial 

position of the acquired data. The short current injection time (150 ms) allows  recording 

the resistivities very quickly; the acquisition step is about 2 seconds which results, on 

average, in one vertical electric sounding every 3 m. Moreover, before any current 

injection, the instrument automatically records the self potential (SP) across the six 

potential dipoles. 

On 25 October 2012, two electric on-land tomographies were acquired on the 

northern shore of the Candia Lake, (Fig. 3a). The resistivity measurements were carried 

out with the use of the same multichannel resistivity meter used for the acquisition of 

waterborne CVES and SP data. 

The first tomography was realized with 72 electrodes at 1 m spacing, for a total 

length of 71 m (AA' in Fig. 3a). The acquisition line is oriented N-S, approximately 

normal to the elongation direction of the lake. The first measuring electrode was located 

at a distance of about 10 m from the lake shore. The small electrode spacing allowed 

obtaining a high lateral and vertical resolution of the data, at the expense of the 

investigation depth. In order to increase the investigation depth, a second electric 

tomography was acquired next to the previous one with larger electrode spacing (3 m), 
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for a total length of 357 m (BB' in Fig. 3a). The whole line was recorded by keeping 24 

electrodes in place and rolling 48 electrodes to the front of the line.  

On 14 September 2013 an additional tomography was acquired on the southern 

shore of the lake. This tomography was realized with 72 electrodes at 2 meters spacing, 

for a total length of 142 m, elongated approximately in N-S direction (CC’ in Fig. 3a). 

An acquisition sequence with Wenner-Schlumberger configuration was employed for all 

the tomographies. 

 

4. DATA PROCESSING AND METHODOLOGY 

Having a great number of data from the CVES survey (one VES approximately 

every 3-4 m) we decided to evaluate mean values every 6 subsequent acquisitions in 

order to reduce the computational effort of the inversion. In this way we obtained 800 

mean apparent resistivity curves over the whole lake, for an approximate sampling 

interval of 15-20 m (that corresponds also, roughly, to the current electrodes separation). 

Each averaged curve provides an apparent resistivity curve that is located in the centre 

of the considered spatial window. 

Before the inversion a statistical analysis of the data was performed, in order to 

evaluate the homogeneity of water resistivity and data variability with depth. We 

calculated mean, standard deviation, median, minimum and maximum of the apparent 

resistivity values for each of the six dipoles for the 800 mean VES. From the results 

reported in Figure 4 it appears clear that the first three dipoles investigated the lake 

water, which has a constant value of about 85 Ωm throughout the basin. This is 
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highlighted also by the standard deviation bars pertaining to these three dipoles which 

are small compared to the mean values of the measurements.. The last three dipoles are 

expected to give information about the lakebed sediments. From the mean and median 

trends it can be inferred that most of the investigated sediments show resistivity values 

that are lower than water resistivity and only a small fraction of them have higher 

values. 

From the observation of the raw data it was evident, even before the inversion, 

that higher resistivity values in the sediments are located in the central part of the 

southern shore of the lake where a strong positive anomaly is located. This can be 

clearly seen in the result reported in Figure 5b where the difference in the measured 

apparent resistivity values of the last two dipoles is plotted and interpolated, by means of 

triangulation with linear interpolation method, over the lake surface. It is confirmed that 

the investigated lake sediments show higher resistivities (positive difference among the 

last two dipoles) only in the southern part of the basin. In this same zone, as discussed 

before, there is geological evidence of a NW-SE trending internal moraine (a in Fig. 2).   

After this preliminary data treatment the CVES data were inverted using a 

Laterally Constrained Inversion (LCI) approach. The LCI was developed to invert 

CVES data acquired along a profile by Auken and Christiansen [2004]. This approach is 

based on a pseudo-2D layered parameterization of the investigated geological medium: 

the inversion result is a set of 1D consecutive resistivity models, each one corresponding 

to a sounding, composing a pseudo-2D section. All the VES soundings along a profile 

are inverted simultaneously by minimizing a common objective function, which contains 
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all the acquired data, the available a-priori information and lateral constraints among 

consecutive models. The inversion scheme can be written for the (n+1)-th iteration as: 

      

-1
-1 -1 -1

1
-1 -1 -1- - -

T T T

obs prior R

n n
T T

obs obs n prior prior n R nfw





        
    
  

G C G P C P R C R I
m m

G C d m C m m R C Rm
  

where m is a vector including all the parameters (electrical resistivity and thickness of 

each layer) relative to the spatially distributed 1D resistivity models. The vector m is 

linked to the observed data set dobs (apparent resistivity curves) through the forward 

modeling fw. The matrix R is the model parameters lateral regularization matrix and P is 

the one relative to the a priori information. The effectiveness of the R and P matrices 

depends on the strength of the constraints described in the covariance matrices CR and 

Cprior. The problem of non-linearity is taken into account by means of the regularizing 

Marquart damping parameter λ.  An appropriate Matlab® code has been developed to 

implement the inversion and the forward problem was computed with the CR1Dmod 

algorithm [Ingeman-Nielsen and Baumgartner, 2006] considering homogeneous 

horizontal layers. A similar approach has been applied in the preliminary investigations 

on the lake Sambuelli et al. [2011].  

Through the lateral constraints, information from one vertical electrical sounding 

are interconnected with the neighboring ones, producing the final pseudo-2D section. 

The lateral constraints are chosen in a way to allow for pseudo-2D sections that are more 

or less homogeneous on the basis of the geological setting of the investigated area. In 

particular, the degree of lateral homogeneity of the considered model parameters is 
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controlled by the strength of the constraints contained in the CR matrix. If the expected 

lateral variability is small, a strong constraint will be applied; conversely if a large 

variation is expected, the strength of the constraint will be relaxed. 

For a reliable inversion auxiliary a-priori data are also fundamental to ensure that 

as much known information as possible is considered in the inversion process. Crucial 

information for waterborne surveys includes bathymetry and water resistivity, which 

describe the properties of the water column. By providing these constraints in the 

covariance matrix Cprior, the inversion procedure is focused on the deposits beneath the 

lake bottom, thus allowing a more accurate delineation of the sediment’s electrical 

properties. 

The conceptual reference model on which the inversion process was based is a 

three layered medium. For each inversion it was possible to a-priori fix the thickness 

(h1) and the resistivity (ρ1) of the water column (first layer). The first layer thickness h1 

was a-priori known throughout the lake (Fig. 5a) from previous Ground-Penetrating 

Radar surveys [Sambuelli and Bava, 2011; Sambuelli et al., 2011]. The first layer 

resistivity ρ1 was kept constant (85 Ωm) considering the low variation of the mean of 

the nearest potential dipoles and the results of water electrical conductivity direct 

measurements, carried out in several points of the lake surface for the present study and 

in previous surveys [Sambuelli and Bava, 2011]. The introduction of these two a-priori 

information also reduced the "problem of equivalence" (Telford et al., 1990) given by 

the presence of a conductive layer between two layers with a higher resistivity, which is 

observed particularly on the southern shore (Figure 5b).  
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On the contrary, the second and the third electrical layers, representing the 

lakebed sediments, could not be considered laterally homogeneous, given the 

complexity of the geological context of the site. For this reason it was necessary to focus 

the attention on the strength of the constraints applied to these layers. To allow for an 

automatic selection of the constraints, these have been chosen on the basis of the lateral 

variability of the raw data at greater depths of investigation (Fig. 5b). As an example, the 

constraint on the resistivity of the third layer (ρ3), which is the most variable one, has 

been evaluated on the basis of the variation of the apparent resistivity between the 

dipoles M6 and M7 in two consecutive VES curves. The constraint is proportional to the 

squared inverse of the difference of |(ρM6-M7)n - (ρM6-M7)n+1|. In this way, weaker 

constraints are locally selected when a transition of resistivity is noted in the raw data, 

particularly in correspondence to the resistivity anomaly on the southern shore (Fig. 5b). 

The inversion of electric tomographies was performed with the Res2DInv software 

[Loke and Barker, 1996]. 

The recorded SP data were manually filtered and interpolated by means of 

triangulation with linear interpolation method on the whole area of the basin, in order to 

obtain a map of the natural potential present throughout the basin for each potential 

dipole.  
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5. RESULTS  

 

5.1 Continuous Vertical Electric Soundings 

Results obtained from LCI showed that, below the water, a relatively uniform 

layer of deposits characterized by resistivity values between 10 and 30 Ωm is present (in 

red in Fig. 6). This layer has however a variable thickness from a few decimetres to a 

few metres. Below this layer the lakebed doesn’t show horizontally constant resistivity 

values. The northern sector of the basin is still characterized by deposits with resistivity 

values lower than water resistivity (Fig. 6a) for the whole depth of investigation (about 

10 m); on the contrary, along the southern shore of the lake higher resistivity values 

(250-300 Ωm) are observed (in yellow in Fig. 6c). Combining the results of all fifteen 

profiles using a triangulation with linear interpolation method, it was possible to 

visualize a 3D model of the resistivity of the submerged environment (Fig. 7) which 

illustrates the overall setting and the observed difference between south and north sides 

of the lake.  

 

5.2 On-land Electrical Resistivity Tomographies and Self-Potentials 

The resistivity sections resulting from the processing of the on-land ERT  

enlarged the area of investigation, in order to evaluate the lateral continuity of the 

observed geological formations, and increased the depth of investigation on the northern 

shore where thicker conductive sediments limit the penetration of CVES data. Results of 

the three ERT performed are shown in Figure 8. The elevation of each tomographic 
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profile was approximately the same as the lake surface so that a comparison with CVES 

results (Fig. 6) is possible. 

Specifically the ERT section CC’ (Fig. 8a), obtained from the survey on the 

southern bank, has confirmed the geophysical setting resulting from the CVES data 

inversion in this location. Indeed the section part closest to the lake shows low resistivity 

deposits (10-30 Ωm) overlying sediments with resistivity values higher than lake water 

(up to 300 Ωm) and comparable to the ones observed in CVES inversions near the south 

shore (Fig. 6c).  

From the shorter high-resolution section AA’ acquired on the northern shore of 

the lake (Fig. 8c), it was possible to detect the depth of the water table, at about 80 cm 

below ground level in the area immediately north of the lake. Also in the north shore, the 

longer section BB’ (Fig. 8b) shows higher resistivity deposits at depths not reached by 

the CVES survey in this location (greater than 10 m), although characterized by lower 

resistivity values (80-100 Ωm) compared to the ones observed along the southern shore 

of the lake (250-300 Ωm) in both the waterborne CVES survey (Fig. 6c) and from the 

ERT section CC’ (Fig. 8a). Above these deposits the area closest to the lake is 

characterized by deposits with resistivity values similar to the ones detected on the 

bottom of the lake by the CVES survey (10-30 Ωm). Towards the north these deposits 

progressively pass to sediments characterized by higher resistivity both laterally (50-60 

Ωm) and vertically (90-100 Ωm) on the top of the section BB’.  
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Finally, the SP map (Fig. 9) obtained from the M4-M5 dipole of the CVES array 

identifies positive anomalies near the central and western part of the southern shore. The 

remaining area of the lake is characterized by negative values of SP. 

 

6. DISCUSSION 

6.1 Lake bottom sediments and suggested geological reconstruction 

A representative N-S cross section reporting the geophysical results and their 

geological interpretation is reported in Fig. 10. The waterborne CVES survey and the 

on-land ERT investigations allowed the stratigraphic reconstruction of the subsoil both 

in submerged and emerged environment. They essentially show an upper sedimentary 

unit with low resistivity values (10-30 Ωm) resting on a lower complex with higher 

resistivity (varying from about 90 to 300 Ωm).  

According to the reconstructed buried morphology (presence of like-moraine 

reliefs), position (frontal sector of a end moraine system) and resistivity values, the 

electric lower complex can be interpreted as submarginal glacial deposits forming very 

low end moraines, whose characters are likely similar to the lithofacies of the moraines 

outcropping south of the lake (1 in Fig. 10). These low reliefs could be interpreted as 

kame-moraines, formed into an aquatic environment and partially made up of more 

sorted and permeable deltaic and glaciolacustrine deposits. The gradual decrease in the 

resistivity of these deposits, from south to north, may be either attributed to i) 

heterogeneities in the particle size (higher resistivity in presence of blocks, boulders and 
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gravels along the southern shore and finer particle size towards north) or ii) the variation 

of pore fluids characteristics, as we discuss below (see §6.3). 

Concerning the upper resistivity unit below the lake, the CVES show a single 

sedimentary body with variable thickness (from a few decimeters to some meters) 

characterized by resistivity values between 10 and 30 Ωm. These values are consistent 

with lacustrine deposits consisting of silts and clays with organic matter (5 in Fig. 10), 

similar to the recent gyttja sampled by Lami et al. [2000] in the upper 100 cm from the 

lakebed using a gravity corer fitted with a PVC tube (1.5 m long with a diameter of 63.5 

mm). This last study confirmed the clayey-silty composition and the high organic matter 

content (37%) of the shallower lacustrine deposits. 

Nevertheless it is unlikely that the entire fill, which at some locations is quite 

thick, is represented only by non-glacigenic lacustrine sediments. First, the presence of 

buried moraines under the lake indicates a few glacier halts which would have 

associated sediment discharge. Second, an advancing delta (see also below) certainly 

supplied sediments to the distal sector of the basin, which corresponds to the present 

lake. Finally, if the non-glacigenic sedimentation in the Candia Lake has occurred for 25 

ka BP starting from the time of the main local glacial retreat (see §6.4), the first half of 

this time interval occurred during LGM and Lateglacial, i.e. in a very cold climate [e.g. 

Ivy-Ochs et al., 2012]. According to this evidence, it seems reasonable to differentiate 

the filling up sequence of the present lake into three levels (Fig. 10): a lower level, 

consisting of glaciolacustrine sands and silts corresponding to delta bottomset sediments 

(2); an intermediate level, consisting of non-organic lacustrine fine sediments (5a) 
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deposited into a non-glacial lake, very similar to the present lake, but still in a glacial 

climate (25-16 ka BP); and an upper level, consisting of organic-rich lacustrine 

sediments (5b) deposited into a basin surrounded by wooded banks due to a warmer 

climate (16-12.7 ka BP and from 11.6 ka, i.e. in the Holocene; Vescovi et al., 2007; 

Ravazzi et al., 2012). Due to the similar texture of the deposits indicated with numbers 2 

and 5 in Figure 10 it was not possible to distinguish them from a geophysical point of 

view since they have the same resistivity range (10-30 Ωm). 

The sedimentation rates of similar (small and without tributary streams) lake 

basins can be taken into account to establish a reasonable thickness of the post-glacial 

lacustrine deposits. As a reference, we consider the 28 m thick Fimon lacustrine 

succession, filling a non-glacial lake in the Colli Berici Hills (NE Italy). Filling started 

140 ka BP, suggesting an average sedimentation rate of 0.2 mm/yr (0.7 mm/y if we 

consider the upper 19.4 m of the core, starting from 27 ka BP) [Pini et al., 2010]. 

Sedimentation rates between 0.3 mm/yr (in the last millennium) and 2 mm/yr (in the 

modern period) were obtained for the sediments of the Candia Lake [Lami et al., 2000]. 

Using a sedimentation rate of 0.2 mm/yr, a 5 m thickness of nonglacigenic lacustrine 

deposits is obtained for the Candia Lake starting from 25 ka BP, which is the time of the 

ice-dammed lake death caused by the glacial retreat. 

North of the actual lake these low resistivity deposits rapidly transit laterally  to 

sediments with higher resistivity values (40-60 Ωm, 3 in Fig. 10). The overall subsoil 

geometry and the flat surface morphology of this side of the lake, which consists  of 

outcropping fluvial gravels (4a in Fig. 10) and not of palustrine deposits at the surface, 
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can be explained by hypothesizing a previous wider ice-dammed lake filled up by an 

advancing delta. The northern part of this lake was indeed probably quickly filled by a 

Pleistocene delta-fan sequence constituted by silty sands, interpretable as turbiditic 

bottomset deposits (2 in Fig. 10), followed by gravelly sands interpreted as foreset 

deposits (3 in Fig. 10). The lacustrine sequence was only finally covered by coarse clast-

supported sandy gravels of glaciofluvial origin constituting the topset unit of the 

sequence (4 in Fig. 10) and corresponding to the upper resistivity unit in the plain sector.  

This sequence is quite typical of a Gilbert-type delta [Gilbert, 1890]. In absence 

of outcrops or core data it is not possible to distinguish if the delta is of glacial marginal 

position (Gilbert-type ice-contact delta) [Feenstra et al., 1988; Lønne, 1993] or it is of 

proglacial position (Gilbert-type glaciofluvial delta) [Lønne, 1995; Benn and Evans, 

1998; Kostic et al., 2005].  

 

6.2 Hydrogeological aspects 

From a hydrogeological point of view, the self-potential map shows negative 

values over almost the whole area of the lake while some positive anomalies are 

localized near the southern shore of the lake. These positive SP anomalies could 

therefore be preliminary interpreted as related to the main underwater recharge areas of 

the lake. Groundwater discharge is the major water source of the lake basin, as deduced 

from the hydrological balance of the lake [Ciampittiello et al., 2004]. Moreover, SP 

anomalies are correlated with other geophysical and geological evidence consistent with 

localized groundwater discharge. Particularly in the same area where positive SP 
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anomalies are located the CVES results show glacigenic deposits closer to the lake 

bottom overlain by a thin mantle of lacustrine silts, thus facilitating groundwater 

discharge. On the other hand, negative anomalies may indicate a weak process of 

infiltration of the lake water into the lacustrine silts that slowly recharges the 

groundwater of the plain to the north. 

 

6.3 Consideration about the water resistivity 

During the surveys, a strong resistivity contrast between lake water and 

groundwater in the north of the basin was observed. The lake water has a resistivity of 

about 85 Ωm, while groundwater resistivity, measured in Cascine Rossi water-well 

(about 500 m north of the lake, Fig. 2 and 3a), has a value around 19 Ωm. The well 

water analysis shows a Total Dissolved Solids (TDS) value of about 500 mg/l. 

This resistivity contrast can be explained by the hydrogeological context of the 

lake. Electrical resistivity and TDS are indeed negatively correlated because the 

conduction of current in an electrolyte solution primarily depends on the concentration 

of ions. In addition, resistivity is also dependent on temperature. As a result, TDS values 

(S [ppm]) may be transformed to corresponding resistivity value (ρ25 [Ωm]) at a standard 

temperature of 25°C [Wagner et al., 2006]: 

0.925

25 2992.1S    (2). 
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 To estimate the resistivity at another temperature (ρT) some experimental 

correlations between water conductivity and temperature must be performed [Hayashi, 

2004]: 

 
25

1 0.02 25
T

T


 

 
 (3). 

We found that the difference in resistivity in the glacigenic deposits under the 

lacustrine sediments (1 in Fig. 10) is consistent with an increasing salt content from 

south to north. The lake water is indeed a mixture of direct rainwater on the lake, runoff 

and water infiltrated through the hills just south of the lake. This water flows along quite 

short paths in the morainic materials before reaching the lake and does not have time 

enough to get rich in salts. Considering an hypothetical initial TDS of 70 mg/l, we 

obtained a water lake resistivity of 79 Ωm, in agreement with the CVES measurements 

(85 Ωm). We then hypothesized that this initial value could rise up to 150 mg/l within 

the sediments near the south bank of the lake and we obtained a water resistivity of 39 

Ωm. Using Archie’s formula [Archie, 1942]: 

w
F m

a





    (4) 

where ρF is the formation resistivity, ρw is the water resistivity, a =1 and m=1.4 are 

Archie’s coefficients for non-consolidated sediments [Friedman, 2005], φ is the porosity 

that, based on literature data for similar deposits [Tu et al., 2013], can be set to 0.23. We 

obtained a formation resistivity of 305 Ωm, close to the one obtained by CVES (250-300 

Ωm in Fig. 6c and Fig. 10). Continuing the hypothesis of a salt enrichment going north, 
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we then calculated the resistivity of a water with TDS equal to 500 mg/l, as measured at 

the Cascine Rossi borehole, and we obtained 12.9 Ωm, resulting in a formation 

resistivity equal to 101 Ωm comparable to the one (70-90 Ωm) of the deepest formation 

obtained from BB’ tomography in the northern bank of the lake (Fig. 8b and Fig. 10).  

 Therefore, these considerations, the geological environment and the small 

correlation distance allow considering that the deepest formation observed during 

electrical surveys has mainly the same geologic composition even if with different 

saturating water properties. Only partially, on the northern shore, this formation could be 

made up of more sorted and permeable deltaic and glaciolacustrine deposits and this will 

give a further increase in the overall resistivity and its permeability as evidenced by SP 

surveys and the ERT section on the north shore (Fig. 8a and Fig. 10). 

 

6.4 Geological evolution of the area suggested by geophysical tests. 

Based on the study results, a preliminary reconstruction of the geological 

evolution of the area is proposed (Fig. 11). This reconstruction is also based on a 

stratigraphical model of the glacial margin sedimentary system which derives from a 

wide literary source [e.g. Bennett and Glasser, 2009; Evans et al., 2012], makes use of 

the international classification of glacigenic deposits [Goldthwait and Matsch, 1989] and 

was verified and adjusted by means of specific geological surveys in the IMA [Gianotti, 

2007; Gianotti et al., 2008]. 

The frontal moraines forming the reliefs south of the Candia Lake (Fig. 11a) are 

genetically linked to the maximum expansion of the Dora Baltea Glacier in the last 
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glacial cycle (Piverone Alloformation, local LGM, likely in MIS2) [Gianotti et al., 

2008], correlated to the first phase of glacial advance in the Tagliamento Amphitheatre 

(NE Italy) during the LGM, dated at 26.5-23 cal. ka BP [Monegato et al., 2007].  

With a first moderate withdrawal of the glacier front, the melt-out water from the 

retreating glacier was at first discharged into ephemeral glacial marginal lakes, strictly 

confined between the moraines and the glacier front. Their sedimentary filling formed 

sub-horizontal planes suspended on the inner flank of the moraines, named kame 

terraces (Fig. 11b). They develops just from the morainic crests, where sporadic small 

planes are preserved, to the foot of the moraines, where larger terraces are suspended 

only some meters above the Candia lake and the alluvial plain (Fig. 2).  

When the mass balance of the glacier became negative because of a climatic 

change, the glacial margin retreated in response to an equilibrium line altitude rising [see 

Oerlemans et al., 2011]. A total separation of the glacier from its terminal moraines was 

finally obtained (Fig. 11c). The residual melt-out waters were hosted into a subglacial 

genesis depression remained at the foot of the frontal morainic reliefs, to give rise to the 

early proglacial Candia Lake. 

The geophysical outcomes suggest that the proximal (northern) sector of a 

glaciolacustrine basin wider than the present lake was filled by an advancing delta, 

directly fed from the glacier meltwaters. The preservation of the lake itself supports the 

hypothesis of a glaciolacustrine delta: the basin was not completely filled because the 

fast glacigenic sedimentation stopped suddenly due a more pronounced retreat of the 

glacier. A very slower lacustrine sedimentation continued into the relict basin. This 
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event can be referred to the middle LGM, about 25-23 ka BP, i.e. before the building of 

the Ivrea Alloformation end moraines [Gianotti et al., 2008] 5 km upstreams. 

  

7. CONCLUSIONS 

The interpretation of waterborne methods (CVES, SP) and on-land surveys 

(ERT) on and around the Candia Lake suggested a geological reconstruction that reflects 

the typical conditions of a glacigenic sedimentary system evolving from a marginal to a 

proximal proglacial environment. The geophysical surveys were supported by surface 

data obtained through geological observations on the relief around the lake. The results 

were compared with a stratigraphical model of the glacial margin sedimentary system 

suitable for the frontal sector of the IMA. The reconstructed stratigraphy allowed to 

preliminary explain the lake basin genesis as a former wider basin gradually but quickly 

filled in by an advancing fluvio-lacustrine delta in a marginal evolving to proglacial 

environment during the last glaciation. 

The underwater discharge is the largest water supply to the lake. The main 

hydrogeological window connecting surface and underground water can be likely 

identified in the glacial marginal deposits constituted of silty sands with gravel bodies. 

These deposits largely outcrops as kame terraces on the reliefs south of the lake, while in 

the lake bottom they are part of kame-moraines. The SP method seems to preliminary 

locate the main discharge areas in the central and western part of the southern shore, 

where these deposits appears, also from the other geophysical tests, to be closer to the 
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bottom of the lake and lacustrine silts have reduced thickness. These sites can 

reasonably be considered the preferential ways for the underwater recharge.  

The case study has highlighted the potential of the CVES technique as a first 

draft survey for determining the stratigraphical setting of an underwater environment, 

through the use of floating electrodes pulled by a boat. The presence of a water layer of 

modest thickness, about 5 m on average, although limiting the depth of investigation, 

has allowed the reconstruction of the spatial distribution of resistivity in the submerged 

deposits down to approximately 10 m with the adopted array. The accuracy and 

resolution of CVES data interpretation are improved when the data inversion is 

constrained by bathymetry and water resistivity values. The CVES methodology has still 

some limitations: the depth of investigation is contained and, while working in a 

complex geological context, it is necessary to focus the attention on the strength of 

constraints for the inversion processing. In addition, since it is an electrical technique, it 

should be noted that resistivity does not have unique and diagnostic values for each 

lithology. Geological conclusions are therefore based on possible interpretations, 

depending on the stratigraphical, hydrological and structural context in which we 

worked.  

However, one of the advantages of the method highlighted by the study is the 

ability to cover wide areas in a quick and economically sustainable way. Moreover, even 

if direct surveys are not available especially for the deepest formation, it is possible to 

set a reference geological model for the data inversion and to obtain sounding results 

thanks to a-priori information. 
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 FIGURE CAPTIONS 

Figure 1. Digital Terrain Model of the Ivrea Morainic Amphitheatre (IMA) (a) at 

the Dora Baltea Valley outlet (b), where the study area develops (white box). Candia 

Lake (c) and the Viverone Lake (d) fill up two depressions on high terraces of the 

internal plain (e). The remarkable 16 km long Serra d’Ivrea moraine (f) in the left 

lateral sector. The Colli d’Ivrea abrasion reliefs (g) and the outer outwash (proglacial) 

plain (h) are pointed out too. The Candia Lake location and the considerable difference 

in altitude between the internal and the outer fluvioglacial plains are shown in the 

bottom topographical profile (white trace in the map). 

 

Figure 2. Geological sketch of the study area with evidence of on-land ERT 

performed. 

 

Figure 3. (a) Surveys performed. The ciano lines on the water surface refer to 

the fifteen CVES profiles acquired. The yellow, orange and green profiles inversions will 

be shown in Figure 6. The black lines on the northern and the southern shores of the 

lake are instead related to the three on-land tomographies. (b) Sketch of the adopted 

cable geometry. 

 

Figure 4. Statistical analysis on raw data (800 mean apparent resistivity 

curves); the error bars correspond to ±1σ(ρapp). Dipole number 1 is the potential couple 

nearest to the boat (M1-M2 in Figure 3b); dipole number 6 is the farthest (M6-M7 in 

Figure 3b). 

 

Figure 5. (a) Bathymetry map of the Candia Lake obtained from the previous 

GPR survey of Sambuelli and Bava (2011). (b) Map of the apparent resistivity difference 

among the two last measuring dipoles (M5-M6 and M6-M7 in Figure 3b). The green 

dashed lines refer to the 15 acquired profiles, from which the data were interpolated. 

 

Figure 6. Examples of LCI inversion of three CVES profiles obtained with 

variable lateral constraints, fixed water resistivity and bathymetry: along (a) the 

northern shore (green profile in Figure 3a), (b) the central part (orange profile in 

Figure 3a) and (c)  the southern shore (yellow profile in Figure 3a) of the lake. 

 

Figure 7. Horizontal slices of the bottom sediments obtained from the three-

dimensional reconstruction and interpolation of the LCI results. 
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Figure 8. On-land electric tomographies: (a) CC’ on the southern shore and (b) 

BB’ on the northern shore of the Candia Lake.  The dashed contoured area in BB’ 

profile roughly overlaps the section below AA’ profile (c). 

 

 Figure 9. Self Potential (SP) map on the Candia Lake. 

 

 

 Figure 10. Geological cross-section of the Candia Lake area derived from the 

geophysical surveys (reported on top of the figure). The hilly morphology of the deepest 

resistivity boundary suggests the presence of buried forming moraines submarginal till 

(1). The extension of fine glaciolacustrine deposits (2 and 3) both under the lake and the 

plain suggests the wider extent of a former lake. This reconstruction explains the Candia 

lake genesis as the relict of a wider ice-damned lake, not completely filled up by deltaic 

deposits coming from the glacier. The filling up of the lake very much slackened with the 

complete retreat of the glacier (5a) and continued till now (5b) owing to a moderate 

colluvial and alluvial supply (6) from the southern side of the basin. 

 

Figure 11. Suggested reconstruction of the glacial margin stadial events (T1-T5) 

in the front side of the IMA during the LGM. A frontal moraine is built during a main 

glacial margin stationary phase with tendency to expansion (a). Kame terraces form on 

the moraine internal side during a subsequent first slow glacier withdrawal interrupted 

by brief stops (b). Lower submerged kame-moraines are built in the internal depression 

during temporary halts of the retreating glacier front at the edge of a progressively 

wider ice-dammed lake (c). 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 9 
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Figure 10 
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Figure 11 
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HIGHLIGHTS 

(i) CVES for determining the stratigraphical setting of an underwater environment;  

(ii) Multiple and combined use of on-land and off-shore resistivity data; 

(iii) Definition of areas of groundwater recharge and lake basin genesis; 

 


