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Summary 
In the last decades, systems have strongly increased their complexity in terms of number of functions 

that can be performed and quantity of relationships between functions and hardware as well as 

interactions of elements and disciplines concurring to the definition of the system. The growing 

complexity remarks the importance of defining methods and tools that improve the design, verification 

and validation of the system process: effectiveness and costs reduction without loss of confidence in 

the final product are the objectives that have to be pursued. 

Within the System Engineering context, the modern Model and Simulation based approach seems to 

be a promising strategy to meet the goals, because it reduces the wasted resources with respect to the 

traditional methods, saving money and tedious works. Model Based System Engineering (MBSE) 

starts from the idea that it is possible at any moment to verify, through simulation sessions and 

according to the phase of the life cycle, the feasibility, the capabilities and the performances of the 

system. Simulation is used during the engineering process and can be classified from fully numerical 

(i.e. all the equipment and conditions are reproduced as virtual model) to fully integrated hardware 

simulation (where the system is represented by real hardware and software modules in their 

operational environment). Within this range of simulations, a few important stages can be defined: 

algorithm in the loop (AIL), software in the loop (SIL), controller in the loop (CIL), hardware in the 

loop (HIL), and hybrid configurations among those.  

The research activity, in which this thesis is inserted, aims at defining and validating an iterative 

methodology (based on Model and Simulation approach) in support of engineering teams and devoted 

to improve the effectiveness of the design and verification of a space system with particular interest in 

Guidance Navigation and Control (GNC) subsystem. The choice of focusing on GNC derives from the 

common interest and background of the groups involved in this research program (ASSET at 

Politecnico di Torino and AvioSpace, an EADS company). Moreover, GNC system is sufficiently 

complex (demanding both specialist knowledge and system engineer skills) and vital for whatever 

spacecraft and, last but not least the verification of its behavior is difficult on ground because strong 

limitations on dynamics and environment reproduction arise.  

Considering that the verification should be performed along the entire product life cycle, a tool and a 

facility, a simulator, independent from the complexity level of the test and the stage of the project, is 

needed. This thesis deals with the design of the simulator, called StarSim, which is the real heart of the 

proposed methodology. It has been entirely designed and developed from the requirements definition 

to the software implementation and hardware construction, up to the assembly, integration and 

verification of the first simulator release. In addition, the development of this technology meet the 

modern standards on software development and project management. StarSim is a unique and self-

contained platform: this feature allows to mitigate the risk of incompatibility, misunderstandings and 

loss of information that may arise using different software, simulation tools and facilities along the 

various phases. Modularity, flexibility, speed, connectivity, real time operation, fidelity with real 

world, ease of data management, effectiveness and congruence of the outputs with respect to the 

inputs are the sought-after features in the StarSim design. For every iteration of the methodology, 

StarSim guarantees the possibility to verify the behavior of the system under test thanks to the 

permanent availability of virtual models, that substitute all those elements not yet available and all the 

non-reproducible dynamics and environmental conditions. StarSim provides a furnished and user 

friendly database of models and interfaces that covers different levels of detail and fidelity, and 

supports the updating of the database allowing the user to create customized models (following few, 
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simple rules). Progressively, pieces of the on board software and hardware can be introduced without 

stopping the process of design and verification, avoiding delays and loss of resources. 

StarSim has been used for the first time with the CubeSats belonging to the e-st@r program. It is an 

educational project carried out by students and researchers of the “CubeSat Team Polito” in which 

StarSim has been mainly used for the payload development, an Active Attitude Determination and 

Control System, but StarSim’s capabilities have also been updated to evaluate functionalities, 

operations and performances of the entire satellite. AIL, SIL, CIL, HIL simulations have been 

performed along all the phases of the project, successfully verifying a great number of functional and 

operational requirements. In particular, attitude determination algorithms, control laws, modes of 

operation have been selected and verified; software has been developed step by step and the bugs-free 

executable files have been loaded on the micro-controller. All the interfaces and protocols as well as 

data and commands handling have been verified. Actuators, logic and electrical circuits have been 

designed, built and tested and sensors calibration has been performed. Problems such as real time and 

synchronization have been solved and a complete hardware in the loop simulation test campaign both 

for A-ADCS standalone and for the entire satellite has been performed, verifying the satisfaction of a 

great number of CubeSat functional and operational requirements. 

The case study represents the first validation of the methodology with the first release of StarSim. It 

has been proven that the methodology is effective in demonstrating that improving the design and 

verification activities is a key point to increase the confidence level in the success of a space mission. 
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Definitions 
Term Definition 

Accuracy The closeness (of a model) to the real values. 

Algorithm A numerical representation of an items’ behaviour – often used within a 

model of that item.  Some algorithms operate on a network of entities 

(e.g. power and thermal models) and may be iterative. 

Calibration Validation of a model against another known reference (e.g. real data or 

another validated model). 

Component An implemented model with well defined interfaces that can be delivered 

in source or object code form.  One or more instances can be instantiated 

within a single simulation. (See also portability) 

Domain Context of use in which a simulation and its models are intended. 

Common domains are e.g.: Operations, training, engineering 

(performance, testing), visualisation, … (see also model) 

End-to-End 

Simulator  

This is used to simulate the end-product of a mission.  It is also called a 

Mission Performance Simulator or Functional Engineering Simulator, 

depending on the mission. 

Failure
1
 

simulation 

The ability to model the failure of an item (or some other anomalous 

behaviour) in the simulator and to be able to fail this at run-time and also 

“unfail” or restore it. The model usually represents the effect of the 

failure, not necessarily the cause.  The failures to be modelled are usually 

taken as a subset from the Failure Models Effects and Criticality Analysis. 

                                                 
1
 The term Failure is defined in ECSS-S-ST-00-01: the termination of the ability of an item to perform 

a required function 

 NOTE 1 After the failure, the item has a fault 

 NOTE 2 This concept as defined does not apply to items consisting of software only 
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Term Definition 

Fidelity
2
 How accurately a model represents the behaviour of the item or the 

environment it is modelling.  Standard terms can help to define the 

fidelity requirements for a model: 

Accurate 

Concepts that are modelled to a declared tolerance. Such tolerances 

should be stated explicitly. The normal values for telemetry parameters 

dependent upon this model should be within limits (if defined). 

Emulated 

Simulating specifically processors allow the real software code/image to 

run inside the simulation. 

Exact  

Used to describe concepts for which a zero tolerance is applicable. This is 

normally applicable to discrete systems. 

Functionally 

Functionally modelled units/functions should work/behave as the real 

unit/function with respect to their external interfaces. 

Plausible or Realistic 

Variables that should be modelled such that trends can be observed in 

their behaviour in relation to outside influence without being precisely 

modelled to a declared tolerance. 

Representative 

Data described as representative does not need to be modelled; pre-set 

value should be provided within the measurement range of the parameter. 

This value will always be used by the simulator unless updated from the 

simulator console, when desired. 

Static  

Fixed values only. 

Hard Real-Time One or more models must be executed within a certain time deadline. 

Specific guarantees are given about the duration of update periods. 

Typically a model will be assigned a “slot” in which it has to execute.  

Failure to do so may terminate the simulation.  Mostly used in Hardware-

in-the-loop simulations (See also Soft Real-Time). 

Hardware-in-

the-Loop 

A simulation which is interfaced to external hardware – typically real or 

breadboard equipment.  This is often used to support testing of the 

equipment. 

Initialisation The setting of the initial state of a model or simulation before a simulation 

run is started. 

                                                 
2
 All fidelity requirements need to be verifiable for them to be of use. 
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Term Definition 

Integration [1] In the domain of software engineering the joining of modules to form 

a complete system 

[2] In the domain of simulation the mathematical integration of state 

variables, usually over time 

Jitter For simulations Jitter is typically characterised by the short term-

variations in the timing of a digital signal (e.g. a clock synchronisation 

pulse) (typically at 10Hz or greater).  Below 10Hz, is termed Wander. 

Latency The time delay between the moment something is initiated, and the 

moment one of its effects begins e.g. between a command initiated to set 

an interrupt and the onboard computer responding to it. 

Model By simulation models it is meant here both data models, e.g. geometrical 

model of a system, and behavioural models, e.g. the algorithms 

representing the behaviour of a component or environment expressed in a 

high level programming language. A model normally (but not always) has 

inputs, outputs and internal state variables and constants. 

A generic model represents an entity (e.g. a power distribution network) 

that can be configured to represent any instantiation of that entity.  

Note: Although generic models are a powerful concept, they can become 

over complex and it becomes more effort to configure a generic model 

than to develop a specific model from scratch. 

Depending on the context, models can be classified according to their 

fidelity, their domain or their modelling technique. 

Models flow It is a graphical visualization of the models and the sequence in which it 

appears in the simulation loop. 

Modelling 

Technique 

Method used to analyse and describe the behaviour of a model. Common 

techniques are e.g.: Physical (electrical, mechanical…), behavioural, 

functional (with respect to external interfaces), geometric, … (see also 

model) 

Portability  The ability to use a model in different simulation environments, different 

hardware platforms and different operating systems, usually just by 

recompiling (compare interoperability). 

Precision The degree to which a measurement is made e.g. 3 significant figures. 

Real-Time A simulation in which the simulated time progresses at the same speed as 

the wall-clock time (but is not usually the same as wall clock time).  See 

also Hard Real-Time and Soft Real Time. 

Restore The ability to load a saved simulation state and start a simulation run from 

the state where the simulation was saved.  In most simulation 

environments, restore does not work if model variables have been added, 

removed, or have different types. 
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Term Definition 

Save The ability to save the state of a simulation at a given instant in time.  

This is used to allow users to start a simulation from various predefined 

states e.g. Eclipse Entry (see also Restore). 

Savepoint
3
 The complete state of a simulation (the value of all its parameters and 

variables) which can be saved in such a way that a simulation can be 

restored to the same state and resumed at a later time. 

This is as well being referred to as: Stateset, Breakpoint, Snapshot 

Scenario A particular initial configuration of a simulator and sequence of events to 

represent a particular part of a mission e.g. launcher deployment, eclipse 

operations, cruise phase. 

Scheduler A component of the simulation environment responsible for scheduling 

the execution of the models within a simulator.  The scheduler can 

schedule the models cyclically (usually at multiples of a base frequency) 

and/or according to asynchronous events (e.g. a telecommand arriving). 

(See as well continuous simulation and discrete simulation) 

Simulation A run of scenario in a simulator with a simulated start- and end-time.  

During the simulation events may be injected into the simulation by the 

user, a script, external hardware or another simulation. 

Simulation 

Environment 

The software infrastructure that is used to run models.  It usually has a 

scheduler, supports the control of the models (via scripts and/or a GUI), 

visualisation of their public state variables and provides the simulation 

time.  It may also provide other services such as save/restore, logging of 

model events and other events.  Examples are EUROSIM, SIMSAT and 

SIMWARE. 

Simulator An ensemble of one or more models that are executed together to 

represent the behaviour of phenomena and/or an artificial system (e.g. 

spacecraft). It also includes the simulator kernel with the model 

scheduling. 

Soft Real-Time A real-time simulation in which the simulated time can slip without 

effecting the simulation results, with the expectation that recovers the slip 

later. (See as well Hard Real-Time) 

Stability The stability of the output from a model over time (or range a values). 

                                                 
3
 Any alternative term can be proposed for “Savepoint” – legacy should be reflected in definition 
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Term Definition 

State Variables Variables that represent a model’s state at a moment in time.  These may 

be public (visible to the simulation environment or other models) or 

private to the model itself. 

Note: These variables represent the (minimal) set of elements to be taken 

into account when proceeding Save and Restore actions. 

State Vector The ensemble of the state variables, relevant to be kept for a Savepoint. 

Test Facility The Test Facility is combined to the Product under Test to constitute the 

Test Platform. It generally consists of a Simulation Kernel, a Database, a 

Test Supervisor and Front Ends. 

Tuning The modification of model/simulator parameters to match as closely as 

possible to the expected data (part of validation). 

User Command A command that the user can initiate to change the state or behaviour of 

the simulator.  

Note: These are often used to set failures or to pre-configure the 

spacecraft to a certain state. They may also be used to change an operative 

mode or to start/stop monitoring and recording. 

Validity The range over which a model/simulation is valid (e.g. due to certain 

assumptions in the algorithms or integration time-step used). 
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Introduction 
The research presented in this thesis can be framed in the field of applied research, intended as the 

application of scientific knowledge and engineering methods to solve practical problems. We propose 

a solution to support the engineering team during the design and verification process of a space 

system. The work done aims at improving the design and verification activities through an approach 

that increases the effectiveness and efficiency of these processes. This approach foresees the 

definition, development and validation of a methodology and related tool to be used by designers, 

developers, analysts and operators during different phases of the product life cycle.  

In the last few years, systems have become more and more complex due to several factors. From the 

technical point of view, the number of functions implemented in a single system is continuously 

increasing thanks to the dramatic progress of technology in the last decades. At the same time, the 

relationships between functions and hardware of the system, as well as the interactions between 

different elements and disciplines which concur to its definition, are growing up in number and 

gaining in complexity. 

System Engineering (SE) is the discipline which ensures that any kind of requirement within a 

program frame is satisfied avoiding that some aspects prevail on others and promoting a reduction of 

costs, time and resources without losing effectiveness and reliability. SE is based on an iterative and 

recursive process of management, design, development, construction, verification, starting from the 

system level and going down through subsystem level and components level. 

Within this context, a new approach is taking shape: the model-centric system engineering, or model 

based system engineering (MBSE). It is substituting the document-centric approach because it allows 

a more efficient management of the information flow and data repository among actors with different 

technical skills and organization and, in many case, geographically distributed. MBSE is increasingly 

making use of the Model and Simulation (M&S) approach, which is replacing the superseeded 

“design-produce-test” approach. This is especially true in the space industry, where the traditional 

approach of testing after production is ineffective for several reasons. First, it is very expensive in 

terms of resources (budget and time) needed to get the real hardware. Second, a minimum defect in the 

hardware (due to design or manufacturing) might jeopardize the whole test session thus delaying the 

project schedule. Moreover, it is sometimes impossible to test some features due to the special 

environment (Space) in which the system will operate. Simulation seems to be the perfect means to 

“test” space systems and it can be used throughout the product life-cycle. In particular, M&S based 

approach allows verifying solutions before hardware manufacturing.  

On the other hand, on board software and hardware functionalities cannot be verified and validated 

utilizing only “pure” simulation because it may not be exhaustive. In fact, notwithstanding the 

modeling effort, pure simulation alone gives only part of the answer to the problem and verifications 

on actual software and hardware are necessary. The real system may exhibit behaviors which cannot 

be modelled perfectly and that affects the outputs to a great extent, for example delays and 

uncertainties are not well predictable by models. For this reason, verification sessions with real on 

board software, controller/processor and hardware in the loop are necessary. Often the literature does 

not address the interdependency among algorithms, software, controller/processor, and hardware, but, 

according to Eickoff, it results “essential for understanding which participant in a project at which 

time is dependent on which input results. Or, formulated vice versa, who in the project will be pushed 

onto the critical path in development by delayed input.” 

Taking into account that the verification of any functionality and performance through the tests is 

repeated along the life cycle, an “infrastructure” is needed, independently from the complexity level of 
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the test and the development stage of the project. This infrastructure is a design and test environment 

that must be suitable for evaluating 1) the algorithms, 2) their implementation in the software, 3) the 

functionality of the controller, and 4) the integration of the whole final system. We call this 

infrastructure “simulator”. 

The activities described in this thesis deal with the development of a simulation platform able to 

support the engineering team throughout the life-cycle of a space product. Two main features of this 

simulator are worth mentioning, namely portability and flexibility. As far as the former is concerned, it 

is important that the simulation results are portable from one stage of development to the next. It 

means that great attention shall be paid to avoid that information are lost and that the format of data 

are compatible through all phases. Incompatibility of the results is quite typical in many tools devoted 

to only one phase of the life cycle or too general purposes. Today, the tendency is putting together 

different software and facilities to cover the whole life cycle process requiring great efforts to 

guarantee the compatibility and fidelity among all the elements: the exchange of information/data but 

also requirements, documentation shall be extremely precise in order to avoid misunderstanding. But, 

in any case, it is impossible to be extremely confident in this process in particular when the project 

passes from a tool/instrument/software to another through the various phases. Using a single platform 

helps to ensure portability, but requires that the simulator is flexible enough to adapt to each stage of 

the life-cycle.  

The solution proposed in this thesis is a single simulator based on free software and firmware and low 

cost GSE which can be configured as needed according to the life-cycle phase of interest. 

The simulation facility has been developed specifically for the design and verification of space 

systems, but it could be extended in principle to other applications. In particular, the activity has been 

focused on the design and verification of Guidance Navigation and Control (GNC) Systems. The 

theme was proposed by Aviospace srl, one EADS-Astrium subsidiary in Italy. They were interested in 

the acquisition of knowledge, methodologies and tools for the design and verification of GNC systems 

to be used onboard future space vehicles. The AeroSpace System Engineering Team (ASSET) in the 

Department of Mechanical and Aerospace Engineering (DIMEAS) at Politecnico di Torino has been 

working for years on the definition and implementation of effective and efficient methodologies for 

supporting the design and verification process of complex systems for aerospace applications. 

The interests of Aviospace, the expertise of ASSET and the background of the candidate, having a 

Master Degree in Computer Science and Automatic Control Engineering and work experiences in the 

aerospace field, provided the rationale for a PhD research aimed at investigating new solutions to 

improve the design, verification and validation processes of a specific system, namely the GNC. 

The choice of the GNC system was born, as said before, from common interests and background of 

the partners involved in the research, but other aspects have influenced the choice. First consideration 

is that the GNC system is a vital system of whatever spacecraft, and many reliability- and safety-

related requirements apply. Second, it is often characterised by a high intrinsic complexity as well as a 

high degree of interaction with other spacecraft subsystems and the mission as a whole. Both 

specialist’s knowledge and system engineer’s skills are required to design and develop a successful 

GNC system. In fact, GNC subsystem strongly affects and is affected by the design and the 

verification strategies of the entire system. Third, it is usually a very expensive subsystem, for both the 

technology involved and the mass associated to its implementation. Last but not least, GNC system’s 

behavior is difficult to be verified on ground because limitations exist in reproducing the space 

environment. For all the abovementioned reasons, we think that the study of new and cheap solutions 

able to improve the confidence level of the design and verification result is a challenging research and 

will be still a point of interest and discussion in the space field in the future. 

The efforts have been addressed to GNC subsystems for space vehicles in well-defined and specified 

missions. In particular, three types of reference missions are taken into account. The first case relates 
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to educational and scientific missions carried out by small satellites, as an example of a single orbiting 

object mission. The second mission is a Rendez-Vous and Docking mission with non-collaborative 

target to represent the case of two objects that should mate in orbit. Last example is a launch missions 

performed by a space transportation vehicle to represent the case of one object that should reach the 

orbit. These cases have been chosen because they present different features and criticalities from the 

GNC point of view in terms strategies, functional architectures, hardware and software. They allow to 

investigate more and various aspects of GNC systems design and verification. However, analyzing the 

state of the art referred to GNC subsystem, common functions can be found but different control 

modes and strategies are implemented; sensors and actuators make use of several technologies 

according to the required performance but basic concepts of safety, reliability, and level of autonomy 

are common baselines in any project. Summarizing, the chosen space applications are considered an 

exhaustive representative set for the major characteristics of the GNC system and they are good case 

studies and test benches for the proposed methodology and the simulator validation. 

This thesis is focussed on the definition of the simulator and underlying methodology. Although all 

three reference missions have been studied, only the first case has been completed to full validation of 

the project, i.e. till the Hardware-in-the-Loop simulation. The second and third cases would have 

required resources well beyond the scope and possibility of a doctoral program. Some of the research 

and industrial programs within which the methodology is applied are still ongoing and will continue 

for a long time after the conclusion of the present research. However a first significant version of the 

simulator has been released within the PhD period. The work done lays the foundation for future 

activities in terms of development and upgrade of the tools for the project of other space systems’ 

GNC and optimization of the processes according to the proposed methodology. In conclusion, we can 

say that a HIL simulator has been designed and implemented for a case of interest to demonstrate the 

feasibility of the approach.  

Structure of the thesis 
The thesis is divided in five chapters. 

Chapter 1 proposes a survey on the M&S based approach in MBSE discipline. Analogies and 

differences with respect to a traditional document-based approach are shown. The concepts of design, 

verification and validation are investigated and inserted in the M&S based approach. Simulation 

configurations and strategies are explained into the details and the concept of model is investigated, 

underlining the main features and parameters for a categorization in databases. Finally, an overview on 

the state of the art of methods, tools and facilities for the verification of space systems is presented. 

Chapter 2 is devoted to GNC systems. The state of the art related to the GNC with respect to missions 

and vehicles allows to trace GNC features: the nominal and off nominal control modes, the 

architectures, the navigation algorithms, the guidance strategies, the control methods and techniques 

and performances evaluation are treated. Criticalities and possible solutions for the GNC system 

design and verification are assessed in order to derive guidelines useful during the preliminary studies 

of the methodology. 

Chapter 3 is the heart of the work: the design and development of the simulator (namely StarSim) is 

presented. The StarSim requirements are derived from an accurate analysis of the needs that a 

simulator shall satisfy and the tasks that the simulator shall accomplish. The functional architectures 

and the different simulation configurations (AIL, SIL, CIL, HIL and Hybrid) are shown. Each element 

of the simulator is deeply described and many examples support the demonstration of the capabilities 

and the features. To conclude a summary of the user manual for the first release is provided. 

Chapter 4 presents the case study on which the methology and the simulator are applied: the e-st@r 

CubeSat program. It is an educational project based on the complete design (from the feasibility study 

to the operations in orbit) of a satellite belonging to the CubeSat standard. The Active Attitude 
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Determination and Control System (A-ADCS) is the payload of the first two 1U satellites. The 

simulator has been used for the design and verification of the A-ADCS in a number of configurations. 

StarSim covers the feasibility study, through AIL simulation, during which the preliminary sizing of 

the system is accomplished and mission parameters and constraints are evaluated. In the design and 

development phase alternative architectures have been evaluated, determination and control 

algorithms have been defined (through AIL simulation), the software and its performace have been 

tested (via SIL and CIL simulation), and the design of the A-ADCS board has been carried out and 

tested, including calibration of sensors and actuators and verification of extrinsic performances. 

Finally, in the integration and qualification phase, through HIL and Hybrid simulations, the entire 

system, i.e. the CubeSat, has been tested against high level requirements. 

In the concluding section, Chapter 5, the work done is assessed highlighting the results obtained and 

the road for future improvement and upgrade of the StarSim simulator is traced. 
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Chapter 1. Model and Simulation Based approach in 

System Engineering 

1.1 System Engineering & Programs Management 

methodologies 
The execution of complex programs, as space programs, requires the contemporary activity of several 

people and organizations with the common objective of delivery a final product that satisfies the 

customer performance needs within the agreed schedule and budgets. For this purpose, technical 

activities as well as human and financial resources shall be organized and coordinated in a structured 

way in order to reach the objectives. 

In the context of the overall program management, System Engineering (SE) plays an important role. 

SE is a managerial and technical process that allows to develop operable systems capable of meeting 

requirements within imposed constraints. The main goal is to evaluate and balance the contributions of 

structural engineers, electrical engineers, mechanism designers, power engineers, human factors 

engineers, and many more disciplines one against another, to produce a coherent whole that is not 

dominated by the perspective of a single discipline. The system engineer focuses efforts on 

assessments to optimize the overall design, and not make more attention to one system/subsystem than 

any others. Moreover, the systems engineer skills deal with the balancing of technical, 

managerial/organizational, economical, logistic, and relationship issues searching the best compromise 

and tradeoffs among specialists and generalists. 

System engineering strategy can be seen as a spiral approach (Figure 1) that starts with the mission 

needs and system requirements definition. After that, a risk assessment is performed and several 

system models are implemented in order to verify and qualify it. 

This is an iterative approach since the components integration and verification tasks could lead to a 

system design review, which means to define or reconsider system architecture or even mission 

objectives. The spiral process allows reaching a compromise between the mission needs, conveyed by 

the client or contracting owner, and the system performances and functions. The iterative approach 

ensures the objectives to converge along with a progressive verification of the technical resources and 

state of the art. 

Given a well-defined mission, SE approach consists of identifying related objectives and needs, which 

should be broken into elementary ones. System engineer define the right functional architecture which 

allows integrating the elementary solutions in order to reach the mission needs. Each elementary need 

is satisfied by an elementary sub-system. Once the system engineer has defined the system 

requirements and its functional architecture, system integration task is accomplished. Integration 

engineering philosophy allows to assemble, not only physically but also functionally, several sub-

systems and to verify their functions as well as their interfaces (mechanical, electrical, data exchange) 

and with the environment where the system will be exploited. The key point is to manage 

heterogeneities. All sub-systems shall work properly, despite their differences and heterogeneities, and 

shall interface to the others in order to accomplish mission objectives as a whole homogeneous 

system. 

The focal actor for the system engineer is the system. System can be explained as a nucleus of 

elements structured in such a manner as to accomplish a function to satisfy an identified need. The 

elements, or parts, can include people, hardware, equipment, software, facilities, policies, and 

documents; that is, all things required to produce system-level results. All the involved elements are 

required for the preparation, the operation and/or the support of the system. The elements shall 
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organized in a well defined and structured way such as the system results a construct or collection of 

different elements that together produce results not obtainable by the elements alone. The value added 

by the system as a whole, beyond that contributed independently by the parts, is primarily created by 

the relationship among the parts, in other words, how the parts are interconnected. This stresses how 

much important are the interfaces between sub-systems, to which the greatest effort of system 

engineers is committed.  

 
Figure 1: SE spiral approach (BOHEM 1988) 

Definitely, system is the sum of the elements and the relationship among them: designing and 

implementing a system means to create a surplus value, which means to perform a function that single 

components are not able to accomplish.  

Each system can be decomposed into smaller components. For example, for the space segment, a 

space vehicle can be broken up into systems, sub-systems, equipments and components, according to a 

descending hierarchy. The system definition given before has a broader scope since the strategies of 

system engineering, integration and verification shall be exploitable not only at system level, but also 

at the lowest level at which a system could be decomposed. At the same time, a system can be part of 

a bigger system (system of systems) constituted by a series of units having the same objectives and 

function to accomplish (e.g. a satellites constellation) and related one among the other not only from a 

technical point of view but also for programmatic aspects.  

Pay attention that system definition changes according to the context. An example is an Inertial 

Measurement Unit (IMU). For the sensor producer, IMU is the system constituted by the 

accelerometers, gyroscopes, electrical circuits, case, and I/O connections. For a spacecraft designer, 

IMU is a component of the GNC system of the spacecraft. For the customer of the spacecraft, it is a 

component of a wider global system constituted also by facilities, personnel training, user’s services, 

maintenance services. In this thesis the focus is the GNC System for different kinds of space vehicle: it 

is a particularly complex subsystem of a system (the vehicle) constituted by other subsystems (OBC, 
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EPS, Propulsion, TCS, COM SYS, Structure and Mechanics, TCS/TPS and so on) with which the 

GNC has mechanical, electrical and logical interface and that influence the subsystem design as well 

as the GNC condition the other subsystems and the entire vehicle project. GNC is also constituted by 

sensors, actuators and elaboration units that interact in order to perform in a satisfactory way the 

navigation, guidance and control tasks. See the Chapter 2 for a complete analysis on GNC. 

1.1.1 The space product life cycle phases  
SE process is strictly related to the product life cycle that, according to the [1], is typically divided into 

seven phases, as shown in Figure 2: 

1. Phase 0: Mission analysis and needs identification 

2. Phase A: Feasibility 

3. Phase B: Preliminary definition 

4. Phase C: Detailed definition 

5. Phase D: Production and Qualification 

6. Phase E: Utilization 

7. Phase F: Disposal 

 
Figure 2: Product Life Cycle 

Before going into details, project phases are closely linked to activities on system and product level 

and, depending on the specific circumstances of a project and the acceptance of involved risk, 

activities can overlap project phases. 

Phases 0, A, and B are focused mainly on: 

 the elaboration of system functional and technical requirements and identification of system 

concepts to comply with the mission statement, taking into account the technical and 

programmatic constraints identified by the project initiator and top level customer. 

 the identification of all activities and resources to be used to develop the space and ground 

segments of the project, 
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 the initial assessments of technical and programmatic risk, 

 the initiation of pre‐development activities. 

Phases C and D comprise all activities needed to develop and qualify the space and ground segments 

and their products. 

Phase E comprises all activities to be performed in order to launch, commission, utilize, and maintain 

the orbital elements of the space segment and utilize and maintain the associated ground segment. 

Phase F comprises all activities to be performed in order to safely dispose all products launched into 

space as well as ground segment. 

 Phase 0 ‐ Mission analysis/needs identification 

SE team works together the project initiator, the top level customer and representatives of the 

end users in order to identify and characterize the mission needs, expected performance, 

dependability and safety goals and mission operating constraints with respect to the physical 

and operational environment. All these aspects shall emerge in the mission statement from 

derive the preliminary technical requirements specification and possible mission concepts. 

Preliminary risk assessment is performed. At the end of the phase a mission definition review 

(MDR) is held and the outcome of this review is used to judge the readiness of the project to 

move into phase A. 

 Phase A ‐ Feasibility 

The feasibility phase establishes the preliminary management plan, system engineering plan 

and product assurance plan for the project. SE team elaborates and compares against the need 

possible functional system architecture and operations concepts. 

Moreover, it assesses the technical and programmatic feasibility of the possible concepts by 

identifying constraints relating to implementation, costs, schedules, organization, operations, 

maintenance, production and disposal. For each possible solution it quantify and characterize 

critical elements and technology in order to support the decision making about the system and 

operations concept(s) and technical solutions, including model philosophy and verification 

approach, to be further elaborated during Phase B. At the end of the phase A, the preliminary 

requirements review (PRR) is held at the end of phase in order to judge the readiness of the 

project to move into Phase B. The primary objectives of this review are: 

o Release of preliminary management, engineering and product assurance plans. 

o Release of the technical requirements specification. 

o Confirmation of the technical and programmatic feasibility of the system concept(s). 

o Selection of system and operations concept(s) and technical solutions, including 

model philosophy and verification approach, to be carried forward into Phase B. 

 Phase B ‐ Preliminary Definition 

Phase B foresees the system design refinement and verification. SE team elaborates cost 

analysis, organize schedule, tasks and milestone in the Work Breakdown Structure (WBS). 

Through technical trade‐off” studies, the preferred system concept, together with the preferred 

technical solution(s) for this concept is selected. Another big task is the determination of the 

verification program including model philosophy. Reliability, safety and risk assessments are 

conducted and, finally, space debris mitigation and disposal plan are prepared. 

There are 2 project reviews associated with Phase B. 

 The system requirements review (SRR) held during the course of Phase B. 

 The preliminary design review (PDR) held at the end of Phase B. The outcome of this 

review is used to judge the readiness of the project to move into Phase C. 

The primary objectives of SSR review are: 
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 Release of updated technical requirements specifications. 

 Assessment of the preliminary design definition. 

 Assessment of the preliminary verification program. 

The primary objectives of PDR review are: 

 Verification of the preliminary design of the selected concept and technical solutions 

against project and system requirements. 

 Release of final management, engineering and product assurance plans. 

 Release of product tree, work breakdown structure and specification tree. 

 Release of the verification plan (including model philosophy). 

 Phase C ‐ Detailed Definition 

The scope and type of tasks undertaken during this phase are driven by the model philosophy 

selected for the project, as well as the verification approach adopted. 

The main task is the detailed design definition of the system at all levels in the 

customer‐supplier chain. 

Production, development testing and pre‐qualification of selected critical elements and 

engineering models, as required by the selected model philosophy and verification approach, 

start. AIT planning for the system and its constituent parts is produced. 

The critical design review (CDR) is held at the end of phase C. The outcome of this review is 

used to judge the readiness of the project to move into phase D. The main review objectives 

 Assess the qualification and validation status of the critical processes and their 

readiness for deployment for phase D. 

 Confirm compatibility with external interfaces. 

 Release the final design. 

 Release assembly, integration and test planning. 

 Release flight hardware/software manufacturing, assembly and testing. 

 Release of user manual. 

 Phase D ‐ Qualification and Production 

Phase D foresees mainly the completion of  

 qualification testing and associated verification activities. 

 manufacturing, assembly and testing of flight hardware/software and associated 

ground support hardware/software. 

 the interoperability testing between the space and ground segment. 

There are 3 project reviews associated with phase D 

• The qualification review (QR) held during the course of the phase. The 

primary objectives of this review are: 

 To confirm that the verification process has demonstrated that the 

design, including margins, meets the applicable requirements. 

 To verify that the verification record is complete at this and all lower 

levels in the customer‐supplier chain. 

 To verify the acceptability of all waivers and deviations.  

Where development encompasses the production of one or several recurring 

products, the QR is completed by functional configuration verification during 

which: 
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 The first article configuration is analyzed from the viewpoint of 

reproducibility. 

 The production master files for the series productions are released. 

 The series production go–ahead file is accepted by the customer. 

 

• The acceptance review (AR) held at the end of the phase. The outcome of this 

review is used to judge the readiness of the product for delivery.  

The primary objectives of this review are: 

 To confirm that the verification process has demonstrated that the 

product is free of workmanship errors and is ready for subsequent 

operational use. 

 To verify that the acceptance verification record is complete at this 

and all lower levels in the customer‐supplier chain. 

 To verify that all deliverable products are available per the approved 

deliverable items list. 

 To verify the “as‐built” product and its constituent components 

against the required “as designed” product and its constituent 

components. 

 To verify the acceptability of all waivers and deviations. 

 To verify that the Acceptance Data Package is complete. 

 To authorize delivery of the product. 

 To release the certificate of acceptance. 

 

• The operational readiness review (ORR), held at the end of the phase. 

The primary objectives of this review are: 

 To verify readiness of the operational procedures and their 

compatibility with the flight system. 

 To verify readiness of the operations teams. 

 To accept and release the ground segment for operations. 

 Phase E –Utilization 

The major tasks for this phase vary widely as a function of the type of project concerned. They 

foresee: 

 to prepare the space and ground segment for the launch  

 to conduct all launch and early orbital operations, including the commissioning 

activities. 

 to perform the on‐orbit and ground operations in order to achieve the mission 

objectives. 

 to provide the final disposal plan. 

There are 4 project reviews associated with phase E. 

 The flight readiness review (FRR) is held prior to launch. The flight readiness 

review is conducted prior to launch. The objective of this review is to verify that 

the flight and ground segments including all supporting systems such as tracking 

systems, communication systems and safety systems are ready for launch. 

 The launch readiness review (LRR), held immediately prior to launch. The launch 

readiness review is conducted just prior to launch. The objective of this review is 

to declare readiness for launch of the launch vehicle, the space and ground 

segments including all supporting systems such as tracking systems, 

communication systems and safety systems and to provide the authorization to 

proceed for launch. 
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 The commissioning result review (CRR), held after completion of the on orbit 

commissioning activities. The commissioning result review is held at the end of 

the commissioning as part of the in‐orbit stage verification. It allows declaring 

readiness for routine operations/utilization. This Review is conducted following 

completion of a series of on‐orbit tests designed to verify that all elements of the 

system are performing within the specified performance parameters. Successful 

completion of this review is typically used to mark the formal handover of the 

system to the project initiator or to the system operator. 

The end‐of‐life review (ELR) held at the completion of the mission. The main 

objectives are: 

 To verify that the mission has completed its useful operation or service. 

 To ensure that all on‐orbit elements are configured to allow safe disposal. 

 Phase F – Disposal in which the disposal plan is implemented.  

The mission close‐out review (MCR) is held at the end of this phase. The review objectives is 

to ensure that all mission disposal activities are adequately completed. 

1.1.2 V-model 
Each of the above project phases includes end milestones in the form of project review(s), the outcome 

of which determines readiness of the project to move forward to the next phase. 

With the exception of the MDR which normally involves only the project initiator, and the top level 

customer, all other project reviews up to and including the AR are typically carried out by all project 

actors down to the lowest level supplier in the customer‐supplier chain involved in the project phases 

containing these reviews. 

From the PRR to the PDR, the sequence of the reviews is “top down”, starting with the top level 

customer and his top level supplier, and continuing down the customer‐supplier chain to the lowest 

level supplier. From the CDR to the AR, the sequence of reviews is reversed to “bottom up”, starting 

with the lowest level supplier and its customer and continuing up through the customer supplier chain 

to the 1st level supplier and the top level customer. This is the so called “V model”. 

The V-model is a graphical representation of the systems development lifecycle, which can be applied 

to hardware as well as to software systems. Instead of moving down in a linear way, the process steps 

are bent upwards after the sub-systems integration phase, resulting in the typical “V” shape. 

This model stands on the relationship between each phase of the development life cycle and its 

associated phase of testing. The horizontal and vertical axes represents time or project completeness 

(left-to-right) and level of abstraction, respectively. 

More in detail, the left side of the “V” reports the decomposition of requirements and creation of 

system specifications, from system level to components level. Whereas, the right side of the “V” 

represents integration of parts and their verification and validation, from components to system level. 

The “V” model allows minimizing the project risks, improving the project transparency and project 

control by specifying standardized approaches and describing the corresponding results and 

responsible roles. It permits an early recognition of planning deviations and risks and improves 

process management, thus reducing the project risk. Moreover, the “V” model ensures the quality and 

the completeness of the results: the effort for the development, production, operation and maintenance 

of a system can be calculated, estimated and controlled in a transparent manner by applying a 

standardized process model.  
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Figure 3: Traditional V-model in SE 

1.2 Focus on verification and validation 
The verification of an item, element, function, subsystem, system, process or product shows proof of 

compliance with requirements, that the product can meet each “shall” statement as proven though 

performance of a test, analysis, inspection, or demonstration. [2] Verification testing relates back to 

the approved requirements set and can be performed at different stages in the product life cycle. The 

approved specifications, drawings, parts lists, and other configurations documentation establish the 

configuration baseline of that product, which may have to be modified at a later time. Without a 

verified baseline and appropriate configuration controls, later modifications could be costly or cause 

major performance problems. Moreover, verification concerning the effects of orbital environment, 

such as thermal vacuum, radiation and launch loads, will be addressed only if their effects causes a 

change in system key parameters. 

The validation of an item, element, function, subsystem, system, process or product shows that the 

product accomplishes the intended purpose in the intended environment, as well as the description by 

the mathematical modeling represents, to a “sufficient” accuracy, the behavior maintained by item, 

element, function, subsystem, system, process behave as expected under the real world conditions. 

Validation shall confirm that the object under verification meets the expectations of the customer and 

other stakeholders as shown through performance of a test, analysis, inspection, or demonstration [2], 

[3]. Validation testing is conducted under realistic conditions (or simulated conditions) on end 

products for the purpose of determining the effectiveness and suitability of the product for use in 

mission operations by typical users. 

[4] says: “if a developer designs a system that complies with the specifications, but presents logical 

bugs, the system would fail the verification but successfully pass the validation. Conversely, if the 

system design is bug free but does not behave as expected, the model would fail the validation even 

though it passes the verification. In more common terms, the main purpose of V&V is to answer two 

key questions: (1) “Are we building the system right?” (verification) and (2) “Are we building the 

right system?” (validation)”. 

In general, the verification and validation processes contribute to gaining a confidence level as high as 

possible of a system before the flight: in orbit performances and capabilities, according to the mission 

objectives and the design, shall be reached by way of analysis, simulation and testing. Going into the 

details, V&V process shall  
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 demonstrate the product design and performance, as meeting the specified requirements at the 

specified levels; 

 ensure that the product is in agreement with the qualified design and it is free from 

workmanship defects and acceptable for use; 

 confirm product integrity and performance at particular steps of the project life cycle. 

Unfortunately, a lot of the on-orbit conditions cannot be reproduced on ground. Sometimes, facilities 

can reproduce partially some aspects of the general conditions, but they cannot be exhaustive for 

global considerations and they are quite expensive in terms of cost and resources to employ: in fact, 

verifying and validating is a controversial issue, mainly because a formal verification and validation 

campaign is highly expensive. Taking into account these issues, the goal for all verification and 

validation efforts can never be the achievement of absolute proof, but rather the acquisition of the 

highest possible level of confidence that a system or an operation will perform as required in the real 

mission under the real conditions.  

Clearly, the maximum confidence about a system in the real mission derives from the testing prior to 

flight if it is subject to the operative conditions that it will experience during the mission. In particular 

for the testing the worst-case conditions of this environment need to be taken into account. Wherever 

possible, such functions and items should therefore be tested in a realistic physical environment thanks 

to specific, sophisticated and expensive facilities, including sufficient margins to cover such worst-

case conditions. The method generally applied is to test maximum and minimum values along with a 

certain representative number of combinations of such values. This is, however, not the same as 

testing the entire field of possible variations and combinations, as it leaves the possibility of 

unidentified harmful combinations. Moreover, even if it were technically feasible to test the system, 

item or operation involving all environmental conditions relating to the mission, it would for reasons 

of time and cost be impossible to test all the potential variations and combinations of parameters and 

all possible contingency situations. An example of using specific facilities can be done. For a 

spacecraft, the essential zero gravity conditions cannot be provided on Earth. Therefore it theoretically 

is necessary to work with test stands where attitude and position of the spacecraft can be modeled 

geometrically. On three-dimensional turn table test stands with mounted spacecraft sensors, e.g. Sun 

and Earth visibilities for each sensor formerly were simulated by optical and infrared lamps. Similar 

setups existed for optical injection of star positions into star trackers. On these turn tables, at the same 

time, the angular rate sensors of the spacecraft could be stimulated. The cost to design, build and 

arrange sophisticated and accurate physical tools, validate the capabilities and maintain the entire 

facility would be high because the complexity is very high. However, the complexity even increases if 

a comparable approach is to be followed for additional attitude sensors, rotational rate sensors and 

finally also the for satellite's actuators - eventually even the pyrotechnic ones. Including all this 

hardware equipment in a closed-loop verification test stand is far out of financial mission budgets 

today. 

For functions and performances as well as operations which cannot be verified by direct physical tests 

on ground, two other ways of verification are available in principle: mathematical modeling and 

simulation or testing in orbit under the conditions of the real flight. 

Verification by testing in orbit is quite limited for reasons of launch cost and opportunity and because 

generally the complete mission is practically duplicated. In the best case, testing in orbit can be 

performed under similar conditions which must be proven to be sufficiently representative of the real 

mission. 

For the majority of all features (e.g. orbit dynamics, microgravity effects, magnetic field and space 

environment), the verification campaign can be led through tools and facilities containing 

mathematical and stochastic modeling. For this reason, detailed mathematical models have to be 

established of the spacecraft, its dynamics and kinematics, of the actuators, of the sensors, of the 
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onboard data management system, of the communications links and equipment, and so on. This 

modeling must include all the (significative) effects that the orbital environment has on these features. 

To make them suitable for use in verification tools, these mathematical models need to be validated 

with respect to the according properties and effects of the real world, which are set by the spacecraft 

design and by the orbital environment. More detailed explanation on model philosophy is in paragraph 

1.5. 

In any case, for verify and validate a system, it will be to provide evidence that the representation of 

the reality by the model is correct and sufficiently complete for the purpose of verification. These 

requirements will be the most difficult one to fulfil, since it requires complete knowledge of the ‘real 

world’ with all its facets, knowledge that even with long experience will never be 100% complete. In 

other words, even after the most rigorous verification and validation process, uncertainty and risk will 

always remain. 

For this reason, at least for unmanned spacecraft, a more pragmatic approach shall be followed based 

on simulation technologies as they are treated along this thesis.  

1.2.1 Verification and validation in the space product life cycle 
Verification and validation are processes useful in any phase of the product life cycle and they are not 

constrained to the end of a project (e.g., the qualification phase, during which it will be proven that 

everything is functioning and performing according to the requirements under all conditions of the real 

mission).  

This initial consideration leads to review the V model because the verification and validation activities 

start already when the system and surely its subsystem and component are not defined. Figure 4 shows 

the new V model representation. 
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Figure 4: V model using Model and Simulation based approach for the verification [9] 

Cleary the features, the methods, and the techniques of verification and validation in each phase have 

to be chosen because the objectives vary for each phase along the space product life-cycle. In this 

context, some aspects shall be taken into consideration: 

 the design peculiarities and constraints, 

 the qualification status of candidate solutions (product category), 

 the availability and maturity of verification tools and facilities, 
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 the verification methods, 

 the programmatic constraints, 

 the cost and schedule. 

The requirement criticality, in terms of technical and programmatic impacts on the verification 

implementation, should be assessed by the involvement of the verification team in the requirement 

definition process during phases A and B, since it drives the verification strategy. The verification 

approach should allow: 

 To ensure the definition of correct verification criteria for each requirement by participating in 

the preparation of product specifications. 

 To assess the impact that verification has on the design (e.g. modularity, testability, and 

accessibility). 

 To ensure a coherent approach to verification implementation throughout the various levels 

avoiding duplication of activities. 

 To ensure early verification of critical items to reduce the risks of late failure identification. 

 To ensure the coverage of the interface verification. 

 To optimize the design and use of ground support equipment, simulators, test tools and test 

software (e.g. re-use between levels, stages and models). 

 To optimize the use of test facilities. 

 To plan for feedback to the verification activity from the commissioning results in case of 

multi-mission projects or recurring products. 

 To consider innovative solutions that can reduce overall verification costs. 

 To provide visibility and objective evidence of verifications performed. 

Test severity (stress level, environment, duration, etc.) shall be adjusted to requirements, design and 

verification strategy. Furthermore, they shall take into account test conditions (i.e. tolerances): 

 Qualification test level (mechanical, thermal, lifecycle) are stricter compared with ground, 

launch and cruise expected constraints, in order to show design, fabrication or integration 

faults. The aim is to verify margins defined by analysis. 

 Flight acceptance review reproduces ground, launch, cruise and space environment 

constraints, which means that the same test as the flight acceptance review are performed, 

although at a lower stress level and for a shorter time. The goal is to identify eventual material 

and process defaults. 

Verification strategy shall be chosen taking into account the critical aspects of requirements to be 

verified and cost/delay compromise. For each verification task, pass/fail criteria shall be defined and 

expressed such that they are measurable and not ambiguous. 

Requirements traceability is the prerequisite to every verification tasks. Hereafter, the implementation 

of verification tasks run through some formal documents: verification matrix associated to 

requirements, verification plan at system level or lower, system support specifications, Assembly 

Integration and Test (AIT) procedures and test reports. More in detail, verification matrix shows a set 

of information about verification strategies or their combination, test levels and their multiple steps, 

the number of physical models verified. This tool ensures coherence among AIT activities and avoids 

redundancies or gaps. 

During the phase 0+A, the mission definition phase, V&V shall show that the mission concepts and 

requirements are realistic and feasible and the requirements and specifications represent the real 

mission needs. 



16 

 

In the Phase B and C, the design phase, V&V answers to questions as: will the design be feasible 

which fulfils the specifications? Will the system be able to complete the mission and provide the 

required performance under real world conditions? 

During the phase D, until the qualification, V&V contributes to guarantee that the design functions 

and performances satisfy the specification and hardware and software implementation fulfill the 

function and performance requirements for the mission under real world conditions. From the 

manufacturing point of view, V&V helps to verify that the flight items ‘as built’ in all aspects, i.e. 

physical, function and performance, fully correspond to the ones which passed through the 

qualification phase and all elements are properly integrated. 

Moreover, it is important to investigate all those unknown or completely covered by the requirements 

effects in real world that could potentially cause a risk in the operational phase.  
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Figure 5: Verification and validation process in the space product life cycle 
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In Figure 5, the verification and validation process through the product life cycle phases is highlighted: 

the red lines represent the verification tasks and the blue lines represent the questions concerning 

validation.  

Verification tasks can begin only once the first products have been established according to a set of 

written requirements or specifications. 

The first task is usually the verification of the system specification w.r.t. the overall mission 

requirements. However, a major validation task already exists right at the beginning of a project: the 

stakeholders will have an idea of the mission to be performed. This first idea consists also of the ‘real 

world’. Starting from this idea, mission concepts and the mission requirements are defined and shall 

be validated against the ‘real world’, which at that stage is known only to a limited extent.  

The “real world” shall be investigated and described along the entire development life-cycle of the 

project: this is a main purpose as well as the development of the spacecraft systems, subsystems and 

items. 

After the first definition of mission and system requirements, all subsequent lower level specifications 

and implementations have to be verified against the next higher level specifications and requirements. 

However, as all these sets of requirements and specifications refer to the ‘real world’ describing the 

future mission, there will also at each step be the need to validate the detailed description of the ‘real 

world’ required for the verification task of that particular step. The verification/validation effort 

culminates in the development phase, where it should be proven that a system or item will achieve its 

specified performance under all conditions of the real mission. The sum of all these activities is 

referred to as qualification. However, keeping in mind the limitations of all verification and validation 

efforts, it will eventually be only in the operational phase of the real mission that the spacecraft system 

will meet the ‘real world’ proper. Only then can final proof be achieved that the system indeed 

functions and performs properly, that all requirements were indeed defined correctly, comprehensively 

and in sufficient detail, and that the tools for verification have indeed been correctly validated to 

represent the ‘real world’ to the necessary extent. 

For the verification the effect of the environment shall be taken into account only if the environment 

can change the parameters involved in the dynamic process of the system i.e. GNC. 

1.2.2 Verification strategies 
There are several verification strategies which could be exploited in a complementary way. The 

present work should be compliant with the ECSS. [6] explains the following type of verification 

strategies: 

 Analysis. A verification method which entails performing a theoretical or empirical evaluation 

by accepted analytical techniques. The selected techniques may typically include systematics, 

statistics, qualitative design analysis, modeling and computer simulation. 

 Inspection. A verification method that determines conformance to requirements for 

constructional features, document and drawing conformance, workmanship and physical 

conditions without the use of special laboratory equipment, procedures or services. 

 Testing. A verification method wherein requirements are verified by measurement of product 

performance and functions under various simulated environments. 

 Review of design. A verification method using validation of previous records or evidence of 

validated design documents, when approved design reports, technical descriptions and 

engineering drawings unambiguously show that the requirement is met. 

Another similar categorization is provided by NASA and DOD that define the following verification 

strategies [7]: 

 Analysis: verification strategy elaborated from mathematical models, system analysis and 

simulations. These strategies may be complementary to tests, however they could replace 
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them when verification by test is impossible or unfeasible (i.e. mechanical essay of 

deployment, zero gravity ground deployment) or too much expensive. Simulations allow also 

to calibrate data and to treat errors 

 Similarity: it addresses any equipment already exploited by further space missions or COTS. 

It has to prove that new system requirements and performances fit well within the already 

qualified component. Moreover, it has to report any difference from the reference product or 

from the planned tests. 

 Evaluation: inspection (quality control), demonstration (i.e. interfaces coupling), project 

reviews (critical examination of technical documentation), in order to ensure material 

conformity to needs, redundancies, etc. 

 Testing: functional tests in room and in space environmental conditions (functional tests 

under environmental constraints as vibration, thermal vacuum, EMC). Functional tests 

concern compatibility, interfaces, performance and operation which address electrical, 

mechanical, radio-electrical performance criteria. They are accomplished at each step of 

system lifecycle (qualification, flight review). 

As reporting in [8], different kinds of tests for the verification can be performed. Going out from the 

specific categorization, two main subsets of tests have been individuated: the “functional and 

operational” tests and the “environmental” tests. 

 The functional shall verify the system functions and capabilities. Functional tests are 

performed under specified ambient conditions and in all the operative modes. A related class 

of tests are the performance tests that shall verify the system (and implicitly, the subsystems 

and components/equipment) performances according to the relative specifications. Often 

functional and performance tests are combined. The key parameters vary in their ranges and 

according the mission profile and in-flight operations. 

They also contain the interface requirements tests in which to verify the compatibility among 

components, sub-systems, modules, aggregate systems, launcher adapter and ground support 

equipment. Within the functional tests, the system performances are evaluated e fixed. Life 

tests can be considerate as particular functional tests: they shall show the ability of the system 

to withstand the maximum operating time and the maximum number of predicted operational 

cycles during the “product lifetime” by providing the required performance at the end of life. 

These are very stressful tests that generally are performed on equipment by the relative 

provider. Electrical and RF tests are also performed. More detailed discussion about this kind 

of tests in proposed in the simulation strategies and configuration paragraphs and, in general, 

along the whole thesis. 

 Within the environmental tests category the following groups of test are considered: 

o Mechanical tests, 

• Physical properties measurements 

• Model survey 

• Static load 

• Spin  

• Transient 

• Acoustic 

• Random vibration  

• Sinusoidal vibration 

• Shock  

o Structural tests 

• Proof pressure 

• Pressure cycling 

• Design burst pressure 
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• Leak  

o Thermal test 

• Thermal vacuum 

• Thermal ambient 

• Thermal balance  

o EMC test 

In general lifecycle environment could be ground, launch and operational environment. Since 

a space system development requires time, space components may stay sometime in a ground 

environment before launch. Therefore, system engineers have to take into account ground 

environmental constraints: ambiance conditions (air, oxygen, humidity and pollution), 

transport, maintenance, storage, safety, interface with ground support equipment and facilities. 

Interface requirements with launcher are specified by the launcher interface control document, 

along with mechanical (vibration) and system capabilities shall be verified in thermal and 

vacuum conditions. Space environmental conditions require ensuring that the space system is 

compliant with thermal, radiation, solar arrays and micro-vibrations constraints. 

The V&V of functional and operational requirements by analysis and test are of interest for this thesis 

which aims at improve the entire V&V process to increase the reliability of and the confidence level in 

a space system reducing cost, time and resources.  

1.3 Model and Simulation based approach 
In the last decade a great support to system engineering methodology comes to the Model & 

Simulation (M&S) based techniques. Today, M&S provides a wonderful support for engineers and 

managers that must solve complex problems against reduced budgets, fewer resources and shorter 

schedules. M&S allows evaluating all the aspects related with the design, the development, the 

manufacturing and the operation of a space product because a great number of information and 

solutions can be provided and evaluated in order to make decisions. 

M&S based approaches are found on “simulate-test-simulate build” sentence that is in opposite to the 

traditional approaches that refers to “design-build-test” sentence. These new approaches help to reduce 

the costs of a project because the real capabilities of a system, subsystem, device or equipment can be 

verified before its construction, saving time, reducing risks of failures, and shoot down the costs of 

their activities without the risk to downgrade the performances of the final product.  

Moreover, the costs for hardware drop weekly while processing speed and storage capacity increase 

almost daily or hourly. Microchips containing more than a million circuits are able to performed 

advanced computation and manage real time process. From the software point of view, operating 

systems capabilities increase every day in order to take as much as possible advantages from the small 

and powerful hardware. First programming languages limits have been overcame from “all purposes” 

(capable to satisfy any kind of application, i.e. real time, operation on database, interfaces with user) 

languages such as JAVA, Visual Basic, C++, UML which are more powerful and flexible. User-

friendly operating systems with graphical interfaces have made it easy to handle hardware and 

communications, thus cutting the time required to develop input and output routines. The internet, 

distributed interactive simulation network, and higher-level architecture are breaking down barriers to 

acquiring knowledge and significantly improving the ability to share information, tools, and methods. 

M&S should be of interest not only for the technical aspects but also for the management of a research 

or industrial program because simulation allows building potential solutions, both qualitative and 

quantitative, that avoid doubts or uncertainties about decisions and choices. In this way the project can 

focus on key points and effective operational envelopes: through the M&S the operative real world 

condition can be reproduced providing a prediction on how the system behave and detect  possible 

causes of failures and investigate corrections.  
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Definitely, M&S should help to solve complex problems under constraints about shorter schedule and 

time, fewer resources (in terms of personnel and money): in particular M&S leads to easily 

investigating every aspect of a project in any phase (designing, developing, producing, verifying and 

operating the space product).  

M&S shall have instruments and tools that as quickly as possible generate information to support 

solutions that limit program risks and carry forward the project in any program moment. For these 

reasons, historically, M&S has increased its field of application and actually M&S has passed from 

hypothesis of project development technique to “must” for a space project in every phase.  

M&S technique should be compared with the traditional ones where the approaches foresee to spend a 

lot of money and time for prototyping and “train and error” every solution. 

M&S complexity requires good skills of programming, schedule and management because it 

transcends the single discipline: in fact, it applies to many activities such as planning, analysis, testing, 

and operations. Coordination between different entities that should provide models, perform 

simulations and analysis results is a key point for M&S methods: latency time and wrong 

communications can often be ingredients to which pay attention. Simulations should be flexible 

enough to use and reuse models across a system’s life cycle from development through fast-paced 

technology modifications and upgrades. 

1.3.1 M&S based approach: advantages and disadvantages 
Advantages and benefits derive from the application of M&S based approach.  

 M&S provides the ability to test concepts and evaluate strategies before their application 

without the usage of hardware reducing costs and development time: in fact, potential 

solutions can be quickly investigated and compared and bring rapidly to conclusions without 

expecting the on board hardware and software availability. This fact allows extending the 

M&S methods to the first phases of the project as well as the development before the 

production. In these phases the laboratory (or the operation environment) is concentrated on 

the “computer” reducing risks and increasing (proportionally with the computer speed) the 

number of investigable hypotheses. 

 the capability to quickly obtain information and data to analyze and compare provokes and 

encourages ideas, also strange ideas. 

 through the simulation, key parameters about performances and costs that should allow to 

solve a problem can be indentified and evaluated: from a different simulation runs, the trend 

and the changes of values related to characteristic system parameters (i.e state variables) can 

be monitored in order to verify or negotiate requirements or review parts of the previous 

choices.  

 Simulation carries out to predict behaviors of a system, evaluate results, individuate operation 

limits and critical aspect, and eliminate wrong solutions before the implementation (software) 

or the production (hardware). 

 Simulation can also educate the system user showing the system capabilities and train the 

operators: the product becomes more user-friendly. A better understanding of the system 

behavior can be provided to the users and the operators that will reach an increased readiness. 

M&S presents also limitations, disadvantages and critical issues:  

 Before starting the simulation activities, assumptions shall be imposed and the risk is to leave 

uncovered criticalities: wrong assumptions lead to wrong solutions and conclusions. For this 

reason, it is fundamental paying attention to understand and identify assumptions and avoid 

forgetting or representing in wrong way critical points. 
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 Simulations could provide few or too data: in the first case, the simulation run results useless; 

in the second case a great effort to trace all the needed information is required. If the number 

of parameters to take under control is too high it is difficult to manage them and monitor their 

evolution and precious information can be lost and criticalities remain hidden.  

 Difficulty or impossibility to model all the phenomena, devices features and relationship, 

provoking an incomplete explanation of the system. It results that final verification and 

validation shall be made with certified and standardized M&S tools or using directly real HW 

and SW. 

 The real world remains in any case simplified and to determine how well a model shall 

represent a phenomenon or a device is not trivial. 

 At the beginning, M&S approach requires time, money and human resources for the design, 

development and validation so an effective planning and a rigid control are needed to produce 

tools on time and within the budget. 

 Too complex tasks (i.e. complex models) and excessive simulation constraints or 

requirements) can eat up too time and resources and kill all the benefits of M&S approach. 

Complexity of the models and simulation architecture shall remain sufficiently low to avoid a 

resource wasting but sufficiently high to well represent the real world: this is the focal critical 

trade-off that the M&S tools designer must take into account. 

1.3.1.1 M&S based approach maturity in space field 

[9] talks about the M&S based for a Space System and in its last release of April 2010 also tries to 

evaluate the maturity of this approach. ESA defines it as “innovative” and very powerful but at the 

same time it actually is premature to provide a full definition or, even, standardization. However it 

pushes organizations to progress toward a higher level of maturity in virtual engineering and design, 

they adopting an increased number of elements of the virtual and digital design approach and the 

development of facilities and tools able to verify the designed system.  

1.3.2 Computers importance in the M&S based approach 
The computer and, more in detail, the simulator is a key element in the M&S: computers are employed 

as virtual and artificial “laboratories” to describe, investigate, and understand a system’s behavior. The 

mathematical and stochastic characteristics of a system become computer software that is able to 

capture scenarios and conditions, producing valuable information to support a broad range of decisions 

for development and operation. 

In a simulation based approach, computer simulation applies throughout the development, not just for 

analysis but as a development tool: in fact, thanks to the simulation, it is directly possible to analyze 

requirements, evaluate and allocate functions or objects, complete preliminary and detailed designs, 

synthesize code, integrate components or subsystems, and test .The design, development, integration, 

and verification process is continuous if a M&S based approach is followed. Moreover, the simulation 

helps the performances validation, the deficiencies avoidances and/or correction, and the system 

evolution throughout the life cycle phases and in any direction. 

Summarizing, computers can be used: 

 To simulate a real element, creating an high number of possible scenarios characterized by 

different conditions and deriving from specific or general assumption and, then, evaluating the 

behavior varying the main parameters. 

 To investigate the systems capabilities modeling a real phenomenon. At the end of the 

simulation, data are compared with the real case: more the difference is small and more the 

model represents the real world 



22 

 

 To apply the inductive method for the description of a phenomenon: it consists in the 

simulation and then the verification of the mathematical bases of hypotheses. 

 To discover scientific laws: simulation based experiments with system belonging to the same 

kind allow discovering or validating properties in relation with previous made hypotheses. 

 To validate a methodology: performing a sufficiently high number of well documented 

positive simulation sessions allows validating a methodology. 

1.3.3 Use of the simulation along the product life cycle 
System Engineering process starts from the top level requirements analysis which flows into 

functional analysis and allocation. Tailored to M&S approach, inputs and outputs become simulation 

parameters that are strictly connected with hardware and software. The main idea is “model-simulate-

fix-test-iterate” that help to identify deficiency in hardware and software bugs. Functional analysis 

helps to determine what the system can do and it ends with the allocation of the lowest level functions 

to the elements that conduct those functions. The elements can be subsystems, assemblies or 

components; it depends on the current iteration of the process. Architecture and interface among 

elements result in blocks diagrams or similar tools. From the previous work, designers can trace 

functional and performance, interface and design requirements. System requirements should be 

sufficiently detailed to provide design and, also, verification criteria. To simulate system functions and 

elements the models substitute the relative blocks and relationships in the defined architecture; 

engineering and physical parameters characterize each model. Hardware devices, software parts and 

interface can progressively replace models with the simulation loop as well as the system is mature, 

eventually resulting in SIL, CIL, HIL (see paragraph 1.4).In the alternate iteration of design and 

verification processes, the final physical architecture comes in the light and the simulation sessions on 

it bring to achievement of the functional and performances requirements. For modeling and 

simulation, the architecture shall always be sufficiently detailed to verify that the design meets the 

requirements.  

Summarizing, the support of the M&S based techniques as part of SE consists of two “loop”: 

 The design loop in which an iterative comparison between the evolving design and the system 

function occurs for ensure the goodness of the design wrt each function. Using simulation, it is 

continuously possible to monitor that the design meets the requirements 

 The verification loop in which tests and other methods ensures that the design meets the 

operational needs according to the requirements analysis. Again, simulation helps to track and 

check the key parameters and monitor their evolution according to the expected ones. 

Table 1 shows the use of the simulation along the product life cycle. [5]. The use of system simulation 

evolves through system level requirements definition, analysis and design trade-offs, then to AIT at 

subsystem and system level, and finally to training and support for operations. Simulation should be 

used as key element to support a wide range of engineering and operational activities during the 

lifecycle of a program. These activities are: 

 Analysis, definition and validation of system and technical requirements. 

 Validation that the design (from an electrical, thermal, mechanical, operational, etc. point of 

view) fulfils the high-level (mission and system) performance requirements. 

 Software verification and validation. 

 Development of GSE and test procedures. 

 Prediction of system performance. 

 Control centre and crew operator training. 

 Operations procedure development and validation. 

 System (failures and anomalies) troubleshooting. 
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Table 1: System simulation in Product Life Cycle [5] 

To develop a simulation successfully, designer must clearly describe its intended use (what?, why? 

and how?). Figure 6 shows the general uses of simulation to support SE. From this figure, it is clear 

how the use of simulation changes over a traditional program’s life cycle. In applications, you can 

repeat each use for a spiral or incremental development. 
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Figure 6: System development based on simulation 

For simulation-based development, simulation is used in each development step to represent the entire 

system and, if required, each component. In either case, the models represent the system’s 

components, and you can replace these models with software or hardware in the loop (SIL or HIL). 

 

Figure 7: Use of the simulation in the product life cycle [7] 

As shown in Figure 7, simulation based development can be split in stages: 

1. System analysis and requirements allocation: simulation helps to predict the performances of 

concepts and designs. It is the basis for operational analyses that allow understanding the 

capability of a potential system. These can be simulations on specific part or function or on 
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the whole system. Analysis from this type of simulations provides a fully traceable component 

requirements and detailed estimates of performance. A lot of simulation runs are needed 

requiring that each run is as fast as possible independently by the level of detail of system 

models as well as the environment models. The simulation should output values for technical 

performance measures (key parameters) from evaluations of each design. The result is a clear 

statement of a component’s expected contribution to these key parameters. Simulator is 

flexible enough in order to change easily the configurations. 

2. Design verification: it means to define and trace functions or parts, allocate tasks, evaluate 

alternatives, in order to extract the preferred configuration. The simulation serves to 

demonstrate that the design fit the requirements. Simulation-based development uses an 

incremental approach to development supported by component models, prototypes, hardware 

and software deliveries, and simulations with hardware and software in the loop. Simulation 

verifies the design to ensure the components work as expected, are integrated correctly, and 

meet system requirements. Traditionally, designs use margins to handle large, complex 

programs that can’t be tested in their full operational configuration without a lot of expense 

and risk. Space programs are an example. Often, measuring a system’s design margins is 

difficult, as is tracking key parameters progress and the effect on system-level risk. In this 

case, your design may be too conservative (costly). To address these issues with simulation, 

the designer evaluates the key parameters for systems and components in each scenario or 

varies the key parameters within a component and observe the impact on its performance and 

on the performance of other system’s components. High integrated tools are fundamentals to 

simulate system with different components and different level of abstraction and detail. 

Specific techniques allow comparing the results to other representations of the system. 

3. Build and component test: it means to define the subsystems and their components and 

progressively testing ready software parts and hardware devices. System analysis and 

requirements allocation establish requirements from the top down. Component build and test 

predicts performance from the bottom up by estimating a component’s performance as it 

integrates into the system. It can also handle new situations, such as a new environmental 

condition, altered component design, or operation at the comer of the performance envelope. 

This performance must be traceable to the system requirements. During preliminary design, 

designer must analyze different alternatives using detailed component simulations and input 

the characteristics of promising alternatives into tools devoted to evaluate the architecture. 

Without an integrated tool, this process is slow and laborious. Finally, the two processes shall 

be combined first using detailed component models with a fixed scenario and then 

incorporating the performance of component models into a simulator for system analysis and 

requirements. To do so, high detailed simulation components (or models) shall be integrated 

into a system-level simulation (integrated simulation environment). 

4. Integration and verification: it consists of the integration of the whole system. Simulation 

provides the environment but differs in quantity. Build and component test (above) requires 

more because the latter stimulates and accepts responses from very low-level components. As 

more components become available, simulation decreases because real hardware and software 

replace it. During integration the system is the test object put in the simulation loop to ensure 

the items are integrated correctly, work properly, and meet the system’s operational 

requirements. Integration and verification test follows this process by using components 

shown to meet component requirements, which enables the system to meet system 

requirements. The simulation results serve now to measure the performance of a system and 

its components against operational needs: pay attention that, in this stage, it is not of interest 

evaluate if the components meet performance requirements but the simulation shall verify that 
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the system design meets operational requirements. All the interfaces shall be active and 

become parts of the simulation because each component is connected through the natural 

component interface with the part of a simulation that uses a system’s true data to work with 

the component : summarizing, the simulator must work in real time to support hardware-in-

the-loop. Moreover, if applicable, the simulation should be able to operate in a distributed 

manner so geographically disperse system components can work together. This means the 

simulation’s execution must be able to meet two requirements at the same time: it must 

support simulations of components that are not involved in the test and it must interconnect 

components separated from the local system simulation. Therefore, integration and 

verification test could require distributed, real-time simulations to integrate geographically 

dispersed components or subsystems (distributed executive). 

5. Development and Operational Testing and Training: this stage foresees test in the real world; 

simulation is used to stimulate articles for test, connect test players, and provide the external 

environment for a test object. Simulation also helps to plan tests, make decisions and 

transform the results in settable parameters for the operations. Three abilities are required for 

the test: planning test, providing real time support during the test and training.  

 Test planning and analysis. Support for testing includes planning for a test, predicting 

the test before it starts, and interpreting results to determine what happened and to relate 

results to the operational system’s configuration and environment. If system components 

are not available, simulation replaces them. Simulation also provides or supplements the 

test environment. Test planning involves running simulations to determine component 

requirements that will meet a testing objective. It defines the best configuration for the 

test, including the component surrogates. The first output of the analysis is a set of go/no-

go decisions to ensure the meeting of test objectives. The second output extrapolates the 

test system’s performance to an operational system’s likely performance by interpreting 

the results in terms of the design. Simulation-based development predicts the results 

before a test. If the test meets predictions, simulation has accurately captured system 

performance. If the predictions are wrong, the test may have occurred outside nominal 

conditions or a review to update the understanding of component performance in the 

simulation and, probably, in the design database is needed. Test planning and analysis 

require simulating the test conditions and articles in the test environment to reduce risk of 

failure. Therefore, the simulation must be able to model the test environment (models of 

test equipment). Models of the test environment and the systems shall consistently 

represent the real world, to relate simulated or test behavior to the operational system’s 

behavior. Most tests will use GSE elements that produce behavior similar but not identical 

to the designed components. Simulation also must be able to relate overall test results to 

operational performance (translate simulated to actual system performance).  

 Test support. Test support includes full, formal, developmental, and operational tests of 

the system, with extensive customer participation. In test planning and analysis, integrated 

distributed simulations run to verify the test can succeed and confirm conditions under 

which the test should be aborted or successfully completed. The test itself uses this data 

and real-time simulation to support decisions that control it. The simulation handles four 

activities: 

o Comparing real-time inputs on the test with nominal values  

o Simulating inputs from external systems or components that don’t have surrogates 

available  

o Controlling the test environment and data systems 

o Collecting and recording data 
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Test support requires distributed, real-time simulations to help test rehearsals in nominal 

or off nominal conditions, to verify the test system’s performance, and to support the real-

time testing and data collection (distributed real-time executive). To validate test 

equipment, simulation must be able to connect to the equipment, inject test signals and 

simulated data, accept outputs, and compare outputs to results from simulating the system 

in a similar condition (test equipment interface and control). For test rehearsals, it must 

connect to each piece of test-control equipment and simulate in real time all normal and 

abnormal test conditions. It also should be able to pause, allow rollback and restart, and 

automatically collect data for comparison to other rehearsals and test predictions (scenario 

control). Finally, simulation must capture real-time data; process that data quickly; 

compare it to the outputs of simulation models, previous runs, or precomputed limits; and 

present the results (data capture and analysis). Of course, it also must be able to create a 

wide variety of scenarios (scenario generation). 

 Training activities. To get good results, the operator shall be skilled. For this reason the 

operator shall be train people for operational testing and for follow-on operations. A 

training simulation must be able to clearly explain system options to decision makers and 

quickly help new people understand the system, as well as issues such as system 

requirements. Simulation should contain scenarios to illustrate other, more complex 

aspects of the operation, probably in a library of situations that a person can recall and 

run-or display if using a postprocessor (selectable scenarios). The user should control the 

scenario’s speed by pausing, reversing, and altering selected views (scenario control). 

Other scenarios should illustrate key aspects of the operation to explain design decisions, 

system performance, and similar issues. For critical explanations, flexible scenarios allow 

the users to change them and then run a simulation based on the modified scenario 

(flexible scenarios). Moreover, the user’s console controls the simulation, so the latter can 

work with the operational software’s exercise and training mode (scenario control). 

Finally, the simulation must include in the report the ability to analyze performance 

(feedback) and provide tutoring to improve it-possibly through hyperlinks from the report 

(tutoring). 

1.3.4 Methods, technique and tools 
This paragraph reports the state of the art for commercial software for System Engineering, tools and 

facilities for software and hardware verification in space program, and provides an overview of the 

commercial software and tools for design and verification activities with respect to the life cycle 

phases. 

1.3.4.1 Tools for the complete SE process [10] 

In the last years, many software and SE modeling languages have emerged in response to the 

continuous advancements in the verification and validation field. These languages, created for an 

abstract, high-level description of a design and the components thereof, allow the designers to 

successfully cope with increasing complexities. Systems engineers have been using different 

documentation approaches to capture systems requirements and also various modeling techniques to 

express the complete design. Unfortunately, this diversity of techniques and approaches limited both 

cooperative work and information exchange. In order to ensure worldwide SE technologies 

compatibility and interoperability, international standards are needed.  

Hence, various international standardization bodies are involved in SE, providing standard 

frameworks and modeling languages for SE. The Object Management Group (OMG) [11], the 
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INternational Council On Systems Engineering (INCOSE) [12], and the International Standard 

Organisation (ISO) are the main pertinent standardizing organizations. 

Among standards, the Unified Modeling Language (UML) and the Model Driven Architecture (MDA) 

[13] are the most relevant and provide capabilities such as powerful visual design, execution, 

maintenance of software and other processes. Moreover, OMG has developed UML profiles, which 

are specializations of UML designed to support specific domains based on built-in extension 

mechanisms.  

MDA is an OMG architectural framework and standard whose goal is to “lead the industry towards 

interoperable, reusable, portable software components and data models based on standard 

models”.MDA stemmed from the concept of separating the specification of the operation of a given 

system from the details related to the way the system uses the underlying capabilities of its platform 

[13]. In essence, MDA’s approach is to use models in software development, which includes both the 

specifications and the actual development of applications, independently of the platform supporting 

them. In the context of SE, model-based systems engineering (MBSE) is defined by INCOSE as “the 

formalized application of modeling to support system requirements, design, analysis, verification and 

validation.” It starts during the conceptual design phase and continues throughout the development and 

later life cycle phases [14].  

1.3.4.1.1.1 Software in SE for M&S based approach 
Modeling languages are commonly used to specify, visualize, store, document, and exchange design 

models. They are domain-specific, inherently containing all the syntactic, semantic, and presentation 

information regarding a given application domain. Various modeling languages have been defined by 

both organizations and companies in order to target different domains such as web development [15], 

telecommunications [16], hardware [17], software, and, most recently, systems (UML) [18]. Although 

SE has been in existence for more than five decades, up until recently, there has been no dedicated 

modeling language for this discipline [19]. Traditionally, systems engineers have relied heavily on 

documentation to express systems requirements and, in the absence of a specific standard language, 

have had to use various modeling languages in order to express a complete design solution. 

This diversity of techniques and approaches has limited cooperative work and information exchange. 

Among existing modeling languages that have been used by system engineers, HDL can be cited [20]. 

In order to provide a remedy, OMG and INCOSE, along with a number of experts from the SE field, 

have been collaborating toward building a standard modeling language for SE. UML, being the 

modeling language par excellence for software engineering, was the language of choice destined for 

customization with regard to systems engineers needs. However, UML 1.x was found to be inadequate 

for such a use [21] and so the evolving revision of UML (i.e., UML 2.0) was issued, with features of 

special interest to systems engineers. In April 2006, a proposal for a standard modeling language for 

systems modeling, namely SysML, was submitted to the OMG, with the goal of achieving a final 

standardization process.  

1.3.4.2 M&S based tools and facilities 

1.3.4.2.1 TASTE [22] 

The ASSERT (Automated proof-based System and Software Engineering for Real Time system) Set of 

Tools for Engineering (TASTE) is a framework of programs that aims at automating safety-critical 

software development. It is composed by a development consortium led by the European Space 

Agency (ESA). 

TASTE program refers on SW dominant systems (but expandable to hardware in a near future) that in 

many cases is based on paper work, with few models, and with Microsoft Office as main tool. The 
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suppliers face difficulties to master design before testing and customers find review inefficient. In this 

context, the needs are to capture system model with the related properties, to verify early and 

continuously the specification during the design, to handle the heterogeneity of the system and to use 

automatic processes (i.e the code generation).  

Key point in TASTE [45] is the definition of the system in terms of architecture, behavior, data, real 

time issues and hardware platform. From that, TASTE tools are able to generate code both for 

simulation and embedded system through famous software environment and language (i.e. Simulink, 

C++, SDL, ADA) - Figure 8. 

The purpose of TASTE  is to build Real-Time Embedded (RTE) systems that are correct by 

construction: based on high-level models, the toolset automatically configures and deploys complex 

RTE systems. To do so, TASTE relies on key standards and technologies such as: 

 The Ravenscar Computational Model. The computational model enforced by the 

generated system, stemming from the Ravenscar profile. 

 ASN.1 and AADL for systems modeling. 

 Code/Model skeleton generators targeting major programming languages (C, C++, Ada) 

and modeling tools (SCADE, Simulink…) to help in designing systems’ functionalities. 

 Code generators to automatically generate systems, based on high-level models. 

 PolyORB-HI. A middleware to map the primitives of generated codes to the ones offered 

by targeted operating systems. 

At the beginning of this study, TASTE-generated systems were software only, and were targeting 

multiple platforms: x86 (with Linux, Mac OS X, FreeBSD, RTEMS), ARM (with RTEMS, Linux), 

SPARC/LEON (with RTEMS or OpenRavenscar). 

 
Figure 8: Example of the code generation made by TASTE 

1.3.4.2.2 SIMSTB  

SimSTB [23] is being designed and developed in the frame of future spacecraft programs based on 

ERC32, a radiation tolerant processors family used in space field. 
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The hardware architecture of SIMSTB is a standard distributed architecture. One Test Control Server 

is used for Environment administration, Configuration management, import and export of data with 

the system database and the SDE. Several test control workstations allow performing independently 

test preparation, monitoring and control of test execution and post processing of archived data. Several 

Simulation Processors that run all simulations are connected to the network. Both Test Control Server 

and Workstations run on UNIX platforms while the Simulation Processor is based on PC LINUX. 

The software architecture of the test facility is derived from the simulator architecture. This one is 

based on Astrium Monitoring and Control infrastructure SIMGO, simulation infrastructure SiMIX and 

on the Software emulator SIMERC32. 

SimSTB main components related to OBSW validation are: 

 A real-time ERC32 software emulator, so-called SIMERC32, implementing a wide range of 

debug functions (obviously no real-time when in debug mode) and an interface to gdb (gnu 

debugger). 

 Symbolic access to OBSW as well in command language as in synoptic and in any analysis 

functions. 

 Integration with GDB: the control can be given to GDB that provides its standard symbolic 

functions thanks to its SIMERC32 interface. 

 
Figure 9: Typical SW simulation system architecture based on SIMWARE 

SiMWARE is the result of an approach for building software components in a generic manner 

enabling to use these components from one test & simulation system to another and from one satellite 

to another. (Figure 9) 

SiMWARE has been designed and developed as a set of reusable products meeting numerous 

objectives: 

 SIMIX: A real-time simulation kernel providing all necessary services from the SVF needs 

(debug, archiving, real-time…) to the Satellite simulator need (multi-instantiation, failure 

injection, simulation state vector saving/restoring…) while offering classical scheduling 

functionalities. This generic kernel can be executed on different configuration (VxWorks, 

Windows NT, UNIX, LINUX…) 

 SIMGO/OC: Specific Monitoring and Control services for operational satellite simulation and 

providing interfaces between SIMIX kernel and simulation components which can be 

complemented for System Test Bench Monitoring and Control or SVF facility. The main 

components involved in the validation falicility are: 
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 LNG: for language and command procedures preparation, compilation and run-time 

execution. In that respect the command language supported by SiMWARE is that of Open 

Center. ELISA allows telecommand generation (depending on the On board software, TM/TC 

packets definition described in system database), to control simulation environment through 

access to telemetry, simulation and variables. For software validation purpose the operator can 

have access to flight software variables (read/write) in a symbolic manner, registers, set and 

remove break points and enable and disable traces. 

 SYN: for dynamics synoptic preparation and real-time animation. The element provides 

monitoring components such that animated mimics, graphs, tables of Alpha Numeric 

Displays… to display raw or decommuted telemetry and simulation parameters. 

 LGB: for activity (logbook)management for editing, displaying the execution status, on line 

and off line, 

 ARC: for archiving busses traffic, simulation parameters and telemetry for further 

postprocessing, 

 TRE: for tests report and evaluation to perform OBSW traces and test archive flight software 

coverage and performance analysis as well as error investigation and correlation between test 

data and environment simulation. 

This approach allows building easily the Monitoring and Control function according to needs from the 

SVF, Table and System Test benches and the Operation simulator. 

SIMWORK: a graphical development tool, producing automatically documentation and C++ code 

directly compatible of the simulation kernel SIMIX. This tool also allows encapsulating already 

existing model code in C/Fortran language to generate the necessary SIMIX interfaces, minimizing 

thus modification on already existing models SIMVAL: models test tool based on SIMIX and 

allowing models triggering either directly or through on-board bus (1553, OBDH) or spacecraft TC. 

SiMWARE has been integrated and is in use within about 20 spacecraft simulation systems, in 

conjunction with Open Centre. (Figure 10) 

 
Figure 10: Logical architecture of SVF infrastructure and models 

1.3.4.2.3 DLR-EPOS 2.0  

“EPOS 2.0”[43]  is the second generation of the “European Proximity Operations Simulator”, a 

facility serving Proximity Operations Simulation since the late 1980s at the German Aerospace Center 

site in Oberpfaffenhofen, Germany. The previous EPOS facility was a test bed developed by DLR for 

the simulation of spacecraft maneuvers notably over the last few critical meters of rendez-vous phase 

(prior to physical docking). The facility consists of a large mobile platform used to hold the RVD 
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interface. The platform can provide 6-DOF translational and rotational motion to the RVD hardware 

interface. The last intensive utilization of the facility was the test and verification of the ATV RDV 

sensors and systems which are used for approach ISS, e.g. the Japanese HTV.  

Future applicationsfor satellite on-orbit servicing missions require the EPOS facility to be able to 

provide the following test and simulation capabilities  

 the 6-DOF relative dynamic motionof twosatellites in the final approachingphase from 25 

meters to 0 meters.  

 the 6-DOF contact dynamic behaviorduring the entire dockingprocess including the initial 

impact, soft docking, and hard docking (final rigidization).  

 the space-representative lighting and background conditions  

EPOS 2.0 uses two 6-DOF robotic arms to provide hardware-in-the-loop simulation capabilities for 

Rendezvous and Docking. "EPOS 2.0" offers extended motion ranges, faster computational speed and 

higher payload capacity than the old gantry. 

The facility comprises a hardware-in-the-loop simulator for physical real-time simulations of 

rendezvous and docking maneuvers. This test bed will allow simulation of the last critical phase 

(separationranging from 25m to0m) of theapproach process including the contact dynamics simulation 

of the docking process. 

Moreover, its main advances are:  

 It is a highly accurate test bed. The measurement and positioning performance will be 

increased by factor 10 compared to the former EPOS facility.  

 Dynamical capabilities will allow for high commanding rates and the capability of force and 

torque measurements.  

 The simulations of sunlight illumination conditions as well as the compensation of Earth-

gravity force are both partof the assembly to generate anutmost realisticsimulation of the real 

rendezvous and dockingprocess.  

 The utilization of standard industrial robotics H/W allows a very highflexibility related 

todifferent application scenarios.  

The new facility consists of the followingcomponents:  

 A rail system mounted on the floor to move an industrialrobotup to a distance of 25m, 

 A KUKA KR240 robot (robot 1) mounted atthe end of the rail system for simulating the 6 

degree of freedom ofthe second spacecraft.  

 A KUKA KR100HA robot (robot 2) mounted ontherail systemfor simulating the 6 degreeof 

freedomof one spacecraft.  

 A PC-based monitoring andcontrol system tomonitor and control the RvD simulation on the 

facility. It can be 

Figure 11 shows the assembly with two robotic arms, the one in the foreground fixed to the ground, 

the one in the back displaceable on a rail. 
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Figure 11: EPOS 2.0 facility 

Table 2 gives the main features of the EPOS2. 

Performance parameters EPOS2 

linear traversing range 25 m 

maximum payload 100 kg / 240 kg 

commanding frequency 250 Hz 

positioning accuracy 0.5mm / 0.2° 

Table 2: EPOS 2.0 main features  

1.3.4.3 Tools and facilities specific for the one or more life cycle phases 

Thise paragraph show the features and use of tools and facilities for SE activities along the product life 

cycle. 

In the feasibility phase, the tools shall be able: 

 To perform orbit and trajectory/orbit simulations 

 To manage budget analyses through linked spreadsheet 

 To provide 2D/3D visualization 

 To manage databases of data for analysis 

 To generate report 

 To manage databases 

The facilities and infrastructures that perform such kind of operations stay at prime contractor or space 

agencies and their name varies accordingly: “CDF” in ESA, “Satellite Design Office” in Astrium, or 

“Project Design Center” at NASA/JPL. The analyses in this phase require few computations 

performed with general purpose tools or software (i.e. Office Excel) and no functional simulation is 

performed because the system is not sufficiently detailed and any control functionalities are still 

undefined from a quantitative point of view. Actually, with respect to the system, orbit propagation 

analysis is needed. Satellite Tool Kit [24] is the widely application software used for this purpose. 

Traditionally, in phase B simulation tools are greatly applied in the system engineering process for 

overall analysis and subsystem design analysis. Besides tools for functional simulation, specific 

analysis is carried out in the disciplines of structure mechanics, thermal engineering and electric 

design using dedicated tools. These comprise for example, thermal analysis, (e.g. with the tools 

ESARAD / ESATAN / FHTS), structural mechanics, (e.g. applying ANSYS5, NASTRAN6), and other 
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fields. CAD tools are frequently used in this phase for qualitative analysis, i.e. CATIA and 

SolidWorks. 

For functional simulation in phase B commercial toolboxes which comprise special libraries for 

control engineering and system dynamics engineering are used. Matlab together with the add-on 

toolboxes Simulink and Stateflow is the most popular and commercial software environment of this 

category. Matlab competitors are SciLab (open source) and Modelica. The Figure 12 shows the layer 

of a Matlab-Simulink satellite attitude control system, but similar simulations can be conducted for 

other engineering disciplines but mainly at subsystem or component level. 

Any time that design process completes a step, verifications campaign should be done. As seen before, 

the verification ranges from the lowest equipment and piece of an algorithm up to the top level of the 

whole system. The possible scenarios have been described in paragraph: they are AIL, SIL CIL, HIL. 

Tools and infrastructures for these purposes are quite uncommon and they are even developed within 

big industries and remain devoted to a specific program. An example is Model based Development 

and Verification Environment (as well as its successor FVI- Functional Verification Infrastructure), a 

satellite simulators environment self developed by Astrium GmbH applied in all the Astiurm – 

Satellite sites. Figure 13 reports the complex architecture of MDVE [25], [26]. 

 

 

Figure 12: Matlab-Simulink ® example 

The core of the MDVE infrastructure is the system simulator, called"Real-Time Simulator". A 

subassembly of the system simulator is the on-board computer simulator, "OBC simulator", which 

models the on-board computer of a satellite. The complete system is controlled by a control console, 

the so-called "Core EGSE".  
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Figure 13: Model based development and verification environment (MDVE) - ASTRIUM 

There is an interface between Real-Time Simulator and integrated satellite hardware, (e.g. real on-

board computer instead of simulation), for hybrid bench configurations. 

This interface performs the data transfer between integrated hardware and simulation, is responsible 

for the power supply of integrated hardware and for routing of telecommands and telemetry between 

integrated hardware in the loop, namely the on-board computer, and the control console. The simulator 

is modular and in each simulation session can be built adding/removing elements as a “LEGO” 

construction: this peculiarity allows various configurations for AIL, SIL, CIL and HIL. Specific 

Kernel are developed (generally in C/C++ language) and then standardized, in particular for guarantee 

the real time operations, unavoidable condition in particular in the final step of the verification 

campaign in which all the parts of the entire system must work together. Specific data base contain 

models that represent on board computers, sensor, actuators, etc… Each equipment is modeled as an 

occurrence in an object oriented structure. 

The simulator is constituted by: 

 A simple functional on board computer into which the tasks are embedded from Matlab 

Simulink to C++. 

 Functional models of the equipment 

 Numerical models of the space environment for evaluate the external influences on the 

simulated system 

The numerical parameters are passed by the control console that manages both the simulator software 

and the on board algorithms. No Hardware is involved and, consequently, no careful is posed on the 

interface type or protocols. The final conversion of the model from Matlab/Simulink to the Object 

Oriented C++ is guaranteed by the Real Time Workshop tool (provided by Mathworks) that makes a 

rapid prototyping and derives the software structure, used in the next step. 

The second step foresees the test and verification of the on board software. It means that the following 

elements are involved: 

 The Operating System of the on board processor 

 The system control code, especially the control algorithms 

 All the interface drivers in input and output between the simulator and the on board processors 



36 

 

 The functions necessary for the command and telemetry rice-transmission 

Much more models are involved with respect to the FVB and the real protocols are recalled to the data 

exchange, not only for the communication between simulator and system but also models of the 

sensors and actuators protocols could be applied. SIL could be performed using one PC in which the 

on board software runs and a PC (or Network of PCs) for the simulator. Focusing on Control Console, 

it provides the interface with human operators: for this reason it shall be user friendly and a graphical 

user interface, based on Java language, runs to support the initial setup and the final data management 

and visualization. At this step complex operation scenarios can be already reproduced and verified, i.e. 

close loop attitude/orbit control scenarios. 

Third step foresees a simulation configuration suitable for CIL. On board SW shall run on the “real” 

processor in order to test all the functions, from elementary to the highly complex: a great difference 

with respect to SVF is the processor/controller that is the real one, instead the functional model which 

is built simply based on the controller documentation and datasheets from the provider. Different test 

subsets constitute this step. The first one shall allow the compatibility verification for HW (the 

controller) and the software (see figure vv). The success of this test leads to the out-and-out CIL 

whose architecture is shown in figure mm. The controller is definitely connected to the simulator that 

has to provide the still missing analog and digital signals and interfaces into the controller input: 

sometimes this can cause a problem of wires configurations. Other important points consists the real 

time: in fact, the simulator has to serve the controller in real time. It means all the interfaces and the 

protocols have to be processed in parallel which requires a sufficient computation power, a RTOS, and 

a real time capable data bus. 

The fourth and final verification step leads to the HIL simulation, based on a so-called Electrical 

Functional Model whose architecture is presented in figure nn. It evolves from the STB by increasing 

the number of hardware components involved: each time hardware is ready for integration, it 

substitutes the respective model. For all that equipment not ready and for all that environmental 

conditions not reproducible the model remains in the simulation loop and the output is used as stimuli 

for the system. Often these stimuli are provided by Special Check-Out Equipment (SCOE) directly 

commanded by the simulator. Figure bb shows an arrangement for HIL of CryoSat1 in Astrium. 

 

Figure 14: Astrium test bench [28] 
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Final integration tests are conducted at the entire system level. Now the physical design validation can 

start:  it mainly means to execute thermal-vacuum tests, EMC tests, and structure and mechanics tests: 

they require ad hoc facilities, normally owned by space agencies or specialized technical services 

providers. 

Finally, the simulator can be applied also during the operational phase (Phase E): In general, control 

console is replaced by the flight operations system installed in the spacecraft.  

The resulting simulator setup in the ground station can be used for training of the spacecraft operations 

staff and for tests of software patches and bug fixes on the simulator before they are uplinked to the 

real spacecraft. 

Pay attention that the "ESA Space Operations Center", (ESOC) typically does not accept system 

simulators from the development cycle because of their philosophy to use only tools for operations 

support which are independently developed. This approach minimizes the risk of potential inherent 

development process errors and such errors can be spotted during operation. For this reason the ESOC 

has developed its own system simulation infrastructure called SIMSAT [27]. 

1.4 Simulation strategies and configurations 
Simulation is used as key element to support a wide range of engineering and operative activities 

during the space product lifecycle: Well-defined architectures having specific configurations are 

involved in the different phases.  

The SE function is supported by a set of coherent and incremental test and simulation facilities from 

phase A up to phase E. The core of these simulation tools is a “virtual system model”, reflecting the 

functions and behavior of the complete system to be built at the level required to support the 

respective analysis and verification tasks. This virtual system model should be considered part of the 

overall model philosophy, and be explicit in the design, development and validation plan, reflecting its 

different configurations. 

A B C/D E/F

System Concept

Mission Performance

Functional Engineering

Functional Validation

Software Validation

Spacecraft AIT

Ground System Test

Training, Operations, Maintenance

SW only

HW in the loop

Infrastructure

(partial) model reuse

System database

 

Figure 15: Tasks supported by M&S approach [8] 

Each facility has a virtual system model that evolves with the increasing definition of the space system 

during each phase and from one phase to the next. On the base of the models that constitute each 

facility there are data-base which are incrementally populated and validated across these various steps.  
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The virtual system model comprises the simulation infrastructure and the models of the space system, 

including the ground segment and space environment. It supports external interfaces to the GSE and 

the monitoring and control element of the virtual system model and related functions 

Each facility thus represents a virtual instance of the space system or a subset of it. Therefore these 

facilities need to be integrated in the overall model philosophy at system level; covering virtual as well 

as physical models. The validation of the virtual system will be incremental over the life-cycle of the 

project, reflecting the status of the system (as specified, designed, built, tested…). 

Figure 16 shows the general and more complete configuration of the simulator facility. 

The development of simulator in space projects has the main task to support the engineering and 

operative activities, reducing the total cost. As seen, one issue is related to the modeling: types, 

parameterization, level of complexity, organization in database are central to allow the system 

simulation. The second point is to have generic and modular simulation architecture, able to provide 

different configurations in terms of fidelity/level of details of the virtual system wrt the real one, 

performances, development level/product life cycle. Developing “virtual/digital” models of a space 

system has a great importance just in the first phase of the project, evolving in the design phase, 

assembly, integration and verification phase and final operation phase. This process is coherent with 

the SW and HW development of the system: in fact, a simulator gives effectiveness to design and 

verification because: 

One of the advantages that derives from the M&S based approach is the reuse of the models and items 

both from previous programs and from the previous phases of the same project, saving money and 

resources. 

What is reusable? 

 The firmware code used to configure the simulation; 

 The simulator architecture; 

 The parametric equipment, environmental, power, thermal, and dynamics models; 

 The configuration data (specific for type of mission and system); 

 The Ground Support Equipment. 

The main enemy for the reuse is the incompatibility because different conventions occur and 

unimplemented protocols are required. In other cases, it may be more cost effective and lower risk to 

develop a new model rather than reengineer and validate an existing model. For this reason, a good 

simulator shall allow the development of new models providing adequate tools (e.g. a programming 

environment) but also specific roles for guarantee the compatibility with the existing architectures. 

Moreover, this feature is essential when the model of specific hardware shall be simulated or inserted 

in the loop, and custom features shall be modeled. 
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Figure 16: Simulation Facility Architecture Components 

Equipment models (as well as the real elements) should be reused if within a new project the 

equipment are the same .However, some models remain specific for the project (e.g. the payload) or 

they are specific for the specific phase (e.g. the power model is more accurate in the development 

phase wrt the operational phase). 

Simulation Models may execute the actual on-board software code (using an emulation of the 

processor instruction set and interfaces). Also, they may embed actual equipment (hardware in the 

loop).  

Nevertheless, model compatibility exists and need to be considered for risk reduction / savings across 

or within projects:  

 Generic models for equipment, subsystems or ground segment that are re-used across 

projects with or without limited modifications, 

 Models fully or in part re-used across phases of a project to support diverse activities. 
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 Optimize the project in terms of requirements management and verification and design 

trade-offs: 

o Increase the coherency among analysis, project, verification and operations: 

assessment of boundaries and margins, system operability analysis. 

o Contribute to the reduction of number of project design process, their duration, the 

number of physical models involved, and the number and duration of the test 

activities: preparation and execution of test, model-based data sharing 

A brief overview of different architectures and the possible related simulation configurations and 

executions is presented hereafter In particular, traditionally three main categories are individuated: 

 Analysis and design simulators 

 AIV simulators 

 Simulators for test, qualification and operations of ground segment and training 

1.4.1 Analysis and design simulators 
The analysis and design simulators are used for the analysis and the design, mainly for: 

 Develop and integrate subsystems, e.g. GNC 

 Individuate critical point for the whole system or the mission 

1.4.1.1 System Concept Simulator 

The System Concept Simulator (SCS) works in not-real time with low detailed mathematical models 

provided from the literature of the different disciplines involved in SE. It shall support a quick 

evolution of the concepts of operations and it shall be validated against the mission requirements in 

order to help the decision making and eventually re-negotiate the requirements. Simulation shall 

support the phase 0/A SE activities in terms of verifications of the functional design, design trade-offs 

decisions, and concept visualization. Analysis of potential concepts and trade-off investigation based 

on different alternatives on system (technical feasibility) and programmatic (schedule, cost and risk) is 

performed. The objective is to allow a highly iterative process that leads the tradeoffs (in particular 

among different disciplines) for system concepts by providing a quantitative assessment of the system 

performance for different mission and system concepts. The visualization of these concepts allows 

improving the awareness of the design and adds value to the presentation of the feasibility study 

results for customers or other partners. 

 

 

 

Input Output 

First issue of the system functional specification Consolidate mission and system concepts 

Key parameters for each discipline involved in the 

design (GNC, power, mechanical, etc…) 

Visualize alternatives  

Generic system and environment models Input for decision making 

CAD/3D system models Input to preliminary system functional 

specification 

Operational scenarios Input to tradeoffs analysis 

Table 3: SCS input/output list 
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The main features of SCS are: 

 It is constituted by a specific architecture (core and interfaces), system models, ground 

models, environmental and dynamics models, 3D models, command consol; 

 It is only based on software (the simulator software!); 

 Setup activities: to configure scenarios, to configure generic and specific mission models, to 

develop/adapt new models for mission specific details; 

 Simulator validation: formal validation is not applied; generic models should be validated 

outside the setup process, as development part of the architecture; 

 Reuse: maximize the reuse of the existing, generic models. They can come from previous 

project or from generic shared libraries. Historically, the reuse of models in this phase is up 

than the 80% [ESA sources]. 
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models
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Simulation infrastructure

Virtual System Model

Facility for Monitoring and Control

 

Figure 17: SCS - System Concept Simulator 

1.4.1.2 Functional Engineering Simulator 

The Functional Engineering Simulator (FES) allows the verification of critical system design elements 

(such as Data Handling, AOCS/GNC algorithms, and so on). It is recommended to maximize the reuse 

of the mathematical models (or parts of there) between these two to prepare the basis for building the 

real-time simulators that are exploited in the subsequent design/test phases. To this end, commonalties 

between the two classes of simulation models need to be considered. The FES contains all the 

functional models needed for algorithms validation, the functional organization of the real system, but 

not necessary representative of the real interfaces, of the data handling subsystem and of the protocols. 

The functional model is a model representative of the real modeled elements behavior. The main 

objective is to validate the system functional design; in particular: to support the system requirements 

consolidation, to validate the key algorithms needed in the subsystem (e.g. GNC), to verify system 

preliminary and detailed design, and to verify the system performance analysis the results of different 

simulation runs with specific setup (i.e. worst case, with perturbations, etc…) 

The simulator shall reflect the architecture and the interfaces of the design and provide simulation 

capability to assess engineering requirements and algorithms performance. It should be easy 



42 

 

configurable and flexible in order to allow the introduction and configuration of the elements (also 

new elements). 

Input Output 

System specification and design Consolidated system requirements 

Specification of subsystems required for the 

functional representation 

Validated algorithms 

Critical algorithms (e.g. attitude and orbit 

control and determination algorithms)  

System performance assessment 

Table 4: FES input/output 

The main features of FES are: 

 FES is constituted by the scenarios functions, the architecture configuration, the orbit, 

environment and dynamics models, the ground models (if needed), the subsystem functional 

models, command consol; 

 It is only based on software (the simulator software!); 

 Setup activities: models development, models and algorithms unit testing and validation in 

open-loop, scenario definition and setup, simulator verification and validation; 

 Simulator validation: each model shall pass unit level test and validation in open loop by 

sending commanded inputs and verifying the proper answer and comparing the key 

parameters values wrt the and validation of known or expected behavior (e.g. orbit 

propagation results). The final validation is made with closed loop simulations against 

reference data of reference cases; 

 Reuse: it consists of the reception and integration of components coming from open or closed 

loop engineering simulators developed along the project or deriving from previous projects. 
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Figure 18: FES - Functional Engineering Simulator 
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1.4.1.3 Functional Validation Test Bench 

The Functional Validation Test Bench (FVTB) is thought for analyze the system performances and 

finally validate the critical subsystem elements. The scope is to have a complete virtual system. Its 

objectives are to provide performance analysis, validation of critical elements/subsystems design, and 

test benches for hardware and software physical models. It should reflect the architecture and 

functional interfaces of the system design and should be able to perform functional simulations of the 

subsystem level. It is required to model the protocols and/or the electrical configuration of the 

equipments for the physical models needs. 

 

Input Output 

Preliminary design data package with the 

identification of critical elements and their 

specification 

Validated critical items design 

Physical models  Input to decision making and technical 

specification 

Criteria required for the assessment of suitability 

of the physical models for the system 

Consolidated specification for the components 

Table 5: FVTB input/output 

The main features of FVTB are: 

 It is constituted by a specific architecture, functional models, models for protocols and 

electrical interfaces, GSE for host and connect physical models, physical models (HW and 

SW) under test, command consol; 

 There are two mainly configuration: only software (the simulation software) and HIL (EM); 

 Setup activities: to develop, test and integrate the functional models and specific interfaces to 

element under test, to develop and adapt the environmental, dynamics, orbit models, to 

integrate the product under test, to develop the test plan; 

 Validation: the functional model should be validated against the design  specification, the 

simulator can only be validated with the product under test in the loop; 

 Reuse: Orbit, environment and functional models of the FES and/or similar missions can be 

(partly) reused. 
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Figure 19: FVTB - Functional Validation Test-Bench 

1.4.1.4 Software Validation Facility  

The Software Validation Facility (SVF) has the task to support the OBSW validation, including Data 

Handling, AOCS and GNC and Payload software. This validation involves the lower layers of the 

OBSW interfaced to the OBC hardware (so-called firmware) as well as the upper layers (so-called 

application software) related to AOCS and GNC, data handling, mission management and control, 

monitoring and control of the payload equipment, thermal control and power control. One important 

feature is the ability to inject failures in the models that enables the user to trigger the OBSW 

monitoring processes as well as to exercise the FDIR mechanisms. Sometimes a less representative 

approach may be adopted - for example when validating the flight software against its specification: in 

this case, simpler so called “model responders” (or test stubs representing equipment) may be 

sufficient to test the open-loop behavior of the OBSW. Summarizing, the simulator shall perform 

OBSW integrated tests, parameter settings (e.g. GNC), functional validation in open loop, HW/SW 

interfaces verification in open loop, performance and robustness tests in closed loop, the validation 

activities of software maintenance, and the validation of the system database. The execution of the on 

board software shall be possible both in fully software simulated configuration and embedded into 

OBC HW. The debugging and (cross)-compiling capabilities are provided. 
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Input Output 

Equipment specifications and design description Validated OBSW and parameters settings 

Equipment user manual Validated system database 

OBC model specification OBSW performance and robustness analysis 

OBC breadboard/prototype  

System database  

Table 6: SVF input/output 

The main SVF’s features are: 

 SVF is constituted by a specific architecture configuration, equipment functional models, 

environmental and dynamics models, OBC models or EM, debugging tools, command consol; 

 Different configurations are available: 1. Virtual model of the system and the environment and 

dynamics and OBSW algorithms (AIL), 2. Virtual model of the system and the environment 

and dynamics and OBSW compiled but not running in the flight boards (SIL), 3. Virtual 

model of the system and the environment and dynamics and OBSW running on the flight 

processor (CIL), and 4. OBSW running on flight processor, real HW equipment and virtual 

model of environment and dynamics (HIL); 

 Setup: to specify, develop and integrate models in the different configurations, to integrate the 

OBSW algorithms with the other models, to integrate the EM of the OBC, to define scenarios 

and test procedures; 
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Figure 20: SVF - Software Configuration 

 Simulator validation: the simulator should be validated without the availability of a validated 

OBSW. The various equipment models should be validated stand-alone in open-loop by 
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sending commands and verifying the proper update of related telemetry. This should be done 

using the appropriate simulated hardware interface: data bus, dedicated I/O etc. The validation 

is done wrt equipment data-package and according to the specified level of accuracy. The 

level of validation of the OBC software model should be increased by running cross-

validation campaigns between the software models and a breadboard OBC. Also integrated 

tests should be done to validate the connections between a subset of models: e.g. sending a 

command to a power unit to power-on spacecraft equipment. Open loop tests should also be 

used to validate the orbit, environment and dynamics models and their integration with one 

another and the spacecraft equipment. If available, closed-loop test results from the FES at 

subsystem level (especially AOCS/GNC) can be used to validate the closed-loop behavior. 

Finally, the SVF validation campaign should cover the spacecraft models 

commanding/monitoring though TM/TC link, involving either a stub OBSW or an early 

version of it; 

 Reuse: command consol and simulation core could be the same this and next phases. All the 

models of equipment, environment, and dynamics derive from the previous phases. 

The SVF is used repeatedly during the program for each version of the onboard software and each 

version of the spacecraft database associated with it. 
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Figure 21: SVF- Hardware in the Loop configuration 
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1.4.2 Simulators for qualification and acceptance (AIV simulator) 
In AIV phase, the simulator replaces the unavailable equipment and simulates the environment and the 

system dynamics. Focal issues are Real Time operations, closed loop tests in which the reaction to 

ground command and to the environment (through stimuli) are taken into account.  

Spacecraft AIV facilities are the main simulators for qualification and acceptance purposes. The 

unavailable equipment is substituted by functions of the simulator, eventually located in another 

machine or sometimes in embedded systems. The used models have an increasing level of complexity, 

deriving from the “analysis and design” simulators. 

The main objective of this kind of simulators is to support the incremental system V&V process. It 

should: 

 be scalable in order to reduce the duration of the V&V campaign involving real hardware and 

GSE, an AIV Simulator can be setup to support the AIV campaign preparation. 

 replace missing equipment in the course of the incremental spacecraft integration 

 also simulate the system behaviour which cannot be represented on-ground (e.g. orbit and 

environment, appendage deployment) and will need to include as well the functional 

simulation as the simulation of the stimulation of real equipment (sensors) through dedicated 

GSE. 

Input Output 

Validated OBSW Integrated and validated equipment having 

undergone a validation test campaign should be 

available for the system integration 

GSE user manual The integrated and validated system having 

undergone the V&V campaign should be available 

to further V&V activities 

Test procedures  

Table 7: AIV simulator input/output 

The AIV simulator features are: 

 The simulator is constituted by specific architecture, the GSEs and their interfaces, system 

models (whole or parts), models of dynamics, environment, and orbit. 

 The simulator could be configured for AIL, SIL, CIL, HIL 

 Simulator setup activities: it should need to specify the system AIV configuration plan in an 

effective way in order to verify the requirements according to the expected features and setting 

of the parameters, i.e the accuracy. The virtual model of the system shall be defined 

accordingly the kind of simulation session and the integration of the GSE shall be completed 

 Validation: the simulator  RT capabilities, GSE and the models derived from the previous 

simulator should be validated 

 Reuse: The spacecraft equipment models included in this simulation facility should be those 

developed and incrementally validated in the frame of the SVF. 

1.4.3 Simulators for qualification, test and operations of ground 

segment 
In this case, the virtual models of the space system are involved in the validation of the ground 

segment and for users training. Operations Simulator has the main features of the previous types of 

simulators from which the used models, software, architectures, and configurations derive. The 

validation of the ground segment mainly passes for the verification of its capabilities and 

performances against the space segment in terms of SW and HW. 
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1.4.3.1 Ground Segment Test Simulator 

The main objectives for a Ground Segment Test Simulator (GSTS) are: 

 To verify each Ground System component in isolation against its requirements. 

 To validate the Ground System to ensure that it supports the launch and operations activities 

including: 

 Support incremental Ground System integration; 

 Support end-to-end Ground System tests; 

 Support data-flow tests during operations. 

This simulator allows tests, focusing on the telemetry and tele-command transfer and fault injection: in 

fact, the test foresee dataflow test (i.e. pre-pass data flow test which is a test performed routinely to 

check the TM and TC dataflow paths through the ground segment with the support of a spacecraft 

simulator prior to every spacecraft pass over a ground station, and Mission Readiness Tests (MRT), 

covering dataflow test at Ground Station checkout performed against the Mission Simulator). 

They can be performed on single component in complete isolation from the others or on the complete 

system trying on configuration independent from the mission or dedicated to a specific mission. The 

space system simulation is clearly involved (in particular the SVF). 

 

Input Output 

All models databases in standard format Validation and verification of the Ground System 

Ground System component documentation  

Table 8: GSTS input/output 

The main GSTS features are: 

 Components: System model focusing on the TM/TC data handling simulation as well as 

supporting the capability to interface the real system during the system validation test, Ground 

interface models both for simulate the RF interface and for provide the protocol, the specific 

chosen scenario and the configuration parameters of the simulator 

 Configuration: the simulator could be configured in a software (the simulator software) 

configuration only or with various real elements in the loop 

 Setup: it consists of develop any mission specific model behavior and apply the specific 

mission configuration 

 Validation: the simulator is validated against the applicable standards in particular the TC/TM 

packet standards 

 Reuse: the GSTS should as far as possible use standard simulation infrastructure. The models 

should be developed wrt the applicable standards to allow reuse between missions. Its models 

can be reused for the users training simulator 

1.4.3.2 Training Operation and Maintenance Simulator 

Training Operation and Maintenance Simulator (TOMS) shall help  

 to ensure that the users/operators are ready to support the launch and operations activities 

(nominal and off-normal),  

 to validate the operations procedures 

 to support the trouble shooting and maintenance during operations 

The simulator contains a high-fidelity model of the system and its ground segment interfaces, with an 

emphasis on providing a highly representative simulation of the spacecraft platform and payload 
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control housekeeping telemetry and telecommanding. The simulator should represent the behaviour 

for the spacecraft and its payload such that to the flight control team its effects in the telemetry are 

indistinguishable (as far as practicable) from the real spacecraft. The simulator should support the 

execution of the onboard software image(s) without modification. The simulator should also model the 

ground stations and network interface to allow direct connection to the mission control system. The 

simulator should support the injection of predefined failures by the operator in the space segment and 

ground segment. The simulator should be designed, developed and maintained to support the 

operations at least for the planned life-time of the mission. 

 

Input Output 

Operation requirements including the reference to 

failure cases to be modelled, test/check point, 

validation criteria 

Validated flight operations procedures 

System specification and user manual Trained users/operators in charge of the flight 

operations 

Models databases of the system Continued support during the real on-orbit operations 

through re-training, new procedures validations, 

anomalies investigation 

GSEs and their manuals  

Flight operation procedures  

Table 9: TOMS input/output 

The main TOMS features are listed hereafter. 

 TOMS contains real time architecture configurations, system, subsystems and equipment 

model for Ground Segment and Space Segment, models of the environment, orbit and 

dynamics as well as the thermal and electrical behaviour, GSE and their interfaces, simulator 

scenario procedures. 

 TOMS can be configured like SVF 

 Setup activities: the following activities should be performed simulator system requirements 

definition, design, development and integration of the space segment and ground segment 

virtual/real model. 

 Validation: TOMS should be validated against a representative set of GSE procedures and/ or 

flight operations procedures to verify that these procedures function as expected. This 

validation should be repeated with each phase delivery (each with successively increasing 

functionality). 

 Reuse: the simulator should make maximum reuse of standard infrastructure and models (e.g. 

ground, environment, dynamics, thermal and electrical behaviour), models from previous 

missions with the same equipment and models from other simulators used in the mission (e.g. 

SVF, GSE). Moreover, TOMS can support ground segment V&V, onboard software 

maintenance (and can be reused as the basis for other simulators in subsequent missions. 

1.4.4 In The Loop Configuration 
The design and verification processes of any engineering system make use of modeling and simulation 

solutions. Several techniques have been developed in this field thanks to the dramatic progress of 

technology in the last decades. A complete simulation facility shall be designed in order to perform 
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with different architecture. A general categorization of the simulation configuration is proposed in the 

following sub-paragraphs, according to Eickhoff [28]. 

A few important stages of interaction between the elements of the system along this process can be 

defined:  

1) Algorithm in the loop (AIL). The algorithms of interest are added to the pure numerical 

simulation. They are not yet written in the formal language that will be used on the final 

hardware and are not run on it. AIL is mainly used at design stages with the objective of 

testing the algorithms 

2) Software in the loop (SIL). Algorithms are translated into the final programming language, 

but they run on ground hardware. The software carries out all the required functions, but in 

general its performance is different with respect to running it on a flight unit architecture 

(e.g. PC vs embedded-PC) 

3) Hardware in the loop (HIL). Real hardware is included in the simulation loop, and consists 

typically of sensors and/or actuators. HIL is a hybrid software-hardware simulation 

architecture, in which the hardware part can vary from a few pieces to the fully integrated 

system. HIL technique is particularly useful for the verification of all those elements that 

operate in special environments and conditions which are difficult to reproduce in a 

laboratory. It may help to detect unexpected behaviors and/or failures arising from the 

integration of the component in the global system. 

1.4.4.1 Algorithms in the loop 

In an initial step, the physics of the system is modeled and the developed control algorithms are 

integrated to control the system. The algorithms mostly are not yet implemented in the target 

programming language, neither on targeted hardware. In other words, a first complete functional 

model related to the system or component or parts of it and of the space environment is available.  

 

Figure 22: Algorithms In The Loop configuration [28] 

1.4.4.2 Software in the loop 

At this time, the algorithms are coded in software in the target language. The now available control 

software is loaded onto the - eventually modified – test stand, again, to control the system. A detailed 

on-board computer simulation should be available allowing on-board software.  
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Figure 23: Software in the Loop [28] 

1.4.4.3 Controller in the Loop 

The microprocessor/controller is at this point available in hardware. The control software is loaded 

onto a representative target computer, which now controls the hybrid test stand. The final software on 

the target computer now has simulated system physics. Tests of compatibility between software with 

hardware and tests of on board software with simulated satellite are carried out. 

 

Figure 24: Controller in the Loop [28] 

1.4.4.4 Hardware in the loop 

One effective modeling and simulation method is the Hardware-In-the-Loop (HIL) approach. This 

methodology consists in the combination of computer simulation and hardware in a single coherent 

platform [29]. Typically, HIL simulation is the last stage of the testing and integration process of an 

engineering system. 

In the literature there are some examples regarding simulation based on HIL technology. A wide range 

of options exists in terms of level of complexity. An example of a complex HIL architecture is the 

simulation of on-orbit docking between two spacecraft at the Spacecraft Robotic Laboratory of the 

Naval Post Graduate School in Monterey, CA [30]. In this facility, the target and the chaser are 

physically reproduced, while the rest of the system is simulated on a real-time simulation computer. In 

[31], the authors show the verification campaign carried out for the Special Purpose Dextrous 
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Manipulator installed onboard the International Space Station. In this case, the space hardware is 

simulated and the contact dynamics is emulated using a rigid robot. In [32], the authors describe a 

ground-based HIL simulation facility for Rendez-Vous and Docking (RVD), called European 

Proximity Operations Simulator (EPOS), at German Space Center. The laboratory is aimed at 

providing test and verification capabilities for complete RVD processes of on-orbit servicing missions 

using two robots for the physical real-time simulation of the maneuvers. Other examples of HIL 

simulation can be found in literature applied to non space-related systems, as described in [33] – [29]. 

HIL technique can be applied for verification from component to element level. In [40], HIL 

simulation is used for the development of a network of sensors for pico-satellite missions. This work 

underlines how special features of the network are investigable only via the HIL approach. Another 

interesting example is the development of a HIL simulator for the simultaneous test of an Attitude 

Heading Reference System and an Attitude Control System based on momentum wheels [41]. Finnset 

et al. dealt with the simulation of the attitude control system of a small satellite, the European Student 

Moon Orbiter, using hybrid SIL-HIL architecture [42]. All these applications show the effectiveness 

of a test campaign conducted via HIL simulation. 

Hardware In The Loop simulation aims to make the software on the target hardware now control the 

real system, and no longer the test stand's system simulation. The simulators here are required for 

computations of stimuli parameters to reflect gravity-free space conditions to reflect the microgravity 

space conditions, as well as magnetic field changes and so on.  

 

Figure 25: Hardware in the Loop [28] 

All these kinds of simulation based system development approach requires fundamentally new 

workflow processes to be applied, both concerning applied technology as well as with respect to 

project organization and distribution of responsibilities. Among the main aspects that have to be 

managed, it is possible to underline: 

 the integration of engineering disciplines such as mechanics, electrics, system operations / 

data handling, 

 the definition, the requirement compliant development and qualification and installation of the 

simulator. 

 the consistent application of system models, configuration databases and test procedures 

overall project phases 

 the standardization of the simulator environment in order to reuse qualified “elements” in 

future projects 
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 the process consolidation for the integrated development and test of GNC hardware and 

software, and the simulator 

1.5 Models and the modelling process 
A general and univocal definition of model is quite difficult to provide because different aspects 

concur to the model design and construction.  

A generic model represents an entity that can be configured to represent any instantiation of that 

entity.  

The process of system modeling typically involves an analysis phase followed by a subsequent design 

phase. In the analysis phase, the key aspects are represented by questions such as “What is the 

problem space? What are the envisioned components and how are they related to each other? What are 

the attributes and the operations of the components and how are they interacting in order to 

accomplish the intended result? etc.” In this context, the design of a system usually involves a 

structural representation of the components and their relations, along with a behavioral specification 

that captures the system dynamics. 

Consequently, when modeling a system, the design can be viewed generally from two main design 

perspectives, namely the structural description and the exhibited behavior. By simulation models it is 

meant both data models, e.g. geometrical model of a system, and behavioral models, e.g. the 

algorithms representing the behavior of a component or environment expressed in a high level 

programming language. 

The structural perspective can be captured specifying the distinctive attributes of the system and its 

components. Alongside, the user can specify their respective relations with respect to each others. 

Structural analysis helps to evaluate numerous quality attributes and may be used as a feedback in 

many tuning and optimization mechanisms. 

The behavioral perspective can be encoded in order to capture the dynamics of various state 

parameters in the system or the underlying components. Furthermore, in the behavior perspective, the 

different internal or external interactions of the system shall be taken into account. The behavioral 

analysis is usually much more demanding and involves intense rigor and precision.  

1.5.1 Model architecture 
Generally, but not always, each model has inputs and outputs and internal states. A complete 

representation of a model is proposed in Figure 26.  
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Figure 26: Model architecture 

Some considerations can be made in order to describe the figure: 

 The core of a model depends on the type of the considering model (virtual vs hybrid vs 

physical). In fact, it can contain the physical modeling or the mathematical equations that 

explain the real behavior (e.g. the basic Newton’s law, F=ma), the solvers (e.g. integrators or 
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derivative methods), the work logic (i.e. change of mode during the operation, for example the 

activation and deactivation of elements or functions according to external situations).  

 Model outputs are all the parameters computed in the model core execution and describe the 

behavior of simulated equipment or phenomenon as well as the actual response of a physical 

model subject to specified input. They can be provided to the simulator or the test object. 

 Both inputs and outputs shall be formatted according data exchange protocols and rules, 

particularly for the SIL and HIL. 

 Characterization inputs channels serve to calibrate parameters and define constant values 

characterizing the models behavior. E.g. the calibration settings of a sensors, or general 

mission/system parameters that do not change during the simulation, for example the 

gravitational constant for a satellite in LEO. 

 External stimuli can be outputs of virtual model that will be used to set the GSE connected 

with the object under verification as well as inputs of physical models that receive the 

stimulation reproducing the real conditions. Moreover, these channels can be used to inject 

external failures into the model. 

 Log/feedback outputs are channels dedicated to the log/store the characteristic parameters 

related to the model, from which analyze the simulation evolution live or after the end of the 

session 

1.5.2 Level of detail and degree of fidelity of a model 
“A simulator’s scope refers to its breadth”[28]: it means that the capabilities of the simulator is strictly 

related with what subset of the real world it is able to represent, with the number and the quality of its 

models for every real-world component or phenomenon, with the number and type of interactions and 

interfaces of the model that carry out to easily aggregate components and treat them as large elements. 

Clearly, the most detailed, complex simulators are broad and highly resolved. However, a deep 

difference passes between detail and fidelity. It is natural to think that modeling everything in 

excruciating detail will most closely match real performance: often it is wrong and detrimental. 

Sometimes a detailed simulator just turns out wrong, whereas a simpler, more easily understood 

simulator closely matches real performance. 

Details may even produce “noise” that keeps away the user from seeing simple relationships. Adding 

detail can also demand more data, and the data may be wrong. Cause-effect relationships among 

objects in a simulator are crucial. The trick is to identify details that matter and ignore ones that don’t 

affect the results: following this way the simulator’s outputs assess an increasing degree of fidelity. 

The tendency is to simulate as much detail as possible given the time available, even if some of that 

detail is unnecessary. 

The choice of a model and its level of detail changes in relation to: 

 the product life cycle phase. in the first phase of a SE process the virtual models are the only 

models involved in the simulation activities. Their core consists of few basic rules and 

equations that explain the main behavior of the modeled element, with low details and a 

degree of fidelity sufficient to make feasibility studies and have an idea of the evolution and 

the quantity of the main parameters for a preliminary sizing. During the design phases, the 

global architecture of the system and the environment is better rather than the details of a 

single model (e.g. the sensors, the actuators and the electrical devices as well as the effects of 

environment phenomena models update the global model wrt the feasibility phase). The 

control is based on model simplifying both the controller and the observer design (e.g. the 

design of the controller is made thanks to linearized equation of the system and verified on the 

non linearized model). In the verification phase, the level of detail of the models increases 
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because all the equipment are well defined, the real capabilities of the system are investigated 

against the actual environmental conditions, and the control performances shall be guaranteed 

for different situations (e.g. disturbances action). The last system model has the highest 

possible degree of fidelity. 

 the supportable computation complexity. This issue depends on the features and 

performances of the simulation machine. As said before, a higher level of detail requires 

higher resources for support the operations of complex models, based on high order equations, 

accurate solvers and meticulous definition of the work logics. All these characteristics tend to 

decrease the speed of simulation and they can compromise real time activities. That leads to 

pay attention about the definition (for the developers) and the choice (for the users) of the 

detailed models, especially when SIL, CIL, and HIL are performed. 

 the required accuracy of the results. Complex and detailed models generally produce 

accurate results: it means that the values obtained for the state variables and other main 

parameters of the system take evolutions and trends that reflect the real behavior. However, 

apart for the validation purposes, the best accuracy is not necessary. Moreover, in relation to 

running session, particular performances and functions are more investigated than others: it 

should allow to the user the selection of models with various levels of detail within the same 

simulation architecture in order to reach different degrees of fidelity within the same run. For 

example, evaluating the performance of a chaser in the mating phase, position and attitude 

accuracy become the focus features that should be available with the highest fidelity for the 

users and analysts. At the same time it should be negligible to investigate the fuel 

consumption (and consequently the sloshing whose model can be at lowest level of detail or, 

even, removed). 

 the costs & resources: virtual models cost and require less human resources and items with 

respect to the physical ones. Programmatic requirements address and constraint the choice of 

the models 

 the instrumentation and facilities availability. The choice depends on the availability and 

the in-house models. In particular for physical models (also for the virtual) it can be very cost 

effective and quick to use already available models wrt develop it as new. This is also because 

the model is just tested, integrate and, probably, validated with the simulator. 

 the parametrization. One of the main goals for the model designer is to produce a flexible 

model and the parameterization are the main features that shall be sought. Parameterization is 

the process of deciding and defining the parameters necessary for a complete or relevant 

specification of a model. Most often, parameterization is a mathematical process involving the 

identification of a complete set of effective coordinates or degrees of freedom of the model, 

without regard to their utility in some design. In other words, the parameterization carries out 

to define constants and variables characterizing a model: a priori settable parameters in the 

case of constants (as calibration values) or parameters that evolve in time and determine the 

behavior of the model. Changing constant parameters, the intrinsic features of a model vary; 

changing variables parameters change the entire model property. 
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1.5.3 Type of models 
Depending on the context, the models can be classified according to their fidelity, their domain or their 

modeling technique. 

1.5.3.1 Virtual model  

A virtual model is a set of instructions, rules, equations, or constraints that virtually reproduce a 

phenomenon or a system behavior. In this case, the model “is a copy of an object” [44].  

Virtual models (or mathematical models, simulators) could be exploited to simulate a system 

dynamics, to train ground support operators, mathematical model to optimize system definition and 

layout, to analyze structure dynamics and its strength at launch. Moreover, virtual models could be 

used for thermal analysis, mechanical deployment simulation, electromagnetic compatibility, harness 

routing configuration and attitude control system evaluation. These models reveal to be more and 

more useful to save time and money. Indeed, they can be adapted to further mission and space systems 

analysis and verification. 

A virtual model approach can be applied in every project phase, first of all in Phase A and results an 

incentive to the data exchange and the sharing between the projects actors: using standard allow a 

more quickly data exchange and generation of new models. 

A virtual representation of the system (and the mission), allows  

 the validation and optimization of the project 

 to start the implementation with a sufficient level of detail. 

Consequently, the keys of the project can be individuated and addressed in the right way, avoiding an 

expensive redefinition in the next phases. 

A shared virtual model allows to work together and contemporary to different teams and to cooperate 

also in remote, minimizing efforts and resource usage/wasting.  

In a traditional verification process, the test activities are strictly related to the physical construction of 

the system: each component and sub-system is individually tested, then integrated and tested together 

other system elements. Using a virtual models and M&S based approach this step is previously 

simulated so that the procedures can be generated and pre-validated. At the same way, the integration 

can be virtually verified in parallel to the development of the single component.  

1.5.3.2 Physical models 

1.5.3.2.1 Mock-ups (MU) 

Mock-ups (MU) are representative from mechanical, geometrical and physical properties point of 

view. It is useful in support of design definition for overall architecture analyses, configuration design 

and assessment, interface control and definition, human factors and human computer interface (HCI) 

assessment, operational procedures evaluation and layout optimization. It is progressively upgraded to 

redirect a final configuration according to the design evolution. 

1.5.3.2.2 Engineering Model (EM) 

Engineering Model (EM) represents in form, fit and function for the flight unit, generally without 

redundancy and space qualified parts. It is representative for physical and electrical configuration 

(including interfaces). The EM is used for functional validation and failure survival demonstration. 

EM is involved in functional tests at standard ambient condition, helps to validate final software, test 

facilities, GSE and, eventually, assembly, integration and test procedures. 



57 

 

1.5.3.2.3 Qualification Model (QM) 

Qualification Model (QM) fully reflects the end product design in all aspects, including manufacturing 

methods and procedures. It is used for complete functional and environmental qualification tests. This 

model will be subjected to testing up to the limits of the operational and non-operational 

environmental conditions specified for the instrument to endure. The parts used will be of the same 

type and specification as the models built to fly on the spacecraft, and will be parts specially designed 

to survive in the harsh space environment. 

1.5.3.2.4 Flight Model (FM) 

Flight Model (FM) is the flight and product. It is subjected to formal functional and environmental 

acceptance testing. It is validated mainly by similitude with QM, in fact FM is built according to the 

QM configuration. Acceptance levels are wider than expected operating conditions, but not as extreme 

as Qualifica 

1.5.3.2.5 Prototype vs proto-flight philosophy  

A prototype is fully representative of the FM, even though its components are not qualified for space 

application. This approach, which consists on implementing separately EM, QM and FM, is generally 

used in projects for which all affordable measures are taken to achieve minimum risk. The usual 

characteristics of these projects are: 

 new or complex design, 

 impossibility to be recovered or repaired after launch, 

 special mission requirements. 

The prototype approach makes extensive use of the aforementioned defined models to cover 

verification needs (environmental qualification, functional and performances validation, GSE 

validation, interfaces and AIT procedures verification). The disadvantage is high cost and project 

schedule, which has to allow FM integration only after having qualified QM. 

The advantages of this approach are: 

 low risks, 

 capability to perform parallel activities on different models, 

 completion of qualification activities prior to acceptance, 

 capability to use QM or EM as integration spare during higher level activities, 

 FM is not subjected to qualification tests but only to flight acceptance tests. 

The risks of this approach are: 

 EM and QM representativeness, 

 If QM is fabricated very early, then qualification test are completed on FM, 

 Delay in delivering QM may affect the whole mission time schedule. 

 

On the basis of project requirements, the related model philosophy is tailored. A common case is to 

use, after the thermal and structural qualification, parts of the STM to complete the space item level 

EM, in addition to EM/QM equipment. It is important to note that after the system electrical or 

functional qualification the EM is used for ground support to flight operation. Feedback from 

qualification on the FM manufacturing is also taken into account. In addition, after system functional, 

thermal and structural interface verification between elements, QM and STM are used for flight 

simulation on ground. 

A protoflight is fully representative of the FM and its components are qualified for space application. 

It goes through qualification and flight acceptance tests. 

This approach is applied to projects whose characteristics are: 
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 no critical technology is employed in the design, 

 qualified products are extensively used, and 

 compromises are permitted to reduce cost by accepting a moderate level of risk. 

The pure protoflight approach is based on a single model to be _own after it has been subjected to a 

protoflight qualification and acceptance test campaign (see [8] for details). 

The advantage of this approach is its lower cost. The disadvantages are: 

 increased risk since the FM is subjected to qualification level test (fatigue and stress are 

accumulated on ground), 

 serial activity flow on the same model, 

 mixed qualification and acceptance activities, and 

 no integration spares. 

The risks of this approach are: 

 late qualification, which may cause development risks. This requires to implement a prototype 

philosophy on the most critical components, 

 too large margins level are taken into account (over-sizing issue), 

tion levels. 

1.5.3.3 Hybrid models 

Hybrid models are a combination of both virtual and physical models. They are crucial elements in the 

V&V process because permit to develop and verify step by step software and hardware along the 

project.  

The hybrid model philosophy is used in projects where advanced qualification activities are performed 

in areas of new design or in areas having a critical impact on the verification program. The hybrid 

approach always results in a protoflight model be flown after a protoflight test campaign whose scope 

is reduced with respect to that of the pure protoflight approach. Specific qualification tests in the 

critical areas are carried out on dedicated models. In these areas only acceptance testing is performed 

on the Proto-Flight Model (PFM).  

The advantages and disadvantages of this approach lie between those of the prototype and the 

protoflight approaches in terms of risks, costs and schedule. It represents a good compromise; in fact 

this is the reason why it is often selected. In particular, in the hybrid approach it is feasible to: 

 perform some parallel activities 

 use QM as integration spares during high level activities, 

 conform to the delivery dates of high reliability components and accommodate possible use of 

commercial components. 

It is important to note that: 

 the decoupling of the STM (STructural and Mechanical) activities from the EM activities 

enables program flexibility and reduction of schedule risks, 

 the EQM or PFM is qualified at equipment level, depending on its development status, 

 a suitcase model and the software validation facility at satellite level can be used to verify 

specific interface performance, 

 a mock-up structure can be used for the EM configuration. 

The models philosophy defines the optimum number and the characteristics of virtual and physical 

models required to achieve confidence in the product verification with the shortest planning and a 

suitable weighing of cost and risks. It consists of developing models in a preliminary or detailed way 

in order to perform verifications. 

The categorization proposed in this thesis can be summarized in Table 10 and Table 11 through some 

example. 
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 Equipment/ Subsystem/ System 

Virtual  Gyroscope  

Gyroscope equation

Bias and non 

linearity

Simulated 

angular velocity

Simulated disturbances 

and noise

Measured 

angular velocity

Measured 

angular velocity

 

 Solar cell 

Solar cell equation

Simulated disturbances 

and noise due to 

environment

Simulated thermal fluxes 

and sun radiation

Open circuit voltage, short circuit 

current, temperature profile, fill 

factor, packing factor

Generated power

Generated power, 

voltage. current

 

Hybrid  Simulated IMU from the simulator with real interfaces (electrical, mechanical 

and logical) 

Gyroscope 

equation + 

ADC equation

Bias and non 

linearity

Simulated 

angular velocity

Simulated disturbances 

and noise

Measured 

angular velocity

Measured 

angular velocity

R
S

2
3

2
 

in
te

rf
a

c
e

Simulated real gyro data formatted according 

the protocol  

Physical cable connection to the GNC board

 

 Simulated solar panel from the simulator with real interface with GSE that 

physically reproduces the real voltage and current outputs  

Solar cell 

equation

Simulated disturbances and 

noise due to environment

Simulated thermal fluxes and 

sun radiation

Open circuit voltage, short circuit 

current, temperature profile, fill factor, 

packing factor

Generated power

Generated power, 

voltage. current

R
S

2
3

2
 

in
te

rf
a

c
e

Simulated real cell behavior in terms of 

Voltage and Current passes, with the 

specified formatted protocol, to a GSE

 

Physical  Real IMU 

Real/Physical 

model of 

gyroscope

Calibration 

values

No input

Rotation imposed from 

an (robotic) arm

Measured 

angular velocity 

provided 

according the 

data protocol

Measured 

angular velocity

R
S

2
3

2
 

in
te

rf
a

c
e
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 Real solar panels 

Real/physical 

model of solar 

cell

Direct or reproduced sun 

radiation

No inputs

No initial calibration

Generated power

Generated power, 

voltage. current

I2
C

 

in
te

rf
a

c
e

 

Table 10: Examples of equipment/subsystem models 

 Environment and dynamics 

Virtual  Orbit propagation 

Orbit propagation equations

Orbit parameters, type of 

integrator

Lat,Long,Height in different 

reference frames, updated 

orbit parameters

Previous Lat,Long,Height, 

updated orbit parameters

Disturbances forces

Lat,Long,Height

Updated orbit parameters 

(RAAN)

 

 Rotational Dynamics and Kinematics 

Attitude Dynamics & 

Kinematics equations

Type of integrator, Inertia 

values
Attitude, angular rates in 

different reference frames

Previous attitude, previous 

angular rates, 

Disturbances torques

Attitude, angular rates

 

Hybrid  Simulated attitude dynamics is translated in commands for a robotic arm 

Attitude 

Dynamics & 

Kinematics 

equations

Type of integrator, Inertia 

values
Attitude, angular rates in 

different reference frames

Previous attitude, previous 

angular rates, 

Simulated disturbances 

torques

Attitude, angular rates

U
S

B
 

in
te

rf
a

c
e

Computed outputs are used to computed the 

movement of a robotic arm in order to 

simulate the effective rotations

 

Physical  Sun simulator 

Reproduced  

sun radiation

Initial calibration of the 

facilities’ GSE

Commands for GSE in order 

to reproduce the effective 

radiation

No external stimulation

U
S

B
 o

r 
L

A
N

 

in
te

rf
a

c
e

U
S

B
 o

r 

L
A

N
 

in
te

rf
a

c
e

Feedback on the 

effective reproducted 

radiation

Generated radiation

Stimulation for equipment like 

sun sensors and solar cells
 

Table 11: Examples of dynamics and environmental models 
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Chapter 2. GNC system design  

2.1 What are G(Guidance), N (Navigation) and C (Control)? 
The Guidance Navigation and Control system is one of the leading and most complex spacecrafts’ 

subsystems. Its name is closely linked to the three main functions performed by the subsystem, but 

often in the literature is split into two other subsystems: ADCS (Attitude Determination and Control 

Subsystem) and ODCS (Orbit Determination and Control Subsystem). 

In [1] Navigation or orbit determination (interchangeably) means determining the spacecraft’s position 

and velocity or, similarly, its orbital elements as function of time. Guidance and orbit control (for 

satellite) means adjusting the orbit to meet some pre-determined conditions. Finally, Control refers to 

a shortened form of attitude control. ADCS stabilizes the vehicle and orients it in a desired direction 

during the mission despite the external disturbance torques acting on it, ODCS performs navigation 

and guidance functions, determining and control the orbit and, more in general, the trajectories.  

In [2], authors specifies that the “motion of a rigid spacecraft is explained by its position, velocity, 

attitude and attitude motion. The first two quantities describe the translational motion of the center of 

mass of the spacecraft and are subjected to what is variously called as celestial mechanics, orbit 

navigation, or space navigation, depending on the aspect of the problem that is emphasized. The last 

two quantities describe the rotational motion of the body of the spacecraft around the center of mass. 

They point out “in general, orbit and attitude are interdependent. […] However, we will normally 

ignore this dynamical coupling and assume that the time history of the spacecraft position is known 

and has been supplied by some process external to the attitude determination and control system”. 

In [3], Navigation is the determination of the current state of motion of the vehicle that is position, 

velocity and attitude. Navigation computes the current state using data of sensors that detect physical 

quantities: state-defining variables are often not directly measured. Guidance is the computation of 

corrective actions necessary to change from the navigation-determined vehicle state to a required 

vehicle state. In detail, guidance is the process of comparing the measured navigation state with the 

required one and then computing commands to correct the difference between them. The state vector 

is conveniently broken into two distinct parts that take account of the two natures of motion: 

translational motion for position and velocity, and rotational motion for attitude and angular velocity. 

Control is the application of corrective manoeuvres to obtain the change computed by guidance. The 

corrective manoeuvres refer to forces (and/or torques) that have to be applied to the spacecraft in order 

to drive the state variables to required values.  

For the purposes of this thesis, the GNC system is considered as consisting of ADCS and ODCS. This 

choice starts from the idea that for a satellite ADCS and ODCS projects are decoupled, in particular 

small satellite often do not have to perform orbit/trajectory determination and control. In any case, 

sensors and algorithms for the determination, as well as the actuators used by the two systems are 

different. In the same way, for RVD/B missions the determination and control of orbit/trajectory and 

attitude follows different approaches both in absolute reference guidance and in relative guidance. 

Surely the interactions between the two subsystems shall be taken into account for the respective 

projects but they can be carried out independently. 

In addition, the problems of orbit control/determination and attitude control/determination have 

different backgrounds. Predicting the orbital motion of a celestial body is a quite old science (i.e. 

Newton laws). In contrast, most of the advances in attitude determination and control have occurred 

since the launch of the Sputnik (1957). 
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2.2 GNC interactions with other subsystems 
The design of the GNC is highly conditioned by the mission, the system and other subsystems design 

that impose constraints. Requirements derive from the mission analysis: the pointing accuracy of a 

payload, the time and the size of the manoeuvres to reach a desired attitude or orbit (also relative), the 

target to RV, the final orbit for deep space explorations, and the landing target for planet exploration. 

The mission affects the autonomy for the determination and the control of attitude and trajectory. 

Mission duration influences the choice of the actuators and sensors, and, consequently, the available 

electrical power and fuel.  

Moreover, GNC shall satisfy special requests from other subsystems: 

 Thermal Control System (TCS) may require to perform manoeuvres to prevent over/under-

heating; 

 Electrical Power System (EPS) may require the pointing of solar panels; 

 Communication System (ComSys) may require the pointing of antennas and/or maintaining an 

orbit (station-keeping); 

 Payload may require the pointing of the instruments and/or maintaining an orbit (station-

keeping), e.g. meteorological satellites. 

GNC design drivers and tradeoff: 

-GNC architecture

- Type of attitude stabilization/

Control strategies

- On board vs Ground determination and 

controls

- Determination strategies

- Open/closed loop orbit maneuver choice

- Devices (sensors, actuators, avionics) selection

from Mission analysis:

- Pointing accuracy and stability of target/instruments payload

- Stationkeeping & realative orbit maintenance (constellation)

-Autonomy of attitude/orbit determination

-Mission duration

-Orbit and space environment

-Time and size of the orbit maneuvers to reach injection/final orbit

-Time and size of the slew maneuvers to reach a desired attitude

from TCS:

- Maneuver required to 

avoid under/over heating 

of parts

from EPS:

Pointing of solar panels

from M&S: 

-Pointing of appendices or 

movement of arms

- Change of mass, CoM, 

and Inertia

for GS:

-Coverage and link/time 

availability for update 

parameters

for Propulsion

Loaded fuel

Thruster sizing 

Minimum impulse bit

for EPS:

- Special electrical 

regulations

- Power load for sensors, 

avionics, and actuators

for OBC: 

- Power & time of 

computation

- Time tagging

- Memory occupation

for M&S:

-Location and maintenance of the CoM

-Inertia constraints

-Sensons and actuators location

from COM SYS:

Pointing of antennas

 

Figure 27: GNC interactions with mission, system and other subsystems elements 

At the same time, the GNC may impose constraint to the design of the other subsystems, e.g.: 

 Propulsion system in terms of necessary propellant, thrusters sizing, and minimum impulse 

bit; 

 EPS in terms of special regulation and power load for sensors, actuators and avionics; 

 On Board Computer (OBC): in terms of computation power and time consumption (e.g. to 

calculate complex algorithms), time tagging for the geo-reference of the navigation data, and 

memory occupation (RAM for computation and (P)ROM for firmware and application SW); 
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 Structure and Mechanism (S&M): in terms of location and maintenance of CoM, inertia 

constraints, sensors and actuators positioning (e.g. thrusters positioned symmetrically to the 

principal body axes, IMU/INS placed near the CoM, the star sensors positioned to avoid the 

over-lighting of Moon and Sun, etc … ); 

 Ground Segment: in terms of continuous connection and coverage necessary to update on-

board data needed to the GNC activities (e.g. the TLE). 

Figure 27 summarizes the interaction among GNC and other subsystems and the whole system. 

2.3 GNC design: functions, architectures and features 

2.3.1 GNC control modes 
This paragraph proposes a general overview on the control modes for the GNC systems. 

2.3.1.1 Orbit acquisition/insertion mode 

The GNC shall lead the spacecraft to achieve the orbit performing the control maneuvres specified by 

the mission. The orbit insertion enters after the release of orbiting spacecraft from the launch vehicle 

and lasts until the final boost the allow reaching the final orbit. In some case, the End-Of-Life disposal 

is also a particular case of orbit acquisition: it foresees the reaching of the final disposal orbit and the 

passivation of the propulsion system, also in degraded configurations due to failures. In this mode the 

determination of the orbit shall be performed both with on board equipment and/or with exchange of 

information with the Ground Segment. 

2.3.1.2 Attitude acquisition mode 

The acquisition mode shall provide the capabilities to determine the angular velocity and the attitude 

of a spacecraft after the launcher separation and the deployment of appendages (e.g. solar panels or 

antennas). 

2.3.1.3 Nominal missions mode 

The nominal modes of operations of the GNC strongly depend on the mission’s objectives that the 

entire system shall accomplish. Here after the main examples are listed. 

2.3.1.3.1 Pointing a target 

The spacecraft shall reach a certain attitude and maintain it along the orbit in order to point a target 

and/or to track a fixed point on Earth or in the space (e.g. the Moon, the Sun, other stars, etc…). 

Frequently, the attitude is constrained to point a subject to permit that the payload work properly or to 

reach/maintain/avoid some specific operation condition (e.g. illumination, thermal). Scientific 

missions are the main example in which “pointing something” are needed for the good 

accomplishment of the mission 

2.3.1.3.2 Station keeping 

Station keeping refers to the maintenance of an orbit with a high precision. Station-keeping 

manoeuvres consist of small (few m/s) adjustments to the velocity of the spacecraft in order to keep 

the system within some orbit tolerance. They are mainly performed to counteract disturbances as 

atmospheric drag and gravity effects. Communications missions, navigation missions and formation 

flying are the main examples of missions in which the stationkeeping is crucial. 
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2.3.1.3.3 Chasing 

Chasing mode refers to rendez-vous activities and consists of a series of open-loop and closed-loop 

attitude control and orbit manoeuvres of the “chaser” spacecraft in order to mate with another on orbit 

body. This body could be collaborative (e.g. the ISS), adapting it state parameters to favour the mating 

activity, or not collaborative (e.g. a debris), whose state parameters and general conditions are not 

known a priori. 

2.3.1.3.4 Boost / Trajectory tracking  

The control mode during the ascent phases of a launcher is often called boost. It is characterized by a 

pre-computed trajectory tracking to pass through the high dynamic pressure region, and the 

computation of velocity corrections necessary to place the vehicle on the desired trajectory and/or 

orbit during the ballistic phases. 

Trajectory tracking is a more general case of boost in the sense that it refers to any object on orbit or 

that should reach the orbit following a desired path. 

2.3.1.3.5 Disposal 

Disposal is the end of the mission life. Disposal manoeuvres lead the spacecraft in a specific orbit with 

well defined conditions in order to prevent damage to other spacecraft. In general, this manoeuvre is a 

transfer in “parking” orbits for GEO spacecraft and a safe de-orbiting and re-entry in atmosphere for 

LEO and, clearly, human mission spacecraft. For objects in LEO the disposal coincides to a controlled 

or uncontrolled re-entry in the Earth atmosphere: the most critical case is the return in atmosphere for 

re-usable spacecraft in which the role of GNC (both attitude and trajectory controls) is crucial to save 

the integraty of the vehicle. At the same way, the re-entry in atmosphere shall be monitored by the 

GNC also for big expendable object: in fact, their trajectory shall be safe avoinding the crashed 

landing on populous areas. 

2.3.1.4 Safe mode: 

2.3.1.4.1 Fail Safe 

In case of one or more major anomalies, the GNC shall autonomously guarantee the capability to 

control the attitude (and angular rate) and eventually the orbit to ensure the integrity of the spacecraft 

from mechanical, thermal, electrical point of view and the maintenance of the communication link.  

More in general, the modes transition depends on the defined strategy: it foresees the check of 

housekeeping telemetry that can touch off events provoking change in the on board software execution 

flow and hardware configuration. Transition between modes can be caused by ground request (time 

tagged or not), by on board computer, after checking a transition condition or after a (major) failure 

detection. 

2.3.1.4.2 Anti-Collision mode 

To achieve a safe mating in RV missions or to specifically avoid collisions with orbiting object, an 

anti-collision system (AS) (based mainly on GNC functions and architectures) shall be provided. The 

activation starts when one or more state parameters of the spacecraft exceed the defined thresholds, 

detecting a possible collision due to a deviation from the tolerances of nominal behaviour. An escape 

sequence begins, generally, performing predetermined manoeuvres or computing a new profile for 

ADCS and ODCS to follow. Sometimes AS is completely independent by GNC but with the same 

characteristics: it means that AS performs the ADCS function in the critical phase, often using sensors, 

actuators and computers different from the GNC. 
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2.3.2 GNC functions 
The main high level functions required to GNC are: 

 to determine the GNC state variables through measurements and estimation 

o to acquire and process physical information for the attitude determination 

 to acquire data from the sensors (inertial or not inertial) 

 to apply determination algorithms 

o to acquire and process physical information for the orbit determination 

 to acquire and update orbit parameters  

 to propagate the orbit 

 to acquire data from the sensors 

 to estimate the new position in different reference frames 

 to perform the attitude and orbit guidance strategies. Note that the attitude is generally 

determined with on-board sensors, while the orbit can be determined on ground and then sent 

to the spacecraft via uplink as well as using on-board sensors. 

o to generate profiles of attitude and trajectory for each phases of the mission 

o to determine command to maintain attitude and trajectory profile 

o to acquire and maintain all the attitudes required by the mission operations in the 

various phases (e.g. LEOP phase, nominal and off normal/degraded situations and 

emergency manoeuvres ) 

 to execute the attitude and orbit control strategies 

o to perform the orbit and attitude manoeuvres, according to the mission specifications 

o to provide commands to the actuators  

 to process and deliver with a specific frequency the attitude, orbit and related information to 

other on-board subsystems (or in some cases directly to ground) 

o to gather, format and pass data to other subsystems 

 to acquire, validate and execute commands devoted to change the control mode of the GNC 

 to guarantee the safe state of the system in every phase of the mission, i.e. avoiding collisions 

o to detect possible collisions 

 to compare status variables within the relative motion frame between two 

elements  

o to change trajectory 

 to define/load “escape” maneuvers 

 to manage emergency and anomaly situations  

o to determine the GNC health status  

o to compare GNC health status with predefined thresholds 

o to detect failures 
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o to activate and deactivate hardware parts 

o to enable and disable software functions 

o to support the failures 

 to correct the failures 

 to activate off-nominal procedure 

 to determine/acquire time and perform synchronization tasks 

2.3.3 GNC architecture 
The control structure includes the control system (consisting of all relevant functional behaviours of 

controller, sensors and actuators) and the controlled system (the space vehicle(s)). 

In Figure 28, the general control structure is shown. It is easy to see the feedback control loop: sensors 

measurements are acquired by the controller, which determine the state variables. According to the 

control laws defined taking into account the control and the interaction with the environment, control 

commands are computed and sent to actuators in order to generate torques and/or forces that act on the 

controlled plant in order to satisfy the control performances. The objective of the closed loop is to 

compensate for the disturbance that affects the system. The nature and the design of the controller are 

driven by the nature of the disturbance and by the desired performance (for instance, an integral type 

drives the effect of a constant disturbance to zero). This issue is a key driver of the control design, 

which is outside the scope of the present thesis. Controlled system (or plant) can be a satellite, a 

launcher, a chaser, a rover for exploration, a robot arm, and in general all those space systems that 

require an active control of their attitude and trajectory/orbit. 

 

Figure 28: Basic control feedback structure 

Figure 29 reports the rappresentation of the feedback control system: the inputs of the controlled 

system are the commands (u(t)) and the external disturbances (d(t)) acting on it. The outputs (y(t)) of 

the plant (D) are normally physical parameters (generally, the state variables) of interest for the control 

performances satisfaction. The outputs are measured (and estimated) by sensors which introduce on 

the values errors and noise (m). The measured/estimated outputs (ym(t)) are compared with the 

desired values (r(t)) and the computed error () is used by the controller (K) to define the commands. 

controller actuator plant

sensor
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Figure 29: Detailed feedback control system [4] 

However, it should be taken into account that in some vehicles or for some phase of the missions, 

other two types of control shall be implemented: 

 the open loop control: an open-loop controller, also called a non-feedback controller, is a 

type of controller that computes its input into a system using only the current state and its 

model of the system. The main features of the open-loop controller is that it does not use 

feedback to determine if its output has achieved the desired goal of the input. This means that 

the system does not observe the output of the processes that it is controlling. Consequently, a 

pure open-loop system can not engage in machine learning and also can not correct any errors 

that it could make. It also may not compensate for disturbances in the system. 

 the passive control: passive stabilization techniques take advantage of basic physical 

principles and naturally occurring forces (and torques) by designing the spacecraft to enhance 

the effect of one force while reducing others. In effect, we use the disturbance torques to 

control the spacecraft, choosing a design to emphasize one and mitigate the others. This kind 

of control method uses the interaction between the spacecraft and natural phenomena 

happening in the operational environment (depending on the particular mission), and/or uses 

the mass characteristics of the spacecraft itself. Major advantage of every passive control 

system is the ability to obtain a very long spacecraft lifetime, not limited by on-board 

consumables or, possibly, even by wear and tear on moving parts. Disadvantages are the low 

pointing accuracy that can be attained and the impossibility to change in response of external 

events. Moreover, it should be remembered that natural phenomena can change with time, for 

example during an orbit time. This fact can cause a passively stabilized spacecraft to 

experience unexpected motions, such as oscillations. In most cases a passive control system 

include also some processes and devices devoted to the damping of undesired effects. 

Thanks to the augmented computer performances and to the miniaturization process that allows 

increasing the hardware capabilities, controllers have become more accurate and sophisticated, 

facilitating complex controls based on feedback techniques and more sophisticated and heavy 

computational algorithms (i.e. LQR, Hinfinity, Neural Network, etc…). Today, the controller family 

includes analogue on/off logic as well as high complex systems that include digital electronics 

hardware, multi-scheduled software, elements in the ground segment, logic circuits to detect and 

correct failures and to change the control strategies. Consequently, the control performances can be 

very limited (e.g. control a speed of a motor) or very complex and changing with respect to the on 
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orbit phases. In the latter case, mechanical and electrical configurations of spacecraft, sensors and 

actuators involved can change from a phase to another.  

The allocation of control functions to hardware vs. software vs. human operations, space vs. ground, 

planning vs. execution (which are essentially independent “dimensions” in implementation) for each 

mode of a mission are based on trade-offs, which take into account different issues: predictability of 

the situation, response time, available on-board computer resources, available telecommunications 

coverage and bandwidth, decision-making complexity, cost of development and operations, and 

acceptable risk. 

2.3.4 GNC in the product life cycle 
The control engineering can be considered a sector of SE as highlighted in [5]. As such it can also be 

broken down into similar engineering activities, that cover the different phase of the product life cycle: 

 Requirements definition, starting from the mission and system requirements, coherent and 

appropriate derivation of control requirements from the top level requirements, definition of 

the control operations requirements, definition of lower component or equipment level 

requirements (from hardware and software point of view), definition of interface requirements 

between components and continuous supervision of their status and traceability shall be made. 

 Design includes definition of the functional control architecture (including the functional 

interfaces), the derivation of a physical control architecture (including HW, SW and their 

arrangement) and the controller design able to meeting the control requirements through 

accurate analyses, trade-offs and taken decisions. The controller design is also supported by 

control budgets and evaluation of stability and performance (mathematical objects and indexes 

are defined in paragraph 2.6). 

 Verification and validation foresee the definition of control verification and validation 

strategy (including specification of requirements for test environments), the verification of 

functional performance by analysis on virtual or physical models, through dedicated processes 

(see the paragraph “In the loop configuration”) that the controlled system meets its control 

objectives and requirements, and, finally, the in-flight validation of controlled system 

behaviour. 

 Analysis, performed at all levels, consists in the selection of adequate analysis tools and 

methodologies, the requirements verification and (if any) negotiation, the disturbances 

evaluation, the numerical studies to support the definition of the architecture of control with 

respect the top level requirements and constraints (i.e. cost, risk and schedule and resources). 

Moreover, analysis of the results is the base to evaluate and confirm the control system design 

and the analysis of the performances (also from on orbit data). 

 Integration and control ensure the integration of the disciplines involved in the control 

system design throughout all project phases towards the total definition and production of the 

controlled system. This part covers also the managerial aspects of the control system design, 

i.e. the monitoring and management of capabilities and resources, the organization and 

planning of control engineering activities, the definition, management and update of the 

databases, assessment of control technology and cost effectiveness, the support for the on-

orbit operations and maintenance. 

Figure 30 underlines the interactions between requirements definition, design, analysis, verification 

and validation and integration and control for the control process. 
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Figure 30: Control Engineering process 

All these activities contribute to the proper development of the control system and of its components at 

various phases of the system product life cycle. The process remains particularly iterative among 

requirements engineering, design configuration, verification and validation, and analysis. After the 

functional specification of the control system, hardware, software and operations support items are 

designed and developed (or procured). Summarizing, as well as SE, the Control Engineering is always 

actively present, from feasibility studies and requirements definition to verification until, even, on 

orbit validation. 

Table 12, Table 13, Table 14, and Table 15 summarize the Control Engineering activities along the 

life cycle. [6] 
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Phase 

0/A Integration and control Requirements engineering Analysis Design and configuration Verification and validation 

Inputs - System development 

schedule 

- System development 

approach and constraints 

- System objectives 

- Mission requirements 

- System performance 

requirements 

- Controlled system 

objectives 

- Preliminary control system 

requirements 

- Control system design 

concepts of similar space 

systems 

- System verification and 

validation approach 

Tasks - First assessment of control 

system development cost 

and schedule 

- Generation of inputs to the 

system development 

approach 

- Identification of availability 

and maturity of control 

technology  

- Translate mission and 

system objectives into 

preliminary control 

objectives 

- Definition of preliminary 

control requirements 

- Control system life cycle 

definition 

- Analysis of control 

requirements feasibility for 

control system alternatives 

- Preliminary disturbances 

evaluation 

- Preliminary performance 

assessment 

- Initial sensitivity analysis 

- Identification of control 

system critical aspects 

- Establishment and trade-off 

of control system design 

concepts 

- Establishment of control 

system design baseline 

(including preliminary 

FDIR concept) 

- Control engineering 

support for definition of 

verification and validation 

concepts 

- Preliminary definition of 

control verification and 

validation methods and 

strategies 

Outputs - Inputs to project and 

system engineering plan 

- Inputs to cost estimates and 

schedule estimates 

- Inputs to technology 

development plan 

- Inputs to system 

requirements 

documentation 

- Control system analyses - Preliminary control system 

design and analysis report 

- Inputs to development and 

verification planning 

Table 12: CE activities in the phases 0+A 
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Phase B Integration and control Requirements engineering Analysis Design and configuration Verification and validation 

Inputs - Phase 0/A project planning 

and cost estimates  

- Control life cycle Phase 0/A 

- System objectives 

- Mission requirements 

- Controlled system 

objectives and requirements 

- Phase 0/A simulation 

models 

- Phase 0/A control analyses 

- Phase 0/A control design - System verification plan 

- Phase 0/A control 

verification plan 

Tasks - Update control system 

inputs to system 

engineering management 

plan and cost estimates 

(including risk 

management) 

- Review of the control 

systems compatibility with 

the system design and 

constraints 

- Analyse system 

requirements 

- Generate controlled system 

requirements 

- Allocate controlled system 

requirements to subsystems 

and components 

- Check traceability of control 

requirements with respect 

to system requirements 

- Analysis of control 

requirements for sub-

systems and components 

- Disturbances assessment 

- Controlled system 

performance analysis 

- Controlled system 

sensitivity analysis 

- Assessment of control 

technologies for early 

prototyping 

- Definition of control system 

baseline 

- Allocation of control system 

functions to H/W, S/W and 

human operators (inflight 

and on ground) 

- Definition of control system 

interfaces  

- Preliminary design of 

controller (control laws) 

- Preliminary definition of 

control related FDIR 

- Selection of control 

components and 

technologies 

- Establishment of control 

related budgets and 

margins 

- Prepare controlled system 

verification plan 

- Provide inputs to lower 

level verification plans 

- Provide inputs to the 

management plan 

- Support Phase C/D 

verification planning 

Outputs - Inputs to project and system 

engineering plan  

- Inputs to cost estimates and 

schedule 

- Inputs to system or 

subsystem technical 

specifications 

- Inputs to lower level 

technical specifications 

- Inputs to requirements 

database 

- Inputs to interface control 

documents 

- Controlled system analysis 

report (including simulation 

models description) 

- Control system design 

report (incl. design 

justification) 

- Preliminary control 

algorithms specification 

- Preliminary control system 

budgets 

- Controlled system 

verification plan  

- Preliminary controlled 

system verification report 

Table 13: CE activities in the phase B 
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Phase 

C/D Integration and control Requirements engineering Analysis Design and configuration 

Verification and 

validation 

Inputs - Phase B project planning 

and cost estimates  

- Control life cycle Phase B 

- Phase B control objectives 

and requirements 

- Phase B control 

components specifications 

- Phase B simulation models 

- Phase B control analyses  

- Phase B control design and 

design justification 

- Phase B controlled system 

verification plan 

Tasks - Support of system 

engineering and project 

management (including 

risk management) 

- Management of required 

control system changes 

- Support of operations 

- Review of data packages 

- Support to Phase E/F 

planning and cost estimate 

- Update of specifications 

- Review and assessment of 

control requirements 

changes 

- Review and assessment of 

system changes related to 

control 

- Detailed controlled system 

performance analysis  

- Update of sensitivity 

analysis 

- Support to verification 

process 

- Support to inflight 

verification process 

definition 

- Update of the control 

design baseline  

- Finalization of control 

system functional 

architecture and interfaces 

- Detailed design of 

controllers and 

optimization of controller 

parameters 

- Detailed design of control-

related FDIR 

- Review of control budget 

and margins analysis 

- Coordinate and monitor 

controlled system and 

lower level verification 

plans and activities 

- Monitor lower level 

verification acceptance 

activities 

- Support and monitor lower 

level qualification and 

acceptance tests 

- Perform controlled system 

qualification and 

acceptance tests 

Outputs - Updated inputs to project 

and system engineering 

plan 

- Inputs to system database 

- Inputs to operations 

handbook or user manual 

- Updated inputs to cost 

estimates for Phase E/F  

- Updated inputs to system 

or subsystem technical 

specifications 

- Updated inputs to lower 

level technical 

specifications  

- Updated inputs to interface 

control documents 

- Controlled system analysis 

report  

- Inputs to the definition of 

the strategies for the in-

flight calibration and 

performance analysis 

- Final control system design 

report 

- Final control algorithms 

specification (including 

control system TM/TC 

specification) 

- Final control system 

budgets  

- Controlled system 

verification report  

- Inputs to inflight 

verification plan 

Table 14: CE activities in the phases C and D 
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Phase 

E/F Integration and control Requirements engineering Analysis Design and configuration 

Verification and 

validation 

Inputs - System operations 

planning  

- Final system and lower 

level specifications 

- Controlled system 

requirements  

- Controlled system on orbit 

performance data 

- Strategies for the on orbit 

performance analysis 

- Final control system design 

report 

- On board verification plan 

Tasks - Support of system 

operations 

- Management of specified 

controller changes 

- Control engineering 

support to system disposal 

- Generation of lessons learnt 

for control engineering 

- Comparison of control 

objectives and 

requirements with 

controlled system 

performance 

- Clarify control objectives 

and requirements changes 

during operation 

- Analysis of controlled 

system operational 

performance 

- Analysis of required 

controller changes 

- Update of controller design 

(in case of required 

changes) 

- Support controlled system 

operational performance 

verification 

- Support system review 

Outputs - Inputs to disposal plan - New control related 

operational requirements 

- Inputs to controlled system 

operational performance 

report 

- Updated control controlled 

system analysis report 

- Inputs to payload data 

evaluation 

- Controller design updates 

(updated control system 

design report) 

- Inputs to on orbit 

acceptance report 

- Inputs to periodic mission 

reports 

Table 15: CE activities in the phases E and F 
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2.4 Verification and validation of a GNC system 
The GNC cannot be fully verified in real conditions before flight. The main reason is that the on board 

hardware can not be subjected to the real flight conditions and environment on ground. However, the 

GNC verification process shall follow a complete and careful step-by-step approach that starts from 

virtual models and ends with the real hardware. 

The GNC verification can be developed in the different phases and aspects: 

 GNC design and performance verification: it demonstrates that the GNC definition (e.g. 

modes, architecture, equipment and settings) is compliant with the functional requirements. It 

includes both analyses (based also on sensitivity and robustness) and simulations.  

 GNC hardware/software verification: it verifies the functional GNC behaviour with a 

representative configuration of hardware/software, interfaces and real-time performances. It 

concerns the overall functional loop, each part of the GNC (flight hardware and software) has to 

be individually verified with respect to its own specification in a separate process. 

 Entire GNC verification at satellite level: it foresees the same HW/SW verification of GNC 

integrated in the entire system, rather than having it separated. 

 GNC-ground interface verification: it consists of verifying the interactions of the subsystem 

with the GS (exchange of telemetry and reception of command). 

 On orbit verification and validation: it consists of the good working of the system in orbit, 

confirming the correcteness design that will be a milestone in future applications. 

This step-by-step verification approach is fully applicable to a program that includes new 

developments on both hardware and software. The GNC design and performance verification relies on 

extensive analyses and simulations for a completely new development or for a new family of 

spacecraft. This requirements verification can be skipped if a lot of hardware units and software 

functions are reused from a previous development, and when some verification steps performed 

previously can be considered as applicable to the current program. 

The GNC HW and SW verification for a completely new development relies on test benches, which 

include functionally representative hardware models of flight hardware, while it can use numerical 

simulation models of some hardware units for a recurring satellite, or for a satellite of an existing 

family. 

2.4.1 Mission definition and feasibility phase 
The verification and validation activities for GNC in phase A refer to mission definition analysis and 

feasibility studies of the whole system (the spacecraft): in particular, mission concepts and 

requirements have to be validated. These studies concern on: 

 the feasibility of trajectories and attitude strategies, 

 the feasibility of the manoeuvre w.r.t. the configuration of the system and the preliminary 

budgets, 

 the identification of navigation and control performances in the various mission phases 

identifying the subsystems operative modes and making assumptions on actuators and sensors, 

 the identification of the more relevant external and internal forces, and torques that disturb the 

vehicle motion.  

Analysis of the trajectories, ΔV, manoeuvres duration will yield the basic data required to define the 

propellant budget and consequently the actuators thrust, the power consumption for magnetic actuators 

and reaction wheels, the choice of the sensors, the determination and control strategies, and the 

guidance strategies. Not real-time simulations based on simplified kinematic and dynamics formula 
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constitute the main tool: key parameters and models characterization derive from historical data, 

previous projects and experience. Only relevant disturbances are modelled and it may be required to 

take into account other aspects of the mission or system, e.g. the vehicle geometry is required to define 

the atmospheric drag. 

SCS are the type of simulators needed to perform the simulation activity during this phase. 

2.4.2 Design phase 
The objectives of the verification and validation in this phase are: 

 the effectiveness of algorithms for guidance, navigation and control and, eventually, anti-

collision system,  

 the achievability of performances requirements for GNC 

 the feasibility of the design implementation with the chosen sensors, actuators, data 

management hardware 

 the correctness of environment modelling  

The first important task in the design phase is the development of GNC algorithms: they should be 

verified through closed loop simulations. No detailed models are involved in the loop; sensors, 

actuators and environment are modelled only to consider their dominant effects: in fact, they are 

represented by basic functions plus ideal bias or noise, environmental forces and torques are partially 

represented in relation to the type of mission: e.g. for the simulation of a GEO satellite atmospheric 

drag is neglected. The expected GNC performance obtained from this simulation becomes the driving 

factor for the requirements about trajectory/orbit and attitude.  

The GNC design and performance verification shall cover all the GNC modes (and related transitions), 

functions and tasks. The simulator shall be representative and support all these features and issues or it 

shall allow to add models, items, tools, and facilities. 

In the final part of the design phase, the software with the chosen algorithms starts to enter in the 

simulation loop. More detailed models of the vehicle dynamics, the environmental condition (such as 

Earth Magnetic Field and radiations effects), the sensors and actuators with disturbances (e.g. taking 

into account how the sensors output changes w.r.t. changes in the thermal conditions) take place in the 

simulation architecture. No hardware is still involved as well as real time simulation is not required 

allowing saving time and/or performing more runs contemporary. 

A basic scheme of a closed loop GNC simulation configuration for the design phase is shown in 

Figure 31. The configuration required is mainly the AIL where the simulation station has in charge 

any kind of simulation  

The GNC design and performance verification shall be performed through theoretical analyses and 

numerical simulations on the GNC functional simulator. It is useful to include the monitoring of the 

failures impacting the GNC functions, with their tuning in the GNC design and performance 

verification.  

All analyses and verification tools used in the design phase will typically run in non-real time, since 

there is no hardware test item requiring a real time environment. Validation of the models of 

spacecraft and equipment will, at this stage, be limited to a comparison with the evolving design of 

these items and with elements deriving from previous experiences and projects. Validation of models 

for dynamic disturbances on orbit and environments will, in most cases, be limited to comparison with 

data known from previous missions. 

Moreover, the GNC design and performance verification shall include a robust analysis covering the 

nominal variation range specified for the physical data and hardware performances: typical parameters 

include mass properties, sensor and actuators performances, environmental conditions, orbit 

uncertainties and drifts. 

FES is the simulators family involved in this kind of verification. 
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Figure 31: Closed loop GNC simulation configuration during the design phase 

2.4.3 Development phase 
The verification in this phase looks at verifying: 

 Proper function and performance of the complete control system implemented in hardware 

and software. 

 Function and performance of the navigation hardware and software in a realistic measurement 

environment. 

 Proper function of the on-board system together with the remote control functions (i.e. ground 

segment). 

In the development phase, the hardware and software of the system will have to be tested in closed 

loop in a real time environment with as many as possible real items in the loop. This means that the 

GNC software shall run in its proper computer hardware and that real sensor hardware shall be 

connected to it as well as the actuators even if it is generally not possible to include the actuator 

hardware in closed loop performance tests: in fact, this would require the proper orbital environment 

for thrusters and spacecraft dynamics to close the loop. To test the system with sensor and controller 

hardware in the loop, all items involved in the dynamic process, e.g. spacecraft body and actuators 

must still be represented by virtual models. 

During the development phase, the complete on-board software becomes available and its 

performance has to be proven. The focal tool is a real time simulation, capable to test together the 

GNC software and the hardware and software for data management. The GNC computer and the 

interfaces with sensors and actuators, or as an alternative with the mathematical models of these items, 

are just connected via the on-board data bus. In this way, unexpected behaviour due to their 

implementation and/or their operations in a different environment w.r.t. the previous simulation will 

emerge in the test results. 

The virtual models for orbital perturbations, for the actuators and their control electronics, for 

spacecraft dynamics and kinematics, and for sensors and their measurement environment, need to be 

available with an appropriate level of detail and reliability in order to produce the same closed loop 
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test result as in the real mission. All models need to be validated to fulfil the requirements, which 

means being confident that they represent the actual world in a realistic way.  

The resulting simulation setup is the main tool for the verification of the function and performance of 

GNC subsystem, both for the nominal mission and for all predictble non-nominal/contingency 

situations.  

A typical simulation setup for the GNC functions in the development phase is shown in Figure 32.  
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Figure 32: Closed loop GNC simulation configuration at development phase 

Special attention should be given to the verification of some equipment, e.g. the sensors: to verify the 

hardware and software as well as the calibration, test setups with physical stimulation of the sensors 

are required. First, these could be done with open loop tests (see Figure 33), where the physical 

stimulation is intended to provide an as realistic as possible measurement environment for the sensors 

in accordance with the trajectory and attitude motion of the chaser and target spacecraft and the 

motion of other reference points.  

This kind of open loop test setups are often used as the primary means of validation of the 

mathematical models of the sensors, involved in the SIL simulations. 

The disturbance part of the measurement environment models used can be validated only by practical 

experience in space, either by comparison with data from former missions or by dedicated in-orbit 

experiments. Once the worst-case situations are known from experience, they can be used in the tests 

with physical stimulations to validate sensors and navigation function wrt real world conditions. 

FVTB and SVF are the simulators on the base of the verification activities during the development of 

the GNC parts. They can be setup in a desired way, according to the SW and HW availability, time, 

cost, and schedule. 
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Figure 33: Open Loop GNC stimulation for sensor HW verification 

2.4.4 Qualification Phase  
The GNC verification for the qualification phase foresees that the system is stimulated because GNC’s 

HW and SW subsystem (stand-alone or integrated in the entire vehicle) shall properly react to external 

solicitations that reproduces external disturbances or forces as well as the behavior of in the loop 

components subject of the on orbit environment. 

Closed loop tests is needed mainly for the validation on the SIL, CIL and HIL simulation level. Since 

test preparations of these setups and test runs are complex, long and expensive, tests should be limited 

to a few particular test cases. Also, such test setups with physical sensor stimulation may not permit 

the reproduction of contingency situations, either because of physical limitations of the facility or 

because of operational safety of the test.  

One possible arrangement for GNC simulation in this phase is shown in Figure 34. 

Sensors can be tested through GSE commanded by the Simulation Station: e.g. according to the 

computed measurement, the Simulation Station can move accordingly a robotic arm that rotates real 

system or the parts of it containing a gyroscope. From the actuator point of view, it is quite difficult or 

impossible to safely guarantee the movement of an object within a facility.  

A previous step of this discussed configuration foresees that the real sensors and actuators were out of 

the loop. Sensors inputs to the GNC computer are directly provided by the GSE (normally different by 

the previous case): e.g. the output of voltages and currents of a sun sensor can be calculated by the 

Simulation Station that commands a power supplier able to provide those values directly to the input 

“sun sensor connector” on the on-board HW. 
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Figure 34: Closed loop GNC simulation configuration at verification stage with real Hardware 

2.4.5 Verification at system level 
End-to-end GNC tests shall be performed during final verification on the integrated spacecraft. The 

final GNC functional simulation configuration can be used as a reference to support the end-to-end 

tests. At this level the GNC shall properly work with the entire system: basic and functional tests are 

repeated in different environment condition. Referring to Chapter 1, the facilities devoted to perform 

the test are those derived from the FVTB and SVF and employed according the AIV plan. 

2.4.6 GNC-ground interface verification 
The interfaces between ground system and GNC with real on-board software are normally verified by 

test in order to validate the GS. The aim here is to verify the right functional behavior of the GNC 

submitted to commands sent by the GS during the on orbit life. Accordingly to the mission, different 

type of command can be transmitted: change of operative control mode, activation/deactivation of 

GNC’s HW or SW parts, and requests of orbit/attitude maneuver or parameter updating. Through this 

kind of verifications also the correct reception of the GNC on ground can be verified especially if a 

direct link between the GS and GNC computer has been implemented. GSTS is the type of simulator 

adoptable for these verifications. 

2.4.7 On-orbit verification 
Once calibrated, the nominal behaviour of the GNC functional loop shall be verified during the on-

orbit commissioning phase of the spacecraft, when the health status is monitored. The on-orbit 

verification results can be used as a reference for the long-term analysis of the vehicle behaviour and 

for future project because some parameters can only be verified in orbit.  

2.5 Guidance strategies, Navigation algorithms and Control 

methods. 

2.5.1 Attitude Determination 
Attitude determination is the process of deriving estimates of actual spacecraft attitude from 

measurements. Note that we use the term "estimates." Complete determination is not possible; there 

will always be some error. 

ADCS engineers treat two broad categories of attitude measurements. The first, single-axis attitude 

determination, seeks the orientation of a single spacecraft axis in space (often, but not always, the spin 



83 

 

axis of either a simple spinner or a dual-spin spacecraft). The other, three-axis attitude determination, 

seeks the complete orientation of the body in inertial space. This may be thought of as single-axis 

attitude determination plus a rotational, or clock, angle about that axis. 

Single-axis attitude determination results when sensors yield an arclength measurement between the 

sensor boresight and the known reference point. The reference point may be the sun, the Earth nadir 

position, the moon, or a star. The crucial point is that only an arc-length magnitude is known, rather 

than a magnitude and direction. Specification of the axis orientation with respect to inertial space then 

theoretically requires three independent measurements to obtain a sufficient number of parameters for 

the measurement. In practice, the engineer often selects two independent measurements together with 

a scheme to choose between the true solution and a false (image) solution caused by the under-

specification of parameters. The most common scheme entails using an a priori estimate of the true 

attitude and choosing the measurement that comes closest to the assumed value. 

To effect the three-axis attitude determination requires two vectors that can be measured in the 

spacecraft body frame and have known values in the inertial reference frame. Examples of such 

potentially known vectors include, again, the sun, the stars, and the Earth nadir. The key lies in the 

type of sensor used to effect the measurement rather than in the nature of the reference point. The 

sensor must measure not merely a simple boresight error, as in single-axis attitude determination, but 

two angular components of the error vector. The third vector component is known since only unit 

vectors need be considered in spacecraft attitude control. 

2.5.1.1 Devices 

This paragraph provides a brief overview of the devices and sensors normally involved in the attitude 

determination providing direct or indirect measurements. 

 Sun sensors are visible-light detectors which measure one or two angles between their 

mounting base and incident sunlight. They are popular, accurate and reliable, but require clear 

fields of view. They can be used as part of the normal attitude determination system, part of 

the initial acquisition or failure recovery system, or part of an independent solar array 

orientation system. Since most low-Earth orbits include eclipse periods, Sun-sensor-based 

attitude determination systems must provide some way of tolerating the regular loss of this 

data without violating pointing constraints. Sun sensors can be quite accurate (< 0.01 deg) but 

it is not always possible to take advantage of that feature. Sun sensors are usually mounted 

near the ends of the vehicle to obtain an unobstructed field of view. Sun sensor accuracy can 

be limited by structural bending on large spacecraft. Spinning satellites use specially designed 

Sun sensors that measure the angle of the Sun with respect to the spin axis of the vehicle. The 

data may be sent to the ground for processing or used in a closed-loop control system on board 

the vehicle. 

 Star sensors have evolved rapidly in the past few years, and represent the most common 

sensor for high-accuracy missions. Star sensors can be scanners or trackers. 

o Scanners are used on spinning spacecraft. Stars pass through multiple slits in a 

scanner's field of view. After several star crossings, we can derive the vehicle's 

attitude. 

o Trackers are employed on 3-axis attitude stabilized spacecraft to track one or more 

stars to derive 2- or 3-axis attitude information. The most sophisticated units not only 

track the stars as bright spots, but identify which star pattern they are viewing, and 

output the sensor's orientation compared to an inertial reference. Putting this software 

inside the sensor simplifies processing requirements of the remaining attitude control 

software.  
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While star sensors excel in accuracy, care is required in their specification and use. For 

example, the vehicle must be stabilized to some extent before the trackers can determine 

where they point. This stabilization may require alternate sensors, which can increase total 

system cost. Also, star sensors are susceptible to being blinded by the Sun, Moon, or even 

planets, which must be accommodated in their application. Where the mission requires the 

highest accuracy and justifies a high cost, we use a combination of star trackers and gyros. 

These two sensors complement each other nicely: the gyros can be used for initial 

stabilization, and during periods of sun or moon interference in the trackers, while the trackers 

can be used to provide a high-accuracy, low frequency, external reference unavailable to the 

gyros. Work continues to improve the sample rate of star trackers and to reduce their radiation 

sensitivity. 

 Horizon sensors are infrared devices that detect the contrast between the cold of deep space 

and the heat of the Earth's atmosphere (about 40 km above the surface in the sensed band). 

Simple narrow field-of-view fixed-head types (called pippers or horizon crossing indicators) 

are used on spinning spacecraft to measure Earth phase and chord angles which, together with 

orbit and mounting geometry, define two angles to the Earth (nadir) vector. Scanning horizon 

sensors use a rotating mirror or lens to replace (or augment) the spinning spacecraft body. 

They are often used in pairs for improved performance and redundancy. Some nadir-pointing 

spacecraft use staring sensors which view the entire Earth disk (from GEO) or a portion of the 

limb (from LEO). The sensor fields of view stay fixed with respect to the spacecraft. This type 

works best for circular orbits. Horizon sensors provide Earth-relative information directly for 

Earth-pointing spacecraft, which may simplify onboard processing. The scanning types 

require clear fields of view for their scan cones (typically 45, 60, or 90 deg, half-angle). 

Typical accuracies for systems using horizon sensors are 0.1 to 0.25 deg, with some 

applications approaching 0.03 deg. For the highest accuracy in low-Earth orbit, it is necessary 

to correct the data for Earth oblateness and seasonal horizon variations. 

 Magnetometers are simple, reliable, lightweight sensors that measure both the direction and 

size of the Earth's magnetic field. When compared to the Earth's known field, their output 

helps us establish the spacecraft's attitude. But their accuracy is not as good as that of star or 

horizon references. The Earth's field can shift with time and is not known precisely in the first 

place. To improve accuracy, we often combine their data with data from Sun or horizon 

sensors. When a vehicle using magnetic torquers passes through magnetic-field reversals 

during each orbit, we use a magnetometer to control the polarity of the torquer output. The 

torquers usually must be turned off while the magnetometer is sampled to avoid corrupting the 

measurement. 

 GPS receivers are commonly known as high-accuracy navigation devices. Recently, GPS 

receivers have been used for attitude determination by employing the differential signals from 

separate antennas on a spacecraft. Such sensors offer the promise of low cost and weight for 

LEO missions, and are being used in low accuracy applications or as back-up sensors. 

Development continues to improve their accuracy, which is limited by the separation of the 

antennas, the ability to resolve small phase differences, the relatively long wavelength, and 

multipath effects due to reflections off spacecraft components. 

 Gyroscopes are inertial sensors which measure the speed or angle of rotation from an initial 

reference, but without any knowledge of an external, absolute reference. We use them in 

spacecraft for precision attitude sensing when combined with external references such as star 

or sun sensors, or, for brief periods, for nutation damping or attitude control during thruster 

firing. Manufacturers use a variety of physical phenomena, from simple spinning wheels (iron 

gyros using ball) to ring lasers, hemispherical resonating surfaces, and laser fibre optic 
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bundles. The gyro manufacturers, driven by aircraft markets, steadily improve accuracy while 

reducing size and mass. 

Error models for gyroscopes vary with the technology, but characterize the deterioration of 

attitude knowledge with time (degrees per hour or per square-root of time). When used with 

an accurate external reference, such as star trackers, gyros can provide smoothing (filling in 

the measurement gaps between star tracker samples) and higher frequency information (tens to 

hundreds of hertz), while the star trackers provide the low frequency, absolute orientation 

information that the gyros lack. Individual gyros provide one or two axes of information, and 

are often grouped together as an Inertial Reference Unit, IRU, for three full axes. IRUs with 

accelerometers added for position/velocity sensing are called Inertial Measurement Units, 

IMUs. 

The attitude determination is based on using a combination of data from sensors and mathematical 

model to compute the current attitude of the satellite: the problem is that the attitude is usually 

expressed in form of a rotation matrix (that is the matrix that describes the orientation of the Body 

frame w.r.t. Inertial frame) or a quaternion, so determination algorithms need at least two 

measurement vectors. In point of fact, with only one vector the problem is underdetermined, with two 

it is over-determined so it would be correct to talk of attitude estimation and not of attitude 

determination. In [9] existing attitude determination methods are categorized as 

deterministic/statistical solutions and recursive estimation algorithms. 

 deterministic/statistical solutions: these methods need at least two vector measurements 

obtained at a single time to determine a three-axis attitude. If a vector measurement is missing 

the deterministic solutions cannot provide an attitude. Some common deterministic solutions 

are: TRIAD, q-Method, QUEST and ESOQ [10], [11]. 

 recursive estimation algorithms: the recursive estimation algorithms use both present and 

past measurements for determining the attitude. The Kalman filters are recursive estimation 

algorithms utilizing a state-space model of the system [12]. 

2.5.1.2 Choice of Attitude determination method 

The choice of attitude determination method is clearly based on what is required for the attitude 

determination, preferring solutions that are easy to implement and test. Definitely the attitude 

determination using a deterministic solution is the one that most closely matches the characteristics 

expressed before. It uses sensor readings at one given point in time (in fact it is also called “single-

frame” or “point” method) and does not include dynamics of the system. For example, considering a 

satellite equipped with sun sensors and magnetometers, the deterministic method can be applied 

knowing the sensor inputs to the system and by observing if the attitude is estimated in the correct 

way, while the same cannot be done with the Kalman filter (and similar) because it employs dynamics 

of the system. On the contrary, the deterministic methods have some shortcomings if compared to the 

extended Kalman filter: if these weaknesses are acceptable, a deterministic attitude determination 

method may be suitable. 

The deterministic methods require at least two vector measurements to determine the attitude. This is a 

problem when the satellite is in eclipse or the measured Earth magnetic field vector and the Sun vector 

are collinear: in this case, the last known attitude may be assumed until the vectors are no longer 

collinear. In fact, collinearity is assumed not to last longer than 1 or 2 minutes, due to the speed of the 

satellite. Clearly, when the satellite is in eclipse the Sun vector measurement cannot be used, as well as 

the stars sensors do not work when the Sun, the Moon or/and other strong sources of lightness stay in 

the sensors FOV. For all these reasons, the deterministic attitude determination shall forced to be 

integrated with a Kalman filter. 
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Considering the example sensor configuration, it would be possible to estimate the attitude in eclipse 

by using an Extended Kalman Filter. Attitude determination using an Extended Kalman filter and 

magnetometer data has been described in [9] and in [13], where data from solar panels are used in 

addition to magnetometer data, to make the extended Kalman filter converge faster. One difficulty 

with implementing an extended Kalman filter will be determining a precise inertia matrix. However, if 

the extended Kalman filter fails, the deterministic solution can be used instead. 

2.5.1.3 Deterministic/statistical solutions 

Determining the attitude of the satellite is equivalent to finding the rotational matrix    , which 

describes the orientation of the spacecraft-fixed reference frame,   , with respect to a known reference 

frame (e.g. the inertial reference frame or any frame in which the vector components are known),   . 

Given the generic vector   , expressed as    and    respectively in body and in inertial frame 

coordinates, the rotation matrix should satisfy the following equation: 

ibib vRv     [EQ.1] 

If more than two observations are available, a statistical method can be used and it should provide a 

better estimation of    . In this case there are   unit vectors (with    )    , with          . For 

each vector, the rotation matrix is defined as: 

kibikb vRv    [EQ.2] 

The objective is to find a solution that minimizes the overall error for the N vectors. Grace Wahba [31] 

proposed to find a matrix that minimizes the loss function defined as the sum of the square errors for 

each vector measurement: 

 

       
 

 
               

  
     [EQ.3] 

In this expression,   is the loss function to be minimized,   is the counter for the   observations,    

are non-negative weights,     is the k-th observation vector expressed in body frame and     is the k-

th observation vector expressed in the known (inertial or any other) frame. 

2.5.1.3.1 TRIAD algorithm 

Given the knowledge of two vectors in both the reference frames, two triads of unit vectors are built 

and the TRIAD algorithm obtains the direction cosine matrix relating both frames. Each triad is a base 

of an intermediate auxiliary reference frame,   , expressed in the body and inertial frame. 

The first base vector is given by: 

      
      
      

  [EQ.4] 

The second base vector is given by: 

           

    
       

         

    
       

         

  [EQ.5] 

Then the third base vector is calculated using the cross product between the vectors calculated in Eq.4 

and in [5]: 

             
             
             

  [EQ.6] 

Now, given the previous equation, two rotation matrices are obtained: 
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  [EQ.7] 

The desired attitude matrix is obtained as follows if the matrices are orthogonal: 

                 
         

   [EQ.8] 

2.5.1.3.2 q-Method 

The q-Method [32] [33] uses quaternions to solve the attitude determination problem minimizing 

Wahba’s loss function      . The loss function can be expanded as follows: 

       
 

 
               

  
                

 

 
       

        
         

        
 
    

[EQ.9] 

As     and     are unit vectors,    
        

      , the loss function simplifies as:  
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1     [EQ. 10] 

The minimization of J is equal to maximization of its first derivative with the opposite sign (gain 

function, G): 
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 [EQ.11] 

It is possible to write rotation matrix in form of quaternion in order to obtain this gain function [14]: 

           [EQ.12] 

where   is is a 4 × 4 matrix, known as Davenport’s matrix, given by: 

   
     
   

               [EQ.13] 

where 

           
  

   

      

                         
 

       

                 [EQ.14.a, EQ.14.b, EQ.14.c, EQ.14.d] 

q-Method is based on restating the problem of G maximization to obtain an eigenvalue (λ) problem 

[15]. In this way the largest eigenvalue of K maximizes the gain function G and the corresponding 

eigenvector is the least-squares optimal estimate of the attitude.  

To maximize the gain function, the derivative with respect to   is considered but since the quaternion 

elements are not independent, the constraint of equation (     ) must also be satisfied. Adding the 

constraint to the gain function with a Lagrange multiplier yields a new gain function: 

                  [EQ.15] 

Differentiating this gain function, the following equation is obtained:  

qKq     [EQ.16] 

that is easily recognizable as an eigenvalue problem:  

  0 qKI   [EQ.17] 

From the eigenvalue corresponding to the optimal eigenvector (quaternion) that maximize the gain 

function it is possible to observe that:  

  qqqqKqqqG TTT)(    [EQ.18] 

It is now clear that the largest eigenvalue of   maximizes the gain function. The eigenvector 

corresponding to this largest eigenvalue is the least-squares optimal estimate of the attitude. The q-

Method solves the eigenvalue/eigenvector problem directly, but it is a very computationally intensive 

task. 
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2.5.1.3.3 QUEST 

As previously noted, the eigenproblem solution is numerically intensive. This implies that a more 

efficient way than the direct solution of such problem is needed. One algorithm developed to do this is 

the QUEST (QUaternion ESTimator) algorithm [34]. Considering equations [EQ.9], [EQ.10], [EQ.18] 

(with       ), it is possible to write: 

        
 
         

 
     [EQ.19] 

The quaternion is computed by first solving for the Rodriquez parameters    (most likely using a 

numerical method) the following equation: 

                   [EQ.20] 

where  ,   and   are those defined for q-Method and    are defined as follows: 

   
  

  
   [EQ.21] 

Once the Rodriguez parameters are found, the quaternion is calculated by: 

   
 

        
 
  
 
    [EQ.22] 

It must be taking into account the singularity when the rotation is π radians, avoidable with a proper 

method of sequential rotations. 

2.5.1.3.4 ESOQ-1 – EStimator of the Optimal Quaternion 

[36] illustrates the ESOQ1 method starting from the Davenports eigenvalue equation [EQ.15] which 

says that the optimal quaternion is orthogonal to all the columns of the matrix 

            [EQ.23] 

which means that it must be orthogonal to the three-dimensional subspace spanned by the columns of 

  (it is a 4×4 matrix but only three of its columns are linearly independent as       ). The optimal 

quaternion is conveniently computed as the generalized four-dimensional cross-product of any three 

columns of this matrix. Examining the adjoint of   and considering the biggest eingenvalue      

  , it can be shown that:  

    T

optoptqqHadj max4max3max2)(      [EQ.24] 

where    for         are the other eigenvalues of  . Thus       can be computed by normalizing any 

non-zero column of       , which is denoted by index  . 

Let   denote the symmetric 3×3 matrix obtained by deleting the k-th row and k- th column from  , 

and let   denote the three-component column vector obtained by deleting the k-th element from the k-

th column of  . Then the k-th element of the optimal quaternion is given by: 

                    [EQ.25] 

and the other three elements are: 

                      
             [EQ.26] 

where the coefficient   is found by normalizing the quaternion. It is desirable, from a numerical point 

of view, to let   denote the column with the maximum Euclidean norm, which equation [6] shows to 

be the column containing the maximum diagonal element of the adjoint. 

The original formulation of ESOQ uses the analytic solution of the characteristic equation to obtain 

the eigenvalues. An alternative way to obtain the maximum eigenvalue     , faster and equally 

accurately, is to iteratively solve the final equation of the FOAM method: 

               
      

                          
   [EQ.27] 

where     
 

 is the Froboenius norm and B is defined in q-Method paragraph. 
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2.5.1.3.5 ESOQ-2 – Second EStimator of the Optimal Quaternion 

[37] illustrates the ESOQ2 algorithm that uses the optimal quaternion written as function of rotation 

axis   and angle  . Substituting it into equation [EQ.16] considered for the optimal quaternion, gives:  

                
 
           

 
   

     
 
                          

 
   

  [EQ.28] 

Combining these two relations gives: 

      
 
       [EQ.29] 

where 

                                              [EQ.30] 

These computations lose numerical significance if              and   are both close to zero, which 

would be the case for zero rotation angle. If this happens, a method of sequential rotation can solve the 

numerical problem.  

Equation [EQ.30] says that the rotation axis is a null vector of  . The columns of        are the 

cross products of the columns of  : 

                                [EQ.31] 

Because   is singular, all these columns are parallel, and all are parallel to the rotation axis  . Thus 

we set: 

  
 

   
                  [EQ.32] 

where   is any column of        with maximum norm. Because   is symmetric, it is only necessary 

to find the maximum diagonal element of its adjoint to determine which column to use. The rotation 

angle can be found from Equation [28] and substituting it gives: 

                   
 
             

 
     [EQ.33] 

which means that there is some scalar for which 

    
 
             [EQ.34] 

and 

    
 
                      [EQ.35] 

Substituting it into equation of quaternion in rotation axis/angle form, gives: 

   
 

                
        

 
               

     
            [EQ.36] 

2.5.1.4 Recursive estimation algorithms 

The Kalman filter, also known as linear quadratic estimator, is an algorithm which uses a series of 

measurements observed over time, containing noise (random variations) and other inaccuracies, and 

produces estimates of unknown variables that tend to be more precise than those that would be based 

on a single measurement alone. More formally, the Kalman filter operates recursively on streams of 

noisy input data to produce a statistically optimal estimate of the underlying system state: thanks to its 

properties, it is an optimal filter for Gaussian errors with zero mean acting on the system, in fact the 

main assumption of the Kalman filter is that the underlying system is a linear dynamical system and 

that all error terms and measurements have a Gaussian distribution. 

The algorithm works in a two-step process: in the prediction step, the Kalman filter produces estimates 

of the current state variables, along with their uncertainties. Once the outcome of the next 

measurement (obviously corrupted with some amount of error, including random noise) is observed, 

these estimates are updated using a weighted average, with more weight being given to estimates with 

higher certainty (in fact the weights are calculated from the covariance, a measure of the estimated 
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uncertainty of the prediction of the system’s state). The result of the weighted average is a new state 

estimate which is between the predicted and measured state, and has a better estimated uncertainty 

than either alone. Because of the algorithm’s recursive nature, it can run in real time using only the 

present input measurements and the previously calculated state: the entire history of a system’s state is 

not required. 

2.5.1.4.1 Discrete Kalman Filter 

The Kalman filter [27] addresses the general problem of trying to estimate the state      of a 

discrete-time controlled process that is governed by the linear differential equation 

                   [EQ.37] 

with a measurement      that is 

            [EQ.38] 

The random variables    and    represent the process and measurement noise. They are assumed to 

be independent (of each other), white, and with normal probability distributions. The n×n matrix   is 

the state matrix, the n×l matrix   is the control matrix,    is the control vector, and the m×n matrix   

relates the state to the measurement   . 

As for the continous case,The Kalman filter can be written as a single equation, however it is most 

often conceptualized as two distinct phases, “predict” and “update”: 

 predict: the predict phase uses the state estimate from the previous time step to produce an 

estimate of the state at the current time step. This predicted state estimate is also known as the 

a priori state estimate because, although it is an estimate of the state at the current time step, it 

does not include observation information from the current time step; 

 update: in the update phase, the current a priori prediction is combined with current 

observation information to refine the state estimate. This improved estimate is termed the a 

posteriori state estimate. 

Typically, the two phases alternate, with the prediction advancing the state until the next scheduled 

observation, and the update incorporating the observation. Actually, this is not necessary: if an 

observation is unavailable for some reason, the update may be skipped and multiple prediction steps 

performed. Likewise, if multiple independent observations are available at the same time, multiple 

update steps may be performed. 

The state of the filter is represented by two variables: 

      : the a posteriori state estimate at time   given observations up to and including at time   

     : the a posteriori error covariance matrix that is a measure of the estimated accuracy of 

the state estimate. 

The predicted (a priori) state estimate is: 

                            [EQ.39] 

with           the a posteriori state estimation at time     given the measurements at time    . 

Predicted (a priori) estimate covariance is: 

                   
       [EQ.40] 

where          is the a priori estimate covariance at time     and    is the covariance of the 

process noise. 

The innovation or measurement residual is: 

                  [EQ.41] 

The innovation (or residual) covariance is: 

             
       [EQ.42] 

where    is the covariance of the observation noise. The optimal Kalman gain is: 



91 

 

           
   

    [EQ.43] 

The results are the updated (a posteriori) state estimate and the updated (a posteriori) covariance 

estimate: 

                   
                   

  [EQ.44] 

In the actual implementation of the filter, each of the measurement error covariance matrix    and the 

process noise    might be measured prior to operation of the filter. 

Moreover, it can be noticed that under conditions where    and    are constant, both the estimation 

error covariance    and the Kalman gain    will stabilize quickly and then remain constant. If this is 

the case, these parameters can be pre-computed. 

 

Figure 35: Schematic operation of a Kalman filter 

2.5.1.4.2 Extended Kalman Filter 

The Extended Kalman Filter (EKF) addresses a problem similar to the one described in the previous 

paragraph, but it expands it to the non-linear case. It is possible to linearize the estimation around the 

current estimate using the partial derivatives of the process and measurement functions to compute 

estimates even if there are non-linear relationships. The process has a state vector      now 

governed by the non-linear differential equation: 

                      [EQ.45] 

with a measurement      that is 

             [EQ.46] 

where the random variables    and    once again represent the process and measurement noise. In 

this case the non-linear function      relates the state at time step   to the state at time step     and 

includes control   . The non-linear function      relates the state    to the measurement   .  

The two noises are unknown at each time step but it is possible to approximate the state and 

measurement vector without them. The predicted (a priori) state estimate is: 

                            [EQ.47] 

with           the a posteriori state estimation at time     given the measurements at time    . 

Predicted (a priori) estimate covariance is: 

                       
        [EQ.48] 

where      is the covariance of the process noise. 

 The innovation or measurement residual is:                    [EQ.49] 

 The innovation (or residual) covariance is:              
      [EQ.50] 

where    is the covariance of the observation noise. The near optimal Kalman gain is: 
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     [EQ.51] 

The results are the updated (a posteriori) state estimate and the updated (a posteriori) covariance 

estimate: 

                   
                   

  [EQ.52] 

where the state transition and observation matrices are defined to be the following Jacobians: 

        
  
 
              

      
  
 
       

  [EQ.53] 

An important feature of the EKF is that the Jacobian    in the equation for the Kalman gain    

correctly propagates or magnifies only the relevant component of the measurement information. 

A more general formulation does not consider that the noises are negligible, so the predicted (a priori) 

estimate covariance and the innovation (or residual) covariance are: 

                       
              

 

             
        

   [EQ.54] 

where the matrices      and    are Jacobian matrices: 

        
  
 
              

      
  
 
       

  [EQ.55] 

This formulation is implemented the same way as that one seen above. 

2.5.2 Orbit determination 
There are various ways to determine the orbit with different accuracies: 

 real-time orbit determination: it provides the best estimate of where a satellite is at the 

present time and may be important for spacecraft and payload operations, such as accurate 

pointing at some target; 

 definitive orbit determination: it is the best estimate of the satellite position and orbital 

elements at some earlier time, it is done after gathering and processing all relevant 

observations; 

 orbit propagation: it refers to integrating the equations of motion to determine where a 

satellite will be at some other time. Usually orbit propagation refers to looking ahead in time 

from when the data was taken and is used either for planning or operations. Occasionally 

orbits will be propagated backward in time, either to determine where a satellite was in the 

past or to look at historical astronomical observations in the case of comets or planets. 

Traditionally, ground stations from around the world provide tracking data to a mission-operations 

centre. When all data is available, definitive orbit determination provides the best estimate of the orbit. 

This is used to process the payload data for science or observation missions. The best estimate of the 

orbit is then propagated forward for real-time operations (such as star catalogue selection or 

manoeuvre timing) and further forward for mission planning.  

In 1983 NASA launched the first Tracking and Data Relay Satellite, TDRS, to begin replacing the 

worldwide ground tracking network. TDRS provides the same functions as the traditional ground-

station network. As the name implies, it tracks low-Earth orbiting satellites and relays data between 

the satellite and the TDRS ground station in White Sands, NM.  

GPS, GLONASS, and other more autonomous systems are also becoming operational, so orbit 

determination for future systems will differ significantly from what it has been in the past. 
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The observations used for orbit determination can be obtained by tracking from the ground, tracking 

from space, or from autonomous or semi-autonomous systems on the spacecraft. Each of these 

approaches will be described. 

 Ground tracking is the traditional way to obtain data for orbit determination. We either track 

the spacecraft's telemetry signals or use radar tracking from a site not associated with the 

spacecraft. In both cases, the principal data used for orbit determination are range and range 

rate, that is, the distance from the ground station to the satellite and the satellite's line-of-sight 

velocity during the overhead pass. Angular measurements are also available at times but are 

typically far less accurate than range or range-rate measurements. Accurate orbit 

determination using ground-station data ordinarily requires a number of passes. We may 

accumulate data from multiple passes over a single ground station, or may receive data at a 

central location from multiple ground stations around the world. In either case, data from a 

number of passes goes to one place for processing through a large system such as GTDS 

(Goddard Trajectory Determination System - NASA). Ground-based systems necessarily 

operate on historical data and therefore will use propagated orbits for real-time operations and 

mission planning. Accuracies achievable with ground-based tracking vary with a spacecraft's 

orbit and the accuracy and amount of data. However, accuracies typically range from several 

kilometres for low-Earth orbits to approximately 50 km for geosynchronous orbit. 

 The Tracking and Data Relay Satellite, TDRS, has now replaced NASA's worldwide ground 

tracking network. A major advantage of this system is that the two operational TDRS satellites 

can provide tracking data coverage for 85% to 100% of most low-Earth orbits. (TDRS does 

not work for satellites in geosynchronous orbit). The system collects mostly range and range-

rate data from the TDRS satellite to the satellite being tracked. Angular information is 

available, but is much less accurate than the range and range-rate data. If atmospheric drag 

effects on a satellite are small, TDRS can achieve accuracies of about 50 m. This is 

considerably better than most ground-tracking systems. Another way to track from space is to 

use satellite-to-satellite or crosslink tracking. 

Manufacturers have developed a number of autonomous navigation systems for spacecraft. 

Determining the orbit on board is technically easy with the advent of advanced spacecraft computers 

and higher-order languages. The principal problem is to provide orbit determination that is reliable, 

robust, and economical in terms of both cost and weight. 

Autonomous navigation is inherently real-time. Thus, definitive orbit solutions and payload data are 

available simultaneously. Moreover, measurements can be less accurate that those for systems that 

work on old data, because solutions propagated forward in time lose accuracy. With real-time systems 

highly accurate orbit propagation is less critical, although we will still need some forward propagation 

for prediction and planning.  

 GPS receivers use signals from four different GPS satellites to solve simultaneously for the 

three components of the observer's position and the time. This can be done several times, 

providing position and velocity data which determines the orbit elements. The GPS 

constellation is in a 12 hour orbit at approximately half-geosynchronous altitude. The system 

provides a moderate accuracy signal (50 m - 100 m) for general navigation and a high-

accuracy coded signal (15 m) for military applications. Commercial GPS receivers are now 

available for spacecraft, and are gaining in popularity in low-Earth orbit. 

 A number of proposals have been made for using satellite crosslinks to provide orbit 

determination. This is of interest because it can be done with crosslink equipment used for 

inter-satellite communication, and, therefore, requires minimal additional hardware. Crosslink 

tracking tends not to be implemented because of several practical problems. One problem is 

that satellite-to-satellite tracking provides only the relative positions of the satellites in the 



94 

 

constellation. This means that if the absolute position is needed for any purpose, then an 

additional system must be provided to establish the orbit relative to the Earth's surface. A 

second problem is that the satellites become interdependent, so satellite-to-satellite tracking 

may not work well for the first satellites or may degrade if a satellite stops working. 

Therefore, an alternative system not based on satellite-to-satellite tracking is required. If 

additional systems must be provided, there is less benefit from the satellite-to- satellite 

tracking. 

 A number of approaches for orbit and attitude determination have been proposed, based on the 

interaction of starlight with the Earth's atmosphere (Stellar Refraction Systems). Specifically, 

as stars approach the edge of the Earth a 

 s seen from the spacecraft, refraction will cause their position relative to other stars to shift, 

producing an effect which can be measured with considerable accuracy. Theoretical 

accuracies for such systems are projected to be in the vicinity of 100 m. However, none of 

these systems has been fully developed for flight as yet. The combination of Earth and star 

sensing works similarly to sensing the Earth, Sun, and Moon. The direction and distance to the 

Earth are sensed relative to the inertial frame of the fixed stars. This is then used to directly 

determine the direction and distance to the spacecraft. The Earth and stars are available nearly 

continuously in any Earth orbit and star identification is becoming less of a problem with the 

introduction of substantially better computers for space use.  

 Landmark tracking has also been proposed for orbit determination. This has been established 

as feasible by using data returned from satellite payloads. However, it has not been used as a 

normal method for satellite navigation, due in part to the difficulty of establishing automatic, 

unambiguous identification of landmarks to ensure that tracking accuracy can be maintained 

in the presence of adverse weather or poor seeing conditions. 

2.5.3 Guidance strategies 
This paragraph presents the most common guidance functions for the three types of considered 

vehicles: a (small) satellite, a chaser, and a launcher, [8], [1], [3], and alii. 

2.5.3.1 Satellite 

Orbital phase Guidance function 

Detumbling / 

damping phase 

 To damp the satellite angular velocity after the release from the launcher 

 To reduce the satellite angular velocity wrt an inertial frame under a pre-

defined threshold 

 To stabilize the satellite wrt a specified attitude for the start of the orbit 

transfer maneuver. 

Transfer to final 

orbit 

 To verify if the initial point (with a certain tolerance) for orbit transfer is 

reached 

 To follow a pre-determined trajectory 

 To verify the final point reaching 

 To verify, if any, the reaching of middle point along the trajectory 

Pointing phase  To determine the desired pointing 

 To compute closed-loop manoeuvres to reduce/eliminate the error 

between the actual attitude and the desired attitude 

 To maintain the final, desired attitude, computing commands to 

counteract the disturbance torques 
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Station-keeping 

phase 

 To maintain the orbit position w.r.t. an inertial frame, computing 

commands that neutralize the disturbance forces. 

Disposal phase  To verify if the initial point (with a certain tolerance) for disposal orbit 

transfer is reached 

 To follow a pre-determined trajectory 

 To verify the final point reaching (only if the disposal is on-orbit)  

Table 16: Guidance strategies for a satellite 

2.5.3.2 Rendezvous and docking  

Orbital phase Functions 

Phasing  To reduce the phase angle between chaser and target through one of the 

following manoeuvre types: forward/backward phasing, circular/elliptic 

phasing orbits, change of orbit height (circular orbit), change of 

apogee/perigee height (elliptic orbits) 

 To perform corrections to reduce/eliminate the injection errors for 

RAAN and inclination 

 To reach the “initial aim point” and the “trajectory gate”(ranging 

position and velocity)  

Far RV  To acquire target orbit 

 To reduce the approach velocity 

Close RV  To reduce the distance from the target 

 To reach conditions necessary to enter in the final corridor (along V-bar 

or R-bar) 

Final to 

approach 

 To reach predefined final conditions for the mating in terms of relative 

distance and attitude between chaser and target 

 To follow the motion of the docking port 

Mating  To deliver the chaser capture interface into the reception range of the 

target maintaining specific conditions in terms of approach velocity, 

lateral alignment, angular alignment, lateral and angular rates (for 

docking) or position and attitude accuracy, residual linear and angular 

rates (for berthing) 

Departure and 

de-orbiting 

 To compute the departure, not-return trajectory (along V-bar or R-bar) 

 To compute the deviation from this trajectory w.r.t. the orbit and the 

attitude  

Table 17: Guidance strategies for chasers spacecraft 

2.5.3.3 Launchers 

Orbital phase Guidance functions 

Boost – ascent 

phase 

To use pre-computed early boost trajectory to pass through region of high 

dynamic pressure 

To compute, during successive boost, velocity corrections necessary to place 

vehicle on desired trajectory or orbit 
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Orbit – ballistic 

phase 

To compute deviations from stable attitude or required attitude change 

To compute deviations from required orbit or changes needed to obtain new orbit 

Re-entry To compute deviations from re-entry attitude 

To compute desired direction and magnitude of available aerodynamic forces to 

shape re-entry trajectory 

Table 18: Basic guidance strategies for launch vehicles 

2.5.4 Control: methods and techniques 

2.5.4.1 Attitude control 

The Table 19 shows the main attitude control methods and summerizes their features. 

Type Pointing options Maneuverability Typical Accuracy Lifetime limits 

Gravity gradient Earth local vertical 

only 

Very very limited ±10 degree (2 axes) no 

Gravity gradient 

and Momentum 

wheel 

Earth local vertical 

only 

Very limited ±10 degree (3 axes) Life of the wheel 

Passive magnetic North/south only Very very limited ±10 degree (2 axes) no 

Pure Spin 

stabilization 

Inertially fixed any 

direction 

Repoint with 

precession 

maneuvers 

High propellant usage 

to move stiff 

momentum vector 

±0.1 to ±1 degrees 

(proportional to the 

spin rate), 2 axes 

Thrusters propellant 

(if applied) 

Dual spin 

stabilization 

Limited only by 

articulation on 

despun platform 

High propellant usage 

to move stiff 

momentum vector; 

Despun platform 

constrained by its 

geometry 

±0.1 to ±1 degrees 

(proportional to the 

spin rate), 2 axes 

and de-spin 

Thrusters propellant 

(if applied) 

bearings 

Bias momentum 

(1 wheel) 

Best solution for 

local horizontal 

pointing 

Momentum vector of 

the wheel prefers to 

stay normal to orbit 

plane, constraining 

yaw maneuver 

±0.1 to ±1 degrees Propellant and life 

of avionics and 

wheel bearings 

Zero momentum 

(thrusters only) 

No  No constraints ±0.1 to ±5 degrees Propellant 

Zero momentum 

(three wheels) 

No No constraints ±0.001 to ±1 

degrees 

Propellant (if 

applied) and life of 

avionics and wheel 

bearings 

Zero momentum 

CMG 

No No constraints ±0.001 to ±1 

degrees 

Propellant,. life of 

avionics and wheel 

bearings 

Active magnetic No One axis pointing is 

lost in the some 

singularity points 

±0.1 to ±5 degrees Life of avionics 

Table 19: Main attitude control methods [1] 
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The complete description of the cited control methods and functions is in [1], [2], [16], [8], and [17]. 

2.5.4.2 Orbit and trajectory control 

The trajectory control refers to the types of orbital maneuvers performed in open or closed loop, 

generally using small or large thrusters as actuators: 

 Free drift motion: no thruster are involved – “natural orbiting” from initial condition 

o Motion on a coplanar orbit at different altitude 

o Release from a station along R-bar (for RV missions only) 

o Release from a station along H-bar (for RV missions only) 

 Impulsive manoeuvres: they foresee instant change of velocity, similar to boost manoeuvres 

o Thrust in an orbital direction 

 Hohmann transfers 

o Thrust in a radial direction  

 Radial impulse transfer along V-bar (for RV missions only) 

 Radial impulsive fly-around (for RV missions only) 

 Thrust in out-of-plane direction (orbit plane correction) 

 Lambert transfer 

 Continuous thrust: continuous application of control forces (open or closed loop) along the 

trajectory 

o Straight line along the velocity vector approach 

 with constant velocity 

 with a velocity profile 

o Straight line along the radial vector (R-bar, mainly for RV mission)  

 with constant velocity 

 with a velocity profile 

 Station- keeping on a position outside the target orbit 

o below /above the target orbit 

o out-of-plane position 

 Transfer by continuous x-thrust 

o quasi-impulsive x-thrust 

o continuous x-thrust transfer to a different altitude 

 Transfer by continuous z-thrust 

o quasi impulsive z-thrust 

o continuous thrust transfer along velocity vector 

o continuous thrust in y-direction 

 Forced motion circular fly-around 
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2.5.4.3 Satellite 

Orbital phase Control methods 

Detumbling / 

damping phase 

 

Attitude: 

 Rate damping + desired attitude acquisition  

 Gravity gradient + damper 

 Three-axis stabilization through thrusters, reaction wheels and/or 

magnetic torque.  

Orbit: N/A 

Transfer to final 

orbit 

Attitude: is related to the control of the trajectory 

Orbit and trajectory: moderate orbit change or major orbit change 

Pointing phase Attitude: 

 Gravity gradient (2 axis only) for a low accuracy, very limited 

manoeuvrability, no life time problem 

 Passive magnetic 

 Pure spin stabilization 

 Dual spin  

 Bias momentum (1 wheel) 

 Three axes stabilization – active magnetic 

 Zero momentum (thruster only) 

 Zero momentum (three wheels) 

 Zero momentum (CGM) 

Orbit/trajectory: N/A 

Station-keeping 

phase 

Attitude: can be disturbed by the not perfect actuation of the thruster to maintain 

the orbit. So it could be useful to maintain the attitude using one of the methods 

presented for the pointing phase. 

 Orbit/Trajectory: orbit maintenance through vernier thrusters 

Disposal phase Attitude: three-axes active control to reach and maintain an attitude that helps the 

orbit/trajectory manoeuvre(s) 

Table 20: Control strategies and related techniques for satellites 

2.5.4.4 RVD/B 

In mission of RVD/B, the performance requirements for the reduction of the trajectory errors increase 

with decreasing range to the target. For example, for manoeuvre at 30-50 Km from the target the 

necessary increments ΔV per boost are smaller w.r.t. the orbit boost during the phasing but they are 

higher w.r.t. the manoeuvre in mating or close approach. The last consideration highlights that 

different actuators have to be used according to the phases: large thrusters are needed for phasing and 

far RV manoeuvre, vernier thruster as well as CGM or reaction wheels for the attitude control shall be 

used in the latter phases before the mating and, immediately after the departure. The final manoeuvres 

to re-entry or change the orbit still require the larger thrusters. 

Orbital phase Control features 

Phasing and far 

RV 

 Open loop boost manoeuvres: large thrusters are fired for a duration 

calculated from the expected acceleration and the required ΔV. 

Sometimes middle-course open loop manoeuvres should be performed in 

order to correct too high error due to the previous open loop manoeuvres 

that can carry out a too low accuracy 

 Rarely, trajectory that heavily changes the orbit of the spacecraft can be 

performed with a low but continuous acceleration during the transfer. 

Closed loop with high bandwidth maneuver are performed using small 
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thrusters for long time. The high bandwidth allows  controlling 

“continuously” both the trajectory and the attitude that can deviate for 

long firings of the thrusters, uncertainties, difference in the thruster 

levels, etc… 

Close RV  Control is sufficiently accurate to satisfy constraints due to optical 

sensors range and the reaching of the final corridor.  

 Closed loop manoeuvre are surely indicated taking into account that the 

main issue is to follow a pre-defined trajectory and correct the deviation 

from the desired state.  

 A high bandwidth is required to track the profile of velocities, relative 

position and attitude, maximizing the performances in terms of 

consumption, time to approach, accuracy.  

 Good controllers can be LQR and LQG and a well trained Neural 

Network  

Final to approach  Closed loop control with the higher possible bandwidth has to be 

considered because high capability to react wrt. disturbances and 

changing reference is required.  

 Small vernier thrusters can be used but they influence both the 

translational and the rotational mode, so they should be coupled with 

CGM or high-speed reaction wheels to guarantee the optimal alignment 

with the docking port or the berthing element. 

 Elegant design can require H∞ (in general, robust controllers) because 

they have high capability to recover the desired state in presence of 

larger uncertainties and disturbances.  

Mating  Very small actuations to finalize the rendezvous can be made but, in 

general, thrusters cannot fire in the last meters before the 

docking/berthing.  

 Electric thruster for trajectory control in this phase should be evaluated 

as well as RW or CGM for the attitude control.  

 In some case chaser shall be completely switched off before the mating: 

it means that no attitude and trajectory control are permitted in the last 2-

3 meters.  

Departure and 

de-orbiting 

 Closed-loop control is made to damp the angular velocity after the 

release (as if it was a detumbling manoeuvre).  

 When the attitude is stabilized, the thrusters fire in order to perform the 

computed escape manoeuvre and to reach a new orbit, in general for the 

re-entry on the Earth. 

 LQR is a good controller for this space as well as the robust controls 

Table 21: Control strategies and related techniques for RVD/B 
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2.5.4.5 Launcher and Re-entry vehicle 

Orbital phase Control function 

Boost  To maintain attitude and attitude rates within safe limits during region of 

high dynamic pressure 

 To direct thrust vector to provide velocity changes commanded by 

guidance 

 Normally, robust and/or optimal control techniques are chosen in order to 

maximize the system capability to track a reference (the pre-determined 

trajectory) and react to the disturbance.  

Orbit  To change/stabilize attitude via thrusters or other actuators 

 Thrusters to move to a new orbit 

Re-entry  To change/stabilize attitude via thrusters or other actuators 

 Thrusters to move to a new orbit 

Table 22: Control strategies and related techniques for launcher and re-entry vehicle 

2.6 GNC performance 
The performance elements of a control system refer to [18]: 

 extrinsic performance elements: performance in steady state (converged) conditions, expressed 

in time or frequency domains; performance wrt transient events. They depend on the interaction 

between the system and the external conditions. Consequently, assessing this kind of 

performances carries out to quantify the system environment (e.g. control reference/desired 

attitude/orbit/trajectory, measurement noise level, disturbance amplitude and size). 

 intrinsic performance elements, mainly – but not exclusively – for closed-loop controlled 

systems, are focused on the properties of the feedback loops (e.g. stability, stability margins, 

robustness, noise rejection). They do not depend on the external conditions because they are 

exclusively determined by the goodness of the design (e.g. reduced overshoot). 

Table 23 lists the extrinsic and intrinsic performances. 

In steady state, it is of interest the capability of the controlled system to properly achieve the desired 

condition (fixed, e.g. pointing the Earth, or varying along time, e.g. chasing another on-orbit object) 

against internal and external disturbances, signals and measurements noise, computation delays, and 

hardware or software failures. Possible requirements examples are: 

 Maximum absolute pointing error shall be less than 0.05 rad in converged conditions; 

 Maximum relative velocity between chaser and target for the final to approach phase shall be less than 1 

m/s; 

 RMS value of the angular rate measurement error shall be less than 0.1°/s. 

 Intrinsic  Extrinsic 

Steady state properties Measurement noise transmission, 

rejection of external noise disturbance 

Absolute pointing error, pointing stability, 

absolute measurement error 

Transient properties Response time, settling time, damping, 

etc... 

Overshoot (e.g. when an actuator is 

activated), “tranquilization” time (e.g. 

when an actuator is deactivated), etc... 

Other properties Stability, stability margins robustness Fuel/electrical power consumption, 

average illumination 

Table 23: Extrinsic and intrinsic performances 
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The performances during transient situation (e.g. a control mode change) are generally handled by a 

different set of requirements because they refer to short and particular conditions. The needs in 

transient condition can be explained in terms of: 

 Overshoot: the maximum overshoot of the attitude wrt x,y,z axes shall be less than 1°; 

 “Tranquilization time”: the control system shall recover the desired pointing within 30 

seconds after worst disturbance occurrence case. 

Other requirements derive from general considerations: 

 final position accuracy: e.g. the S/C shall reach the final orbit with an accuracy TBC meters 

 total consumption during a given phase: Maximum fuel consumption of a chaser spacecraft to 

pass from injection orbit and target orbit shall be less than 100 Kg; 

 total duration of a given phase: the satellite detumbling shall end before one day from the start 

of the on orbit mission; 

Clearly, requirements are defined at each level (system, subsystem and component level). For 

example, they can refer: 

 Number of thrusters firings; 

 Average illumination; 

 Number of expected desaturation for reaction wheels. 

2.6.1 Performance indicators 
In order to formalize in the best possible way performance requirements of a GNC system, a set of 

mathematical indicators shall be defined. Also in this case a general division can be made between 

extrinsic and intrinsic indicators. 

 Extrinsic indicator: aim at qualifying the end-to-end behaviour of the control system submitted 

to environment and measurement disturbances. The definition of these indicators starts from 

the state variables and parameters of interests for the performance: attitude (Euler angle, 

quaternion), angular velocity, position, linear velocity, centre of mass position, mass. After 

that, the error functions and the operator applied should be defined: they are mathematical 

formula (algebraic differences, distance, angular distance, norm of vectors difference) which 

quantify the difference between two elements. They should help to verify the identified 

performance properties that have to be verified, e.g. maximum/minimum values. 

 Intrinsic indicator: since by definition such performances do not depend on the end-to-end 

temporal behaviour of the system, and are not a function of the state vector: they are very 

useful to verify internal behaviour of the system. The most usual intrinsic performance 

indicators for closed-loop control systems are: the stability and the stability margins, which 

require to be carefully defined according to the nature and the complexity of the system, the 

transient response properties such as overshoot and damping ratio. Other interesting 

performance independent from the outputs of a simulation stability are observability, 

controllability (defined in this paragraph), robustness, disturbance rejection can be computed 

out of the simulation and verified for analysis. Other properties find confirmation from the 

simulation: e.g., margins of stability or disturbances rejection. 

In the next paragraphs the most important definitions for extrinsic and extrinsic performance are 

given. 

2.6.1.1 Extrinsic performance parameters 

The most common extrinsic performance indicators are: 

 Absolute Performance Error (APE): is the instantaneous values of the performance error 

(difference between desired-actual state) at any given time; 
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 Mean Performance Error (MPE) is the mean value of the performance error within a specified 

interval of time; 

 Relative Performance Error (RPE) is the difference between the instantaneous performance 

error at a given time and its mean values over a interval of time containing that time; 

 Performance Stability Error (PSE) is defined as the difference between the instantaneous 

performance error at a given time t and the error value at an earlier time t-δt, where δt is fixed; 

 Absolute Knowledge Error (AKE) is defined as the instantaneous value of the knowledge 

error (defined as the actual value and the estimated/known value) at any given time; 

 Mean Knowledge Error (MKE) is defined as the mean value of the knowledge error over a 

specified time interval; 

 Relative Knowledge Error (RKE) is defined as the difference between the instantaneous 

knowledge error at a given time, and its mean value over a time interval containing that time. 

2.6.1.2 Intrinsic performance parameters 

Two main concepts are of interest within the discussion about the intrinsic performances of a 

controlled system: its stability and its robustness.  

2.6.1.2.1 Stability 

The “stability” is the intrinsic property defined as the ability of a system to remain indefinitely in a 

bounded domain around an equilibrium position or around an equilibrium trajectory when submitted 

to small external disturbances. 

Considering a LTI system described in the Laplace domain by the equation                 

 , its characteristic polynomial is                           where    are the eigenvalues 

of   or poles of     . The system is 

 Asymptotically stable if the real part of the eigenvalues are strictly minor than 0 

 Marginally stable if there is at least an eigenvalue with real part equal to 0 and the others with 

real part strictly minor than 0 

 Unstable if there is at least an eigenvalue with real part major than 0 

Analogous definition can be made for LTI digital system, expressed in the z-domain. The system is 

 Asymptotically stable if the real part of the eigenvalues is strictly minor than 1 

 Marginally stable if there is at least an eigenvalue with real part equal to 1 and the others with 

real part strictly minor than 1 

 Unstable if there is at least an eigenvalue with real part major than 1 

There are popular criteria that allow determining the stability of a system both for the classic and 

modern control theory: 

 The algebraic criteria: these criteria assume that the analytical expression of the characteristic 

polynomial of the system is available and give information with regard to the position of the 

roots of the characteristic polynomial in the left- or the right-half complex plane.[19] 

 The Nyquist criterion: this criterion refers to the stability of the closed-loop systems and is 

based on the Nyquist diagram of the open-loop transfer function.[20] 

 The Bode criterion: this criterion is essentially the Nyquist criterion extended to the Bode 

diagrams of the open-loop transfer function. [20] 

 The Nichols criterion: this criterion, as in the case of the Bode criterion, is essentially an 

extension of the Nyquist criterion to the Nichols diagrams of the open-loop transfer function. 

[20] 
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 The root locus: this method consists of determining the root loci of the characteristic 

polynomial of the closed-loop system when one or more parameters of the system vary 

(usually these parameters are gain constants of the system).[21] 

 The Lyapunov criterion: this criterion is based on the properties of Lyapunov functions of a 

system and may be applied to both linear and nonlinear systems. There are both a direct 

method and an indirect. [22]. 

Briefly, the algebraic criteria, the Nyquist criterion, the Bode criterion, and the Nichols criterion, as 

well as the root locus technique, are all criteria in the frequency domain. The Lyapunov criterion is in 

the time domain. 

2.6.1.2.2 Robust stability 

A control system is robustly stable if it is stable for every admissible perturbation: when stability is 

verified, it becomes of interest establishing the limit within this performance is guaranteed. It means to 

define the amplitude of uncertainties of the physical parameters describing the control system (plant, 

sensors, actuators, and controller) for which the closed loop remains stable. Pay attention that the 

stability margin shall also be defined for those controllers that are used during different phases of the 

mission for which the spacecraft characteristics or the objectives can present significant variations. In 

such cases the controller needs to operate properly over a certain range of plant behaviours rather than 

in disturbances condition: however the same analysis about stability margin can be led. 

The robust stability analysis and the stability margins calculation generally pass through the 

computation of the so-called sensitivity and complementary sensitivity functions. From the Figure 29, 

it is easy to define: 

 The Output Sensitivity as the closed-loop transfer function between the control reference r and 

the feedback error term  

 The Input sensitivity as the closed-loop transfer function between the external disturbance d 

and the total action v. 

 The Output complementary sensitivity as the closed-loop transfer function between the control 

reference r and the control performance y 

 The Input complementary as the closed-loop transfer function between the external 

disturbance d and the control command u 

The norm of these functions (in the frequency domain) helps to determine the stability margins. The 

norm definition is based the singular values σ.  For a complex matrix A , the maximum singular value 

is given by 

               
     

    
    [EQ.56] 

The stability margins are determined by the maxima of these singular values over the frequency 

domain: 

   
 

                     
 

                  

   
 

                     
 

                  
  [EQ.57] 

 

The larger are these values, the smaller are the stability margins. As a consequence specifying a given 

level of stability margins can be achieved by specifying a maximum value for the singular values 

above. 

Today, the controllers are implemented numerically, the controllers are not sensible to physical 

uncertainty and the margins requirement should be loosened – more or less – to account for that. 

However, whereas uncertainties are highly reduced at controller’s level, they tend to increase at plant’s 

level. In a GNC control loops, the dynamics of the satellites have grown in complexity over the past 



104 

 

years, due to large flexible appendages, large sloshing fuel masses andto more stringent or station-

keeping pointing requirements. For these reasons, the stability margins are intended to cope with the 

growing uncertainties related to these elements. 

In practice it can be difficult to ensure that this verification is fully exhaustive, due to the number of 

uncertain parameters and to the size of the domain that should be investigated. Scanning the full 

domain by a series of discrete sets of numerical values can lead to huge simulation times. Consider for 

illustration a simple (simplified) satellite dynamical model with a rigid central body and two steerable 

solar arrays with three flexible modes each: the elementary parameters required to describe this 

dynamics are 

 the rigid inertia matrix of the full satellite (6 parameters),  

 the cantilever frequencies for the flexible modes (6 parameters),  

 the cantilever damping ratios (6 parameters),  

 the modal coupling factors of the flexible modes (36 parameters, reducing to 12 considering 

pure modal shapes),  

 the two steering angles.  

Even considering a fixed, worst case damping ratio and pure modal shapes the sensitivity analysis 

should run over 26 elementary parameters, which makes it hardly manageable in practice. The search 

for a worst case of stability margins is partly driven by engineering feeling (for simple configurations 

and control laws, the smaller the inertia, the higher the coupling factor, the smaller the cantilever 

frequency often lead to minimum margins). 

Systematic techniques exist based on advanced methods (for instance based on “M-  decomposition” 

of the uncertain system), which allow – with some limitations – for a direct identification of the worst 

combination of uncertainties leading to the loss of the stability properties. Nevertheless these 

techniques are difficult to generalize and can reach their limits for systems with a large number of 

uncertain parameters; they cannot be set as a standard approach for verification. 

2.6.1.2.3 Observability and controllability  

The concepts of controllability and observability have been introduced by Kalman [24] and are of 

great theoretical and practical importance in modern control. For example, they play an important role 

in solving several control problems, such as optimal control, adaptive control, and pole placement. 

 

Starting from [EQ.37] E [EQ38], the vector      is completely controllable or simply controllable if 

exists a piecewise (so without limitation on the amplitude or on the energy of    ) continuous control 

function      such as to drive      from its initial condition       to its final value       in a finite 

period of time. 

The controllability is verified if the         is maximum, where S is the controllability matrix 

                . 

The output vector      is completely controllable or simply controllable if there exists a piecewise 

continuous control function     , which will drive      from its initial condition       to its final 

value      , in a finite period of time. 

The controllability is verified if the         is maximum; where S is the controllability matrix: 

                     . 

 

The concept of observability is related to the state variables of the system and it is dual to the concept 

of controllability.  

The state vector      is observable in the time interval         if, knowing the input      and the 

output      for t contained in        , it is possible to determine the initial condition vector      . 
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The observability is verified if the         is maximum; where    is the controllability matrix: 

                         . 

2.6.1.2.4 Robustness [25] 

Robustness is the property of a controlled system to achieve the control objectives against the 

disturbances and uncertainties. Two types of robustness can be considered: robust stability and robust 

performance.  

As said before, a system is robustly stable if it is stable for each admissible perturbation. Moreover, a 

system performs robustly if it satisfies the performance specifications for all admissible perturbation. 

The stability and performance robustness depend on the controller, the adopted models and the set of 

perturbations. 

Two main cases could be investigated to analyse the stability and performances robustness: the 

controlled systems with unstructured uncertainty and the controlled systems with structured 

uncertainty. 

The unstructured uncertainties and perturbations can be categorized in Figure 36: 

 Additive, that represents unknown dynamics operating in parallel w.r.t. to the system 

 Multiplicative, that represents unknown dynamics operating in series with the system  

 Feedback, that represents uncertainty on the closed loop control 

 

Figure 36: Additive and multiplicative unstructured uncertainties 

Stability robustness and performance robustness can be evaluated if the perturbations are bounded 

                  where      is the maximum singular value and    is any of the mentioned 

perturbations. 

Taking into account the standard form of a general controlled system with uncertainty, a matrix 

description can be made: 
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   [EQ.58] 

The inputs are the perturbation input (  ), the disturbance input ( ), the control input ( ); the 

outputs are the perturbation output (  ) the reference output ( ) and the measured output ( ). 

The perturbation bound is 
 

       
             and normalized perturbation is defined as      

 

       
     . The maximum singular value is          

 

       
           . The set of 

perturbation, for each frequency, that satisfies this bound is: 

                             [EQ.59] 

The normalized perturbation is incorporated into the system model by substituting       

           . The stability robustness of controlled systems with uncertainty is addressed by the 

study of the standard model. Defining      as the nominal closed loop system, this equation is 

derived: 

                                                             

 [EQ.59] 

From this equation, it is obtained: 

 
  
 
   

                  
                        

      

                
                      

      
  
  

 
  

 
         
       

  
  

 
                                                   [EQ.60] 

     is stable because the controller has been designed for the nominal control and the perturbation is 

stable because it has a bounded gain. 

A general feedback system where perturbation is bounded (         ) is robustly stable for all 

possible perturbations because the nominal closed-loop system is stable and it is valid the theorem of 

“the small gain”: 

                               [EQ.61] 

In many applications, additional constraints on the set of admissible perturbations are available. These 

constraints add “structure” by conferring a more general form of uncertainty than the unstructured. In 

fact, structured uncertainties arise when multiple perturbations affect the system. 

 

Figure 37: Structured uncertainties 

From the mathematical point of view, the structured perturbation      can be written as a diagonal 

transfer function matrix: 
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   [EQ.62] 

The structured perturbation is normalized so that its infinity norm is bounded by 1:           and 

all the blocks of the perturbation are scaled so that their infinity norm is bounded by 1:  

                        [EQ.63] 

The stability of a system subject to a structured uncertainty is determined by analysing the feedback 

system in Figure 38. The nominal closed loop system is assumed to be stable. Any unstable poles of 

this system are therefore caused by closing the loop through the perturbation and are solution of 

                     .  

 

Figure 38: System with a structured uncertainty 

In this case, stability robustness may be evaluated by the determination of the smallest perturbation 

that results in a pole with a non negative real part (for the continuous systems) or a real part higher 

than 1 (for discrete systems). Through mathematical calculations, the “size” of the smallest 

perturbation that destabilizes the system is defined as follows: 

                                                           [EQ.63] 

The maximum Singular Value (SV) is a measure of the size of the perturbation.  

A system is robustly stable if and only if smallest destabilizing perturbation is greater than 1. It means: 

                                                            [EQ.64] 

However this problem is too complex, so the robust stability condition is put into a more useful form 

for both application and computation: 

    
 

                                                   
     [EQ.65] 

This result is very similar to the form obtained for unstructured perturbation. The term within the 

bracket is called Structured Singular Value (SSV) and is formally defined as: 

      
 

                                                   
 

                           
   [EQ.66] 

A general feedback system is robustly stable for all possible perturbations         and           

if and only if the nominal closed loop system is stable and                   . 

Performance robustness analysis can be based on the SSV as for the robust stability analysis. In fact, a 

particular method of specifying performance is to limit the ∞-norm of the closed loop transfer function 

          where      is the perturbed closed-loop transfer function here defined: 
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                    [EQ.67] 

The robust performances are reached if the system is robustly stable and           is true for all 

admissible perturbations. The ∞-norm cost function is typically used to specify performance 

robustness because it yields a robustness test that is easily applied in practice. The conditions for 

performance robustness can be precisely stated in terms of these transfer functions: 

                                  [EQ.68] 

This problem can be converted into the equivalent robust stability problem appending an uncertainty 

block to the system. The system in Figure 39 (a) meets the performance robustness objective if the 

system in Figure 39 (c) is robustly stable. 
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Figure 39: Performance robustness analysis using SSV 

Robust stability of the system with the performance block implies that the system is stable for all the 

perturbation of the type: 
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   [EQ.70] 

such that           where       is a perturbation for which the robust stability is equivalent to the 

performance requirements. The system is robustly stable when subject to the perturbation if and only if 

                  , which satisfies the first condition for robust performance.  

The system with performance block is robustly stable proving that               . A consequence 

of the definition of the SSV is that                is true if and only if                    

for all the frequencies and all admissible perturbations                             
  . 

Developing the determinant, it is possible to demonstrate that the performance robustness is satisfied if 

and only if (theorem of “the small gain”): 

                                   
  
        

 
    [EQ.71] 

for all the unstructured perturbation      . 

2.6.1.3 Practical aspects 

In general, the complete sequence for stability, stability margins verification, robustness, and 

performance analysis for a real space system can be split into:  

 linearization of the system (when possible) in the neighborhood of its operational conditions,  

 design and tuning of the controller with respect to the linearized system, 

 verification of the system stability properties (stability, margins, robustness, advanced 

methods) using the linear analysis techniques described in the previous clauses, taking into 

account the parametric uncertainties of the system  

 final validation by performing time simulations with the complete system (including non-

linear features), analyzing the response signal behavior. 
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Chapter 3. The simulator 
The simulator is part of a wider methodology that derives from the idea to improve the process of 

design, verification of the requirements and their validation against the environment of complex 

systems, with particular interest in the GNC subsystem of space vehicles. The improvement refers to 

the effectiveness and the low cost of the process that carries out to prevent misbehaviors because allow 

individuating errors in the specification, the design, the manufacturing, and the integration phases. The 

methodology puts together the modern approach of the SE, forsaking the traditional document-centric 

approach, and the M&S based approach. The methodology enables the design and the V&V of a 

system through an iterative process that leads to verify the entire system against its specifications as 

soon as possible, without the necessity to have the availability the real software and real hardware. To 

help this process, all the activities have to be made on a common “platform” in any moment for 

mitigate the risk of incompatibility between successive stages as well as misunderstandings and loss of 

information. In order to avoid these problems, the methodology leans on a simulation tool called 

Simulator (in particular, StarSim) able to support the decision making activities and the verification of 

functional and operational requirements. In fact, the simulator guarantees the possibility to simulate 

the behavior of the system thanks to the constant availability of virtual models. This allows 

progressively introducing pieces of the on board software and hardware and maintaining as virtual the 

models of the not available equipment and not reproducible environmental phenomena. Moreover, the 

time sequence of verification algorithms, then software, and finally hardware could not be rigorously 

followed thanks to the use of hybrid simulation configurations. It means that hardware parts of the 

system can be inserted in the simulation loop leaving the other incomplete parts as virtual models 

managed by the simulator. Clearly, the simulator must have virtual models with different degrees of 

fidelity, suitable with the ongoing stage of the project as well as the capability to host and manage 

simulations with real software (intended as executable files properly generated) and/or real hardware 

(intended mainly as embedded systems, sensors, and actuators) in the loop. Before to start any session, 

the simulation architectures and configurations can be chosen like a customer can choose a product on 

the shelves of the supermarket. Following different strategies, the user (i.e. designer, developer, 

analyst, customer, or operator) puts into the “basket” what it is useful (models and interfaces) and then 

builds the simulation “loop” through the setup of the parameters of the selected models. From the user 

choices and setup, the simulator is able to generate a software code flexible enough and build a 

modular simulation structure in which every piece (virtual or physical model) can be replaced by a 

similar element without eccessive effort. Moreover, the continuous use of the simulator allows to have 

a great number of data for analyses and comparisons and the capabilities of different configurations 

and setups allows to deeply verify the system for various conditions, increasing the confidence about 

the designed system. 

3.1 The methodology 
The Figure 40 shows the flow chart of the methodology. Going into details, three main steps 

characterize the methodology. 

1. design step foresees the application of SE methods for the GNC design: mission, program and 

system requirements and constraints analysis leads to individuate the critical aspects that 

impact the GNC design. Moreover, the interaction between the GNC and the other subsystems 

shall be taken into account during the design process because the required performances (e.g. 

pointing accuracy), the power and mass budgets, the instrumentation and payload layout affect 

the GNC design. The main and addition functions of the GNC subsystem shall be individuated 

and analyzed: using SE engineering techniques like N2 diagram, product trees, or functions vs 
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equipment matrices the GNC functional and physical architectures are built, sensors, actuator 

and electronics devices are individuated. The GNC subsystem architecture is characterized by 

the control architecture from which derives the choice of guidance, navigation and control 

strategies (e.g. deterministic or recursive methods for attitude or trajectory determination, 

nominal and off normal control modes and the associated guidance strategies and control 

laws). 

2. M&S step is the core of the methodology. It foresees the following steps: 

a. “Definition of environmental parameters, disturbances and noises characterization 

and S/C motion features deriving from mission analysis”. Orbit parameters and orbit 

propagation, disturbance torques and forces, noises generated by the radiation and 

heat fluxes shall be known or estimated through virtual, hybrid or physical models 

according to the phase of the product life cycle. 

b. “GNC models choice and characterization”: sensors, actuators, and electronic devices 

that constitute the GNC subsystem, derive directly from the system and control 

architecture. Their models shall be chosen accordingly: virtual models have different 

levels of accuracy and detail (simpler for the design and more complex for the 

verification) and the hybrid and physical models (the real objects) can be MU, EM, 

QM, and FM. The chosen models shall be properly assembled following the 

architecture and maintaining the loop/chain sequence. 

c. “Interface choice and characterization”. Particular attention shall be paid for the 

interfaces among the models or elements. A certain numbers of software and hardware 

interfaces shall be available in order to guarantee the connection for virtual, hybrid 

and physical models. These interfaces shall be properly selected reflecting the design. 

d. “GSE choice and characterization”. GSE involved in the simulation session for 

stimulation, for power supplying and/or for connecting hybrid and physical models 

shall be chosen. For SIL, CIL and HIL simulation, they are essential. 

e. “Special functions and GNC strategies choice and/or implementation”. They can be 

taken from database or defined accordingly the GNC design. “Special functions” 

refers for example to mathematical operation (i.e. rotation matrix, eigenvalues 

computation, 3x3 cross-product, etc…); GNC strategies are the algorithms that 

implement attitude and orbit determination and control, and control modes. Examples 

are q-est, ESOQ, q-method algorithms and Kalman Filters (for 

navigation/determination), detumbling mode, pointing mode, chasing mode (for 

guidance), PID, LQR, Fuzzy logic control (for control techniques). 

f. “Setup of models, interfaces, and GSE”. This operation shall be made before the 

simulation start and requires the definition of parameters:  

i. for equipment, GSE models and special functions, it means tuning parameters 

according to the data sheets, system/mission specifications or GNC design. 

For hybrid and physical models, the set up activities foresees the plug in of 

cables and connectors and their proper arrangement within the simulation 

facility room. 

ii. for interface: it means to select the protocols, data flow control, speed, the 

generation of interrupt and so on.  

g. “Configuration of simulation parameters”. Real time (RT) vs not real time (not RT) 

execution choice, numerical setting (e.g. the integrator type and integration method), 

frequency of the simulation loop, simulation duration, initial condition of the each 

variable or constant value out of the models, interfaces, GSE, special functions 

settings are some examples. 
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h. “Selection of data outputs”. Data outputs are all those parameters that will result of 

interest for real time and post-processing analysis. More in general, all the data 

repository tags and memory locations shall be defined. 

i. “Simulation execution and the live data visualization”. At the end of every simulation 

loop, the outputs and the simulation parameters can be updated, stored and visualized 

in order to guarantee the monitoring and control from the user. 

3. Verification & validation step is performed both during and after the simulation session 

execution through the analysis and the comparison of the outputs, that lead to the evaluation of 

the GNC functions, performances and strategies (determination and control). Failures, errors, 

bugs, wrong implementation reports as well as the requirements satisfaction are possible 

outputs of this step. In the latter case the methodology process is completed and no new 

iterations should be scheduled. On the contrary, if the requirements are partially or not 

satisfied a new iteration must be performed, changing some part of the design. The outputs 

can be also used in support to the requirements negotiation with the program manager or 

system engineer: in this case the system (and mission, if any) requirements analysis shall be 

reviewed. If the negotiation is not possible the methodology restarts from review of the 

subsystem design, modifying parameters, strategies, hardware and/or software parts and 

modelling and simulating again the behavior of the new solution in order to have new data and 

evaluate again the requirements satisfaction. 

The methodology is characterized by focal concepts, listed hereafter: 

 “The speed to complete an iteration”. Since for every design “attempt” a model is ready, a 

simulation session can be performed and the results are soon available either for verification 

of functions and operations or to take a decision.  

 “Unique platform”: all the methodology steps are led within the same platform in any phase 

(forever and ever!). In this way, the procedure to follow is always the same for any type of 

action: 

o to introduce parameters 

o to select and/or build models 

o to setup the simulation 

o to execute the simulation 

o to gather & compare results 

All these activities require the knowledge of a limited numbers of actions/operations and more 

simplicity to train users. 

 “The possibility to anticipate software bugs and hardware defects”. OBSW can be developed 

and tested through the simulator before the loading on the on board computer: it allows fixing 

bugs on the coding as well as the implementation of functions and algorithms. The capacities 

of an hardware circuit can be tested before it is manufacturing through virtual models and/or 

emulators.  

 “The reduction of the time to market”: it means reduce the length of time it takes from a 

product being conceived until its being available for sale or for accomplish its “mission”. This 

is because the possibility to reproduce the behavior of an element allows to “test” it also when 

it is not available or during its acquisition time. 

To conclude, the methodology aims at improve the effectiveness of the long and essential processo of 

design and operational and functional verification of a complex system, avoiding: 
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 Losses of time: having a unique platform saves the time spent in boring activities as translate 

algorithms from a code to anothers; sharing directly models reduces the time to tedious and 

humbling activities as read and write documents. 

 Losses of money: reducing the production of prototypes substituted by virtual models, and the 

necessity to physically reproduce phenomena to effectively validate the system. 

 Waste of human resources 
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Figure 40: Flow chart of the methodology 
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3.2 StarSim simulator 
The simulator StarSim is the key element of the methodology, it has been designed and built to satisfy 

the top level requirements, remaining within the programmatic and technical constraints (see 3.2.3) for 

all the StarSim requirements release v.1. The design drivers and the main expected features have been 

investigated, individuated, studied, and analyzed in order to produce a simulator that meets the 

requests of the methodology. 

Key features and drivers for the simulator design are listed hereafter [1], [2], [3]. 

 High speed and Real Time execution means that the simulator shall work both not-real time 

simulations, that require high execution speed, and real time simulations, that require 

executing the processment or the handling with an established precision (hard real time vs soft 

real time). Not real time simulations are performed especially in the first phases of the project 

(feasibility and preliminary design) when quick solutions are requested and during the 

verification of algorithms. In both cases simulation sessions shall be as quick as possible to 

perform and compare alternative solutions. On the contrary, real time execution is needed 

when real software and real hardware are involved in the loop. In this case the simulation shall 

hold the time imposed by hardware and software: it shall provide information or stimuli not 

only correct from a logical point of view but also on the “instant” (with a tolerance) in which 

they are expected. 

 High flexibility is a feature required in the simulator devoted to the V&V of complex systems 

which are constituted by a lot of parts or elements that could/should be changed/updated to 

verify different configurations. Moreover, the same element can be represented in different 

way in relation to the current status of the project: it could be a simple mathematical model, a 

complex virtual model, a piece of software code, a physical hardware or the final, entire 

system. These issues require a “modular” architecture where each part is an “object” or 

“block” that can vary and can be interconnected with other elements in different ways. The 

capability to manage a great number of configurations, varying parts of software or hardware 

elements and interfaces, bestows modularity on the simulator. 

 High connectivity means that all the elements can be connected through logical and physical 

interfaces on which the information pass formatted according standard or custom protocols. 

Standard protocols are generally preferred for low level communication: serial, USB, TCP/IP 

are example of very common interface already addressed in COTS microprocessors embedded 

boards, PCs and networks of PCs. Custom protocols are preferred to format data, especially 

when coding and encrypting operations are needed. In any case, simulator can connect 

elements starting from database of standard interfaces and giving the possibility to define 

custom protocols. 

 High fidelity wrt real world: the simulator shall perform simulations with a high degree of 

fidelity. The fidelity defines how accurately a model represents the behavior of an element 

(e.g. equipment or environment) it is modeling. Different level of accuracy can be defined: 

o Accurate: concepts that are modeled to a declared tolerance. Such tolerances should 

be stated explicitly. The normal values for telemetry parameters dependent upon this 

model should be within limits (if defined). 

o Emulated: Simulating specifically processors allow the real software code/image to 

run inside the simulation. 

o Exact : Used to describe concepts for which a zero tolerance is applicable. This is 

normally applicable to discrete systems. 

o Functionally: Functionally modeled units/functions should work/behave as the real 

unit/function with respect to their external interfaces. 
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o Plausible or Realistic: Variables that should be modeled such that trends can be 

observed in their behavior in relation to outside influence without being precisely 

modeled to a declared tolerance. 

o Representative: Data described as representative does not need to be modeled; pre-set 

value should be provided within the measurement range of the parameter. This value 

will always be used by the simulator unless updated from the simulator console, when 

desired. 

o Static: Fixed values only. 

Out of the definitions, a high fidelity degree gives a high confidence in the results of the 

simulation wrt the real on orbit behavior. However, high fidelity is not the same of high detail. 

In fact, the high level of detail is not always necessary and, sometimes, it is useless or 

dangerous: high detail level carries out high complexity of the model. It causes a high request 

of computational resources, reducing the simulator performances and, in some case, 

compromises the correctness of the simulation session results. The simulator shall provide a 

various choice in dynamics databaseof models but the main effort is for the user that must 

think “what subset of reality does the simulator try to represent?” 

• Ease to manage simulation sessions: the simulator shall manage the simulations from 

different architecture definitions, initialization of the parameters, and the results analysis and 

the verification of the requirements after the execution. All these operations shall be 

performed or autonomously or by the users that should be helped and supported in their 

activities (e.g. utilizing a friendly and intuitive GUI). Data shall be saved and stored to favor 

evaluations of performances or good working and comparisons between results of other 

sessions. 

• Effectiveness of the data. It is fundamental to identify the input data (scenarios, boundary 

conditions, simplifying assumptions and criticalities) for the simulator and for each simulation 

session. Inputs enter in the simulator determining and influencing the outputs. Taking into 

account the proposition: “garbage in garbage out”, what inputs choose, what combination of 

data come up with the specification, what equations, parameters, and algorithms use to 

determine outputs from input are critical points on which pay attention.  

3.2.1 Why build a in-house simulator? 
One of the key for the verification of complex system is the choice among: the reuse of an existing 

simulator, the development of a simulator based on commercial software or the development of a new, 

own, customized simulator. The better solution is, in general, the reuse of a simulator previously 

developed and, possibly, already validated because it confers a higher level of confidence, and it 

permits to reduce the efforts of development and validation for the engineers and developers as well as 

the time of learning and training for the operators, analysts and users.   

However, if the simulator does not exist what is the best solution? Using commercial software and 

organize them or designing and building a self developed simulator? Probably it is impossible to give 

a final answer. In the next lines, the choice of develop StarSim as a custom simulator is discussed. 

The analisys started from the main research goals: 

 To have a unique simulation platform able to support the M&S activities in every phase of the 

product life.  

 To reduce the waste of resources and have self contained tools exclusively devoted and 

optimized for space missions.  

 To maintain a low cost approach. 
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Commercial software costs are related to the acquisition of licenses. In many cases Software House 

present different types of license: the so called educational versions have lower cost or, even, they are 

free but educational versions shall not be used for industrial, commercial or military designs. On the 

contrary, the complete versions are absolutely useble in any kind of project but their costs are higher. 

In-house software for simulator can generally be based on free software platforms and programming 

languages (i.e. C/C++ or Java, and Linux as OS); their costs are mainly due to the development and 

consequently related to the human resources needed. However the human resoures costs are present 

also considering commercial tools that require time-consuming training and learning activities. 

Commercial software are as much as possible general purpose: they are overmuch, providing tools and 

models unused in specific field (i.e. managerial libraries are completely useless for a space vehicles 

simulator) but within the license the customer pays necessarily also for that. In other case, interesting 

tools or libraries are out of the basic licenses and they should be expressly bought with further costs. 

On the contrary, commercial general purpose software does not have sufficiently devoted tools for 

specific applications: to contain this disadvantage they provide development environment but this 

means programming efforts also with commercial software. Moreover, often commercial-off-the-shelf 

(COTS) products allow describing problems in a general way using objects and state variables. In 

many cases they are tailored to applications such as queuing theory, industrial engineering, or control 

systems; for these reason they are usually very effective for “quick and dirty” simulation studies but 

break down when a simulation problem becomes detailed enough to demand a lot of customizing. 

Commercial tools do not generally cover all the phases in the product life cycle. In fact, well defined 

and effective tools exist for feasibility analysis or design or verification of algorithms, software, 

hardware but it is infrequent that a tool performs all these tasks together.  

Other two crucial points remain opened: 1) how to share information and data between tools and 

development environments deriving by different providers, 2) how to guarantee the compatibility of 

tools among themselves and with the hardware architecture (e.g. processor), kernel, firmware and 

operating systems.  

Remaining on the commercial tools, the idea can be put together different tools in the same platform: 

it surely can result in a monstrous effort! 

A very recent solution is provided by the ensemble of UML and SysML. However, it seems that high 

quality solutions derive from the developments of a custom simulator with free and famous software, 

e.g. TASTE. 

In-house simulators are developed independently and from a lower level so that they are defter and 

any modification and change results easier to be implemented because a higher control due to the 

direct development of the code is possible. Commercial software does not allow a complete 

management at the machine level even if they relieve the developer to enter in the complex 

management of the processes at processor level. 

An important feature is the generation of the code for embedded applications: some tool allows 

developing, producing, compiling and linking the operative software that will be loaded on the 

embedded board or microprocessor in the final application. The most common solution is the “rapid 

prototyping”: it is ‘the process of quickly building and evaluating a series of prototypes [3]. The rapid 

prototyping requires less effort in the production of the code because it is automatically produced by 

the tool but rarely is directly ready for the compiling and clearly not even for the cross-compiling. 

Moreover, every modification always requires the restarting of the entire process and the generated 

code is not user friendly and it is less recommended that someone makes change on the rapid 

prototyping output. On the contrary, a well structured in-house simulator, as StarSim, favor the rapid 

prototyping for the software (also for the on board software) deriving from the user setup and permits 

to modify the generated code (obviously according the coherent rules). 
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In-house simulator allows to group all the features required along the entire design cycle within a 

unique platform, independent from the type of software and hardware that will be designed, developed 

and verified using the same simulator. Moreover, the simulator shall remain independent from the 

commercial tool, providing a self-contained solution for the design of a space product (in particular for 

GNC).  

In-house simulator does not exclude the possibility to interface with commercial software: it would 

help the use of the in-house simulation within an industrial field, where in some case the internal 

tradition and background tends to be maintained: the in-house simulator could accept inputs generated 

from other software in previous projects and adapt them to execute simulations.  

What about the validation and accreditation? Simulator shall be validated from the hardware, software 

and models point of view. This is a big issue that, in any case, also commercial tools cannot solve 

easily, because for example putting together two certified software does not automatically lead to a 

certified software. On the contrary, validating a unique platform is a big issue but once the capabilities 

are validated and accredited the simulator has a “secure core” from which updating database and 

solution and through which verified future products and design with a better confidence level. 

3.2.2 The simulator functions 
This paragraph contains the analysis of the functions that the simulator shall accomplish. The 

Functional Tree Analysis is the method used to perform the analysis. 

Figure 41 shows the top level functions deriving from the methodology objective: “to facilitate the 

design and verification of algorithms, software and hardware” that constitute the system. How to 

realize that? The answer foresees the use of AIL,SIL,CIL,HIL simulations session along the product 

life cycle, the sharing of data repository, models, simulation sessions results among the team members, 

and the capability to get automatic some part of the development and verification (e.g. the code 

generations or the check if the requirements). 

To facilitate the design and verification of onboard  algorithms, software and hardware 

2. To perform “in the loop” 

simulation in any phase of the 

product life cycle

3. To generate code 

autonomously

1. To share data among team 

members

 

Figure 41: Top level simulator functions 

Next figures going into details of the sub-functions derived from the top. 
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1. To share data among team 

members

1.1 To build data 

repository

1.2 To guarantee 

access to databases 

and data repository

1.3 To enable 

research through 

filters

To allocate 

memory

To organize 

databases

To organize 

simulation 

session data

To provide a quick 

access via LAN

To provide user’s 

accreditation 

1.4 To maintain the 

data change history

 

Figure 42: FT – subfunctions (I) 

 

 
2. To perform “in the loop” 

simulation in any phase of the 

product life cycle

2.1. To acquire design 

parameters and 

specifications/reqs

2.2. To model&simulate 

the system and the 

surrounding conditions 

2.3. To verify and 

validate the 

requirements

2.4. To manage the 

time and 

sinchronization

2.5. To manage 

models databases

2.6. To store the 

design and verification 

camapign evolution  

Figure 43: FT – subfunctions (II) 

2.1. To acquire design 

parameters and 

spacifications/reqs

To acquire mission 

parameters

To acquire 

system data

To define GNC 

parameters and 

configurations

To define 

environmental 

parameters

To define the 

orbit

To determine 

torques and 

forces

To determine 

disturbances

To determine 

mechanical 

parameters

To determine 

electrical 

parameters

To determine 

thermal 

parameters

To define the 

functions

To define the 

architecture

To define 

determination 

strategies

To define 

control 

strategies

To define 

guidance 

strategies

To choice 

sensors

To choice 

actuators

To choice 

processors 

and electrinic 

devicies  

Figure 44: FT – subfunctions (VI) 
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2.3. To verify and 

validate the 

requirements

To evaluate the 

simulation data

To visualize 

data

To import 

results of the 

simulation

To handle 

simulation 

data

To analyze 

data

To produce output 

for reports

 

Figure 45: FT – subfunctions (III) 

 

 

2.4. To manage the 

time and 

sinchronization

To hold 

simulation time

To provide time-

tagging to results 

and operations

To manage real 

time operations

To synchronize 

the interfaces

 

Figure 46: FT – subfunctions (IV) 

2.5.To manage 

databases

To organize 

models

To define 

categories

To define 

parameters for 

organization

To accept new 

models

To favor  

generations of 

new models

To help physical and hybrid models 

characterization & calibration

 
 

Figure 47: FT – subfunctions (V) 

 

2.6 To store the design and 

verification camapign evolution

To maintain a data 

repository
To allocate memory

To organize data 

according to filters
 

Figure 48: FT – subfunctions (VII) 
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3. To generate code 

autonomously

To genarate simulation 

software code

To generate on-board 

software code

To provide specific 

libraries

To generate a 

source code 

skeleton

To generate 

software events

To manage 

the task with a 

scheduler

To generate 

pipes, classes 

or processesTo compile the 

code

To generate 

executable files

To provide 

functions data base

To provide instructions for 

the software code generation

To provide specific 

libraries

To generate a 

source code 

skeleton

To cross-compile 

the code

To generate 

executable files

To link the cross-

compiler environment

To provide user 

friendly interfaces

To document the 

instructions

To link source code 

environment manuals

 

Figure 49: FT – subfunctions (VIII) 
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2.2 To model&simulate 

the system and the 

surrounding conditions 

To support 

modular 

architecture

To select 

models

To set-up the 

simualtion

To execute the 

simulation

To define the 

type of 

simulation

To determine 

interfaces and 

connections

To choose 

the GSE

To format 

according 

protocols

To choose 

logical 

connections

To choose 

physical 

connections

To choose 

AIL

To choose 

SIL

To choose 

CIL

To choose 

HIL

To define the 

type of model

To choose the 

environmental 

models

To choose 

equip/

subsystems

To 

individuat

e the level 

of fidelity 

of virtual 

models

To 

individuate 

the physical 

prototypes

To select 

models 

from 

databases

To select 

facilities 

and tools

To select 

models from 

databases

To select 

prototypes, 

EM,QM, OR 

FM

To set-up 

interfaces

To set-up 

simulation 

parameters

To set-up 

GSE

To initialize 

GSE 

parameters

To enable GSE 

functions and 

parts

To calculate/

estimate the 

system 

parameters 

any time

To update the 

system 

simulation 

outputs

To set-up 

kernel and 

firmware

To define the log 

files

To save 

interesting 

parameters

To organize data 

according filters

To choose 

hybrid 

configurations

To gather data

To manage the 

information of 

the simulation

To checkl the 

consistency of 

configuration

To check the 

software 

consistency

To check the 

consistency of 

parameters in 

each model

To check the 

parameters 

correcteness of 

the interfaces

To check the right 

iniziatlization of all 

the interfaces, models, 

and GSE

 

Figure 50: FT – subfunctions (IX) 
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3.2.3 Simulator requirements 

ID Proposition from to 

Top Level Requirements 

STARSIM.TL.010 
StarSim shall support the design and verification of complex system, according to the 

methodology 
  STARSIM.FN.0000 

STARSIM.TL.020 StarSim shall be applied to a space system project frame     

STARSIM.TL.030 
StarSim shall constitute a unique platform that must be used along the life cycle of 

the product developed with the methodology. 
  

STARSIM.TL.031, 

STARSIM.TL.032, 

STARSIM.TL.033, 

STARSIM.TL.034 

STARSIM.TL.031 StarSim shall be used for the feasibility study of space system STARSIM.TL.030   

STARSIM.TL.032 StarSim shall be used for the preliminary and detailed design  of space system STARSIM.TL.030   

STARSIM.TL.033 StarSim shall be used for the production and qualification of a space system STARSIM.TL.030   

STARSIM.TL.034 StarSim shall be used for the support to the on orbit operations  of space system STARSIM.TL.030   

STARSIM.TL.040 StarSim shall be independent by other tools or commercial software   STARSIM.TL.041 

STARSIM.TL.041 
StarSim shall be a self-contained platform. No extern and commercial tools, facilities 

and software shall be required for the StarSim good functioning 
STARSIM.TL.040   

STARSIM.TL.050 
StarSim v1.0 shall be configured for functional and operational requirements 

verifications of a space project, in particular for GNC subsystems 
    

STARSIM.TL.070 
StarSim can interact, if required, with commercial software and tools according 

specific protocols and data repository rules 
    

STARSIM.TL.080 
StarSim design, development, manufactuting shall be complinant with the ECSS, as 

much as possible 
    

STARSIM.TL.090 StarSim shall allow the reconfiguration of the simulation architecture     

STARSIM.TL.100 StarSim shall perform simulation in Real Time and Not-Real Time     
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STARSIM.TL.110 StarSim shall guarantee that more simulation sessions can be run simulataneously      

STARSIM.TL.120 StarSim shall be flexible   
STARSIM.CNF.800, 

STARSIM.TL.121 

STARSIM.TL.121 StarSim databases and configurations should be updated by the user STARSIM.TL.120   

STARSIM.TL.130 StarSim shall be a tool for developers, designers, analists, users     

Programmatic requirements 

STARSIM.PR.010 
ASSET of Politecnico di Torino and AVS shall take benefit from the methodology 

and the StarSim 
    

STARSIM.PR.020 
The first version of the StarSim shall at least support the GNC project for different 

type of space missions and space vehicle, individuated as case studies.  
    

STARSIM.PR.030 
StarSim v1.0 shall be designed, built and validated within the period January 2011-

December 2013 
    

STARSIM.PR.040 StarSim v1.0 shall consider only low cost solutions   STARSIM.PR.041 

STARSIM.PR.041 

The StarSim v1.0shall cost less than 10.000 euros (TBC) considering the equipment 

already available in the laboratories and facilities of the STARLAB at Politecnico di 

Torino and AVS. The costs of the personal shall not be taken into account 

STARSIM.PR.040   

STARSIM.PR.050 
StarSim v1.0 shall be delivered for the StarLab and mainly applied to small satellite 

missions  
    

Functional requirements 

STARSIM.FN.0000 
StarSim shall facilitate the design and verification of on board algorithms, software and 

hardware 
STARSIM.TL.010 

STARSIM.FN.1000, 

STARSIM.FN.2000, 

STARSIM.FN.3000 

STARSIM.FN.1000 StarSim shall share data among team members 

STARSIM.FN.0000, 

STARSIM.TL.130, 

STARSIM.PR.010 

STARSIM.FN.1100, 

STARSIM.FN.1200, 

STARSIM.FN.1300, 

STARSIM.FN.1400  
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STARSIM.FN.1100 StarSim shall manage data repository STARSIM.FN.1000 

STARSIM.FN.1110, 

STARSIM.FN.1120, 

STARSIM.FN.1130 

STARSIM.FN.1110 StarSim shall allocate memory STARSIM.FN.1100   

STARSIM.FN.1120 StarSim shall organize models database STARSIM.FN.1100   

STARSIM.FN.1130 StarSim shall organize interfaces database STARSIM.FN.1100   

STARSIM.FN.1200 StarSim shall guarantee access to database and data repository STARSIM.FN.1000 
STARSIM.FN.1210, 

STARSIM.FN.1220 

STARSIM.FN.1210 StarSim shall provide quick access via LAN or from the command console STARSIM.FN.1200   

STARSIM.FN.1220 StarSim shall provide the accreditation of the user STARSIM.FN.1200   

STARSIM.FN.1300 StarSim shall enable researches of information according filters (data, type, value, etc…) STARSIM.FN.1000   

STARSIM.FN.1400 StarSim shall maintain the data history of a project STARSIM.FN.1000 

STARSIM.FN.1410, 

STARSIM.FN.1420, 

STARSIM.FN.1430 

STARSIM.FN.1410 
Data of the same project shall be contained in folders of the StarSim 

called"name_program"\"namedatasession"\ 
STARSIM.FN.1400   

STARSIM.FN.1420 The configuration for each session is saved "name_program"\"namedata"_CNF.txt STARSIM.FN.1400   

STARSIM.FN.1430 The models flow for each session is saved "name_program"\"namedata"_MDL.txt STARSIM.FN.1400   

STARSIM.FN.2000 StarSim shall perform "in the loop" simulation in any phase of the product life cycle   STARSIM.FN.0000 

STARSIM.FN.2100 StarSim shall acquire design parameters and specifications/requirements STARSIM.FN.2000 STARSIM.FN.2110,  

STARSIM.FN.2110 
StarSim shall acquire the parameters characterizing the mission and the involved 

system(s)  
STARSIM.FN.2100 

STARSIM.FN.2111, 

STARSIM.FN.2112  

STARSIM.FN.2111 Environmental & spacecraft motion parameters shall be defined STARSIM.FN.2110 
STARSIM.FN.2111.1, 

STARSIM.FN.2111.2 

STARSIM.FN.2111.1 The torques and forces shall be sized STARSIM.FN.2111   
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STARSIM.FN.2111.2 Disturbances and noises shall be estimated for peaks, mean and trend  STARSIM.FN.2111   

STARSIM.FN.2112 The orbit parameters shall be determined STARSIM.FN.2110   

STARSIM.FN.2120 StarSim shall acquire system data deriving from the design STARSIM.FN.2100 

STARSIM.FN.2121, 

STARSIM.FN.2122, 

STARSIM.FN.2123 

STARSIM.FN.2121 The electrical parameters shall be determined, if relevant for the simulation STARSIM.FN.2120   

STARSIM.FN.2122 The thermal parameters shall be determined, if relevant for the simulation STARSIM.FN.2120   

STARSIM.FN.2123 The mechanical parameters shall be determined, if relevant for the simulation STARSIM.FN.2120   

STARSIM.FN.2130 GNC parameters and configurations shall be defined or estimated STARSIM.FN.2100 
STARSIM.FN.2131, 

STARSIM.FN.2132 

STARSIM.FN.2131 The GNC functions shall be determined STARSIM.FN.2130 

STARSIM.FN.2131.1, 

STARSIM.FN.2131.2, 

STARSIM.FN.2131.3 

STARSIM.FN.2131.1 The navigation strategies shall be determined STARSIM.FN.2131   

STARSIM.FN.2131.2 The guidance strategies shall be determined STARSIM.FN.2131   

STARSIM.FN.2131.3 The control strategies shall be determined STARSIM.FN.2131   

STARSIM.FN.2132 The GNC architecture shall be determined STARSIM.FN.2130 

STARSIM.FN.2132.1, 

STARSIM.FN.2132.2, 

STARSIM.FN.2132.3 

STARSIM.FN.2132.1 The sensors shall be chosen STARSIM.FN.2132   

STARSIM.FN.2132.2 The actuators shall be chosen STARSIM.FN.2132   

STARSIM.FN.2132.3 The processors and electronic devices shall be chosen and their behavior reproduced STARSIM.FN.2132   

STARSIM.FN.2200 StarSim shall model and simulate the system and the surrounding condition STARSIM.FN.2000 

STARSIM.FN.2210, 

STARSIM.FN.2220, 

STARSIM.FN.2230, 

STARSIM.FN.2240, 

STARSIM.FN.2250 
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STARSIM.FN.2210 StarSim shall support the configuration of different simulation architectures 

STARSIM.FN.2200, 

STARSIM.TL.090, 

STARSIM.OP.100 

STARSIM.FN.2211, 

STARSIM.FN.2212, 

STARSIM.FN.2213 

STARSIM.FN.2211 Different type of simulation shall be settable STARSIM.FN.2210 

STARSIM.FN.2211.1, 

STARSIM.FN.2211.2, 

STARSIM.FN.2211.3, 

STARSIM.FN.2211.4, 

STARSIM.FN.2211.5 

STARSIM.FN.2211.1 AIL simulation configuration shall be settable 
STARSIM.FN.2211, 

STARSIM.CNF.200 
  

STARSIM.FN.2211.2 SIL simulation configuration shall be settable 
STARSIM.FN.2211, 

STARSIM.CNF.300 
  

STARSIM.FN.2211.3 CIL simulation configuration shall be settable 
STARSIM.FN.2211, 

STARSIM.CNF.400  
  

STARSIM.FN.2211.4 HIL simulation configuration shall be settable 
STARSIM.FN.2211, 

STARSIM.CNF.500 
  

STARSIM.FN.2211.5 Hybrid configuration among AIL,SIL,CIL,HIL shall be possible to built 
STARSIM.FN.2211, 

STARSIM.CNF.700 
  

STARSIM.FN.2212 The StarSim shall know interfaces and connections among the simulation elements 
STARSIM.FN.2210, 

STARSIM.OP.300 

STARSIM.FN.2212.1, 

STARSIM.FN.2212.2, 

STARSIM.FN.2212.3 

STARSIM.FN.2212.1 Information shall be formatted according protocols STARSIM.FN.2212   

STARSIM.FN.2212.2 Software interface shall be set STARSIM.FN.2212   

STARSIM.FN.2212.3 Hardware interface shall be set STARSIM.FN.2212   

STARSIM.FN.2213 StarSim shall know the GSE involved in the simulation STARSIM.FN.2210   

STARSIM.FN.2220 StarSim shall allow the selection of models STARSIM.FN.2200 

STARSIM.FN.2221, 

STARSIM.FN.2222, 

STARSIM.FN.2223 

STARSIM.FN.2221 The type of model (virtual vs physical) shall be selected STARSIM.FN.2220 
STARSIM.FN.2221.1, 

STARSIM.FN.2221.2 

STARSIM.FN.2221.1 The fidelity level shall be individuated for each virtual model STARSIM.FN.2221   

STARSIM.FN.2221.2 The physical model details shall be specified STARSIM.FN.2221   
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STARSIM.FN.2222 The environmental and S/C motion models shall be specified 
STARSIM.FN.2220, 

STARSIM.OP.210 

STARSIM.FN.2222.1, 

STARSIM.FN.2222.2, 

STARSIM.FN.2222.3 

STARSIM.FN.2222.1 The environmental and S/C motion models shall be selected from the databases STARSIM.FN.2222   

STARSIM.FN.2222.2 Facilities, tools, and items shall be selected for each type of configuration STARSIM.FN.2222   

STARSIM.FN.2222.3 
The virtual environmental & S/C motion models shall be contained in \Environmental & 

SC motion\ folder.  
STARSIM.FN.2222   

STARSIM.FN.2223 
The equipment/devices, subsystem and system models shall be selected accordingly the 

design and the product life cycle phase 
STARSIM.FN.2220 

STARSIM.FN.2223.1, 

STARSIM.FN.2223.2 

STARSIM.FN.2223.1 
The devices and equipment models shall be selected from the databases folder 

"Devices&equipment".  
STARSIM.FN.2223   

STARSIM.FN.2223.2 
The MU, EM, QM, FM shall be selected accondingly to the selected simulation 

configuration 
STARSIM.FN.2223   

STARSIM.FN.2230 StarSim shall set-up the simulation according to the user choices STARSIM.FN.2200 

STARSIM.FN.2231, 

STARSIM.FN.2232, 

STARSIM.FN.2233, 

STARSIM.FN.2234 

STARSIM.FN.2231 The simulation parameters and conditions shall be set-up STARSIM.FN.2230   

STARSIM.FN.2232 The interfaces (hardware and software) shall be set-up STARSIM.FN.2230   

STARSIM.FN.2233 The kernel and firmware for any process shall be configured STARSIM.FN.2230   

STARSIM.FN.2234 GSE shall be set-up STARSIM.FN.2230 

STARSIM.FN.2234.1, 

STARSIM.FN.2234.2, 

STARSIM.FN.2234.3 

STARSIM.FN.2234.1 GSE parameters shall be initialized: starting condition shall be setup STARSIM.FN.2234   

STARSIM.FN.2234.2 GSE functions and parts shall be disenabled/enabled, switched on/off and tuned  STARSIM.FN.2234   
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STARSIM.FN.2234.3 Each model shall be setup in terms of constant parameter and variable initial values STARSIM.FN.2234   

STARSIM.FN.2240 StarSim shall run with the chosen architecture and settings 
STARSIM.FN.2200, 

STARSIM.OP.500 

STARSIM.FN.2241, 

STARSIM.FN.2242 

STARSIM.FN.2241 StarSim shall calculate the state variables for every simulation iteration STARSIM.FN.2240   

STARSIM.FN.2242 StarSim shall update the outputs according to a specified frequency STARSIM.FN.2240   

STARSIM.FN.2250 StarSim shall manage configurations, settings, and data information 

STARSIM.FN.2200, 

STARSIM.OP.600, 

STARSIM.OP.400 

STARSIM.FN.2251, 

STARSIM.FN.2252, 

STARSIM.FN.2253, 

STARSIM.FN.2254 

STARSIM.FN.2251 The log files shall be properly opened, written/read and closed STARSIM.FN.2250   

STARSIM.FN.2252 StarSim shall save and store sensible output STARSIM.FN.2250   

STARSIM.FN.2253 StarSim shall save, store and restore simulation configurations and its parameters STARSIM.FN.2250   

STARSIM.FN.2254 StarSim shall organize the data according to the choices of the user STARSIM.FN.2250 STARSIM.FN.1110 

STARSIM.FN.2300 
StarSim shall support the user in the (GNC) system requirements verification and 

validation 

STARSIM.FN.2000, 

STARSIM.TL.050, 

STARSIM.OP.700, 

STARSIM.FN.2310, 

STARSIM.FN.2320 

STARSIM.FN.2310 
The data and parameters needed for the V&V shall be evaluated through the StarSim 

tools 
STARSIM.FN.2300 

STARSIM.FN.2311, 

STARSIM.FN.2312, 

STARSIM.FN.2313, 

STARSIM.FN.2314 

STARSIM.FN.2311 StarSim shall import saved/stored results of each simulation session STARSIM.FN.2310   

STARSIM.FN.2312 StarSim shall visualize data in terms of tables, plots, and graphs STARSIM.FN.2310   

STARSIM.FN.2313 StarSim shall handle simualation data STARSIM.FN.2310   

STARSIM.FN.2314 StarSim shall support the analysis of simulation data through dedicated input STARSIM.FN.2310   

STARSIM.FN.2320 StarSim shall produce output usable for reports and documentation STARSIM.FN.2300   
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STARSIM.FN.2400 StarSim shall manage time and synchronization STARSIM.FN.2000 

STARSIM.FN.2410, 

STARSIM.FN.2420, 

STARSIM.FN.2430, 

STARSIM.FN.2440 

STARSIM.FN.2410 StarSim shall hold the simulation time and CET time (or derived from it) STARSIM.FN.2400   

STARSIM.FN.2420 The time tagging shall be added to any result and operation activity STARSIM.FN.2400   

STARSIM.FN.2430 StarSim shall manage the time during both the RT and not-RT simulation session STARSIM.FN.2400 
STARSIM.FN.2431, 

STARSIM.FN.2432 

STARSIM.FN.2431 StarSim shall guarantee RT execution with an error less than 10 ms (TBC) 
STARSIM.FN.2430, 

STARSIM.TL.100 
  

STARSIM.FN.2432 
StarSim shall adapt the time management in non-RT in order to maintain the time-step 

but execute the simulation as fast as possible  

STARSIM.FN.2430, 

STARSIM.TL.100, 

STARSIM.TL.110 

  

STARSIM.FN.2440 
StarSim shall sinchronize the process: it adjust time operation execution wrt the time 

required by the StarSim parameters 
STARSIM.FN.2400   

STARSIM.FN.2500 StarSim shall manage models and interface database 
STARSIM.FN.2000, 

STARSIM.TL.090 

STARSIM.FN.2510, 

STARSIM.FN.2520, 

STARSIM.FN.2530 

STARSIM.FN.2510 StarSim shall organize the models in categories STARSIM.FN.2500 STARSIM.FN.2511 

STARSIM.FN.2511 The database shall be devided according parameters and features 

STARSIM.FN.2510, 

STARSIM.CNF.610

, 

STARSIM.CNF.630 

  

STARSIM.FN.2520 StarSim shall accept new models, if built according to the specific rules of the StarSim 
STARSIM.FN.2500, 

STARSIM.CNF.620 
STARSIM.FN.2521 

STARSIM.FN.2521 StarSim shall favor the insertion of new model into the database 
STARSIM.FN.2520, 

STARSIM.TL.120 
  

STARSIM.FN.2530 StarSim shall help the physical and hybrid models characterization and calibration STARSIM.FN.2500   

STARSIM.FN.2600  StarSim shall check the consistency of the defined configuration STARSIM.FN.2000 

STARSIM.FN.2610, 

STARSIM.FN.2620, 

STARSIM.FN.2630, 

STARSIM.FN.2640 
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STARSIM.FN.2610 StarSim shall check the software consistency of every generated software STARSIM.FN.2600   

STARSIM.FN.2620 StarSim shall check the consistency of inserted/selected data in each model STARSIM.FN.2600   

STARSIM.FN.2630  StarSim shall verify the correctness of the setup values for each interface STARSIM.FN.2600   

STARSIM.FN.2640 
StarSim shall check that all the initializations of interfaces, models and GSE are 

successfully completed 
STARSIM.FN.2600   

STARSIM.FN.2650 
StarSim shall individuate errors generated by bad set-up or models and interface choices 

made by the user 
STARSIM.FN.3000   

STARSIM.FN.3000 StarSim shall generate code autonomously STARSIM.FN.2600   

STARSIM.FN.3100 StarSim shall generate the software code skeleton STARSIM.FN.3000 
STARSIM.FN.3100, 

STARSIM.FN.3200 

STARSIM.FN.3110 StarSim shall provide specific code libraries STARSIM.FN.3100   

STARSIM.FN.3120 StarSim shall provide basic functions database STARSIM.FN.3100   

STARSIM.FN.3130 StarSim shall generate source code skeleton (in C/C++) STARSIM.FN.3100   

STARSIM.FN.3140 StarSim shall generate software events STARSIM.FN.3100 

STARSIM.FN.3141, 

STARSIM.FN.3142, 

STARSIM.FN.3143, 

STARSIM.FN.3144 

STARSIM.FN.3141 StarSim shall create the istances for hardware and software interfaces STARSIM.FN.3140   

STARSIM.FN.3142 StarSim shall manage the tasks through the scheduler STARSIM.FN.3140   

STARSIM.FN.3143 StarSim shall generate pipes interface STARSIM.FN.3140   

STARSIM.FN.3144 StarSim shall manage communication with I/O ports STARSIM.FN.3140 STARSIM.FN.3144.1 

STARSIM.FN.3144.1 The communication with I/O ports shall be setup following the specific parameters STARSIM.FN.3144   

STARSIM.FN.3150 StarSim shall compile the code STARSIM.FN.3100   

STARSIM.FN.3160 StarSim shall generate executable files for every kind of simulation configuration STARSIM.FN.3100   

STARSIM.FN.3170 The code for embedded systems shall be generated through the StarSim tools STARSIM.FN.3100   
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STARSIM.FN.3200 StarSim shall provide the instructions for the code generation STARSIM.FN.3000 

STARSIM.FN.3210, 

STARSIM.FN.3220, 

STARSIM.FN.3230  

STARSIM.FN.3210 StarSim shall provide user friendly interface and support functions STARSIM.FN.3200   

STARSIM.FN.3230 
StarSim shall individuate the compiling errors or code bugs before the executable file 

generation 
STARSIM.FN.3200 STARSIM.FN.3231 

STARSIM.FN.3231 A list of errors/bug shall be provided STARSIM.FN.3230   

STARSIM.FN.3300 StarSim shall generate the onboard software code STARSIM.FN.3000 STARSIM.FN.3310 

STARSIM.FN.3310 StarSim shall provide specific code libraries for crosscompiling code 
STARSIM.FN.3300 

  

STARSIM.FN.3320 StarSim shall generate source code skeleton for crosscompiling code 
STARSIM.FN.3300   

STARSIM.FN.3330 StarSim shall cross-compile the code STARSIM.FN.3300 STARSIM.FN.3331 

STARSIM.FN.3331 StarSim shall provide the link to the cross-compiler STARSIM.FN.3330   

STARSIM.FN.3340 StarSim shall generate executable code for the specific embedded application 
STARSIM.FN.3300   

Operational requirements 

STARSIM.OP.100 
The user shall select the simulation architecture clicking the button "DEFINE 

SIMULATION ARCHITECTURE" on the main GUI window 
  

STARSIM.OP.110, 

STARSIM.OP.120, 

STARSIM.OP.130 

STARSIM.OP.110 
The user shall define the number of processes involved in the simulation session setting 

up the number on the PROCESS SELECTION pop up and after pushing OK 
STARSIM.OP.100   

STARSIM.OP.120 
The user shall define for any process the parameters: tempistica, priority, path and 

interface (as spacified in the STESINA PhD thesis - paragraph 3.3) 
STARSIM.OP.100 

STARSIM.OP.121, 

STARSIM.OP.122, 

STARSIM.OP.123, 

STARSIM.OP.124, 

STARSIM.OP.125, 

STARSIM.OP.126, 

STARSIM.OP.127, 

STARSIM.OP.128, 

STARSIM.OP.129 
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STARSIM.OP.121 
The interface for any process shall be setup in terms of type, name, path and speed (as 

spacified in the STESINA PhD thesis - paragraph 3.3) 
STARSIM.OP.120   

STARSIM.OP.122 The user shall set the interfaces (hardware and software) STARSIM.OP.120 
 

STARSIM.OP.123 
The user shall set named pipes through the GUI following the rules in STESINA PhD 

thesis 
STARSIM.OP.120 STARSIM.FN.3143 

STARSIM.OP.124 
The user shall set the serial ports parameters through the GUI following the rules in 

STESINA PhD thesis 
STARSIM.OP.120 STARSIM.FN.3144 

STARSIM.OP.125 
The user shall set-up the USB ports parameters through the GUI following the rules in 

STESINA PhD thesis 
STARSIM.OP.120 STARSIM.FN.3144 

STARSIM.OP.126 
The user shall set-up the LAN ports parameters through the GUI following the rules in 

STESINA PhD thesis 
STARSIM.OP.120 STARSIM.FN.3144 

STARSIM.OP.127 The user shall set-up the interfaces protocols STARSIM.OP.120 
STARSIM.OP.321, 

STARSIM.OP.322 

STARSIM.OP.128 The user shall define the "data field" of the selected high level protocol STARSIM.OP.120   

STARSIM.OP.129 
The user shall define the communication protocols used by sensors, actuators, devices, 

etc… involved in the simulation (in particular for CIL and HIL configurations)  
STARSIM.OP.120   

STARSIM.OP.130 
The user shall save the current session setup pushing SAVE on the PROCESS 

PROPERTIES window 
STARSIM.OP.100   

STARSIM.OP.200 The user shall choose the models from the database STARSIM.TL.090 

STARSIM.OP.201, 

STARSIM.OP.202,  

STARSIM.OP.203, 

STARSIM.OP.204 

STARSIM.OP.201 
The user shall surf in the model database through the MODELS SELECTION window 

(left part) 
STARSIM.OP.200   

STARSIM.OP.202 Database structure is available in the STESINA PhD thesis STARSIM.OP.200   

STARSIM.OP.203 The user shall add the chosen models pushing ADD button STARSIM.OP.200   

STARSIM.OP.204 The user shall remove the chosen models pushing REMOVE button STARSIM.OP.200   

STARSIM.OP.250 
The user shall set-up the parameters (variables and constants) for each selected model 

through the GUI window MODEL PARAMETERS 
STARSIM.OP.200   
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STARSIM.OP.300 The user shall setup the simulation parameters through the pop up presented after 

pushing  the button SIMULATION PARAMETERS   
STARSIM.OP.310 

STARSIM.OP.310 The user shall explain a value for any required parameter (however default values are 

present) 
STARSIM.OP.300 

  

STARSIM.OP.400 The user shall setup the outputs files containing the chosen output parameters   
STARSIM.OP.410, 

STARSIM.OP.420 

STARSIM.OP.410 
The user shall select the sensible output data ticking the relative little square in the 

OUTPUT SELECTION window  
STARSIM.OP.400   

STARSIM.OP.420 
The user shall specify the file name and path in the StarSim in which the sensible outputs 

are saved during the execution 
STARSIM.OP.400   

STARSIM.OP.500 The user shall manage, monitor and control the simulation execution   

STARSIM.OP.501, 

STARSIM.OP.503, 

STARSIM.OP.503 

STARSIM.OP.501 The user shall start the simulation session, pushing the button "GO"  STARSIM.OP.500   

STARSIM.OP.502 The user shall stop the simulation session, pushing the button "STOP" STARSIM.OP.500   

STARSIM.OP.600 The user shall require the StarSim outputs of current or previous simulation sessions: the 

button "ACCESS DATA" recall the data repository 

  STARSIM.OP.610 

STARSIM.OP.610 StarSim shall recovery the information from data repository STARSIM.OP.600   

STARSIM.OP.700 
The user shall require the StarSim configuration of current or previous simulation 

sessions: the ACCESS DATA button shall recall the configuraion from the data 

repository 

  STARSIM.OP.710 

STARSIM.OP.710 
StarSim shall recovery the configuration settings from data repository 

STARSIM.OP.700   

STARSIM.OP.800 The user shall update the models and interfaces databases STARSIM.TL.120 STARSIM.CNF.620 

    
Configuration Requirements 

STARSIM.CNF.100 
The StarSim shall be constituted by a Simulation Unit, a Control Console, Ground 

Support Equipment, a Test Object. 
  STARSIM.CNF.110 
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STARSIM.CNF.110 The Simulation Unit shall have a core and an interface unit STARSIM.CNF.100 

STARSIM.CNF.111 

STARSIM.CNF.112S

TARSIM.CNF.113 

STARSIM.CNF.114S

TARSIM.CNF.115 

STARSIM.CNF.111 
The core of the Simulation Unit shall host the software to manage the configurations 

settings decided by the user 
STARSIM.CNF.110   

STARSIM.CNF.112 
The core of the Simulation Unit shall host the software devoted to manage the 

simulation execution 
STARSIM.CNF.110   

STARSIM.CNF.113 The simulation core shall have the memory allocated to store data repository STARSIM.CNF.110   

STARSIM.CNF.114 The interface unit shall manage hardware and software interfaces STARSIM.CNF.110 

STARSIM.INT.100, 

STARSIM.INT.300, 

STARSIM.INT.400, 

STARSIM.INT.500, 

STARSIM.INT.630 

STARSIM.CNF.120 The Control Console shall have a core and an interface unit STARSIM.CNF.100 

STARSIM.CNF.121 

STARSIM.CNF.122S

TARSIM.CNF.123 

STARSIM.CNF.121 The core of the Control Console shall host the software to manage the GUI STARSIM.CNF.120   

STARSIM.CNF.122 The GUI shall allow the interaction with the user  STARSIM.CNF.120   

STARSIM.CNF.130 The Test Object could be represented by sensors, actuators and embedded systems STARSIM.CNF.100 STARSIM.INT.600 

STARSIM.CNF.140 
The GSE shall be configurated in terms of parameters setup and physical arrangement 

from the user or the Simulation Unit 
STARSIM.CNF.100 

STARSIM.CNF.141 

STARSIM.CNF.142 

STARSIM.INT.300 

STARSIM.CNF.141 Power frontends shall be set with the desired voltage and current values  STARSIM.CNF.140   

STARSIM.CNF.142 
Power frontend for regulation shall provide regulation from the 220V to 3.3, 5, 9, 12, 

28 Volt with a limited current 
STARSIM.CNF.140   

STARSIM.CNF.146 
Communication frontend shall guarantee the communication through serial,USB,LAN, 

… , also adapting the logic level 
STARSIM.CNF.140   
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STARSIM.CNF.200 
The AIL configuration shall be made according the document [Stesina PhD Thesis] - 

pag 47 
  

STARSIM.CNF.201 

STARSIM.FN.2111.1, 

STARSIM.CNF.201 More than one simulation session should be possible to perform in AIL configurations 
STARSIM.CNF.200, 

STARSIM.TL.110 
  

STARSIM.CNF.300 
The SIL configuration shall be made according the document [Stesina PhD Thesis] -

pag.48 
  

STARSIM.CNF.301, 

STARSIM.FN.2111.2 

STARSIM.CNF.301 More than one simulation session should be possible to perform in SIL configurations 
STARSIM.CNF.300, 

STARSIM.TL.110 
  

STARSIM.CNF.400 
The CIL configuration shall be made according the document [Stesina PhD Thesis] - 

pag. 48 
  STARSIM.FN.2111.3 

STARSIM.CNF.500 
The HIL configuration shall be made according the document [Stesina PhD Thesis] - 

pag. 49 
  STARSIM.FN.2111.4 

STARSIM.CNF.600 StarSim shall have a models database in its non volatile memory STARSIM.CNF.115 

STARSIM.CNF.610, 

STARSIM.CNF.620, 

STARSIM.CNF.630 

STARSIM.CNF.601 StarSim shall have instruments to manage, store and update data models 

STARSIM.CNF.110, 

STARSIM.OP.800, 

STARSIM.CNF.600 

  

STARSIM.CNF.610 

The models database shall be organized in the following categories: 1.Equiment and 

devices models, 2. Mission models, 3. GSE models, 4. Special Funtions, 5. GNC 

strategies, 6. Transformation & Conversion, 7. Visualize and display 

STARSIM.CNF.600   

STARSIM.CNF.620 Each model shall be stored in a C/C++ function  STARSIM.CNF.600 

 STARSIM.CNF.621 

STARSIM.CNF.622 

STARSIM.CNF.623 

STARSIM.CNF.621 
The C++ function for model shall be generated inserting first all the input models 

variables and then the output model variables 
STARSIM.CNF.620   

STARSIM.CNF.622 

The configurable parameters for each model shall be indicated within an header and a 

cloder marker. The header marker is /*CONFIGURABLE SESSION*/ and the closer 

marker is /*END-CONFIG*/ 

STARSIM.CNF.620   

STARSIM.CNF.623 The configurable parameters for each model shall be connected to a GUI window STARSIM.CNF.620   
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STARSIM.CNF.630 
The interfaces database shall be organized in the following categories: 1.Hardware 

interfaces, 2. Software interfaces, 3. Protocols Management 
STARSIM.CNF.600 

STARSIM.CNF.631, 

STARSIM.CNF.632, 

STARSIM.CNF.633 

STARSIM.CNF.631 
The hardware interface shall be configured according to the [Stesina PhD Thesis pag 

128] 
STARSIM.CNF.630   

STARSIM.CNF.632 
The software interface shall be configured according to the [Stesina PhD Thesis pag 

128] 
STARSIM.CNF.630   

STARSIM.CNF.633 
The protocol management shall be made following the instruction to the [Stesina PhD 

Thesis pag 128] 
STARSIM.CNF.630   

STARSIM.CNF.640 Hybrid configuration among AIL,SIL,CIL,HIL shall be settable STARSIM.CNF.600   

STARSIM.CNF.1000 
The workstation shall guarantee to perform simulation session for any acceptable 

configuration 
    

STARSIM.CNF.1001 The workstation shall have at least 12 processors STARSIM.CNF.1000   

STARSIM.CNF.1002 The workstation shall have at least 16 Gbyte RAM memory available STARSIM.CNF.1000   

STARSIM.CNF.1003 The workstation shall have 2000 Gbyte of Harddisk memory STARSIM.CNF.1000   

STARSIM.CNF.1004 
The workstation shall have at least the following I/O peripherals: 3 serail ports, 12 USB 

ports, the ethernet port (TBC), 2 video output 
STARSIM.CNF.1000   

STARSIM.CNF.1005 The workstation shall have keyboard and mouse STARSIM.CNF.1000   

STARSIM.CNF.1100 The workstation shall have the Linux release 13.10  STARSIM.DS.110   

STARSIM.CNF.1101 
The workstation shall have a Linux kernel 13.10_RT  devoted to the Real Time 

operations 
STARSIM.DS.111   

Interface Requirements 

STARSIM.INT.100 
The Simulation Unit and the Control Console shall communicate through a dedicated 

software process and/or via LAN 
    

STARSIM.INT.200 The Control Console and the user shall communicate through the GUI   STARSIM.INT.201 

STARSIM.INT.201 The user shall interact with the Control Console using the mouse and the keyboard STARSIM.INT.200   

STARSIM.INT.300 
The GSE and the Simulation Unit shall be interfaced through the interface unit of the 

simulation unit 
  

STARSIM.INT.310, 

STARSIM.INT.320 

STARSIM.INT.310 
The Simulation Unit and the GSE shall communicate through hardware interfaces (e.g. 

serial, USB,LAN, CAN, I2C) and specifi, custom protocols defined in datasheet 
STARSIM.INT.300   
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STARSIM.INT.320 

The Simulation Unit and the GSE shall communicate information according to a 

specific or custom protocol setted in the relative files contained in the folder "Manuals 

and Datasheets" 

STARSIM.INT.300   

STARSIM.INT.400 
The StarSim core shall communicate with the virtual models (mission or equipment) 

through processes (managed by the Simulation Unit - Interface Unit) 
    

STARSIM.INT.500 
The Test Object equipment and embedded system shall interface according to the 

specific design of the Test Object 
    

Design Requirements 

STARSIM.DS.100 The StarSim programs shall run on a workstation or a network of computers   

STARSIM.DS.110, 

STARSIM.DS.120, 

STARSIM.DS.130 

STARSIM.DS.110 The workstation shall have Linux as OS and RTOS STARSIM.DS.100 

STARSIM.DS.111, 

STARSIM.DS.112, 

STARSIM.CNF.1100 

STARSIM.DS.111 The workstation shall have a Linux kernel devoted to the Real Time operations STARSIM.DS.110 STARSIM.CNF.1101 

STARSIM.DS.112 The workstation shall have Linux kernel devoted to the non-RT operations STARSIM.DS.110 STARSIM.CNF.1102 

STARSIM.DS.120 The StarSim software shall be written in C++ and Python 

STARSIM.DS.100, 

STARSIM.TL.040, 

STARSIM.TL.070 

STARSIM.DS.121, 

STARSIM.DS.122, 

STARSIM.DS.123, 

STARSIM.DS.128 

STARSIM.DS.121 The simulation software for the simulation management shall be written in Python STARSIM.DS.120   

STARSIM.DS.122 The GUI shall be developed and updated using Python 

STARSIM.DS.120, 

STARSIM.TL.070, 

STARSIM.PL.040  

  

STARSIM.DS.123 The models and interfaces code shall be developed in C/C++ 

STARSIM.DS.120,  

STARSIM.TL.070,  

STARSIM.PL.040 

  

STARSIM.DS.124 A Python program shall manage the database STARSIM.DS.120   
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STARSIM.DS.130 
The workstation shall be able to support every type of simualtion operations and 

StarSim activity 

STARSIM.DS.100, 

STARSIM.FN.1000, 

STARSIM.FN.2000, 

STARSIM.FN.3000 

STARSIM.DS.131, 

STARSIM.DS.132, 

STARSIM.DS.133, 

STARSIM.DS.134, 

STARSIM.DS.135, 

STARSIM.DS.136 

STARSIM.DS.140 The workstation shall host Eclipse as software development environment STARSIM.DS.100   

STARSIM.DS.200 Power GSE shall provide regulated voltages and currents STARSIM.CFN.142   

STARSIM.DS.300 

Communication GSE shall allow the hardware communication for the most common 

high level communication protocols 
STARSIM.CFN.146 

  

STARSIM.DS.400 

GSE emulation sensors output shall provide the correct stimulation both from 

electrical, logical and mechanical point of view 
STARSIM.CFN.140 

  

Table 24: StarSim’s list of requirements
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3.3 Simulator architecture 
The Figure 51 shows the top lop level architecture of the simulator where five main actors are 

individuated and described in the next paragraphs: the test object, the simulation unit, the Ground 

Support Equipment, and the Control Console.  

Interface unitEquipment models

Mission models

Simulation Core

Graphical User 

Interface

Console core

Console interface 

unit

Ground Support 

Equipment

 Equipment

Embedded 

Systems

 

Figure 51: General simulator's architecture 

3.3.1 The Simulation Unit 
The Simulation Unit is the main element of the simulator and it is constituted by:  

 the simulation core,  

 the interface unit,  

 the environmental models and the equipment models.  

This part of the StarSim as well as the Control Console and Interface Unit has been designed and 

implemented with Eng. Lorenzo Feruglio (STAR Team of Politecnico di Torino). 

3.3.1.1 Simulator core 

The core [5] is constituted by a WorkStation (WS) with Linux as Operating System (OS). Multi-core 

processors are involved and work in parallel. Details on the WS hardware are in the Appendix F.  For 

the choice of the Hardware of WorkStation, some issues and obstacles have been met: 

 The limited money resources available for the research; 

 The red tape of the Italian public administration: that requires a slow and unskilled intrusion 

of its technicians and muddled procedures for the acquisition; 

 The limited lifetime of hardware architectures: processor families typically are around for only 

a few years before the next generation supersedes them. Simulation software must often be 

upgraded or rewritten to remain workable. 
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 The improved performance at lower prices: The cost of a unit of computing power decreases 

by a factor of 10 every 3 years. Many applications that require intensive computing can now 

run well on inexpensive desktop computers.  

In the release v1.x, all the Simulation Unit software are executed by the WS. Software developed for 

multiple and parallel processors (a distributed architecture) can be difficult to write and it is 

particularly hard to debug. These difficulties are limited from the use of software developing code 

environments (i.e. Eclipse) that can easy manage multi-flows operations and provide user friendly 

tools helping the developer. 

Two software have been developed for StarSim: ones has management tasks, others is the core of the 

simulation activities. 

The first program is written in Python and it is able to: 1) setup the simulation 2) manage the logical 

interfaces with the test-object, 3) manage the I/O with the user through the Control Console (display, 

keyboard and mouse), 4) schedule all tasks according to priorities and time and logical sequence 

during the execution, and 5) save all the information related to the simulation session. 

The WS operates as the simulator core when a C++ program, supported by a Phyton code for the 

management functions, runs. All the unnecessary functionalities of the OS are inhibited in order to 

guarantee as much as possible the real time activity of the simulator. Ad hoc kernels are defined to 

allow different types of simulations (real-time or not real-time) for several arrangements of the test 

object hardware. The C++ program 1) contains all the custom developed functions and header files 

needed to perform the simulation, 2) simulates the behavior of the virtual models, 3) manages the 

interface with external HW elements, 4) manage time synchronization and data, and 5)save 

information in files for post processing activities. 

3.3.1.1.1 Process vs. Class vs. Threads 

This paragraph presents and discusses the elements at the base of base a high performance code 

generation. 

 The main issue is to implement an architecture that relies on parallelisms. It concerns the possibility 

of executing “at the same time” different instances of code that execute different functions. Different 

levels of parallelism can be reached; it depends on the available hardware:  

 For single processor architectures, the operation flux will be something linear, as the 

instruction flow will be handled by a single processor: in theory, two instructions cannot be 

processed at the same time. What is usually done in this type of machines is the instantiation 

of processes or threads that allow differentiating between several instruction flows at a logic 

level, keeping, however, a single instruction flow at the processor.  

 For multi-processor architectures, it will be possible to sort the different processes or threads 

between the various processors, obtaining in this case an execution truly in parallel of 

instructions. The hardware capability will then set the limit for the number of 

processes/threads that can be run on every processor (depending as well on the weight of the 

processes). 

The main difference between a process and a thread lies in the assigned or exploited resources: a 

thread is handled in the memory space already assigned to the spawning process, while a process is 

spawned by the OS, on code demand, in a new memory area. 

An overview of the difference between threads and processes is now proposed. 

A thread is characterized by these features: 

 It can be considered as a “lightweight” process; 

 Its execution state can  take different values (running, halted, ready, etc); 
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 It can be prioritized by either the OS and the code itself; 

 It utilizes resources already allocated to the calling process. 

A process can be defined as a running instance of a program. This definition already comes with a few 

concepts included: a program is not what runs (it resides on a non-volatile media); what runs is its 

instance that is executed with at least some portions in the RAM of a machine 

A process is characterized by these features: 

 A dedicated resource space 

 A protected access to other processors, processes or I/O resources. 

Processes can share resource space in the event of a copy-on-write implementation: an optimization 

strategy used in case of multiple callers asking for resources initially indistinguishable: they can all be 

given pointers to the same resource. This can be maintained until a caller tries to modify its "copy" of 

the resource, at which point a separate (private) copy is made for that caller to prevent its changes 

from becoming visible to everyone else. The primary advantage is that if no caller ever makes any 

modifications, no private copy need ever be created. 

It is possible to implement an architecture single/multi process, and it is possible to instantiate one or 

more threads in every process. 

 

Figure 52: Processes and Threads 

The implementation of processes and threads has its own drawbacks and advantages and the decision 

of the code structure is not trivial. [4] 

3.3.1.1.2 Processes: fork(), execve() functions 

All processes share a few characteristics among them: every process has a parent which created it 

(except the first process); similarly, a process is created as a child process, with the process 

responsible for its creation being is parent; a process can have only a single owner at a given time 

(ownership can be changed but it is exclusive). 

Fork() function is a very important and unique characteristic of UNIX architecture systems (therefore 

a code written utilizing this function will be executable only on similar architecture platforms) and it 

allows the creation of a child process from a father that spawns it. The created child is a copy of the 

parent process, and the two different processes are differentiated by a few features. The function 

returns value 0 in the child process, while in the father process it returns an integer that is the Process 

Indicator of the child process. Must be remembered that Process Indicator s are unique and there 
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cannot be two processes with the same Process Indicator. It will return a value of -1 in case of error, 

no child process will be created and stderr will be set to the appropriate error code. The differences 

between child and father are: 

 Child does not inherits father’s memory blocks 

 Resources usage of the process and its CPU time is set to zero 

 Incoming signal list is emptied 

 Father’s semaphore’ modifications are not inherited by the child 

 Child process does not receive any signal for father termination; on the other side, the signal 

sent to the father for child termination is always SIGCHILD 

 Other less common functions, not important for this work 

Each other father feature is heritage by the child. 

An interesting characteristic of forking derives from the possibility to call it just before calling the 

exec() function (or one of its variants, i.e. execve()).In this way after a check on Process Indicator two 

executable run (ones on the father and ones on the child), obtaining the creation of a new process that 

is running another program and not just a copy of the father code. 

This is an extremely important features and one of the actual must-have parts for this simulator 

technology, as it boosts modularity and ease of code management (having to compile the different 

executables in other projects, reducing this way the dimensions of the simulator code). 

pid = fork(); 

if (pid == -1) { 

printf (“Error!\n”); 

return (0); 

} 

if (pid == 0) { 

... child’s code ... 

} 

else { 

... father’s code ... 

} 

In particular, the calling of exec() function in the child is performed in this way: 

if (pid == 0) { 

exec (); 

} 

What is actually called in this simulator is the execve() function, that is what lies behind the several 

front-ends that are the exec() (and variations) functions. 

The prototype is as follows: int execve(const char *filename, char *constargv[], char *constenvp[]); 

Execve() executes the program pointed to by filename. It must be either a binary executable, or a script 

starting with a line of the form: #! interpreter [optional-arg], where argv is an array of argument 

strings passed to the new program. By convention, the first of these strings should contain the filename 

associated with the file being executed. envp is an array of strings, conventionally of the form 

key=value, which are passed as environment to the new program. Both argv and envp must be 

terminated by a NULL pointer. The argument vector and environment can be accessed by the called 

program’s main function, when it is defined as explained before. Execve() does not return on success, 

as on success it will be launched a pre-compiled code. 

In order to program an efficient and performing code it is interesting to compare performances of 

threads and processes when set up to do similar tasks, including in the comparison other parameters, 

such as simplicity of configuration, ease of debugging, resources taken, and so on. It must be noticed 

that such comparison is architecture-dependent, as processes on Microsoft Windows OS are handled in 
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a whole different way, resulting in different performances for process management when compared to 

process management on UNIX. 

Overall, the situation is in favor of threads in Microsoft OS since processes are heavy and use a lot of 

resources; in addition they even have slower starting up times. 

However, since in an embedded application UNIX architectures have been chosen, a comparison 

between processes and threads will be given only for UNIX architectures. The little benefits of threads 

compared to processes are not worth the difficulties that arise in coding/debugging/management of 

them. This is due to the UNIX structure: in fact, it is designed to support filtering (small programs that 

directly chain the output from one process to the input of the next). That relies on command shells (or 

other programs) is able to launch multiple programs with relatively little overhead, and chain the 

outputs to the inputs. A fork()/exec() combination is the way that this is done (the command shell 

forks a copy of itself, and the new process overlays itself with the program to be executed). 

Accordingly, the basic architecture of UNIX is designed to ensure the overhead of fork() and exec() is 

relatively small (where with overhead is intended the excess of resources being needed for fork() 

/exec() commands execution compared to threads). 

3.3.1.1.3 Signal Handling 

The signal handling stays for the activities made by the scheduler to manage events (such as 

interrupts) that can occur both on the nominal execution flow and, in particular, among process. Those 

signals (independent from the lines) are connected to numbers (see Table 25) that correspond to events 

that should be managed. 

From the software engineering point of view, a signal is an interrupt delivered to a process. The 

operating system uses signals to report exceptional situations to an executing program. Some signals 

report errors such as references to invalid memory addresses, others report asynchronous events, such 

as disconnection of a line. The GNU C library defines a variety of signal types, each for a particular 

kind of event. Some kinds of events make it inadvisable or impossible for the program to proceed as 

usual, and the corresponding signals normally abort the program. Other kinds of signals that report 

harmless events are ignored by default. If the even that causes signals can be anticipated, it is possible 

to define a handler function and tell the operating system to run it when that particular type of signal 

arrives. Finally one process can send a signal to another process, this allows a parent process to abort a 

child, or two related processes to communicate and synchronize. 

Signal generation usually can be grouped into three categories: errors, external events and explicit 

requests. Error means that a program has done something invalid and cannot continue execution. 

Obviously not every error raises a signal, but only few of them do. An external even generally has to 

do with I/O or other processes. These include the arrival of input, the expiration of a timer, and the 

termination of a child process. Explicit requests, on the other side, mean the use of a library function 

such as kill (whose purpose is specifically to generate a signal). 

Signal generation can be performed in two ways regarding timings: synchronously or asynchronously.  

 A synchronous signal pertains to a specific action in the program, and is delivered (unless 

blocked) during that action. A great number of errors generate synchronous signals and make 

explicit requests to a process to generate a signal for that same process. Sometimes, any errors 

(usually floating-point exceptions) are not reported completely synchronously, but may arrive 

a few instructions later. 

 Asynchronous signals are generated by events outside the control of the process that receives 

them. They arrive at unpredictable times during execution. External events generate signals 

asynchronously, and so do explicit requests that apply to some other process. 

Signal handling is done in C basically in two ways: utilizing signal or sigaction functions. The latter 

are stronger, but for the purpose of this work the signal are sufficient. The signal function establishes 
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action as the action for the signal signum: sighandler_t signal (intsignum, sighandler_t action), where 

sighandler_t is the type of the signal handler functions. For the purpose of catching an alarm firing in a 

process, the function can be called in this way: signal(SIGALRM,function_to_be_executed), assuring 

the execution of the function given in the argument in the second place. 

There is a second function, the kill function, used especially in the watchdog that has been used to 

send a signal to another process. Despite its name, it can be used for a lot of things other than causing 

a process to terminate, for example 

 a parent process starts a child to perform a task (perhaps having the child running an infinite 

loop) and then terminates the child when the task is no longer needed – watchdog case, or 

even scheduler behavior 

 a process executes as part of a group and needs to terminate or notify the other processes in 

the group when an error or other event occurs 

 two processes need to synchronize while working together 

Kill function (int kill(pid_tpid, intsignum) is declared in signal.h and sends the signal signum to the 

process or process group specified by pid. Besides the standards signals, signum can also have a value 

of zero to check the validity of the pid. 

The pid specifies the process or process group to receive the signal: 

 pid> 0: the process whose identifier is pid 

 pid == 0: all processes in the same process group as the sender 

 pid< -1: the process group whose identifier is –pid 

 pid == -1: if the process is privileged, sends the signal to all processes except for 

some special system processes. Otherwise, sends the signal to all processes with the 

same effective user ID. 

A process can send a signal to itself with a call like kill(getpid(), signum). 

The return value of kill is zero if the signal is sent correctly, otherwise it returns -1 and no signal is 

sent. If pid specifies sending a signal to several processes, the function succeeds if it can send the 

signal to at least one of them and there is no way to tell which of the processes got the signal or 

whether all of them did (without proper implementation of signal handling). 

The Single UNIX Specification explains the following signals which are defined in signal.h (Table 25) 

 

Signal Description Signal number on Linux x86 

SIGABRT Process aborted 6 

SIGALRM Signal raised by alarm() 14 

SIGBUS Bus error: “access to undefined 

portion of memory object” 

7 

SIGCHLD Child process terminated, stopped 

(or continued) 

17 

SIGCONT Continue if stopped 18 

SIGFPE Floating point exception: 

“erroneous arithmetic operation” 

8 

SIGHUP Hangup 1 

SIGILL Illegal instruction 4 
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SIGINT Interrupt 2 

SIGKILL Kill (terminate immediately) 9 

SIGPIPE Write to pipe with no one reading 13 

SIGQUIT Quit and dump core 3 

SIGSEGV Segmentation violation 11 

SIGSTOP Stop executing temporarily 19 

SIGTERM Termination (request to terminate) 15 

SIGTSTP Terminal stop signal 20 

SIGTTIN Background process attempting to 

read from tty (“in”) 

21 

SIGTTOU Background process attempting to 

read from tty (“out”) 

22 

SIGUSR1 User-defined 1 10 

SIGUSR2 User-defined 2 12 

SIGPOLL Pollable event 29 

SIGPROF Profiling timer expired 27 

SIGSYS Bad syscall 31 

SIGTRAP Trace/breakpoint trap 5 

SIGURG Urgent data available on socket 23 

SIGVTALRM Signal raised by timer counting 

virtual time 

26 

SIGXCPU CPU time limit exceeded 24 

SIGXFSZ File size limit exceeded 25 

Table 25: Single UNIX Specification signals defined in signal.h [5] 

Particular attention has been given to the watchdog functions because they are strategic in autonomous 

applications. Three are the signals utilized in the watchdog (6, 9, and 15), two of them are used during 

inter-process communication: 

 15 – this is the default signal sent by kill. The use of this signal allows applications to clean up 

(delete temporary files, free system resources like semaphores, etc) before terminating at the 

user’s request. 

 9 – the default action of this signal (termination) cannot be changed. This provides a sure-fire 

mean of stopping an otherwise unstoppable process. 

3.3.1.1.4 Real Time Operating System and Kernel 

One of the topics when a simulator is designed refers the possibility to execute tasks within specified 

time intervals, or meeting certain deadlines (or missing it by foreseeable amounts of time). UNIX (and 

usually every OS architecture) process execution relies on scheduling policies in order to grant the 



147 

 

correct operability of the system and the non-chaotic execution of processes, that includes allocation 

of resources and the relative de-allocation of them. 

Scheduling policy on UNIX architecture is made by assigning a priority level to a defined process. 

The main issue when developing real time applications on non real time capable OS is that the OS 

itself can hang the execution of user level applications to perform higher priority tasks or when 

prompted by hardware signals (hardware interrupts).This results in unpredictable behavior of a user 

level application when considering the fulfillment of the timing requirements: it is not guaranteed the 

on-time execution of a task and it is not possible to predict when a task will start or finish with a 

desired precision. 

A key issue to develop and implement a hard real time capable simulator is to utilize a hard real time 

operative system. There are a few possibilities when choosing the RTOS to be installed, some of them 

are open source while for the great part of them a license shall be bought. In this work it will be shown 

how to apply a real time patch to a vanilla kernel (vanilla is the term used to define a clean Linux 

kernel). Although other methods are available, ease of installation points to the second option, the real 

time patch to the Linux kernel: this is even suggested because it is possible to utilize newer kernels 

which are better supported on newer machines. Another option can be RTLinux which is maintained 

only in the paid version, while the free one is not updated. As for RTLinux, the idea behind its 

functioning is simple and effective and it has been used in similar HIL simulation, whose articles can 

be found in literature. 

As introduced, the idea behind RTLinux is interesting: real time capability is reached shifting one 

level higher the Linux kernel, making it run on top of a hard-real time micro kernel that will run the 

Linux kernel as a full pre-emptive process, set up to handle and catch the hardware interrupts, making 

it impossible for them to slow down previously set up real time modules. 

RTLinux comes in two main versions: one open source and one for pay, which is developed by 

WindRiver and offers more support to users. For this work RTLinux free has been used, which has all 

the characteristics needed to support StarSim activities. 

Anyway, the ideal and suggested way to install a RTOS (patch to a Linux vanilla kernel) is probably 

more robust and less prone to errors, but it is allowed for less configuration of the system. In the 

following lines the installation method of the vanilla kernel and its patching is presented: 

# sudo apt-get install kernel-package fakeroot build-essential libncurses5-dev 

This will install as usual the necessary packages to perform the OS installation. 

Then, the vanilla kernel image and the relative real time patch are downloaded and extracted. 

Instruction are posted here for version 3.0.10, tweak the commands as necessary. 

# mkdir -p ~/tmp/linux-rt 

# cd ~/tmp/linux-rt 

# wget http://www.kernel.org/pub/linux/kernel/v3.0/linux-3.0.10.tar.bz2 

# wget http://www.kernel.org/pub/linux/kernel/projects/rt/3.0/patch-3.0.10-

rt27.patch.gz 

# tar xjvf linux-3.0.10.tar.bz2 

# gunzip patch-3.0.10-rt27.patch.gz 

The kernel is now patched 

# cd linux-3.0.10 

# patch -p1 < ../patch-3.0.10-rt27.patch 

Kernel configuration is now made with 

# cp /boot/config-$(uname -r) .config&& make oldconfig 

Full pre-emption (option 5) should be selected when prompted, and the rest should be left as it is. Full 

pre-emption sets the system in real time operation mode. 
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Kernel is then built with these commands 

# sed -rie 's/echo "\+"/#echo "\+"/' scripts/setlocalversion 

# make-kpkg clean 

# CONCURRENCY_LEVEL=$(($(getconf _NPROCESSORS_ONLN)+1)) fakeroot 

make-kpkg --initrd --revision=0 kernel_imagekernel_headers 

This last command creates the initrd image needed and the various headers. 

Lastly the kernel is installed with this command 

# sudodpkg -i ../linux-{headers,image}-3.0.10-rt27_0_*.deb 

It will be now possible to boot into the new OS. Depending on the configuration of the machine, a 

manual editing of the GRUB menu/file might be needed. Known issues are present in machines with 

NVidia Graphics Cards: further patching is needed to avoid problems. 

The success of the installing operation can be checked under an UBUNTU OS opening System 

Monitor under System tag as shown in Figure 53 

 

Figure 53: Windows of the successful installation of Linux RT-patched Kernel 

3.3.1.1.5 Assigning real time capabilities to programs 

Configuring and installing a RTOS is not sufficient: such kind of OS does not run every single process 

in real time, but real time execution must be enabled within the program code.  

1. Main option to do in RTLinux environment is to create an object file (created by compiling in 

gcc with the –c flag an ordinary C language file without main() function). Instead of the main 

function there will be init_module and cleanup_module functions: 

 Init_module() function is called when the module is inserted into the kernel and registers a 

handler in the kernel; 

 Cleanup_module() is called before the module is removed and basically undoes what the 

init_module() function did.  

After the module has been compiled with  

# gcc –c (FLAGS) my_module.c 
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the module can be inserted into the kernel with the command 

# insmodnameofmodule.o 

while removing the module is performed with 

# rmmodnameofmodule 

2. For the second option, enabling RT capabilities for the process is done utilizing the 

sched_setscheduler(), and assigning a real time scheduling policy (which is now handled by 

the OS) and a priority (ranging from 1 – lowest to 99 – highest). Usually user processes can’t 

change the priority level of a process and setting it to FIFO or RR, therefore what needs to be 

done is to compile the code through terminal (thus creating an executable file) and running 

that file with root privileges. 

This is not a secure proceeding in regards of safety and exploitability of a process / program, 

but for now it is enough and serves the purpose. 

Commands needed to compile the various files are: 

# cc *.c –o main –lpthread –lrt 

where the –lpthread flag is used to compile a program that utilizes POSIX threads. 

The new executable file can now be launched by terminal with the command 

# sudo ./main 

The last procedure usually allows the execution of such processes in a soft real time way on non 

RTOS. The installation of a RTOS is needed to assure the hard real time execution mode. 

 

Figure 54: The importance of RTOS 

The Figure 54 shows why it is important to execute simulation in a real time operating system: despite 

having overall slower performance, the real time OS guarantees that no latency spikes will be present 

during the execution of the real-time enabled programs, therefore allowing for a precise and 

completely controlled execution. 



150 

 

3.3.1.1.5.1 Simulator Scheduler / Core 

Simulator Scheduler / Core is the father process of the simulation execution. It is a program developed 

in C that takes care to handle all the process spawnings, the priorities of the processes, ports 

initialization and forwarding, time and synchronization. 

Figure 55 shows the flow chart of the simulator scheduler. It reports the internal structure of activities, 

operations and the settings required to setup the processes in terms of numbers, types and other 

features presented hereafter. 

Simulator Scheduler

Setthread.txt

Simulation Loop

User starts simulation Read init file Port initialization Process Creation User stops simulation

 

Figure 55: Simulator scheduler flow chart 

3.3.1.1.5.2 Setthread.txt file 

This file contains all the information needed by the scheduler to run a simulation. Going into details 

thanks to the Figure 56: 

#### 

This line is used by the parser to confine the information regarding a process. The parsing continues 

until another line like this is found. When it is found, the Simulation Scheduler includes all the 

following information in another process. 

1 

Process number, it’s used for identification purposes in the file. 

Tempistica 1 

Line used to inform the scheduler of which timing scheme must apply to the selected process. The 

scheme configuration has not been defined yet. 

Priority 1 

This line is used to impose a priority on the process in the OS. The number might range from 1 to 99. 

Path 

Path is the information on where the executable is stored in the file system. It will be used during the 

execve() call. 

Pipe 

These are lines to define the named pipes to be used. 

 pipe: informs the parser that the line contains information on pipes 

 pipe_imu: name of the pipe. Will be passed to the spawned processes for their uses. 

 path: path to the named pipe 

 mode: can be alternatively r, w or rw. 

Serial 

These lines define the serials to be used. 
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 serial: informs the parser that the line contains information on serials 

 serial_pwm: name of the serial, to be used as a file descriptor when opening  the port inside 

the process that uses it 

 ttyUSB0: partial path to the serial, as initialized by the OS 

 B115200: example of speed at which to initialize the serial 

Setthread.txt parsing is done by successive calls to fscanf function, after doing the proper checks on 

what we expect to find with every call. All in all, the idea is that the structure of setthread.txt file is 

known and so we can hardcode the file parser behavior. 

 

Figure 56: Example of setthread.txt file 

This file is read by the scheduler that “prepares” the conditions determined by the user setup. 

3.3.1.1.5.2.1 Port initialization 

Simulator core parses the information on ports included in the file setthread.txt, then format the 

information into the argv field, that will be used in the execve(), and passed to the children. Port 

opening is performed in the children programs, while the parsing is done in the core. This might seem 

less efficient than simply parsing port information on the child itself, but conceptually the reading of 

the configuration file is performed on the core, so the information on ports must be read in the same 

program. 

3.3.1.1.5.3 Process creation 

For the simulation initialization, all the information on how many process to spawn, which executable 

to launch in which process, and which ports is that process going to utilize are available. 

 

Figure 57: Code snippet on process creation 

In the Figure 57, it is possible to notice some of the features explained in this chapter.  

 Setting the priority is done in the child and before launching the executable with execve. 

 Simulation loop then starts after the various execve() are called. 

 The exit in case of failure report the signal number. 
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3.3.1.1.6 Python and Simulation configuration 

Simulator has been configured by the core during the sequence described in the previous paragraphs. 

Simulation setup is instead performed through two Python programs called Initializer and FileParser. 

3.3.1.1.6.1 Inizializer 

The initializer manages the parsing of the database and the creation of the various .c and .h source files 

that will be compiled in order to generate the executable program that runs to perform the simulation. 

Initializer

Setup.ini

FileParser
Configure local 

variables

User input

User starts simulator Read database and
Folder structure

Read init file Match .ini functions
with database

Create Process.c and
function_header.h

Parse used database
files for local variable

configuration

Update database
files

Prompt for readiness

Initialize global
simulation variables

 

Figure 58: Simulator and simulation setup process 

The parsing of the database is done dynamically: the Initializer instantiates the first root folder of the 

database, and then proceeds to inspect its content. For every object found, it checks if the name ends 

with .c, and adds it to the list, for later use. In case the filename doesn’t end with .c, the Initializer 

assumes that as a folder (because, by design, only .c files or folders are stored in the database), and 

then calls the initial function again, this time considering the inner folder (here lies the recursion). The 

database is completely parsed by doing this proceeding for every object found in every folder. Object 

Oriented Programming (OOP) comes suitable in this situation because allows to assign more instances 

of the same object belonging to the folder 

A few words must be spent on correctly parsing and checking the prototypes of the functions in the 

folders. 

A typical C prototype looks like this: 

void dynamics_RK4(/*IN*/double B[3], double m[3], double *dt, double in0[3], double 

q0[4], double T[3], /*OUT*/double wib0[3]) 

A lot of information is stored in the prototype:  

 the function name (dynamics_RK4) 

 the return type of the function (void) 

 the variables name, types and dimensions, and  

 last but not least, the information on which variables are used as input in the function and 

which ones are outputs. 

The Initializer must support any type of variable and any combination of input/output. Python is very 

versatile, and a custom algorithm has been developed to parse all the information and store them in a 

dictionary related to the function considered. 
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The checks performed on the consistency of the prototype range from checking that a variable with a 

certain name, dimension and type has not been defined differently in another function, to correctly 

formatting the prototype itself, and so on. 

Start of DB read

Initialization of lists 
to empty for the 
folder instance 

considered

Check every object 
inside the folder

Does the file 
name end in .c?

Insert the filename 
in the file content of 

the folder

If it’s not a file, we 
assume it’s a folder

no

More objects?

For every file in the 
folder content grab 

and check the 
prototype

no

yes

no

yes

Prototype ok? Error, abort.no

More files?

yes

yes

DB parsedno

 

Figure 59: Iteration to parse the database 

Figure 59 highlights in details how the models selection is managed: when the user builds the models 

flow, he/she creates, implicitly, a list of functions (one function corresponds to a model). When the list 

is completed, the program scan the choice made and associates for each selected element the 

corresponding C++ function, making the check of the prototype and verify that all the variables and 

constant values required for the execution of every function are properly defined. 

3.3.1.1.6.2 Setup.ini 

The Setup.ini file contains a list of functions that the user need picks from the database in the specified 

order: it correspond to the linear flow of the executable file.  

Additional information is present in this file: the line ‘----‘ separates the functions called only once at 

the initialization stage of the execution from the functions that will be called in any iteration of the 

loop. During the process code creation, there will be checks on the function names contained in the 

setup.ini and the functions stored in the database, but this topic will be covered in the next section. 
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3.3.1.1.6.3 Process.c and function_header.h 

The two files are created by the Initializer: 

 process.c is the file with the main of the executable generated file  

 function_header.h is a file containing all the prototypes of the functions used in the main. 

The creation of the file function_header.h is pretty straightforward, because the prototypes directly 

derive from the setup.ini file. The creation of the file process.c is more complex: the structure of the 

file is defined, since there are interactions of this executable with others. Therefore the creation of the 

file (considering it a mere ‘parsing problem’) can proceed with a defined flow. 

Initial lines contain: 

  The included files 

 Initialization of the ports, as defined by the input files 

 Error occurred checking on port initialization 

The following step performed is to grab every variable inserted in all the functions called in the stack 

(the setup.ini file), performing consistency checks among variables: in fact, the parsing stops if a 

variable is re-declared with different dimension or type. 

Then the variable initialization should be initialized. The simulator asks an initialization value for 

every variable. If enter is pressed without any number, the initialization is completed putting default 

values. 

For int, float, or double arrays, a prompt appears before the actual input request for initialization 

values: the user is asked whether the user wants or not to initialize the array to something different 

than zero; in case of a negative answer the array initialization defaults to zero. For char arrays, a 

length is inserted, to differentiate between strings (which obviously can be initialized to 0) and useful 

arrays (that can be initialized to something else). 

After the variables initialization (and relative lines creation) the program parses the information on the 

setup.ini file, compares it with the stacked objects, and from each object’s prototype extracts the 

information to correctly call the function inside the program.  

3.3.1.1.7 FileParser 

Some model might have local constant or variables that should be initialized at the start of the 

simulation. FileParser is a program designed to take care of the initialization of the variables in a file 

that needs that need configuration. 

The file is flagged as configurable by the initializer, during the parsing described above. The 

is_configurable flag is the string /* CONFIGURABLE */ located in the first line of the file. 

The configurable section is included inside the file between the flags /*CONFIG_SECTION*/ and 

/*END_CONFIG*/, as shown in the Figure 60 

 

Figure 60: Example of model setting parameters 

All the variables contained inside the flags will be parsed, and a window will appear showing 

information on all the values found, that can be confirmed or set properly by the user. Pushing “enter”, 

the configuration is loaded and saved. The Figure 61 shows an example: the settings parameters of the 

IMU virtual model contained into the StarSim database. 
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When all these steps have been performed, the process is ready to be compiled, the executable 

program is directly generated. 

 

Figure 61: IMU settings window 

3.3.1.1.8 Automatic Code Generation 

The technology shown before is characterized by a high level of complexity on the code side but 

reduces the user interactions to Yes/No questions, to variable initialization (which can be skipped) 

made through selections within the GUI windows (see next paragraph). Remembering that skilled 

operators are required to perform the simulation, the simulator and the simulation initial configuration 

is simple and can be performed in a very straightforward way. 

The process of automatically generate executable code reduces huge sources of bugs and problems in 

the creation of the simulation instances: the user does not need to handle the several functions of the 

simulator, including real time execution, priorities and time tagging, correct managing of all the 

processors that will execute the programs, and so on. This process is done automatically by the 

simulation unit, as described above, saving time and reducing boring activities. Moreover, it is easy to 

take under control the development because the code is reported on the user-friendly interface where it 

is also facilitated the navigation. The same generated code is user friendly in fact the user can directly 

see and control the code having a well defined structure and where variables are traceable and the 

execution flow is modular. 

The “difficulties” is limited to build the simulation architecture as a LEGO construction where the 

objects are the various .c files that are included in the simulation initialization. Automatic code 

generation can handle local variable initialization, but for now no operation is done on the model 

itself, which has to be programmed by an engineer. 

Moreover, StarSim provides the instrument to cross-compile the generated source code for two types 

of architectures but in future release should extend this number. The cross-compiling is supported for 

ARM scale architectures and MSP430 architectures and it is not included in v1.x release. 

3.3.1.2 Interface unit 

The interface unit has the main tasks to connect the simulation unit with internal and external modules 

and part of the entire simulator. Depending on the configuration chosen for the simulator, there will be 

communication between processes with different features. The interface unit is in charge to manage 

communications both in the case the two processes are executed by the same processor, and in the case 

the two or more processes are handled by two different controllers. In both cases, a data link with a 

precise path for the data exchange between the processes is essential. 

There are multiple solutions to this problem, both in the case of a software link (for the case of two 

processes executed by the same processor) and in the case of hardware link (in the other cases). 
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StarSim has been designed to support a great number of communication types, in order to provide the 

user choose with the widest varieties of options when the simulation architecture is configured. 

The interface unit is based on two big types of communication: 

 Communication between processes executed by the same hardware or software interfaces; 

 Communication between processes executed by different hardware or software interfaces. 

3.3.1.2.1 Software communications 

The communication between processes executed by the same hardware, three types can be 

individuated: 

 File write/read 

 Named and un-named pipes 

 Unix Domain Sockets 

3.3.1.2.1.1 File write/read 

Data transfer between processes can happen by means of a file written by one process and read by 

another. 

Common C functions fprintf, fscanf can be used in this case, while keeping in consideration two 

possible issues: 

 A data formatting protocol needs to be known by both of the processes, in order to correctly 

parse the information 

 Access races to the file might occur, since one process could try to open the file that is already 

opened by the other, this resulting in unspecified behavior. 

3.3.1.2.1.2 Named and un-named pipes 

The pipes are unidirectional data channels that can be used for inter-processes communication. They 

are implemented creating two file descriptors, ones used for reading and ones for writing. 

Pipes can be created as named or unnamed. The unnamed pipes can be shared between two processes, 

one of which is created with fork(): this is because fork() shares the file descriptors among child. The 

drawback of unnamed pipes is that they cannot be delivered by a father to two children that then will 

use it for IPC (Inter-Process Communication) between the children: if the father creates the pipe, the 

two children are able to communicate between each other with the pipe. Unfortunately this is the case 

of the StarSim architecture in which the unnamed pipes are not taken into account. 

StarSim uses named pipes shared simply by passing the path of the named pipe to the children on the 

computer file system. 

The synopsis for the un-named pipes is the following: 

#include <unistd.h> 

int pipe (int pipefd[2]); 

 

The array pipefd is used to return two file descriptors referring to the ends of the pipe: pipefd[0] refers 

to the read end of the pipe, while pipefd[1] refers to the write end of the pipe. Data written to the write 

at the end of the pipe is buffered by the kernel until it is read from the read end of the pipe on the other 

side. On success, zero is returned. On error, -1 is returned and errno is set appropriately. 

The end of the pipe can then be read and written with the common write() 

check = write(fd[1], "ciao", sizeof("ciao")); 

if (check > 0) { 

 printf("write riuscito\n"); 

printf("check %d", check); 
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} else { 

 printf("Error in write\n"); 

 return (EXIT_FAILURE);} 

and read() functions: 

check = read(fd[0], &buffer, 100); 

if (check < 0) { 

 printf("read ok\n"); 

 printf("%s\n", buffer); 

} else { 

 printf("Error in read\n"); 

return (EXIT_FAILURE);} 

For inter-process communication between two non-related processes, as in the case of SIL, named 

pipes were used.  

Named pipes are just normal pipes, except for the fact that they are created by the program (or the 

user) and are physical files on the machine. 

The command to create them from the terminal is 

# mkfifo NAMED_PIPE 

which has to be performed with super-user permissions: this, in addition, can be performed by the 

simulator performing a system call with the command 

# system(“mkfifo NAMED_PIPE”) 

In the code, pipes must be opened with the open() command, setting the rules for opening them (read 

only, write only, and so on). 
pipe_pwm = open(“FIFO_pwm”, O_RDONLY); 

pipe_imu = open(“FIFO_imu”, O_WRONLY); 

Reading and writing to pipe is then simply performed utilizing the already introduced write and read 

functions. 

3.3.1.2.1.3 UNIX Domain Sockets 

In order to complete the frame of the possible software interfaces, UNIX Domain Sockets are 

described. Similar to named pipes, and typical of UNIX architectures, they are a data communication 

endpoint for exchanging data between processes executed by the same processor. Like named pipes, 

they do not need to share a common ancestor and API (Application Programming Interface) are 

present that simplify the interaction with this type of facility. Communication occurs completely 

within the operating system kernel. 

3.3.1.2.2 Hardware interfaces 

The communication between processes executed by different hardware can be guaranteed through 

different protocols and ports. At this moment, StarSim implements in C the following types of 

hardware interfaces 

 Serial RS232: serial_init() 

 USB: usb_init() 

 LAN: ethrnet_init() 

In the future release, StarSim can provide hardware communications also through CAN bus and I2C. 

3.3.1.2.3 Data protocols management 

StarSim gives the opportunity to manage and reproduce the coding and decoding operations on the 

data according to high level or custom data protocols. These operations result useful for SIL and 

essential for CIL and HIL simulations. User can define the format of the data intended as the header 

and closer characters of a raw string, and the sequence of the information and their cast (e.g. char, int, 

float, double). The implementation in C is made with structures as the follow example: 
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typedef struct str_out { 

  char header[3]; 

  char com_obc; 

  float q1; 

  float q2; 

  float q3; 

  float q4; 

  unsigned int gyro1; 

  unsigned int gyro2; 

  unsigned int gyro3; 

  unsigned int acc1; 

  unsigned int acc2; 

  unsigned int acc3; 

  unsigned int emf1; 

  unsigned int emf2; 

  unsigned int emf3; 

  unsigned int pwm1; 

  unsigned int pwm2; 

  unsigned int pwm3; 

  unsigned char flag_on; 

char closer[2]; 

    } str_out; 

(This is the protocol used for the communication of a self developed ADCS board and the OBC in the 

est@r program – so refer to Chapter 4 for details on the e-st@r program).  

The operations of coding and decoding are performed by common UNIX functions mixed by self-

written functions autonomously set by the simulation unit. More in details, for the coding the functions 

are: 

format_packet(str_out, format-string) 

write(number_serial, format_string, n) 

For the decoding, the sequence of functions is: 

read((number_serial, buffer, n); 

validate_packet(buffer,data-vector); 

extract(data_vector, str_in); 

3.3.1.2.4 Interfaces Database 

In the StarSim, the interface functions are gathered and organized in a database, as shown in the Table 

26. 

Categories Name 

Software Interfaces File write/read   

  Pipes Named 

Hardware Interfaces Serial RS232 

  USB USB 

  LAN LAN 

  I2C I2C 

  CAN CAN 

Protocol Management Handling Format_packet 

  Handling Read 

  Handling Write 

 Handling Generate_string 

  Handling Extract 

Table 26: Interfaces functions database 
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3.3.1.3 Model database categories  

The importance of the models within the proposed methodology is unquestionable. The paragraph 

1.4.4.1 explains the philosophy adopted in the StarSim in reference to the models, virtual and physical, 

their features and organization.  

The fundamental part of any simulation is the ability of modeling the elements of the system under 

study. A database with different mathematical and stochastic models, divided in several categories, has 

been built and is periodically updated. The simulator has been designed according to the principle that 

any simulated system should behave as the real ones not only in terms of numerical or physical 

outputs, but also in terms of interface with the other elements in the simulation loop. Potential 

anomalies in actual sensor’s measurements shall also be reproduced in the virtual sensor. The level of 

models’ detail shall be carefully evaluated taking into account the accuracy of the simulation on the 

one side, and the computational cost on the other side. Usually, increasingly more detailed models are 

used according to the advancement of the design. The models come from literature when available or 

they are derived from information given by the manufacturers, or they can be obtained from data 

acquired during open-loop testing of the specific equipment. 

3.3.1.3.1 The spacecraft equipment/components models 

The Simulation Unit includes electrical emulation of equipment: e.g. the output value of each sensor is 

computed by the simulator and it is read by the embedded system under test. In the same way, the 

embedded system commands the actuators by means of proper control signals and it sends back to the 

simulator the control values. 

More in general, every simulated system should behave as the real one not only for the numerical or 

physical outputs but also for the type of interfaces with the other tested elements. Furthermore, any 

potential anomaly in actual sensor’s measurements should be reproduced in the corresponding 

modeled sensor. 

StarSim allows loading data and functionalities of the simulated equipment in order to configure the 

simulation parameters during initialization. Examples of settings are: 

 Characterization of the modeled equipment 

 Default values  

 Definition of simulation parameters like step time, integration method, sequence of models 

loading 

 Configuration of the telemetry and log parameters  

 Configuration of the protocols and the kind of interfaces (for HIL) 

 Calibration parameters 

In the high fidelity models, components are modeled in such detail that it is possible to simulate 

nominal operating modes as well as failure modes and not idealities are taken into account. The failure 

functionalities inside the equipment models allow a consistent reproduction of failure symptoms of the 

real spacecraft components for tests of the on-board software. In addition a functional representation 

of the spacecraft on-board harness can be included in the simulation comprising power supply harness, 

signal harness reflecting analog, digital and data bus connections between onboard equipment. 

3.3.1.3.2 The space mission models 

The space mission models mainly refers to space environment models that cover a great importance 

both for the verification and validation issues and for drastically reduce the costs and the resources 

involved in a test campaign. Validation passes, as explained in paragraph 1.2, through the verification 

in the real conditions. They are often too difficult or impossible to reproduce exactly and all together. 

This implies that environmental condition and dynamics effects on space system are conveniently 

reproduced through virtual models or, in some cases, hybrid models. 
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3.3.1.3.3 The database 

StarSim models are organized within a database, according to the following main categories: 

 Devices and Equipment,  

 Mission: Environmental and S/C motion 

 GSE 

 Special Functions  

 Transformation and conversion 

 Display and Visualization 

The following tables highlight all the models and functions contained in the databases, already divided 

in categories. 

3.3.1.3.3.1 Devices & equipment 

This paragraph contains the list of devices and equipment model that should be present into the related 

database. [9], [10], [11]. 

Categories Name Inputs Outputs 

Sensors Attitude 

determination 

Magnetometer modeled EMF (Bb) measured EMF (Bmis) 

Sensors Attitude 

determination 

Gyroscope Angular rate (wib) measured angualr rate 

(wib_mis) 

Sensors Attitude 

determination 

Sun Sensor satellite attitude (q) Normalized Sun vector in the 

sat body frame (S) 

Sensors Attitude 

determination 

Star Sensor Images of stars taken 

by sensors 

Difference angle between 

measured and stored star unit 

vectors (qstar) 

Sensors Attitude 

determination 

Horizon sensor Shape of Earth’s limb 

(Earth’s IR radiation) - 

(EarthShape) 

Direction of Earth (Nadir) 

Sensors Orbit determination GPS/Galileo     

Sensors Orbit determination Accelerometer real acceleration (acc) measured acceleration 

(a_mis) 

Sensors Thermal  NTC&PTC Temperature (Temp) measured temperature 

(Temp_mis) 

Sensors Navigation Sensor  Encoder Angular rate (w_enc) Position (x,y,z) in the body 

frame 

Signals 

Handling 

Devices 

Converters ACD analog signal (in) digital signal (out) 

Signals 

Handling 

Devices 

Converters DAC digital signal (in) analog signal (out) 

Signals 

Handling Devs 

Logic PWM command (command) duty cycle (DC) 

Actuators Attitude Control 

Actuators 

MagneticTorquers real dipole moment (or 

MT) current and EMF 

(m) 

dipole moment (mtorquer) 

Actuators Attitude Control 

Actuators 

VernierThruster command torque 

(Treal) 

thruster torque (Tth) 

Actuators Attitude Control 

Actuators 

PermanentMagnets generated dipole 

moment (mpm) 

generated torque (Tpm) 
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Actuators Attitude Control 

Actuators 

ReactionWheel Voltage (V), Current (i) motor angular velocity 

(w_rw), generated torque 

(Trw) 

Actuators Orbit Control 

Actuators & 

Propulsors 

Thruster comamnd torque (T) thruester torque (Tthruster) 

Power Sources   SolarCell  attitude (q) Voltage (Vsp), current (isp) 

Table 27: Models database of devices and equipment 

3.3.1.3.3.2 Mission - Environment & S/C motion 

Table 28 lists the S/C motion and the environmental models [11],[14] and alii. 

Categories Name Inputs Outputs 

S/C motion Linear relative motion Hill's equations sum of forces (sumF) relative position and 

relative velocity 

(xr,yr,zr) 

S/C motion One body orbit 

propagation around 

the Earth 

SG4 propagator 

equations 

sum of the forces (sumF) orbit position (x,y,z) - 

(LAT,LON,H) and 

velocity (vx,vy,vz) 

S/C motion One orbital body 

Dynamics 

Euler/Newton 

equations 

sum of the torques (sumT) body angular 

velocities wrt inertial 

frame (wib) 

S/C motion One orbital body 

Kinematics 

Euler/Newton 

equations 

body angular velocities wrt 

inertial frame (wib) 

attitude (q)and body 

angular velocities wrt 

orbital frame (wob) 

Environment Earth Magnetic Field IGRF  Attitude(q), time (tt), EMF (B)  

Environment Thermal Heat fluxes 

calculation 

attitude(q) tempeture (Temp) 

Environment Radiations BitFlip injection right value (input_name) failed values 

(fail_value) 

Environment Radiations Latch-up Injection right value (input_name)   

Environment Attitude perturbations Aerodynamics 

Torques 

altitude (H), atmospheric 

density (rho_atm) 

aerodynamic torque 

(Ta) 

Environment Attitude perturbations Gravity Gradient 

Torques 

orbital position of the spacecraft 

(LAT,LONG,H),  spacecraft 

attitude 

gravity gradient 

torque (Tgg) 

Environment Attitude perturbations Magnetic Torques Orbital position 

(LAT,LONG,H), EMF(Bb), 

Magnetic dipole(m) 

magnetic torque (Tm) 

Environment Attitude perturbations Solar Pressure 

Torques 

Attitude of the spacecraft 

(q),(equivalent area exposed to 

the Sun), sun position (S), arm 

(cp-cm) 

solar pressure torque 

(Tsp) 

Environment Orbit perturbations Atmospheric Drag altitude (H), atmospheric 

density (rho_atm) 

atmospheric drag (Fa) 

Environment Orbit perturbations Solar Pressure Attitude of the spacecraft 

(y)(equivalent area exposed to 

the Sun), sun position (S) 

Total force acting on 

the spacecraft 

Table 28: Models database of environment and S/C motion 

 

3.3.1.3.4 GNC strategies 

One section of the database is devoted to the GNC strategies and related models (see Table 29). [13], 

[14], [15], [16]. 
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Categories Name Inputs Outputs 

Control strategies 

2D motion control 

strategies Way Point 

wp positions in the body 

frame (WP) - 

Control strategies 

Attitude/trajcetory 

control laws Fuzzy state variables (x) commands (y) 

Control strategies 

Attitude/trajcetory 

control laws Hinfinity state variables (x) commands (y) 

Control strategies 

Attitude/trajcetory 

control laws LQR state variables (x) commands (y) 

Control strategies 

Attitude/trajcetory 

control laws Neural Network state variables (x) commands (y) 

Control strategies 

Attitude/trajcetory 

control laws PID state variables (x) commands (y) 

Determination 

strategies 

Deterministic & 

Statistic  methods ESOQ     

Determination 

strategies 

Deterministic & 

Statistic  methods QEST 

model values 

(in_model)and measured 

values (in_mis) estimated attitude (qest) 

Determination 

strategies 

Deterministic & 

Statistic  methods Qmethod 

model values 

(in_model)and measured 

values (in_mis) 

estimated attitude (q-

method) 

Determination 

strategies 

Deterministic & 

Statistic  methods TRIAD 

model value (in1_mod) 

and measured value input1 

(in1_mis), model value 

(in2_mod) and measured 

value input2 (in2_mis)  estimated attitude (q_triad) 

Determination 

strategies 

Deterministic & 

Statistic  methods KF 

plant state variables (x) 

and measurements (mis) estimated attitude (qhat) 

Determination 

strategies 

Deterministic & 

Statistic  methods EKF 

plant state variables (x) 

and measurements (mis) estimated attitude (qhat) 

Determination 

strategies 

Deterministic & 

Statistic  methods UKF 

plant state variables (x) 

and measurements (mis) estimated attitude (qhat) 

  

Orbit 

determination 

propagation from 

TLE NORAD lat,long,altitude 

Guidance stretegies Pointing   desired values (xd)   

Guidance stretegies StationKeeping   desired values (xd)   

Time management   

SimTime 

Management   sim time 

Time management   

UTC time 

management   

year, month, day, hour, min 

ute, second 

Table 29: Models database of GNC strategies and special functions 

3.3.1.3.4.1 Transformations and conversion 
Categories Name Inputs Outputs 

Conversions Angular euler2quat euler angle (ϕθψ) quaternion (q) 

Conversions Angular quat2euler quaternion (q) euler angle (ϕθψ) 

Conversions Angular rad2degrees radiant degree 

Conversions Angular degrees2rad degree radiant 

Conversions Length meters2feet meter feet 

Conversions Length feet2meters feet meter 
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Conversions Rotation Matrix rotation 

inertial2orbital 

 attitude (q), vect_in vect_out  

Conversions Rotation Matrix rotation orbital2body  attitude (q), vect_in  vect_out 

Conversions Rotation Matrix general rotation phi,theta,psi, vect_in  Vect_ 

Math operations   3x3 cross product vect1_in, vect2_in vect_out 

Math operations   matrix determinant matrix determinant 

Math operations   matrix eigenvalues & 

eigenvector 

matrix eigenvalues and 

eigenvectors 

Table 30: transformation and conversion functions database 

3.3.1.3.5 Ground Support Equipment 
Categories Name Inputs Outputs 

Rotational 1D platforms Gimbal platform DC for motors 

(DCmotors) 

platform motor voltage and 

current (V, I) 

6DoF Robotic arms CADET robotic ARM     

Solar radiation Power suppliers ISO-32 Vset,Iset V_alim, I_alim 

Table 31: Models database of GSE 

3.3.2 Ground Support Equipment 
The GSE are all those elements (instrumentations, devices, systems, assemblies, cables) that  

 give/receive stimuli to/from test object according to the values computed by the simulator; 

 serve to perform the simulation but they belong neither to the simulation unit nor to the test 

object 

Three main categories of GSE can be individuated: 

 GSE for stimulation of the test object 

 GSE for externally power the test object and other parts involved in the simulation session 

 GSE for the communication/ exchanging of data between two of the main “actors”, i.e. GS 

and test object, test object and simulation unit, the Control Console and the Simulation Unit. 

Pay attention that GSE for communications are to be intended as the equipment (cables, 

connectors, radio- module, and filters) that allow the physical connection.  

3.3.2.1 GSE for sensors stimulation 

Hybrid test benches enable two main types of “Hardware in the Loop” verifications which include 

more equipment than the embedded smart board (i.e. processors, controllers: the Open Loop test and 

the Closed Loop test. 

3.3.2.1.1 Open Loop test 

"Open loop" tests foresee that real spacecraft sensors, actuators or payload are connected to the on-

board computer via harness.  

Initial tests goal should evaluate if: 

 the equipment can be controlled correctly and, 

 the on-board computer receives all acquisition data and status telemetry without errors 

from the equipment. 

 the equipment occurrences are connected correctly to the on-board computer ports. 

For a subset of critical sensors it might be necessary to stimulate them dynamically and quantitatively, 

to measure whether the entire system control loop with OBC and sensor in the loop operates as 
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desired. Depending on the different sensor types, stimulation equipment is required for each. An 

example derives from a sun sensor: it could be stimulated with a lamp, able to reproduce a radiation 

compatible with Sun radiation. The sensor position can be controlled dynamically during test from the 

control console via an electrically commendable two axis gimbals.  

Other example applied to StarSim is an IMU characterization (the Sparkfun Atomic 6DoF). 

The test bench has been built in the StarLab at Politecnico di Torino (with Eng. Raffaele Mozzillo and 

Mr. Davide Falsetti) to properly test the behavior of an IMU; it consists of: 

 an electric motor EMG30 (used with and without gearbox); 

 facilities supporting cables necessary to power the motor, the platform and of course for 

serial connection to PC; 

 a RS232 adapter with the task of converting the voltage at the desired levels; 

 a rigid surface in plexiglass for the installation of the platform. 

The final result is shown in Figure 62, where it is possible to see more details. 

Through the simulator has been possible to control the motors speed, performing an “open loop” test 

that allows characterizing the IMU output. Knowing that the measures provided (this particular IMU 

provides measurements of angular velocities as voltages) requires a proper conversion from digital to 

analog measure of voltage using the following relationship: 

ref

a

d
V

resV
V   

(where Va is the analog voltage measure, Vd is the digital voltage measure (provided by IMU), res is 

the resolution (res = 210 = 1024) and Vref = 3.3[V] is the reference voltage), the simulation has been 

built and setup. It foresees: 

 the setup of the serial interface 

 the definition and calibration of the sensors parameters 

 the setup of the GSE (the motors and their drivers) 

 the definition of the commands and the operation modes for the motors 

 the acquisition of data from sensor 

 the definition of the saved files and the “sensible data” that will be stored in 

Figure 62 shows the results obtained from the simulation session.   

3.3.2.1.2 Closed Loop test 

“Closed-loop simulation”: the simulated system can be used to calculate attitude and position of the 

spacecraft. With this information, the Sun position detected by the sensor can be provided by the 

simulator and the corresponding control can be applied as well as the angular velocity measured by 

gyros. The processor then receives the measured signals from the real sun sensor and gyros as if it 

were in Earth orbit. The software performs the calculations and returns the attitude control cycle. The 

stimulations and/or measurement infrastructures for such closed loop tests can completely differentiate 

between the system types under test. Their functionalities are individually determined by the definition 

of tests which are to be run on the installation. The same kind of procedure can be thought for 

actuators tests.  

Details about this kind of configuration are contained in the Chapter 4, where the HIL simulations for 

e-st@r CubeSats are deeply explained. 



165 

 

 
Figure 62: Plot of the outputs for IMU Sparkfun characterization 

3.3.2.2 GSE for power 

A typical GSE in the test benches is a power supply system. To differentiate from standard laboratory 

power supplies, the test bench supply usually is called the "Power- Frontend" and it supplies all units 

of the test bench, if the EPS of the space vehicle is not involved in the running simulation session. 

Depending on the project complexity such a Power-Frontend is either controlled manually or can be 

commanded by simulation unit. Clearly, over/under voltage/current circuits provide the right 

protection via latch-up limiters.  

For the StarSim, the Power GSE is mainly represented by: 

 cables and current and voltages transformer used to connect the great number of the CC 

devices (Laptop and PC) and boards (development and embedded board and physical models 

of sensors and actuators) with the C.A. 220V @ 50 Hz, 

 power supply units which take the place of the batteries, solar cells and other electrical 

generators and provide power directly to the test object. In some configurations, they are 

manually setting (as made traditionally) or (more interesting) they are commanded by the 

Simulation Unit. The main example for StarSim is given by the ISO-TECH IPS 3202 power 

supplier. It has three outputs commendable via RS232 formatting the commands with the data 

protocol (available from the manual). 

3.3.2.3 GSE for telecommunication and data exchange 

TM/TC devices are GSE for telecommunication and data exchange. It is possible to individuate two 

subcategories: Simulator Frontend provides the communication between the test object and the 

simulation unit, TM/TC Frontend provides the communication between the test object and the Ground 

System. 

3.3.2.3.1 Simulator Front-end 

Simulator Frontend device serves to connect the on board hardware with the still simulated rest of the 

system. It can consist of a set of interface boards, transferring signals from the real 

processor/controller to the simulator respectively to return simulated data to the controller. Since in 

such a HIL configuration the simulator has to respond in real time and thus has to run on a real-time 

operating system, also the data bus system for interface boards has also to provide real time data 

transfer features. Particular attention shall be paid when the interface boards, the test cables and the 

hardware interface on the controller side are connected because they must be electrically compatible, 
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requiring an accurate design of electrical input/output characteristics down to corresponding signal 

compatibility measurements. Another function (that Simulator Frontend shall guarantee) is the 

synchronization between test object and simulator, avoiding numerical problem and mostly 

transmission error in data protocols. 

3.3.2.3.2 TM/TC Front-end 

TM/TC devices allow the telecommunications between the test object and the ground system. They 

are necessary because telecommands (formatted following specific protocol) are sent to the test object 

(through the communication system of the spacecraft) in a real flight mission from the Ground Station. 

The on-board computer (in a “star architecture”) or the specific processor/controller of the subsystem 

(in a “distributed architecture) receives the packet e handle the information. The way back from the 

onboard computer/subsystem’s processor is similar. Packets with data telemetry are formatted and 

transferred to the on board communication system, which sends to the ground. The Ground System 

receives the signal, extract and visualizes the information.  

An example of TM/TC Front-end is the Ground Station equipment. Figure 63 shows the blocks-

scheme of the GS developed for the e-st@r program and used for any kind of simulations during the 

test campaign. It can be considered as part of the StarSim, completing the global architecture  

 

Figure 63: Mobile Ground Control Station Scheme 

The GS is mainly devoted to receive the downlink data from the satellite so its configuration is done 

in this perspective. It is constituted by a dedicated Notebook (named NB-MGCS) and a Kenwood TH-

F7E radio (Figure 65) with its antenna. For the short range communications the antenna of the radio is 

sufficient, for next tests at medium and long distance the antenna will be replaced by an appropriate 

antenna (Lafayette SG7000) (Figure 64). 

The TNC (Figure 66) connects the terminal to a radio transceiver. Data from the terminal is formatted 

into AX.25 packets and modulated into audio signals for transmission by the radio. Received signals 

are demodulated, the data unformatted, and the outputs sent to the terminal for display. 

In addition to these functions, the TNC manages the radio channel according to guidelines in the 

AX.25 specifications. The interface is typically constituted by analogical audio signal and a line for 

PTT and squelch. The connector that is normally used for all TNC is the Mini DIN 6 pin (actually 

classified in the ISO-9002 to standardize transceivers data ports). The TNC-7 multi is shown in figure 

20 below: 
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Figure 64: LaFayette SG7000 

antenna 

 

Figure 65: Kenwood TH-F7E 

 

 

Figure 66: TNC-7 multi 

 

Suitable software is needed in order to receive the data encoded with the chosen protocol (i.e. the 

KISS AX.25 protocol for e-st@r program), as sound input, and decode its contents. The choice fell on 

free software: AGW-PE. This software, with the relative driver, allows to displays the received packet 

on video. The Kenwood TH-F7E radio will receive the downlink data and transmit them as audio 

input to the microphone input of the NB-MGCS. At the same way, this software allows to set 

destination and source address and write the command message by the keyboard packing them into the 

protocol and transferring it to the radio using the PC earphones output. 

The interface between PC and radio is guaranteed by special cable that is built expressly for this 

application. This cable allows the communication both for downlink and for uplink: in fact, an audio 

double stereo jack cable connects the PC earphones output with the radio microphone input; in the 

same way, an audio double stereo jack cable connects the PC microphone input with Radio the 

earphones output. 

Moreover, there is a third connection between the radio Push To Talk (PPT) line and the PC USB port 

in order to enable directly and automatically the transmission of the uplink packet avoiding each time 

to push the Radio PTT button. 

For StarSim, generic and more specific GSE for communication and exchange data have been 

designed and built. Some of them derive from previous concluded program or are bought as 

plug&play devices. In Figure 67 and Figure 68 the blocks schemes of a StarSim Frontend are reported. 

It contains different kind of hardware communications interfaces together with a Power GSE that 

regulates and distribute power at different CC voltages starting from the CA 220V@50Hz source. 
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Figure 67: Blocks scheme of the power frontend for StarSim 
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Figure 68: Blocks scheme of the TM/TC Front-End for StarSim 

3.3.3 Control Console 
The Control Console (CC) puts in communication the Simulation Unit with the user, enabling the 

control of the simulation session in any moment. 

 Before the simulation execution, it favors the definition, the configuration and the setup of the 

architecture and parameters. 

 During the simulation execution, it permits the real time monitoring and control as well as the 

live visualization of values and trends of the sensible parameters and variables. 

 At the end of the simulation execution, it allows the data handling and the requirements 

verification 

From the hardware point of view, the Control Console is a dedicated computer or a network of 

computers: Their interfaces are: 

 LAN or Ethernet cables to be connected to the World Wide Web; 

 RF or Wireless devices at different frequency with respect to the frequencies used by the test 

object, or wired through the debug ports located on the front-ends; 

 Plug and Play cables. 

In the StarSim v1.0 the Control Console stays in the WS with the Simulation Unit. 
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3.3.3.1 GUI (Graphical User Interface) 

The GUI is the element that effectively permits the interaction man-machine. In fact, the GUI is a 

software program devoted to help the user in any phase of the simulation through a graphical 

organization that simplify the interaction between the user and the management of parameters and 

results management. An intuitive approach simplifies the user activities using graphic elements like 

virtual buttons, boxes, plots and tables. For details about the GUI of StarSim see the paragraph 3.4. 

3.3.4 The test object 
The test object is the system (or some of its parts) that would be investigated during the verification 

campaign. It can be constituted by: 

 Embedded Systems: electrical board based on a “smart unit” (micro-processor/controller, 

PC104, FPGA, ASIC), circuits and devices needed for the test object good working, i.e. timers 

and synchronization systems, volatile and non volatile memories and input/output logical and 

physical ports; 

 equipment includes mechanical, electrical, and RF devices. For the GNC, they are actuators, 

sensors, drivers logic circuit, and signal conditional board; other examples are engines, radio-

modules, antennas, solar panels, batteries and fuel cells, etc...  

Moreover, also the algorithms and software can be considered as real objects of the test. 

3.4 How to use the simulator 
This paragraph provides an overview of the activities that a user shall or could make with StarSim. In 

particular, the instructions and steps to build a simulation architecture, select and setup models and 

interfaces, execute the simulation and visualize and handle the results are briefly presented. 

3.4.1 Simulator main window 
The definition of the simulator architecture is a simple step to perform when the user has already 

designed the architecture of the simulation test he wants to be executed. This condition is valid for the 

StarSim v1.0, successive versions shall foresee design tools based on SE rules able to provide design 

output such as block schemes or functions/equipment matrices from which the software of the StarSim 

self-generating the simulation architecture. 

After the launch of the executable file StarSim, the main window appears and it has six buttons: 

 Select the simulator architecture 

 Select the models 

 Select the simulation parameters  

 Select the outputs 

 Run 

 Data repository 
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Figure 69 shows this main window. 

 

 

Figure 69: StarSim main window 

3.4.2 Simulator architecture configuration 
The following choices shall be made in order to have the desired configuration in relation with the 

type of simulation (AIL, SIL, CIL, HIL, hybrid). In this phase the user shall take decision on: 

 Number of processes to create; 

 Number of processors available for the simulation; 

 Number and type of software communication ports; 

 Number and type of hardware communication ports. 

Figure 70 shows the first window of the GUI devoted to the definition of the simulator architecture. 

 

 

Figure 70: Initial process section window 



171 

 

Thickin the number in the box and pushing OK, the number of processes are setup. According to this 

number, the simulator will propose windows (such as that in Figure 71) in order to define the 

properties of each process. The priority, the path with the future name of the generated code and the 

number of interfaces shall be setup by the user. The number of interfaces carries out the selection of 

their type (hardware or software): the user can specify the type, the name, the path, the speed or other 

features of the interface through the labels automatically generated according to the set number .At the 

end of any process setup the user push button SAVE in order to save the configuration re-loaded in 

future and the button OK to fix the current solution. 

 

Figure 71: Process selection, main window 

At the end of all the selections, the setsimarch.txt file is generated in an automatic way (see paragraph 

3.3.1.1.5.2) 

The setsimarch.txt file contains the following information for any process:  

 First line, four ‘#’: #### 

 Second line, process number (starts from 1): 1 

 Third line, timings requirements (starts from 1): tempistica 1 

 Fourth line, priority setting (ranges from 1 to 99): priority 1 

 Fifth line, ‘path’ followed by the path to the executable to be launched. In case the executable 

lies on another processor input ‘crosscompiled’: path 

/home/ws1/Repository/ExampleFolder/exampleExacutable 

 Sixth and following lines contain the information on how many interfaces are needed and 

which type and settings they have. 

3.4.2.1 Define the interfaces 

As stated before, sixth and following lines in setsimarch.txt reports the information on the 

hardware/software interface. These lines contain:  

 the software interface features: in pipe case, the label ‘pipe’ followed by name of the pipe, 

path to the named pipe in consideration, read/write mode expressed as ‘r’, ‘w’, ‘rw’ are the 

required setting: e.g. pipe pipe_imu /home/ws1/Ports/Pipes/examplePipeName rw 

 the hardware interface parameters: for example a serial port, it shall be configured with the 

label ‘serial’ followed by serial name, the address (usually in the form of ‘ttyUSB0’, 

‘ttyUSB1’, and so on, in case of serial-USB converters are used, or ‘ttyS0’, ttyS1’, and so on 

in case of pure serial ports). Moreover, the baud rate, the parity check and control flow should 
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be defined. If no settings are defined the default values are setup, e.g. serial serial_pwm 

ttyUSB0 B115200. Similar examples can be done for USB ports, Ethernet/TCP-IP, GPIO, and 

others. 

All the settings can be configured through the dedicated GUI windows (Figure 71).  

3.4.3 Define the models flow 
Models flow definition reflects the idea that the user needs to define which are the actual models 

involved in the simulation, after having defined the architecture of the simulator.  

 

 

Figure 72: Models selection window 

To choose the models and specify their order, the user simply interacts with the relative GUI window. 

Here, he can find a database explorer and select and drag into the near window the chosen models in 

the execution list configuration. In addition, the order can be directly modified dragging the functions 

in the desired place. Once the order has been defined it is possible to save it the files models_flow.txt 

in order to make it available for future use. 

The Figure 72 shows “MODELS SELECTION” window where the database of models is in the left 

side and the source code generating by the choices is in the right side. The user can select the models 

exploring the database and push the button ADD to add the models in the flow. A model can also be 

removed with the button REMOVE, moved up and down in the flow sequence with relative buttons. 

Finally, the selected models are directly put on the loop but through the button MAINWHILE, he can 

leave it out of the loop: this is useful for those functions, e.g. compare devoted to post-processing 

activities or gettimeofday that setup the UTC before the starting of the running. The button 

CONDITION allows the setup of particular conditions that change the execution flow in runtime, i.e. 

it is used to define a mission profile. 
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In the future release of StarSim, Automatic models definition can be performed if the whole process of 

mission and system design has been completed utilizing specific software (SysML, UML) or future 

StarSim libraries. In this case an “allocation matrix” shall be available and the order of execution will 

be automatically created by parsing on that table. 

3.4.3.1 Model configuration 

Both in the case of automatic and manual models definition, the setup operations on models shall be 

made because a model can contain local variables and constants that need to be initialized or defined, 

and the success and correctness of the simulation is directly related to the information stored in these 

variables. 

A dedicated GUI window will pop-up (see Figure 61) in the case the inserted model contains 

parameters that need to be initialized by the user. For any model, default parameters values are already 

loaded and are used if user does not proceed to define them accordingly. For every process selected 

will exist an own models flow characterized by the sequence of the chosen models. Behind each 

model there is a C++  function. At the end of the models flow definition a C++ code skeleton is 

generated and it is ready to be compiled and cross-compiled. 

3.4.4 Simulation Setup.  

3.4.4.1 Define the simulation parameters 

Once all the configuration of the simulator has been performed in terms of simulation architecture, 

models flow and interfaces selection, the user can proceed to set the simulation parameters. These 

parameters are:  

 start time and stop time: tstart, tstop 

 integration time and simulation step time dt, tt 

 real time/no real time execution: realtime_flag 

 chosen orbit through the orbital parameters, raan,e,I,omega,M,N 

Other parameters are normally loaded for any simulation: they are universal constants such as 

Gk=6.67e-11, g0=9.81 m/s
2
, REarth=6378137 e6 m, MEarth=5.9742e24 Kg. 

A dedicated window in the GUI windows (Figure 73) allows these settings and, if required by the user, 

previous stored parameters definitions can be loaded from the data repository: in fact, all the 

configurations will be stored in a file sim_parameters.txt. 

 

 

Figure 73: simulation parameters window 
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3.4.5 Define the output files 
The simulator allows saving the sensible information related to the simulation sessions in text files 

with the date label. The user will be prompted to choose which variable (among the global ones of the 

simulation) to save and then indicate the name of the file (Figure 74): the filename can be inserted in 

the GUI window by the user, and for each file the user can specify which variable to save. The data 

visualization setup allows choosing what to display during runtime (but no interactions and zoom are 

available) and what to display at the end of the simulation (and these graphs will be fully interactive: 

the user will be able to zoom, select portion of the graphs, show values, and so on). 

 

 

Figure 74: Outputs files definition window, sensible variables selection 

3.4.6 Simulation execution 
From the main window it is possible to start and stop the simulation through the button RUN. Other 

user interactions are not usually required during the runtime of the simulation but some small 

operation can be done. The pre-selected sensible data are plotted or tabled.  

3.4.7 Results evaluation 
At the end of the session, the user can load all the results of the last and/or previous simulation session 

through the button ACCESS DATA from the main window. All the files containing the simulation data 

are shown and the user can interact to produce graphs or tables and evaluate performance. The graphs 

are made by a free software (called GNUPLOT [18]) provided in any LINUX/UNIX release.  
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Figure 75: Example of a plot made after a simulation session with GNUPLOT 

  



176 

 

Chapter 3 reference 
1. L.B.Rainey, Space Modeling and Simulation.Roles and Applications Throughout the System 

Life Cycle, The Aerospace Press El Segundo, California, 2004, American Institute of 

Aeronautics and Astronautics, Inc. Reston, Virginia 

2. J. Eickhoff, Simulating Spacecraft Systems, New York: Springer, 2009. e-ISBN 978-3-642-

01276-1 

3. ECSS-E-TM-10-21A- Space Engineering: System modelling and simulation – (16/04/2010) 

4. J.Connell and L.Shafer, Structured Rapid Prototyping, Yourdon Press, 1989. 

5. L. Feruglio Design of a Hardware in the Loop Simulator for Space Systems, , MSc thesis, 

Politecnico di Torino, July2012 

6. UNIX manual, http://unixhelp.ed.ac.uk/CGI/man-cgi  

7. ECSS-E-ST-40C- Space Engineering: Software, 06/03/2009 

8. ECSS-E-ST- 70- 31C Space Engineering: Ground systems and operations - Monitoring and 

control data definition – 31/07/2008 

9. W.Fhese, Automated Rendezvous and Docking of Spacecraft, Cambridge University Press, 

2003, ISBN 0 521 82492 3 

10. Computer Science Corporation (Members of the Technical Staff Attitude Systems Operation), 

Spacecraft Attitude Determination and Control, J. R. Wertz, Ed. Dordrecht, The Netherlands: 

D. Reidel Publishing Company, 1978,  

11. P.H.Zipfel, Modeling and Simulation of Aerospace Vehicle Dynamics, American Institute of 

Aeronautics and Astronautics, 2000, 1-56347-456-5 

12. M.J.Sidi, Spacecraft Dynamics and Control (a practical engineering approach), edited by 

M.Rycroft & R.Stengel, 2006, ISBN 0-512-55072-7 

13. J. Wertz, D.Everett, J.Pushell,Space Mission Analysis and Design,4th Edition, Space 

Technology Library, ISBN 1-881883-10-8 , 2013 

14. V. Chobotov, Orbital Mechanics (3
rd

 edition), AIAA Education Series,2002, ISBN: 1-56347-

537-5 

15. Bong Wie, Space Vehicle Dynamics and Control, Published by American Institute of 

Aeronautics and Astronautics, Inc., 2008, ISBN 978-1-56347-953-3 

16. W.E.Hammond Space transportation: a systems approach to analysis and design, vol. 1, , 

AIAA Education series, 1999 ISBN 1—56347-472-7 

17. J. Wertz, Mission Geometry; Orbit and Constellation Design and Management, Space 

Technology, Library, 2001. ISBN: 1-881883-07-8 

18. http://www.gnuplot.info/  

  

http://unixhelp.ed.ac.uk/CGI/man-cgi
http://www.gnuplot.info/


177 

 

Chapter 4. The test case: e-st@r CubeSat 
The AeroSpace System Engineering Team (ASSET) has been working on small satellite missions of 

Politecnico di Torino since 2003 [1]. One of the main research fields deals with defining and 

implementing effective and efficient methodologies to support the satellite development during all 

phases of its life cycle. To this purpose, we decided to develop an M&S-based tool to support and 

improve the AIV activities within a CubeSat project. In this chapter the description of the V&V 

process based on HIL architecture is provided. The HIL simulator developed within this PhD research 

has been used for a case of interest to demonstrate the feasibility of the approach. Moreover, main 

opportunities are highlighted together with challenges peculiar to CubeSat applications.  

4.1 CubeSats 
CubeSats are small satellites which share a common interface and equipment standardization [2]. The 

basic CubeSat is a 10cm-side cube-shaped platform whose mass is less than 1.33 kilograms [3]. By its 

nature, a CubeSat is a cheap spacecraft which can be produced in only a few months. Current CubeSat 

and small satellite missions are mostly developed for LEO (Low Earth Orbit) application, and the 

number of scientific goals/tasks that they can perform is still limited. CubeSats are nowadays a mature 

technology to perform Earth observations, and they are a valid educational tool to train young 

engineers and students in the process of conceiving, implementing and operating a space mission. 

CubeSats are also frequently developed in academia and by space agencies as way to build spacecraft 

in a quick and affordable way [4] [5]. For example, NASA Jet Propulsion Laboratory has recently 

developed M-Cubed/COVE [6] in cooperation with University of Michigan. COVE will validate an 

image processing algorithm designed to survey the impacts of aerosols and clouds on global climate 

change. NASA JPL is also designing LMRSat [7] (Low Mass Radio Science Transponder Satellite, 

2U). NASA Goddard is currently developing HeDi (Helium Doppler Imager, 3U CubeSat) and 

TechCube 1 (technological demonstrator, 3U) [8]. In academia, MIT and Draper Lab are building 

ExoplanetSat [6], a 3U CubeSat that aims to detect SuperEarth exoplanets by the transit detection 

method. Another CubeSat being designed and tested at MIT is MicroMAS [10], which aims to use a 

spinning payload to study Earth’s atmosphere. Other CubeSat missions for LEO have been recently 

developed at University of Michigan [11] (Radio Aurora Explorer, RAX), University of Colorado [12] 

(Colorado Student Space Weather Experiment, CSSWE), University of Hawaii [13] (UNP 6, Radar 

Calibration CubeSat), and others. 

In Europe many universities have developed and are currently running CubeSat projects. In the last 

few years, the European Space Agency has carried out an important initiative that ended with the 

launch of 7 CubeSats from selected universities of the member States in February 2012 thanks to the 

new VEGA European Launch Vehicle [14]. Other universities in Europe have already launched their 

own satellites on commercial launchers, while others are ready to launch in the next few months. Most 

of the CubeSat today in orbit have primarily educational objectives and secondarily technological 

demonstration and/or scientific purposes [15]. After the successful first initiative, ESA is now 

promoting new CubeSat projects both in the education and in the scientific mission’s areas. Two other 

programs currently under development are worth mentioning, both aimed at setting a constellation of 

CubeSats in LEO. QB50 is a FP7 international project coordinated by Von Karman Institute for Fluid 

Dynamics. Aim of the scientific mission is to study temporal and spatial variations of a number of key 

parameters in lower thermosphere (90-320 km) with a network of about 40 double CubeSats [16]. 

HumSat is an international project initiated by the University of Vigo, under the patronage of ESA and 

UNOOSA, with the objectives of monitoring climate changes and supporting humanitarian initiatives. 

The aim of the mission is to launch a CubeSat constellation for supporting a general-purpose 
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communication space-based service, above which the different users will be expected to build and use 

their own application [17] [18] [19]. 

CubeSats have been mainly developed for educational purposes, but they are increasingly being used 

for real science and service missions [20]. We are convinced that CubeSats can be useful for the 

attainment of a broad set of mission goals, including science, technology demonstration, 

communications, and Earth observation [21] [22]. In order to understand and eventually reach the full 

potential for CubeSats science missions, we must advance technology for almost all space satellite 

subsystems. Specifically, attitude control and navigation systems need to be improved, especially as 

the requirements for precise pointing and control for CubeSat become more stringent for 

communications at a distance and payload performance. Additionally, more advanced communication 

systems able to handle higher quantity of data and more distant transmissions need to be developed 

[23]. Propulsion is also an issue for advanced CubeSat and deserves particular efforts. 

Finally, reliability of CubeSats is another area that demands improvements, because educationally-

driven missions have often failed. The failure of CubeSats is dominated by infant mortality, which can 

be traced back to design weakness and/or ineffective Assembly-Integration-Verification (AIV) 

planning and execution. We believe that mission success is highly influenced by a robust design on the 

one hand, and by an effective verification and validation campaign on the other hand.  

4.1.1 CubeSat verification process and HIL simulation 
We think that an effective and exhaustive Verification and Validation (V&V) process may help to 

increase the reliability of small-scale satellites, as claimed also by Dubos et al. [24]. Talking about the 

V&V activity, it is worth mentioning that a major difference between CubeSats and traditional 

spacecraft exists. To date, the main objective of CubeSat V&V campaigns has been the demonstration 

of the satellite’s capability to survive the launch phase without jeopardizing the launch vehicle and 

other spacecraft in the payload bay. This implies that CubeSats have been extensively tested against 

launch environment requirements upon request of launch authorities. Unfortunately, minor effort was 

committed to the verification of functional and operational requirements. These verifications are fully 

demanded to CubeSats developers, and no guidelines exist. 

The International Organization for Standardization (ISO) is working on the definition of a new 

standard devoted to the verification of small-scale satellites. The standard is meant to improve the 

reliability of this class of satellites, while keeping its nature of low-cost and fast-delivery. In fact, 

some tests are necessary to improve the reliability of small-scale satellites to a level acceptable as a 

subject of commercial investment. At the same time, applying the same test requirements and methods 

as the ones for traditional large/medium satellites would kill the advantage of low-cost and fast-

delivery. The new ISO standard will reflect the work done within the Nano-satellite Environmental 

Tests Standardization project described in [25]. The European Space Agency (ESA) has recently 

launched the Fly Your Satellite! initiative: selected university teams from EU and Canada are 

supported by ESA’s experts for the development of their CubeSats. The project aims at increasing 

CubeSat mission reliability through several actions: to improve design implementation, to define best 

practice for conducting the verification process, and to make the CubeSat community aware of the 

importance of verification.  

The activity discussed in this chapter is located within this framework. In particular, we focused our 

attention on improving the effectiveness of the functional verification of CubeSat. It is worth 

mentioning that for CubeSat programs the functional verification is usually carried out via simulation 

with no hardware in the loop. In most cases, CubeSats are tested against functional requirements in 

ambient condition, and then they undergo the environmental tests, followed each by a reduced 

functional test. Rarely CubeSat’s functionalities are tested in orbit-like conditions mainly because of 

two reasons. First, this test would require resources, facilities and costs usually unsustainable for a 
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student initiative. The facilities devoted to these purposes are few and not appropriate for the test of 

so-small objects; they are expensive to hire, and inaccessible for unqualified users, i.e. the students. 

Second, it often occurs that the operational orbit is still unknown when the CubeSat is designed, 

integrated and tested. To reproduce physically the whole set of orbit conditions would result in a 

tremendous effort, in terms of both budget and testing time. The HIL approach represents the right 

balance between performance and cost of the testing activity. 

From the available literature and the candidate’s experience, HIL simulation is a methodology which 

has not been largely used for small satellites and in particular for CubeSats. HIL applications for small 

space platforms are quite recent and they are mainly oriented to the verification of Attitude 

Determination and Control System (ADCS) performances [26] or, more in general, the dynamic 

behavior of satellites [27]. CubeSat projects may benefit to a great extent from the application of HIL 

technology in V&V activity for the following reasons: 

1. HIL simulation guarantees that we get the actual response from the real hardware included in 

the loop. HIL testing results much more authentic if compared with other simulation 

techniques. The presence of the hardware allows for example the accurate measurement of lag, 

signal noise, signal dropout, actuator saturation, and other parameters 

2. Including the real hardware in the simulation loop simplifies the modeling activity. It may 

happen that accurate mathematical models of some devices are too complex to build or they 

are not readily available. This is particularly true in case of a CubeSat project, which makes 

extensive use of Commercial Off The Shelf components 

3. Unpredictable interactions among pieces of hardware can be detected and eventually 

straightened out. A better understanding of the integrated system’s behavior can be achieved 

early in the development process 

4. The hardware can be easily tested in several orbit conditions, as these are virtually reproduced. 

This is particularly useful for CubeSat platforms which shall be flexible enough to adapt to 

different mission conditions. 

Notwithstanding these opportunities, using HIL simulation for CubeSat projects entails a couple of 

concerns. First, the HIL approach necessitates test facilities equipped with flight hardware and 

dedicated support equipment. On the one hand, this means additional cost and longer test preparation 

time if compared with pure, AIL, or SIL simulations. On the other hand, the increased cost and time 

can be justified taking into account that HIL simulation yields greater insight into system’s 

performance than other simulations. Second, traditional space systems have been tested via the HIL 

technique for decades in the industry. CubeSats are usually developed by universities, research 

centers, and small medium enterprises, which are not generally provided with certified simulators. 

Brand-new simulators require to be validated and the process may represent an issue for CubeSat 

programs, for example in terms of budget constraints and return of the investment. If the simulator’s 

architecture is flexible enough, it can be used for several projects and not only for a specific mission, 

thus justifying the investment. 

The abovementioned challenges could be overcome by the standardization of ground support 

equipment and facilities devoted to HIL testing of CubeSats. The cooperation within the CubeSat 

Community plays a major role in this scenario. 

4.2 E-st@r Program overview 
The e-st@r (Educational SaTellite @ politecnico di toRino) project is a structured hands-on education 

and research program based on CubeSats development. The main objective is to prepare future 

generation of space professionals. University programs shall take up the technological challenges 

issued by the scientific community and the industry, and they must help to improving knowledge 

necessary to build future space missions.  The big challenge is doing space missions at low cost while 
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keeping reliability as high as possible. For these reasons, one of the main tasks of our projects is the 

development of methodologies to support both effectively and efficiently the entire satellite lifecycle. 

As Figure 76 illustrates, a space mission carried out by a University is driven first of all by the 

relevance that the mission has both for the research and the education purposes, being at the same time 

constrained by limited budget and resources. 

The mission statement defines the high level objectives for a mission, i.e. why the mission is required 

and for which purposes the system that shall perform the mission exists. The mission statement for the 

e-st@r program sounds as follows: “To educate aerospace-engineering students on systems 

development, management, and team work. To achieve insight in the development of scenarios and 

enabling technologies for future space missions.” 

 

Figure 76: e-st@r program guidelines 

The main program guidelines have been assumed as high level objectives and constraints for the e-

st@r program. They can be listed as follows: 

 WHAT/1: To inspire and prepare future space-professionals: students are the end users of the 

mission 

 WHAT/2: To improve knowledge in space science and engineering: real world shall take 

advantages of our missions 

 WHY: To meet stakeholders’ needs. Stakeholders are: students & civil society, scientific 

community, industry 

 HOW: To carry out a space program from the design to in-orbit operations, completely 

managed by students 

Taking into account these assumptions, the mission objectives and system requirements have been 

established, from which the technical specification derived, for both the space and the ground 

segments. 

4.2.1 Mission objectives 
The Mission Objectives (MO) represent the broad goals which the system must achieve to be effective, 

productive, efficient and useful. In our case the system is a CubeSat-class satellite, developed by 

university students. The motivations that led us to the definition of the mission objectives are therefore 

to be found within the university setting, and include "needs" of both scientific-technological 

importance as well as educational significance. 

At the present moment, we are experiencing a “big” revolution in CubeSat Community because a great 

interest in this kind of space platforms is growing also among actors other than universities. For few 

years after their invention, CubeSats have been developed exclusively within the academia for higher 

education purposes with possible technological and scientific secondary objectives. We can now say 

that nowadays the interest in CubeSat missions for scientific or commercial services is growing 
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steadily and CubeSats are thus evolving from pure university education tools to spacecraft buses for 

scientific and commercial payloads. 

Notwithstanding the necessity of keeping cost down and taking into account the educational purpose 

of the CubeSat program, our CubeSat missions also have scientific and/or technological objectives, 

which reflect real interests of the scientific and industrial communities. 

One of the most significant challenges is how to accomplish science goals while facing severe 

limitations on mass, volume and power. On the other hand, one of the benefits of CubeSats is the 

relatively low cost from standardized components and piggy-back launch opportunities. To 

accomplish more ambitious scientific goals, a certain set of technological challenges need to be 

addressed. We strongly believe that CubeSats can contribute to broad science goals, if supported by 

the appropriate set of technologies. 

The capability of autonomous attitude determination and control is one of the enabling technologies 

for future CubeSat missions, specifically where requirements in terms of stabilization and pointing 

accuracy are critical to the effectiveness of experiments, payload operations, communications, and in 

turn to the mission success. More than 100 CubeSats have been launched since year 2003, about 45% 

of them hosting an Active Attitude Determination and Control System (A-ADCS) on-board
4
. The 

remaining part includes either satellites with no actuation or with passive control systems, the latter 

often providing only few pointing options, weak accuracy and very limited attitude maneuverability.  

The will to keep on focusing on attitude control systems and the purpose to enhance A-ADCS 

capabilities for CubeSats have been well supported by the attention and the curiosity of the students in 

our university. Moreover, the scientific community and the industry have proved to be interested in 

this topic in several occasions. For these reasons the primary scientific objective of e-st@r missions is: 

 to demonstrate the capability of autonomous determination, control and maneuver, through the 

development and test in orbit of an A-ADCS entirely designed and manufactured by students. 

We established the effectiveness of the system in terms of stabilization, pointing, slew maneuvers and 

response-time requirements to be verified in order to achieve the mission success. 

Besides, we identified the way for the system to be productive, in terms of quantity and quality of data 

that shall be collected and analyzed, in order to demonstrate the effective capability previously 

defined. In this regard, the possibility to rely on the largest community of CubeSat and 

telecommunications enthusiasts, as the radio-amateurs community is, plays a key role in support of 

this demonstration. 

The secondary objective concerns the possibility of: 

 testing in orbit COTS technology and self-made hardware. 

It describes both the usefulness and efficiency attributes of the mission. The former relies on the 

educational aspect, as well as on the possibility given to the team to enhance its knowledge and 

experience. Under a different perspective, the mission can be seen as a test-bed for components, as 

well as an opportunity to perform reliability studies. 

The latter, efficiency, refers to the capability to develop a complex system with few resources. It is 

mainly related to the university low budget constraints, but it turns into an opportunity for bearing in 

mind cost reduction and simplicity at any level of the engineering process. 

The motivations, needs and constraints that led to the definition of the mission objectives are 

summarized hereafter and shown schematically in Figure 77: 

 Technology advances: CubeSats’ science missions need stabilization, pointing accuracy and 

maneuver capability not achievable by passively stabilized satellites 

                                                 
4 Data based on public information available and updated to May 2013.  
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 Team skills and interests: 1) students are usually skilled in simulations and enjoy doing tricky 

calculations, 2) attitude dynamics is one of the most appreciated subjects in aerospace 

students’ curricula at our university 

 Program budget: the cost of the payload shall be limited. Simple and reliable technologies 

shall be included in the project, and standard materials shall be used. COTS components shall 

be preferred for cost containment and procurement time  

 Methodologies and tools: the development of the system shall be based on simulations and 

analyses (mathematical models, CAD models, etc.: many resources at university) rather than 

on production and testing (lack of facilities at university) 

 Orbit and launch vehicle: orbit parameters and launcher data are not yet defined 

 Limited mass, size and power: 1U CubeSat platforms have strong limitations in mass, size and 

power availability 

 Development time: launch date is uncertain so CubeSat developers shall be ready to deliver 

the CubeSat upon request within a limited period of time. The original program schedule 

depicts a short duration program and limits the development, test and verification time to a 

few months. 

 

 

Figure 77: e-st@r mission objectives 

This chapter describes the design, development and verification of the CubeSat A-ADCS using the 

methodology and the StarSim simulator in any phase of the e-st@r CubeSats life cycle. 

E-st@r-I is the first element of the CubeSats family we are working on. It is a 1U satellite developed 

by students with the aim of testing in space new technologies and design solutions. The CubeSat was 

chosen by ESA within the “Educational Payload on the Vega Maiden Flight” initiative. The launch 

took place in 2012, February 13
th
, from Europe’s spaceport in French Guyana. The second 1U 

CubeSat (e-st@r-II) is under test at the Systems and Technologies for Aerospace Research Laboratory 

(STAR Lab) of the Department of Mechanical and Aerospace Engineering. E-st@r-II is in the ESA’s 

Fly Your Satellite! program that would lead up to a Launch opportunity in the near future. 

4.2.2 Mission architecture 
Basic CubeSat mission usually consists in a space platform orbiting the Earth at low altitude and one 

or more ground stations gathering/collecting data and sending commands from/to the spacecraft.  

One peculiar characteristic of most CubeSat missions is that spacecraft are launched piggyback as 

secondary payload, and the orbit is imposed by the primary payload and the launch vehicle. 

Furthermore, there are cases, such as FYS initiative, in which the orbit is unknown at the beginning of 

the project (when the mission is designed) because the launch opportunity is still to be found.  
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Another factor to be considered when designing a CubeSat mission is that the project is handled by 

students. In particular, mission operations cannot rely on a 24/7 dedicated team, so a high grade of 

autonomy is desired.  

 

Figure 78: Mission architecture (e-st@r-II mission) 

Elements of the e-st@r mission architecture are illustrated in Figure 78: 

 Space segment: 1U CubeSat, payload and bus. The platform includes the Electrical Power 

Subsystem (EPS) devoted to provide, store, control and distribute the electrical power on-

board, the Communication Subsystem (COMSYS) that provides the interface between the 

space and ground segments, and the On-Board Computer (OBC) which handles and executes 

commands, manages and stores data and performs autonomous on-board operations. The 

structure/mechanical subsystem (S&M) is devoted to carry the loads induced by the launch 

vehicle, to support and protect all other spacecraft subsystems. Passive thermal control has 

been designed for the CubeSat. The payload of e-st@r CubeSats is an active attitude 

determination and control system based on inertial and magnetic measurements, with 

magnetic actuation. The system shall provide the desired (nadir) antenna pointing and/or 

proper reorientation maneuvers when required with commands from GCS. 

 Ground segment: The Ground Segment of the e-st@r project consists of two ground stations: 

the main Ground Control Station (GCS) is the ARI – section of Bra (Ham Radio Club – 

IQ1RY) and the second is the Mobile Ground Control Station (MGCS) located at Politecnico 

di Torino which is transportable and may be transferred everywhere. ARI-Bra station (Figure 

79) is an existing radio amateur station that supplies all the elements needed to communicate 

with e-st@r satellites: it is able to send commands to the satellite and to receive the telemetry 
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packets. The CubeSat Team tracked and communicated with e-st@r-I CubeSat from this 

station. Other stations around the world (radio amateur network) may receive the CubeSat 

signal, but cannot command it. 

  
Figure 79: Main GCS location (left), building and antennas (right) 

 Launch segment: piggy back launch 

 Subject: data measurement. The thing that is sensed by the payload is essentially the LEO 

environment, in terms of magnetic field. Data from magnetometer are used for the attitude 

determination task and successively exploited for the control task. Moreover, the satellite shall 

provide a large quantity of data about his orientation and angular velocities. This data will be 

subject of analysis on ground to verify the determination and control algorithms. Other 

telemetry data (i.e. temperatures, battery state of charge, on board computer status, 

communication system status) will be collected and analyzed on ground to verify the proper 

functioning of COTS components, self-made hardware and software. 

 Orbit: direct injection into LEO 

 Operations: students at main and backup GCSs. Data processing at STARLab for deeper 

investigation, or in case of emergency. Radio-amateur network and CubeSat Community will 

be involved in the data collection and will support the mission operations. 

 Communications: Telemetry data are sent by the CubeSat to the main GCS and to other 

stations all over the world. Data are coded in a defined protocol and transmitted to ground. 

The uplink commands are received on board and relayed to other subsystem (mainly to OBC) 

according to a defined protocol. Note that the two mentioned protocols are not necessary the 

same: in fact, in order to reach the largest quantity of ground stations and gather most data as 

possible, the downlink protocol is public. Information about frequency, antenna, modulation, 

protocol, destination and source, call sign, etc. will be published on the project’s website and 

available for the radio-ham community. The uplink protocol instead, should contain 

safeguards against intentional or unintentional signal corrupting the command link, or 

unauthorized commands from being transmitted and accepted by the satellite: for this reason 

commands links is encrypted with secure code and format will not be published. 

4.2.3 Mission phases 
E-st@r-I and e-st@r-II missions are very similar, as well as the two CubeSat are. Some minor 

differences exist, that will be highlighted when needed. As an example, the mission profile of the e-

st@r-II CubeSat is depicted in Table 32, which includes only orbit lifetime. The detailed description of 

each phase (including ground operations) and related operative modes are described below. 
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Phase/Event Duration 
Remarks 

Launch T0 
T0 is the actual lift-off time of the LV 

CubeSat release and activation T1 

T1 is given by the burnout time necessary to reach the orbit 

plus the time needed to be ejected from the deployer. The 

CubeSat is instantaneously activated by the DS and enters the 

first mission phase in orbit. 

CubeSat appendages deployment T2 

T2 is given by the time delay imposed by CDS (30 min + 

margin) plus the time needed to deploy the antenna 

(approximately 1 minute). 

Commissioning T3 

T3 is the time needed to prepare and check out the CubeSat 

for nominal operations. T3 ranges from a minimum of 10 

minutes to several days, depending on commissioning 

activity result. 

Begin of mission T4 
T4 is the time at which the nominal mission begins officially. 

End of mission T5 

T5 = 1 (TBC)-to-12 (TBC) months after T4. Extended 

duration shall be considered. 

Disposal of CubeSat T6 

T6 is the time needed for the orbit to decay after the mission 

has been declared finished (after which the CubeSat will burn 

in the upper layer of Earth’s atmosphere). 

Table 32: Mission profile (ref. e-st@r-II mission) 

4.2.3.1 Launch and Early Orbit Operations - LEOP 

LEOP refer to launch, CubeSat release and activation and CubeSat appendages deployment. During 

the launch phase (i.e. from lift-off to the deployment in orbit), the CubeSat shall be switched off as 

specified in the CDS (TBC). The launch phase is characterized by relevant vibro-acoustic and thermal 

environments. The CubeSat is designed to survive the launch phase. A proper “dormant” operative 

mode has been implemented for this phase. 

When the orbit is reached, the CubeSat is released and its orbit life starts. The CubeSat is immediately 

activated after deployment because the DS closes the relevant electrical circuit, but it remains in a 

stand-by state for 30 minutes at minimum (TBC). During this period of time, no RF emissions are 

allowed (TBC). The injection into orbit may add some rotational velocity to the CubeSat. 

The deployment of the antenna is commanded by an automatic procedure executed by the OBC. After 

the deployment of the antenna occurs and has been checked out by the OBC, the launch and early 

operations continue with the automatic activation of the COMSYS to set up initial parameters and start 

the downlink communication. 

4.2.3.2 Commissioning 

When the antenna is finally deployed and COMSYS is active, the early mission operations begin with 

a phase called commissioning. During this phase, which may be actually quite short (in the order of 

days), the CubeSat is operated from ground to check its health. During commissioning, the operations 

team analyses the telemetry received from orbit and decides how to operate the CubeSat depending 

upon the results of the analysis. The activation of the CubeSat to reach full capability is done on an 

incremental-based approach. If the phase successfully closes out, the payload can be activated and the 

nominal mission begins. 
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4.2.3.3 Nominal mission operations 

Once the commissioning phase is successfully completed, the CubeSat enters its nominal mission in a 

basic mode of operation, consisting of downlink and uplink communications. During this phase, the 

CubeSat is ready to operate its payload, the A-ADCS.  

The CubeSat can receive commands from the main GCS to change its operative mode, or simply for 

updating parameters. Among the commands, some are devoted to payload control. The A-ADCS can 

operate in three modes: 

 Mode 0 - standby: the microcontroller (ARM9) is the only active component; 

 Mode 1 - determination: IMU and magnetometer are active in order to evaluate the angular 

velocities and attitude; 

 Mode 2 - control: the controller commands the MTs to de-tumble/stabilize the CubeSat. 

When the A-ADCS is activated in Mode 1 or Mode 2, the CubeSat enters its Full Mission mode. The 

A-ADCS can either de-tumble the CubeSat or stabilize it around a desired attitude, depending on the 

initial rotation velocities of the satellite. 

From simulations results, it is known that the de-tumbling phase may last from 90 to 100 minutes 

(about one orbit), depending upon initial angular velocity, environmental parameters variation, as well 

as on accuracy of the dynamics and control models. The de-tumbling phase ends when the angular 

velocities are less than a threshold defined in the system specification. At the end of this phase the 

CubeSat is quite stable. The CubeSat can be maintained in the desired attitude or a slew maneuver can 

be commanded to change its attitude. These results are described later in this chapter into the detail. 

4.2.3.4 End-of-Life 

Once the CubeSat has accomplished its mission, approximately after 1(TBC) to 12(TBC) months from 

launch, it will remain in orbit until the natural decay occurs. From early estimation, it results that it 

should take about 12 years for the orbit to decay. 

The propagation has been performed with a reference circular LEO orbit, 600 km altitude, 97.8 

degrees of inclination. Results may vary depending on the orbital parameters and on the atmosphere 

model used. Detailed results can be obtained only upon the definition of the final orbit. 

During the disposal phase, the CubeSat communications may be shut down upon request of FCC. In 

this case the CubeSat will be commanded from ground to switch to a degraded mode of operation. 

4.2.4 Modes of operation 
In order to accomplish its mission, the CubeSat shall be able to operate in different modes depending 

upon the mission phase and operational needs. Taking into account all the applicable requirements and 

the mission phases, it is possible to derive the necessary operative modes. In particular, the potential 

failures and malfunctions have been considered. Moreover, transitions between modes of operation 

have been implemented, and they can be either automatic or commanded from ground.  

The operative modes which have been designed and implemented are described Dormant Mode 

From CDS requirements, the necessity to deactivate the CubeSat emerges. As a consequence, a 

corresponding operative mode has been designed and it is named “Dormant Mode”. When in dormant 

mode, the CubeSat is completely turned off, no subsystem is active. 

One option in order to meet CDS requirements is to launch with discharged battery/ies. The second 

possibility is to deactivate the satellite by means of one or more devices. Option 1 poses a serious 

hazard to the mission completion. In fact, in case the battery charging operation is not executed when 

the satellite is in orbit, no power is available at all, not even for a short period of time. To be launched 

with charged batteries guarantees that the satellite can work at least for a limited period of time, given 

by the batteries state of charge at the moment of the launch. In this case (Option 2) a deactivation 
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system is needed to satisfy the applicable requirements. Applicable requirements from CDS dictate 

that (at least) one DS shall be included in the design. The switch can be used to maintain the CubeSat 

in the dormant state. Moreover, they imposes that a RBF pin is included in the design to cut all power 

to the satellite once it is inserted in the system, but this pin shall be removed before launching.  

The functions carried out by the two switches are similar but not identical, and moreover, their use is 

completely different. In fact, the DS is included in the CubeSat in orbit configuration, while the RBF 

pin (as the name implies) is not. From the electrical point of view, their role is slightly but 

significantly different. They both cut the CubeSat power off by interrupting the proper on board 

circuits, but 1) the DS acts on the CubeSat power distribution bus, i.e. it prevents the electrical current 

to be distributed to the subsystems, while 2) the RBF disconnects the battery bus, isolating the power 

generation from the rest of the system. 

On ground, it is possible to use both switches to turn off the satellite, but in orbit only the DS can be 

employed to the same purpose. One switch (the DS) shall be sufficient to cut off the electrical power. 

When the DS and/or RBF are inserted, the system is not active because no power is supplied to the 

subsystems. 

The e-st@r-II CubeSat will be launched with its batteries at the highest possible state of charge, and a 

deactivation system is included in the design (the same design was adapted for e-st@r-I). The system 

in composed by one electromechanical switch (the DS) able to cut the power off when it is inserted 

(when its metal label is pressed, then the electrical circuit is maintained open, and the distribution bus 

is disconnected from the system). The DS is inserted when the CubeSat is in the deployment system 

by means of a support which restrains the DS in the inserted position. When in the deployer on the 

LV, the DS alone shall guarantee the deactivation of the CubeSat. 

When the CubeSat is on-ground, the RBF switch can be used to turn off the CubeSat. This is useful in 

particular during operations such as transportation of the CubeSat, assembly and integration in the 

deployment system, and for safe handling in general. The RBF pin shall be removed before launch, 

but also for maintenance on ground (e.g. for battery charging, or functional check out). It can be said 

that when the RBF pin is inserted in the satellite, the satellite itself is in a special “dormant mode”. It is 

desirable that the satellite is kept in this state during storage, in particular if a long period of storage is 

considered. It is worth mentioning that in this configuration the batteries are disconnected from the 

system, and so no discharge may occur, apart from the battery nominal self-discharge. With the RBF 

pin inserted in the CubeSat, the state of charge of the batteries can be maintained at the highest 

possible level. 

The dormant mode shall be maintained in particular for the operations on ground (excluding test, 

maintenance and checkout operations) and during the launch. 

Figure 81 shows the switch configuration for the EPS on board of e-st@r-II. “Pull pin” refers to the 

RBF switch, while “Separation Switch” refers to the DS 

 

The figure reports also the associated mission phases. It shall be noticed that in case some failures 

occur, the satellite can operate in degraded modes. 

Figure 80 shows the diagram of the mission phases and modes of operation of the satellite during each 

phase. 
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Figure 80: Mission phases and operative modes 

4.2.4.1 Dormant Mode 

From CDS requirements, the necessity to deactivate the CubeSat emerges. As a consequence, a 

corresponding operative mode has been designed and it is named “Dormant Mode”. When in dormant 

mode, the CubeSat is completely turned off, no subsystem is active. 

One option in order to meet CDS requirements is to launch with discharged battery/ies. The second 

possibility is to deactivate the satellite by means of one or more devices. Option 1 poses a serious 

hazard to the mission completion. In fact, in case the battery charging operation is not executed when 

the satellite is in orbit, no power is available at all, not even for a short period of time. To be launched 

with charged batteries guarantees that the satellite can work at least for a limited period of time, given 

by the batteries state of charge at the moment of the launch. In this case (Option 2) a deactivation 

system is needed to satisfy the applicable requirements. Applicable requirements from CDS dictate 

that (at least) one DS shall be included in the design. The switch can be used to maintain the CubeSat 

in the dormant state. Moreover, they imposes that a RBF pin is included in the design to cut all power 

to the satellite once it is inserted in the system, but this pin shall be removed before launching.  

The functions carried out by the two switches are similar but not identical, and moreover, their use is 

completely different. In fact, the DS is included in the CubeSat in orbit configuration, while the RBF 

pin (as the name implies) is not. From the electrical point of view, their role is slightly but 

significantly different. They both cut the CubeSat power off by interrupting the proper on board 

circuits, but 1) the DS acts on the CubeSat power distribution bus, i.e. it prevents the electrical current 

to be distributed to the subsystems, while 2) the RBF disconnects the battery bus, isolating the power 

generation from the rest of the system. 

On ground, it is possible to use both switches to turn off the satellite, but in orbit only the DS can be 

employed to the same purpose. One switch (the DS) shall be sufficient to cut off the electrical power. 

When the DS and/or RBF are inserted, the system is not active because no power is supplied to the 

subsystems. 

The e-st@r-II CubeSat will be launched with its batteries at the highest possible state of charge, and a 

deactivation system is included in the design (the same design was adapted for e-st@r-I). The system 

in composed by one electromechanical switch (the DS) able to cut the power off when it is inserted 

(when its metal label is pressed, then the electrical circuit is maintained open, and the distribution bus 

is disconnected from the system). The DS is inserted when the CubeSat is in the deployment system 
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by means of a support which restrains the DS in the inserted position. When in the deployer on the 

LV, the DS alone shall guarantee the deactivation of the CubeSat. 

When the CubeSat is on-ground, the RBF switch can be used to turn off the CubeSat. This is useful in 

particular during operations such as transportation of the CubeSat, assembly and integration in the 

deployment system, and for safe handling in general. The RBF pin shall be removed before launch, 

but also for maintenance on ground (e.g. for battery charging, or functional check out). It can be said 

that when the RBF pin is inserted in the satellite, the satellite itself is in a special “dormant mode”. It is 

desirable that the satellite is kept in this state during storage, in particular if a long period of storage is 

considered. It is worth mentioning that in this configuration the batteries are disconnected from the 

system, and so no discharge may occur, apart from the battery nominal self-discharge. With the RBF 

pin inserted in the CubeSat, the state of charge of the batteries can be maintained at the highest 

possible level. 

The dormant mode shall be maintained in particular for the operations on ground (excluding test, 

maintenance and checkout operations) and during the launch. 

Figure 81 shows the switch configuration for the EPS on board of e-st@r-II. “Pull pin” refers to the 

RBF switch, while “Separation Switch” refers to the DS 

 

Mode Mission phase 
Description 

Dormant 
Launch and CubeSat 

release 

The CubeSat is “dormant”, no RF emissions, no power 

consumption. All the subsystems are turned off 

Activation 
CubeSat appendage 

deployment  

The CubeSat is activated by the DS. EPS is active. ADCS is 

in Mode 0: only the ARM9 microprocessor is active. The 

OBC starts booting and remain in a stand-by mode until all 

necessary checks are passed. Then the antenna is deployed. 

This mode is irreversible and cannot be repeated after the 

antenna deployment.   

Basic Mission 
Commissioning 

Nominal mission 

The CubeSat sends telemetry packets to ground stations all 

over the world every 120 seconds. It may receive commands 

from main GCS and execute them. 

Full Mission Nominal mission  

The CubeSat operates the payload, i.e. it actively controls its 

attitude when commanded to. 

Fail Safe 
Commissioning 

Nominal mission 

This is an off-nominal operative mode, and it is used in case 

communication between OBC and COMSYS fails. In this 

case, COMSYS autonomously sends a Morse code (CW) 

every 5 minutes 

Save energy 

Commissioning 

Nominal mission 

End-of-life 

Upon request of FCC 

This is an off-nominal operative mode, and it is used in case 

low power is detected on-board. The CubeSat only carries 

out vital function at minimum power consumption upon 

command from ground. Communications to Earth are 

limited to some extent and eventually they can be totally 

stopped. This mode also can be used in case a shutdown 

command is sent to the CubeSat upon request of FCC 

Table 33: Operative modes 
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Figure 81: Switch configuration in the EPS board. Credit ClydeSpace Ltd. 

4.2.4.2 Activation Mode 

As soon as the CubeSat moves from its restrained position in the deployer system, the DS lets the 

power bus to be powered by the EPS (connection to PCM_IN, Figure 81). All the subsystems can be 

supplied with the electrical power they require. Automatically the OBC, and COMSYS are powered, 

the processor of ADCS is active, no sensors or actuators are active, but their activation is controlled by 

the OBC. In particular, it shall be avoided that the antenna deploys and communications start before 

all the conditions are verified. 

It is clear that a software sequence shall be designed, in order to meet the requirements and to 

guarantee a safe CubeSat activation.  

4.2.4.3 Nominal Mission Modes 

Two nominal operative modes are defined for orbit operations. The following description refers to e-

st@r-II. E-st@r-I had slightly different nominal operative modes wrt e-st@r-II. 

 Basic mission. The CubeSat sends a telemetry string every two minutes (but the time interval 

can be changed from ground). The message encompasses data from which the health status of 

the satellite can be derived (temperatures, voltages, currents, subsystems status). The message 

can be received by all the radio-amateur stations on the assigned frequency. The protocol of 

the string is public. EPS, OBC and COMSYS work in their standard nominal modes.  

 Full mission. The CubeSat is commanded to operate the payload. The A-ADCS can be 

operated in several ways to test its capabilities. First, the de-tumbling phase is tested, i.e. the 

ADCS is commanded to reduce the angular velocity of the CubeSat to a desired value. Then, 

the stabilization phase starts by changing the control strategy from coarse to fine pointing. 

Upon command, a slew maneuver can be requested. In this case, the desired final attitude is 

communicated to the CubeSat that shall compute autonomously the necessary maneuver to 

reach and maintain the objective attitude. The CubeSat sends a telemetry string every two 

minutes (but the time interval can be changed from ground). The message encompasses 

housekeeping telemetry (as in the basic mode) plus ADCS related data (angular accelerations 

and velocities, quaternion, magnetic field vector, magnetic torquers consumption). The 

message can be received by all the radio-amateur stations on the assigned frequency. The 

protocol of the string is public. The EPS, OBC, COMSYS and ADCS work in their standard 

nominal modes. 

During both basic and full mission modes the CubeSat can receive commands from the main GCS (the 

ARI-BRA station), and from the backup station (the MGCS). 
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4.2.4.4 Save Energy Mode 

During the orbit lifetime, some failures may occur to the CubeSat. In particular, a major failure is the 

loss of electrical power. This may happen for different reasons, some of which cannot be handled by 

the system. In case the power loss is due to a peak power consumption, a save energy mode has been 

implemented. When the battery bus voltage drops below a certain value, the satellite enters, upon 

command from the GCS, the save energy mode, in which it reduces (and eventually stops) 

communicating with the GCS and stops payload operations, until the bus voltage is restored to the 

desired voltage.  

4.2.4.5 Fail Safe Mode 

The fail safe mode has been thought and implemented to face the case in which the communication 

between OBC and COMSYS fails. This malfunction could be due to failed communication serial link 

between the two mentioned subsystems and this inhibits the telemetry downlink. 

When this occurs, the COMSYS automatically switch to a Continuous Wave transmission (CW) 

consisting of a “estar2” string translated in Morse-code. This transmission is totally independent from 

OBC functioning. 

This mode of operations let the user on ground to know that a malfunction is localized on the OBC. 

Moreover, it allows the mission operators on ground to continuously track the satellite even if the 

telemetry is not available. 

This mode of operation is activated only automatically when the communication link between the two 

mentioned subsystems is interrupted. The satellite can get out of this mode automatically if the OBC 

starts again the communication with the COMSYS, or if commanded from ground to do so. This mode 

does not affect the mode of operation of the other subsystems on board. 

4.3 CubeSat design 
The e-st@r CubeSats are characterized by the same system architecture: they are equipped with a set 

of subsystems for supporting the mission. The payload of the first two CubeSats is constituted by an 

Active Attitude Determination and Control System (A-ADCS). The attitude is determined by 

algorithms and Kalman filter in the A-ADCS software using data sensed by an Inertial Measurement 

Unit (IMU), and a 3-axes magnetometer. The actuation is guaranteed by three magnetic torquers 

(MT). The A-ADCS is controlled by a dedicated micro-controller (ARM9), on which the algorithms 

for determination and control run [28]. Details on this subsystem are given in next section. 

The spacecraft bus is constituted by the Electrical Power System (EPS), the Communication System 

(COMSYS), the Onboard Computer (OBC), and the Structure and Mechanism System (S&M). The 

EPS collects and transforms solar radiation energy by means of five solar panels made of GaAs cells. 

Electrical power is stored in two battery packs, then regulated and distributed to other subsystems 

through two power buses at 3,3 Volt and 5 Volt. The COMSYS is a in-house design and manages 

downlink and uplink signals. It exchanges information with the OBC by a piece of equipment based 

on commercial components: a PIC16 modulates/demodulates and checks the signal, a radio transceiver 

amplifies the signal and a dipole antenna transmits/receives the signal to/from Earth. The OBC 

performs all onboard activities related to the command and data handling functions, the data storage in 

the SD memory card, and time synchronization. The structure is an aluminum alloy box designed to 

endure launch loads, and to host and protect the electronics from the harsh space environment. It also 

includes the deployment system of the antenna. 
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Figure 82: e-st@r blocks scheme 

The system blocks scheme is shown in Figure 82. The main bus represents the common interface 

among subsystems, for both the data flow and the power line. A picture of the e-st@r-I flight unit is 

shown in Figure 83. 

 

Figure 83: e-st@r-I flight unit 



193 

 

4.4 A-ADCS design and verification 
The A-ADCS determines and controls the CubeSat’s angular orientation. The system must be able to 

ensure desired antenna pointing (to the nadir) and adequate reorientation when required, so an active 

control system is required because the pointing accuracy provided by passive systems could not be 

suitable for this mission. 

4.4.1 Design of the A-ADCS of e-st@r CubeSats 
The first step of the A-ADCS design is the analysis of needs and top level (mission) requirements, see 

paragraph 4.2. Reduced budget, reduced power, the small satellite dimensions and weight limit the 

design choice and impose to study low cost solutions without giving up performances and reliability. 

Figure 84, Figure 85, Figure 86, Figure 87, and Figure 88 show the functional analysis, made through 

the functional tree approach, which allows defining the main subsystem functions: 

 to determine the satellite angular data; 

 to generate profiles for attitude 

 to calculate the attitude maneuvers 

 to control attitude (counteracting disturbance torques); 

 to manage the operative modes; 

 to manage own failures; 

 to exchange data with other subsystems 

To determine 

the satellite 

angular data

To generate 

profiles for 

attitude

To calculate 

the attitude 

manoeuvers

To control 

the attitude

To perform 

attitude 

manoeuvers

To manage 

the operative 

modes

To manage 

the failures

To exchange 

data with 

other 

subsystems  

Figure 84: Functional tree (top level) of E-ST@R A-ADCS 
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To load 
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Figure 85: Functional tree (part 1) of E-ST@R A-ADCS 
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Figure 86: Functional tree (part 2) of E-ST@R A-ADCS 
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Figure 87: Functional tree (part 3) of E-ST@R A-ADCS 
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Figure 88: Functional tree (part 4) of E-ST@R A-ADCS 
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Figure 89 shows the interactions among the A-ADCS and other on board subsystems. EPS has to 

provide regulated voltages and currents according to the A-ADCS components. At the same time, the 

electrical loads shall remain within the power consumption imposed at system level for each 

subsystem. OBC communicates the new parameters and new commands to A-ADCS  which shall 

provide the OBC the own telemetries, housekeeping and status information. 

 

Figure 89: A-ADCS interfaces with the other subsystems 

The A-ADCS receives the electrical power from the EPS and exchange information with the OBC. 

The components of the A-ADCS are selected through the functions/components matrix shown Table 

34. The satellite angular velocities are measured by an IMU while three magnetometers measure the 

local EMF; the maneuver is guaranteed by three MT mounted orthogonally on the faces +X,-Y,+Z (of 

the body frame). All the “smart” operations and tasks are in charge of the microprocessor. The 

microprocessor has ARM architecture: this choice derives from the background and the experience 

already made in the past. 
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Function\equipment Gyroscope Magnetometer Computer PWM circuit MT 

To propagate the orbit     X     

To measure angular rate X         

To handle the 

measurements data     X     

to measure the EMF   X       

to load models and look-

up tables     X     

To define desired attitude     X     

To define desired angular 

velocities     X     

To evaluate the error 

between estimate angular 

velocities and desired 

angular velocities     X     

To evaluate the error 

between estimate attitude 

and desired attitude     X     

To compute the control 

torque values     X     

To execute the command       X 

 To generate torques 

    

X 

To compare ADCS 

parameters     X     

To switch on/off ADCS 

hardware parts     X     

To insert/remove ADCS 

software tasks     X     

To check the commands     X     

To acquire health status 

data and power 

consumption     X     

To compare health status 

with thresholds       X     

To activate recovery mode     X     

To reconfigure ADCS  

HW parts     X     

To reconfigure ADCS SW 

tasks     X     

To acquire information     X     

To extract data     X     

To handle data     X     

To execute command     X     

To gather data     X     

To format data     X     

To send data     X     

Table 34: Matrix functions/components of A-ADCS 
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The blocks scheme of the A-ADCS is shown in Figure 90: black lines indicate the power connections, 

red lines indicate the digital data connection, and blue lines indicate analog signals. The ARM9 micro-

controller passes data through a serial port to the OBC as well as it receives sensor measurements on a 

second serial port. The three magnetic torquers are commanded using a PWM logic circuit driven by 

the three micro-controller timer ports. ARM9 saves and load data and models from the internal 

memories (both volatile and non-volatile). MT are attached on three different connectors. All the 

power derives from the EPS thanks to the e-st@r bus: regulation on 3.3 V, 5 V and within the range 

[7, 8.2] V are needed. 

 

Figure 90: Blocks scheme of A-ADCS 

4.4.2 M&S based design and verification of the A-ADCS of e-st@r 

CubeSat 
The A-ADCSs of e-st@r CubeSats family have been designed and verified through the methodology 

proposed in this thesis. Table 35 summarizes the design and the verification activities carried out 

during the e-st@r program thanks to StarSim. For each stage in the life-cycle, the appropriate type of 

simulation has been chosen, and the objectives of each simulation are properly defined according to 

the phase of interest. Pay attention that the activity in the Operation phase is not available because e-

st@r II has not reached the orbit yet. 

4.4.2.1 Mode of operations and attitude determination and control algorithms 

The components of the A-ADCS are chosen through simulations evaluating the accuracy of the 

determination and the control, the power consumption, the mass budget, and possible layout.  

For e-st@r-I CubeSat, all the A-ADCS functions were switched on immediately after the release from 

the P-POD so a unique control mode was designed for nominal operations. In case any anomaly was 

detected (like low voltage of batteries or components failure), the A-ADCS was switched off. On e-

st@r-II, three control modes have been defined. Taking into account that the A-ADCS is the payload, 

the choice is to activate it only upon command from ground according to the operations timeline. In 

this way, the commissioning phase of the mission shall be completed prior the ADCS is switched on, 

in order to verify the right working of the satellite and to avoid the discharging the battery in the 

power-expensive detumbling phase immediately after the release. This evaluation has been made 

thanks to the experience gained from the first satellite in which the ADCS was activated immediately 

after release. 
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 Feasibility Design and development Integration 
Qualification/ 

Acceptance 

Operations* 

AIL  To evaluate the feasibility of the 

ADCS design wrt the top-level, 

mission and system requirements 

 To check the orbit for coverage 

studies, mission profile definition 

and ADCS modes determination 

 To size the disturbances and 

evaluate their effects 

 To verify torques-free motion 

 To define the needed control 

torque(s) in any phase (granularity 

and peak values) 

 To predict critical control aspects 

 To analyze the possible control modes 

 To analyze the control laws and 

algorithms options in relation to the 

mission phase (detumbling, stabilization, 

maneuver) 

 To analyze the determination algorithms 

options 

 To evaluate alternative architectures 

(sensors, actuators) 

 To evaluate extrinsic and intrinsic 

performances “against high fidelity virtual 

model” 

 To verify the capabilities of controller and 

observer 

N/A N/A  To verify the 

operations through 

on orbit data 

 To predict future 

behaviors and 

potential failures 

 To validate models 

with data from 

orbit 

SIL N/A   To support the software design and 

implementation: structure and functions 

 To verify the interface protocols between 

components (MT, IMU)  

 To size and choose the micro-controller 

 To design and verify 

protocols with OBC 

N/A   To evaluate 

possible updates of 

software 

CIL N/A  To define and verify the kernel 

 To verify the micro controller 

performance 

 To verify time management & 

synchronization 

 To verify the real 

hardware interfaces 

with OBC 

 To verify the interfaces 

with power systems 

N/A N/A 

HIL N/A  To support the design of the ADCS board 

 To verify the sensors and actuators 

performance 

 To calibrate sensors and actuators 

 To check the capabilities of the every 

circuit 

 To check the extrinsic performance 

 To verify the interface 

with all the other on 

board subsystems 

(both physical and 

logical) 

 To verify the 

“real”extrinsic 

performances 

 To verify functional 

and operational 

requirements for the 

ADCS (and, in 

general, for the 

satellite) after 

integration 

 To verify the 

behavior using on 

orbit data 

Table 35: StarSim in the e-st@r life cycle 
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Moreover, the gradual activation of the on board hardware allows to manage the operations according 

to the available power. For these reasons the satellites modes are: 

 ADCS - Mode 0: no A-ADCS component is switched on: it is the default mode. 

 ADCS - Mode 1: 

o A. if the commissioning phase is successfully completed, ARM9 micro-processor 

starts its work and IMU and magnetometer are activated in order to evaluate the 

angular velocities from the telemetries; 

o B: at the end of the detumbling phase, the attitude determination using the 

measurements and the dedicated algorithms is performed. 

 ADCS - Mode 2: 

o A. if all the telemetries parameters are in nominal way, the controller is activated so 

the satellite enters in the detumbling mode; 

o B. If the attitude estimation is completed, the stabilization mode is activate: the 

satellite maneuvers to reach the antenna pointing to nadir; 

o C. if a command with new desired pointing is required from GS, the satellite 

maneuvers to satisfy the request. It is important to notice soon that perform a 

maneuver with a 1U cubesat and only magnetic actuators results very challenging. In 

this sense, slew maneuver for e-st@r mission is the cherry on the top. 

Going into the details of the A-ADCS subsystem, the mode of operation of A-ADCS can be 

decomposed in phases:  

 ADCS-dormant phase. It is active when the satellite is in Basic Mission mode of operations. 

All the subsystem components are powered off. 

 Sensors phase. After the satellite commissioning in when Dormant, Activation and Basic 

mission satellite modes are set, the IMU (as well as the microprocessor) is switched on mainly 

in order to acquire di measurements of angular velocities (given by the gyroscopes). 

 Detumbling phase. After the release in orbit, the satellite motion is characterized by a high 

angular rate with respect to the inertial frame. Under these circumstances, it is really difficult 

to estimate the satellite attitude. In this situation, the controller aims especially at reducing the 

angular velocity, regardless of the attitude. For the control in the detumbling phase two 

solutions are taken into consideration: 

o The proportional (P) controller on the angular velocities measurements multiplied for 

EMF components;  

o The Bdot controller that is based only on the EMF measurements. 

The detembling controller works until the estimated angular velocity of the body frames w.r.t. 

the inertial frame is at the same time less than 0.005 rad/s around each axis.  

Performances of these solutions have been evaluated in terms of power consumption and time 

to reach the final desired condition. 

 Attitude acquisition phase. When the satellite motion is sufficiently dumped, the attitude is 

estimated through the sensors measurements and ad hoc algorithms and software filters. From 

the navigation point of view, alternatives consist of:  

o “deterministic methods”: the options taken into account are q-triad, q-est and 

qmethod.  

o “recursive methods”: the options are Linear Kalman Filter (LKF), Extended Kalman 

Filter (EKF), and Unscented Kalman Filter (UKF) has been considered. 

It should be taken into account that initial conditions on the state variables are not known 

when the A-ADCS is activated. 

 Stabilization phase. Once the attitude has been estimated (during the acquisition phase), the 

satellite is almost stabilized around an undefined orientation. It has a low angular velocity but 
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its attitude is not the desired ones. To reach the required antenna pointing (nadir), it is 

necessary to align the body frame with the orbital frame (it is centered in the centre of the 

Earth, with the x-axis directed towards the direction of motion, the z-axis directed toward the 

centre of Earth and the y-axis completing the right hand system). Possible test control law 

solutions are: 

o The PID controller is the simplest solution that allows reaching pointing accuracy 

lower and, in general, lower stability of the extrinsic performances. It results in a low 

computational cost. 

o The LQR provides an optimal and more sophisticated solution. It starts from the 

estimated values of the state variables and stabilizes the satellite according to a 

functional cost that has to be minimized acting on weights on the variables state and 

the commands. 

Performances has been evaluated in terms of time to acquire the final pointing, accuracy of the 

final pointing, power consumption, stability and robustness, capability to reach a new desired 

attitude. 

 Slew maneuver phase. This mode foresees that a desired final attitude is setup and the A-

ADCS works to satisfy this new pointing. For this mode only the PID controller has been 

evaluated because the accuracy requirement are more relaxed wrt the nadir pointing accuracy 

reuirements. 

Figure 91 shows the transitions among the various modes of the A-ADCS. Red lines highlight the 

transition commanded directly by OBC or from the GCS, black lines highlight the automatic 

transition, made when particular conditions arise, blue lines stay for special transitions that completely 

reset the system (i.e. hard reset or specific commands from the GCS). 

 

Mode 0: ADCS 

dormant

Mode 1.A: 

Sensors mode

Mode 2.A: 

Detumbling mode

Mode 1.B: Attitude 

estimation

Mode 2.B 

Stabilization

Mode 2.C Slew 

Maneuver

 

Figure 91: e-st@r-II ADCS operative modes 

StarSim has been used to perform trade-offs analysis in AIL configuration.  

The AIL final configuration of the simulator and the results from AIL simulations is obtained after 

many iterations of the methodology and now described hereafter. The subsystem’s architecture 

(sensors, actuators and other devices) is frozen and the final choices for control modes and related 

controllers techniques, guidance strategies, and determination algorithms are implemented and 

verified together in the simulation unit. Moreover the mission profile is simulated and the subsystem 

performances are evaluated.  

4.4.2.1.1 Basic AIL simulation during the feasibility phase 

4.4.2.1.1.1 Objectives 

The main objectives of this simulation session are the verification of the orbit, the EMF, the evaluation 

of the disturbance torques and the sizing of the required control torques.  

4.4.2.1.1.2 Setup and configuration 

The StarSim configuration for AIL simulations is shown in the next figures. Figure 92 shows the 

StarSim windows configuration for the file setsimarch.txt: only one process is built, no software or 

hardware interfaces are foreseen, i.e. the simulation runs exclusively on the simulation unit. 
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Simulation process

 

 

Figure 92: AIL simulations – processes settings 

 

time_ops(t_start,  t_end, anno, 
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Figure 93: Basic AIL simulation – models flow 

The models flow (in Figure 93) contains the functions for the time management, the orbit propagation 

(with J2 perturbation) model, the IGRF EMF model for the five-years period 2011-2015, the models 

of the four most influent torques acting on the satellite (residual magnetic dipole, gravity gradient, 

atmospheric drag, and the magnetic control torque), the dynamics and kinematics of a rigid body in 

the space, and the functions that permit to save data on the file selected by the user (output.txt). Each 
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model is setup accordingly the known information at this stage: the estimation made through CAD of 

the inertia matrix, the weight, the supposed launch date, the orbit parameters. Moreover, the 

simulation settings are: simulation time = 2 days, step-time = 0.5, no real time is required. 

4.4.2.1.1.3 Results 

The main results are listed hereafter: 

 Orbit propagation with J2 perturbation: Figure 94 shows that the orbit propagator model 

properly simulates in time the orbit of the satellite. The on ground track line highlights the  

compliance of the “orbit propagation” models with the expected results. 

 

Figure 94: Basic AIL simulation - Orbit propagation 

 Earth Magnetic Field. Figure 95 shows the EMF trend in the body frame: the three 

 

Figure 95: Basic AIL simulation - EMF generated from the model 

 components (respectively red for wrt x, green wrt y and blue wrt y) of the EMF vector are 

highlighted. The obtained results are successfully compared with the official IGRF model 

(conveniently rotate with a 1-3-1 rotation []) output and no relevant differences arise. 

 Disturbance torques: the peak values and trends of disturbance torques are evaluated, in 

Figure 96; the maxima (in modulus) of any considered torque are: 

o Max(Tgg) = 1.0e-009 * [0.2312, 0.3201, 0.0889] Nm 
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o Max(Ta) = 1.0e-013 * [0.2674, 0.2674, 0.2674] Nm 

o Max(Tres) =  1.0e-008 *[0.2676, 0.2673,0] Nm 

 

Figure 96: Basic AIL simulation - disturbance torques trends 

The maximum values for the sum of the disturbance torques are: 1.0e-008 *[0.2880, 0.2980, 

0.0089] compatible with the results expected [37].  

About the trends:  

o The atmospheric torques in steady state conditions mainly acting on two axes 

orthogonal to the orbit motion direction.[38] 

o The magnetic residual torque has two main contributions around the 2 axes orthogonal 

to the dipole moment generated by the electronic boards lies in parallel plane wrt that 

formed by two axes. [39] 

o The gravity gradient torque [1] present quite similar trend and values because the 

Inertia wrt the main satellite axis are quite similar (Ix=0.001934; Iy=0.001879; 

Iz=0.001736). Kg*m
2
  

 Dynamics and Kinematics models. The attitude dynamics of the satellite has been evaluated 

thanks to a simulation in which no control torques are applied. Figure 97 shows the trend of 

the body angular velocities wrt the inertial frame. This confirms the correctness of the 

“dynamics” and “kinematics” models. 
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Figure 97: Basic AIL simulation –detail of the angular velocities when no control torques are 

applied 

 The control torque sizing derives from the analysis of the disturbance torques and the torque-

free motion acting together on the satellite. A large number of simulations has been run thanks 

to the StarSim’s capabilities in terms of speed of simulation and possibility of execution of 

more sessions in parallel. In this phase no optimization has been made to tune the control 

parameters, but the obtained results is sufficient to have a preliminary sizing. 

 

 

Figure 98: Basic AIL simulation -Control torques trend and sizing 

 The maximum control torques of 2*10
-6

 Nm is sufficient to damp the satellite after release and 

a minimum torque about 10
-8

 Nm guarantees a good pointing accuracy and an acceptable 

pointing stability for the e-st@r mission. Figure 98 shows the trend of the control torques. 

4.4.2.1.2 Control techniques comparison via AIL simulation  

4.4.2.1.2.1 Objectives 

The simulation sessions aim at define the best control techniques to apply for the attitude control of 

the satellite taking into account the extrinsic performances, the required computational load, and the 

power consumption. 
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4.4.2.1.2.2 Setup and configurations 

Only one process (the simulation process) shall be configured for this verification. See Figure 92 with 

the setsimarch.txt script for details. 

Figure 99 illustrates the StarSim “models flow” for the actuators choice and control laws definition 

and verification; in particular, the figure shows the final configuration obtained at the end of the 

simulation sessions. Disturbance torques, orbit propagation, modeled EMF, dynamics and kinematics 

of the satellite with  extra function (i.e. rotation calculation) are inserted as already shown above. The 

blue block contains the satellite control algorithms and laws, and the red blocks refer to actuators (3 

MT) models and the control logic (PWM) algorithm. 
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Figure 99: Control Techniques AIL simulation – models flow: actuators and control laws  

All the developed models have been validated comparing the output with those obtained using 

MATLAB/Simulink models and simulating the same conditions. No evaluable differences arise from 

the comparison confirming that the simulator is able to rightly perform the planned simulation and 

reproduces the expected behavior of the virtual models. 

4.4.2.1.2.3 Results 

The considered actuators are magnetic torquers and reaction wheels. Thrusters were discarded at first 

because they are not easily applicable to CubeSat ADCS designs (at the present state-of-the-art 

technology). Reaction wheels resulted soon too bulky and, moreover, their power consumption was 

too high wrt to the power allocates for the ADCS: RW requires about 5 W of peak while the allocate 

power budget is 3 W. MT is the adopted solution because easiest and cheapest wrt any other. 

Moreover, the accuracy and granularity is sufficient for the program purposes and functional 

requirements. It depends on the PWM logic capabilities: it has been demonstrated through simulation 
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sessions that a granularity of 0.015 * 10
-3

 Am
2
 is sufficient to reach the desired pointing as well as a 

0.1*A m
2
 is sufficient to guarantee damping of the satellite during the detumbling phase with an initial 

condition of about 1rad/s for any axis. 

The considered control laws for detumbling are the Bdot and K*w x B. Figure 100 and Figure 101 

reports the trend of the angular velocities (wib) during the detumbling phase using Bdot; Figure 102 

and Figure 103 shows the trend of the same angular velocities using the control law u=K*wxB. The 

figures highlight a better capability of Bdot method to damp all the three components rapidly; on the 

contrary wxB provides a better stability in steady state conditions. For this reason the second method 

has been adopted but, actually, no great differences are evident between the two methods because both 

provide proper solutions. 

 

Figure 100: Control Techniques AIL simulation 

detumbling phase using Bdot 

 

Figure 101: Control Techniques AIL simulation 

detumbling phase using Bdot (detail) 

The considered control laws for the stabilization phase are the PID and the LQR techniques. A great 

number of simulations has been required to tune properly both the PID values and the LQR’s Q and R 

matrices. 

 

Figure 102: Control Techniques AIL simulation 

- detumbling phase using wxB control law 

 

Figure 103: Control Techniques AIL simulation-

detumbling phase with wxB control law (detail) 
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Figure 104: Control techniques AIL simulation- 

stabilization control, PID 

 

Figure 105: Control techniques AIL simulation - 

stabilization with LQR 

The Figure 104 and Figure 105 reports the trends of the quaternion for both the solutions.  

As expected, LQR performs better than the PID when uncertainties are applied both in inputs and in 

outputs. However, a mix of the two control laws has been implemented: PD controller works in 

stabilization until a misalignment respect the nadir pointing major of 25° on each axis is measured, 

while within these range the LQR starts own operations because, as shown in Table 36, its 

performances are better than PID. 

 

 PID LQR 

 x(°) y(°) z(°) x(°) y(°) z(°) 

Pointing accuracy [5 : 7] [-1 : 1] [-6 : 0] [+0.5 : 1] [-0.5 : 0] [-1 : 0] 

Stability 0.5°/10000 

seconds 

1°/10000 

seconds 

1.5°/10000 

seconds 

0.05°/10000 

seconds 

0.1°/ 10000 

seconds 

0.5°/ 10000 

seconds 

Table 36: PID vs. LQR performances 

Moreover, it has been seen that the ADCS is able to detumble and point to nadir the satellite also after 

7 days from the release without a decay of performances in terms of accuracy or power consumption. 

The Figure 106 shows that satellite is able to perform the detumbling maneuvers after a week of 

uncontrolled motion and starting from the initial condition: body angular velocities wrt inertial frame 

[1, 1, 0.8] rad/s. It is considered the worst release conditions of the satellite from the P-POD. 
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Figure 106: Free motion seven days simulation and successive detumbling 

4.4.2.1.3 Determination algorithms comparison via AIL simulation  

4.4.2.1.3.1 Objectives  

The test aims at choosing and verifing the best solutions and attitude determination algorithms and 

sensors choice. 

4.4.2.1.3.2 Setup and Configurations 

Only one process (the simulation process) shall be configured for this verification. See Figure 92 with 

the setsimarch.txt script for details. Figure 107 shows the configuration of StarSim “models flow” 

used for the scope. Disturbance torques, orbit propagation, modeled EMF, dynamics and kinematics of 

the satellite with extra function (i.e. rotation calculation) are inserted, as already described above. The 

figure refers to the final configuration in which the red blocks contain the models of the adopted 

sensors (3 axial magnetometer and 3 gyroscopes). The blue blocks contain the determination 

algorithms: the final choice foresees q-methods starting from the magnetometer measurements and the 

EMF modeled values (with respect the current orbit position) and EKF on the angular velocities 

measurements and the entire process. The final choice has made on the application of q-method on 

two successive measurements of EMF and the EKF on the the state variables of the system. In 

particular, using q-method, the estimation of the initial attitude is done in order to initialize the 

integrator within the models and the KF. EKF is the effective state estimator. The tuning of its values 

has been a quite complex process because it has been designed considering white, Gaussian noises but 

its convergence has been verified taking into account colored noise and no idealities as temperature, 

scale factor, misallineament, bias instability. In this way the higher difficulty is translated in a higher 

confidence in the filter because a more robust solution has been finally reached. 

The simulation time is 2 days, step time is equal to 0.5 seconds,  and the real time option is not 

selected. 
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Figure 107: Determination algorithms comparison via AIL simulation – models flow 

4.4.2.1.3.3 Results 

1. The sensing device is an IMU containing a 3-axial gyroscope and 3 mono-axial 

magnetometers. The sensor is also constituted by three accelerometer not used for 

determination attitude but only for calibration. One of the early hypotheses about sensors for 

determination was constituted by the IMU and by the solar panels used as coarse Sun sensor. 

This was the configuration for e-st@r-I that has been substituted because the solar panels 

telemetry acquisition sometimes resulted to slow and the risk is to have old values when the 

determination algorithms performed. Moreover, a traditional sun sensor drawback has been 

taken into account: the impossibility to have the measurements during the eclipse periods. The 

IMU chosen has the merit of self manipulate the acquisitions of its internal sensors and correct 

them accordingly: in particular, it just compensates the noise generated by not-linearities, bias 

instability and temperature. Uncompensated noises remain but to really evaluate their effect it 
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should be made after tests in a thermal chamber but the impossibility to perform this kind of 

test leads to apply software correction adding randomly an offset to the values that will be 

filtering by the EKF on the plant. 

2. The considered algorithms for determination are the Q-est and Q-method for 

deterministic/statistical methods and EKF for the recursive methods. Q-est/Q-methods are 

applied to two consecutive measurements and the correspective IGRF model values of the 

magnetometer and EKF on the “plant” and the gyroscope measurements. After the detumbling 

phase (made using the gyroscope measurements), the attitude acquisition is made with Q-

method because it has higher performances wrt the Q-est : 

 MKE(qest)=[0.003723   0.002801 – 0.002567 – 0.0002946],  

 MKE(qmethod)= [0.003128  0.001916 -0.0017253  0.0002602] 

Moreover, its implementation is not too difficult and the request of computational resources is 

compatible and not so demanding modern micro-processors. 

Actually also q-TRIAD were evaluated but it provided results inefficient in terms of accuracy 

wrt the requirements satisfaction. 

Figure 108 shows the trends of the modeled EMF and the measured ones (obtained from the 

magnetometer model). 

Their values are used by the qmethod and qest algorithms to determine the attitude during the 

acquisition phase. Moreover, the MKE(B) has been computed:  

 B-Bm=[0.021297458645963   0.030170592688397  -0.137637367679484]*e-8 Tesla 

Q-method accuracy using the magnetometer measurements results less than the values 

computed through EKF applied on gyro measurements and the satellite virtual model, the 

satellite dynamics and kinematics with its uncertainties and disturbances:  

 MKE(qEKF) = [0.000082   0.0003765   0.000771   0.001115]  

 MKE(qmethod)= [0.003128  0.001916 -0.0017253  0.0002602] 

For these reasons, in nominal conditions, the attitude determination is committed to the 

outputs of the EKF periodically corrected by the q-method outputs 

 

Figure 108: Determination algorithms comparison via AIL simulation –modeled 

and measured EMF 
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3. Figure 109 reports the trend (in the first 5000 seconds of simulation, for a good reading of the 

plot) of the simulated and measured (from the gyroscopes model) angular velocities of the 

body frame wrt the orbit frame. Both are used by the Extended Kalman Filter to estimate the 

attitude (qEKF). Moreover, the MKE(wob) has been computed and is equal to [-0.0564  -

0.064  -0.0577]*10e-5 rad/s. 

 

 

Figure 109: Determination algorithms comparison via AIL simulation – simulated and measured 

angular velocities (detail – first 5000 seconds) 

4.4.2.1.4 Complete AIL simulation for final performance anyalisis 

4.4.2.1.4.1 Objectives 

The test objectives are the evaluation of the extrinsic performances and the validation of the ADCS 

design with an as high as possible fidelity of the virtual models. 

4.4.2.1.4.2 Setup and configurations 

Only one process (the simulation process) shall be configured for this verification. See Figure 92 with 

the setsimarch.txt script for details. 

The final “models flow” for complete AIL simulations session is illustrated in Figure 110; it is the 

highest fidelity virtual models developed within the e-st@r program and it is defined as follows: 

 Orbit propagation with J2 perturbation and aerodynamic disturbance forces 

 EMF (IGRF2011-2015) 

 Disturbance torques:  

o Atmospheric torques 

o Gravity gradient 

o Magnetic residual due to electronic devices 

 Dynamics and Kinematics of the satellite with Runge-Kutta methods for the integrator 

computation. 

 Sensors: MT9 IMU models (with magnetometers and gyroscopes). The gyroscopes 

main parameters are: scale factor matrix=[0.269 -0.0005 0.0011; 0.0001 0.2586 -

0.0231; -0.0011 -0.0005 0.2639], bias_digital = [32582 32082 34490], imu_accuracy= 

1.59762 *0.0001. The magnetometers parameters are: scale factor matrix= [9715 0 
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0;0 8584  0; 0 0 7932], Magnet sensitivity rotation matrix = [ 1.000 -0.007 -0.006; -

0.060  0.988 -0.009; -0.051  0.010  0.999], Misalignment =[ 1.0000  0.0035 0.0000; -

0.0035  1.0000 0.0017; 0.0000 -0.0017 1.0000]. bias =[32400; 32568; 32698]; noise 

vector =[0.5-rand;0.5-rand;0.5-rand];  

 Actuators: 3 MT (the parameters are: coils number= 105, resistance = 49 ohm, V=5 V, 

mean area = 6100 *10
-6 

m
2
, copper resistivity = 1.78 10

-8
 ohm*m) 

 Control law: proportional on the angular velocity of the body wrt inertial frame for the 

detumbling, PID and LQR on the angular velocity of the body wrt orbital frame and 

the attitude (expressed with quaternion) for the stabilization phase, and the PID on the 

same variables of the stabilization phase to perform slew maneuvers. 

 Control logic for the actuators: the PWM logic algorithms; set parameters are: PWM 

sample for second = 2000, Max voltage = 5Volt. 

 Attitude determination algorithms: q-methods deterministic algorithms starting from 

the magnetometer measurements and EMF models, and EKF on the gyroscopes 

measurements and on the state variables of the satellite representation. 
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gradient(q,Tgg)

Magnetic torque 
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Figure 110: Complete AIL simulation – models flow 
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Moreover, algorithms and functions to manage time and saving simulation data (satellite angular 

velocities, attitude, measurements of the sensors, actuators consumption are selected. The mission 

profile foresees that for 10000 seconds the ADCS is switched off, then the detumbling phase starts. 

When this phase is finished, the attitude acquisition mode is activated and the attitude is estimated 

before with q-method, after 5000 seconds, from the EKF and the stabilization mode starts to work.  

The simulations last 2 days (172200 seconds) and non real time settings are required. The step time is 

0.5 seconds (according to the foreseen control frequency = 2 Hz). 

 

 

Figure 111: Complete AIL simulation: C++ code skeleton  

for the simulation process in complete AIL simulations (I) 

Figure 111 shows the C++ code initialization lines of the simulation process. Three libraries are 

included and they refers to the StarSim databases and C++ .header files libraries. 
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No interface among processes and/or real hardware is requested so the relative variables are set to 0. 

All the model variables are defined and initialized according to the choices of the user and the type: 

angular velocities (wib,wob) and quaternion (q), the orbit parameters (in terms of TLE), latitude, 

longitude and heigth (L), desired states (q_c), sensors settings, EKF settings, torques, magnetic 

torquers parameters (n_coil, m_max, area_coil), torques (all the T), etc... 

The last two lines serve to clean the log folder and create a new instance containing the new log files 

according to the user choice. 

 

 

Figure 112: Complete AIL simulation – C++ code skeleton for the simulation process in complete 

AIL simulations (II) 

Figure 112 highlights the loop: gettimeofday is the function that manages the UTC time, timeops 

manages the simulation time, orbit_propagation contains the orbit propagator model. Magf has the 

lookup tables and the functions related to IGRF model. The chosen torques models are represented by 

gravity_gradient, atmospheric_torque, permanent magnet, magnetic torque and their outputs are 

summed and passed to dynamics and kinematics models (containing RungeKutta integrators). “If” 

conditions derive from the definition of the mission profile: when the simulation time is higher than 

5400 seconds the determination functions are activated as well as, after 10800 seconds, the controllers 

functions. 

Going into the details, gyroscopes and a tri-axial magnetometer models simulate the behaviour of the 

sensors; from their outputs q-method and EKF algorithms are applied obtaining the state variables 

estimation. Controllosat function implements the control laws and strategies, pwm functions 
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reproduces the behaviour of the PWM logic and torquer simulates the outputs of the real actuators. 

File_save allows to save all the interesting variables values, as selected by the user. 

4.4.2.1.4.3 Results 

Apart for the results about the determination and the control laws already presented, the Figure 113 

reports the attitude of the satellite (expressed in terms of Euler angles). 

 

Figure 113: Complete AIL simulation - satellite attitude (Euler angles) 

The desired attitude (the nadir pointing) is reached with an accuracy of about 1 degree for each axis 

and a pointing stability of 0.1°/10000 sec wrt to any axis. The accuracy of 5° is reached within the 

interval 18000-36000 seconds after the start of the stabilization phase. 

Figure 114 shows the attitude determination made through the q-method algorithms and the EKF. The 

main results are already discussed previously. 

 

Figure 114: Complete AIL simulation - estimated quaternion using the magnetometer measurement 

(q-method) and the gyroscope measurement (EKF) 
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Figure 115 reports the commands (the dipole moment generated by the MT) computed using the 

control laws chosen. In particular, the trend in the mostly power expensive detumbling phase is 

zoomed. The total power consumption is about 750 mW in the first three hours. 

 

Figure 115: Complete AIL simulation - dipole moment (m), generating control torque, trend 

4.4.2.1.4.4 Intrinsic performances 

The study of the intrinsic performance on the uncontrolled and controlled system has been carried out. 

In particular, the stability analyses, the definition of the stability margins, the robustness and the 

robust performance analyses have been studied. The first step is the linearization of dynamics and 

kinematics represented by state variables equations: 

 

where x=[q1 q2 q3 ωx ωy ωz] is the state variables vector, u(t)=[m1 m2 m3] is the controlled inputs vector 

and y(t)=x(t) is the outputs vector of interest. A, B, C are the matrices:  
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C  is the outputs matrix. 

These matrices represent the virtual model of the satellite obtained linearizing the non linear equation 

of dynamics and kinematics for the equilibrium point, x=[0 0 0 0 0 0]. 

 The stability analysis on the uncontrolled system is carried out calculating the eigenvalues of 

the matrix A. The six results are: 

λ1 = -0.0 + 83.51127i 

λ2 = -0.0 – 83.51127i 

λ3 =  0.0 + 13.32550i 

λ4 = 0.0 – 13.32550i 

λ5 = 0 + 57.735026i 

λ6 = 0 – 57.735026i 

Four out of the six eigenvalues have positive real part: it means that the uncontrolled system is 

unstable. 

 Controllability: the rank of the controllability matrix is 6 so the system is completely 

controllable from the inputs 

 Observability: the rank of the observability matrix is 6 so the system is completely observable 

from the outputs. 

 Stability of the controlled system made using the Lyapunov theory. The controlled system 

results asymptotically stable for a certain number of K. In fact, the eigenvalues are: 

o λ1 = -0.00264 + 0.00294i 

o λ2 = -0.00264 - 0.002946i 

o λ3 = -0.00265 + 0.0026i 

o λ4 = -0.00265 - 0.0026i 

o λ5 = -0.00116  

o λ6 = -0.00021 

4.4.2.1.4.5 Extrinsic performances 

The extrinsic performances measured after the attitude acquisition phase: 

 RKE(q)= [0.00361  0.00245  -0.0034  -0.00153] NB. wrt the last simulation acquisition 

 APE (q)= [0.001125 0.00088 0.007 0.00127] 
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 MPE(q)= [0.028  0.0042  -0.007  0.00357] 

 RPE(q)= [0.0269  0.00367  0.00082  0.0035] NB. wrt the last simulation acquisition 

Moreover, it constitutes the basis for all next configurations (SIL, CIL, and HIL): in fact, the virtual 

model holds even in later stages apart from the parts that become physical models along the product 

life cycle (embedded systems and equipment). This highlights another advantage of the SimStar as 

unique platform for any design and verification phase: the reusability of models (and, how shown in 

the next paragraphs, interface and items) among the different configurations. 

4.4.2.2 SW design and test 

The complete functional flow diagram of the final software for e-st@r is shown in Figure 116. 

The ADCS software is structured as follows: 

 “initialization”: it foresees that all the needed settings are made: I/O physical ports and 

software interfaces, models constant and variables are initialized 

 “interface loop”: it is an infinite loop in which the RD129 acquires sensors and status data 

and exchanges telemetries and commands with the OBC. Within the loop: 

o the time is managed, maintaining both the mission and the UTC time 

o the string with the OBC information is received, read and the data are extracted from 

the raw. 

o NORAD parameters and desired attitude are updated (if any) according to the 

received commands and the all the telemetry data from OBC are updated. 

o the operative mode is individuated. If the ADCS-MODE0 is active the execution flow 

passes to format and send the ADCS telemetry data to OBC and saves all the 

information into files (protection against the reboot). If ADCS-MODE1 is active, the 

determination loop is active, or if ADCS-MODE2 is active, also the control loop is 

active. 

 “determination modes”: they are activated when the angular velocities only and the attitude 

and angular velocities of the satellite shall determine using the chosen algorithms: q-method 

and EKF. 

 “control modes”: they are activated when the new commands are computed (according to the 

required control laws) and the PWM values are set for the driving circuits. 

All the implemented functions are developed and tested both step by step and integrated. 
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Figure 116: main ADCS software flow chart 

4.4.2.2.1 SIL simulation for IMU verication: 

4.4.2.2.1.1 Objectives  

The test aims at verify the ADCS software capability to extract data from a formatted IMU packet. 

4.4.2.2.1.2 Setup and configurations 

SIL configuration allows the verification of communication protocols between two different 

processes.  

Figure 117 shows the SIL configuration for the verification of the IMU protocol and the ADCS 

software’s capability to acquire and manage the measurements.  

 

Simulation process ADCS softwarePipe_imu
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Figure 117: SIL simulation for IMU verification: processes settings 

Two processes are involved: one (simulation process) generates the formatted IMU outputs. It 

computes the angular velocities values, the EMF, the linear accelerations and formats these data 

according to the custom protocol of the IMU, emulating the functions in charge of the sensor’s micro-

processor. The formatted string is passed to the second process (called ADCS_software), with a pipe 

(labeled pipe_imu), where runs the piece of executable code devoted to validate packets and extract 

data (angular velocities, accelerations and EMF components). 

Figure 118 shows the “models flow” of the two processes. The simulation process (on the left) 

simulates the system motion and the on orbit environment (orange blocks), the gyroscope and 

magnetometers behavior (red blocks), the data and signal handling, data saving and time management 

(green blocks). In particular, there are the model of the ADC need to effectively replicate the sensor 

behavior, the special function built to simulate the data formatting and packing made by the processor 

of the sensor. The LINUX generic function write allows sending via pipe the IMU-string to the ADCS 

software. Another solution can use a special function generating IMU strings. In both cases a properly 

formatted string is passed to the ADCS software process. This process acquires string thanks to the 

generic LINUX function read, validates each string and extracts values; moreover it saves on file 

(imu_adcs.txt) and visualizes information. The post-processing activities consist of reading the two 

binary files IMU_sim.txt and IMU_ADCS.txt, saved independently by the two processes and 

comparing both the binary sequences and the real “physical” data.  

These simulation parameters have been chosen: 

 Simulation time = 2 minutes/30 minutes/1 hour/4 hours 

 Step time= 0.5 seconds 

 RT is activated  

4.4.2.2.1.3 Results 

Different simulation sessions are performed. The obtained results show that the software working on 

the ADCS software is able to acquire and reconstruct the IMU information from the flow of bits 

received in input. The software extracts data from the formatted packets transmitted by the simulated 

IMU every 500 ms for half an hour (8999 packets), one hour (17993 packets) and for hours (71984 

packets) and no relevant errors occur during the operations of acquisition and reconstruction of the 

data. It demonstrates that no bug in the code implementation arises. 
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Figure 118:  SIL simulation for IMU verication – “models flow” for acquisition and data 

management  

4.4.2.2.2 SIL simulation for ADCS/OBC protocols verification 

4.4.2.2.2.1 Objectives  

The test objectives are: 

 the verification of the ADCS software capability to extract the strings (called O2A_string) 

received by the OBC process; 

 the verifications of the ADCS software capability to format properly the strings (called 

A2O_string) for the OBC. 

4.4.2.2.2.2 Setup and configurations 

Figure 119 shows the SIL configuration for verification of the communication protocols between 

ADCS process and OBC process. Three processes are involved: the simulation process, the OBC 

process and the process ADCS software. The communications between the processes occur through 

pipes: in particular, pipe_obc allows the exchange of data between ADCS software and OBC process 

according the relative protocol. Pipe_debug is the label of the pipe for the communication of data from 

ADCS_software and simulation process. A2O-string is the ADCS telemetry string formatted by the 

ADCS software process and transmitted to the OBC, O2A_string is generated by the OBC-process and 

sent to ADCS software process. 

 

 

Simulation process ADCS software Pipe_obcPipe_debug OBC process
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Figure 119: SIL simulation for ADCS/OBC protocols verification – processes and interfaces settings 

In Figure 120, the “models flow” of the configuration for communication between ADCS and OBC is 

illustrated. The simulation process generates randomly a compatible IMU_string and passes it through 

the pipe_debug to ADCS software that formats it together other information (quaternion and currents 

flowing into the MT) according to the protocol rules. The formatted string is sent to the OBC process 

through the pipe_obc and, only for debug, to the simulation process (through the pipe_debug) that 

displays and saves the string within the file A2Osim.txt. The OBC process receives the string and 

extracts the information, saving the values in a file OBC.txt together with the string O2A that has been 

previously generated and passed to the ADCS process through the pipe_obc. The ADCS software 

process receives the strings, extracts and displays the data. The live or post-processing activity 

consists of analyzing and comparing the A2O_string and O2A string generated by the “source” and 

received and handled by the “sink”:  

4.4.2.2.2.3 Results 

Different simulation sessions have been carried out in order to verify if the developed piece of 

software runs properly on ADCS and is able to format /transmit and receive/extract data packets 

to/from the OBC. The exchange of information between the processes occurs about every 30 seconds 

so long time session have been performed: 1 hour, 4 hours, 12 hours and 24 hours. The following 

results are obtained: 

1. The ADCS software has reconstructed the correct values for every packet received from OBC 

process. It has been confirmed, analyzing the values into the strings produced by OBC and the 

values reconstructed through the specific algorithms by the ADCS. No errors are detected 

after the comparison.  

2. The ADCS software formats all the “A2O” strings according the chosen custom protocol. In 

fact, loading the data saved in the A2O_OBC.txt, it is possible to see that OBC process 

receives all strings with the right size and the correct header and closer tags. Moreover, the 

casting of each variable is correctly made by the ADCS and OBC process has reconstructed 

without errors the same values set in the ADCS software. 
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Figure 120: SIL simulation for ADCS/OBC protocols verification - “models flow” 

4.4.2.2.3 Complete SIL simulations 

4.4.2.2.3.1 Objectives 

The objective of the test is to verify contemporary the capabilities of the ADCS software: 

 To manage all together the IMU stings and the communication with the OBC; 

 To perform the determination algorithms and the control strategies 

4.4.2.2.3.2 Setup and configurations 

Figure 121 sketches the SIL architecture for the purpose of these simulations sessions. Three processes 

(all running in the simulation unit) and their interfaces can be highlighted. The simulation process 

passes the simulated IMU strings through the pipe_imu to ADCS-process; The ADCS_process 

communicates A2O_string to OBC process thanks to pipe_obc. On the same interface, OBC passes 
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O2A_string to ADCS_process. Finally, ADCS process sends the values of the commands for the 

actuators to simulation process that will use them to calculate the applied control torque. 

 

Simulation process ADCS software Pipe_obc

Pipe_pwm

OBC process

Pipe_imu

 

 

Figure 121: Complete SIL simulation - processes settings 

From the settings, it can be noted that three different C/C++ codes and relative executable files, after a 

“simple” compiling, (est@rII_test, est@rII_ARM, and est@rII_OBC) are generated to emulate the 

actual execution of the software on the ADCS. 
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Figure 122: Complete SIL simulations  – models flow 

Figure 122 shows the “models flows” in the final configuration of SIL simulation. Three flows are 

present, corresponding to three processes. The simulation process (on the left) simulates the 

environmental conditions and the S/C motion, formats the IMU outputs and passes them to the ADCS 

process through a pipe (called pipe_imu), emulating the sensor processor. The ADCS process (in the 

middle) contains the models constituting the software that will run in the ADCS micro-processor. The 

software manages the modes of operations, acquires IMU’s data, computes the algorithms (already 

tested in the AIL simulations) for attitude determination and control until the definition of the duty 

cycle commands for the MTs is done. For the simulation purposes these values are passed to the 

simulation process through the pipe_pwm. Moreover a third process (on the right) is setup and refers 
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to the OBC operations: actually, only the functions related to the communications OBC-ADCS are 

implemented. In particular, in this process, telemetries and commands exchanged between the two 

subsystems are taken into consideration. From the control console it is possible to send commands to 

this process in order to simulate the possibility to change the ADCS mode or to update 

ADCSparameters from the GCS. This kind of communication is made through a pipe called pipe_obc. 

The following simulation parameters have been chosen and initialized: simulation time= 2 days, 

step_time= 0,5 seconds, and real time simulation is activated. 

4.4.2.2.3.3 Results 

The SIL simulations highlighted some problems when the entire software has been assembled. 

Various bugs have been fixed in the ADCS software: they refer mainly to the insertions of specific 

functions to handle the control modes (that will be analyzed in the HIL paragraphs), to update some 

parameters and to synchronize the execution of all the three processes. The modes of operations are 

quite specific for every mission and it results difficult to generalize that within a function. Moreover, 

one of the main criticalities (from SIL to HIL) was to synchronize the processes’ execution: it means 

that the communications among the processes (here) and subsystems and simulator processors (for 

CIL and HIL) shall occur not only in a correct logical way but at precise instant. In order to solve the 

synchronization problem, delays are introduced properly within the simulation loop. 

When all these criticalities are overtaken, new complete simulations ran carrying out to good results: 

1. First of all, the interfaces among the processes work properly: in fact, neither ADCS nor OBC 

processes generate errors on the transmission/reception of A2O and O2A strings. Minor errors 

occur in the extraction of the respective values but they do not cause great misbehaviors that 

compromise the results. 

2. Both the determination and the control laws works properly and not significant differences can 

be realize from the AIL simulations. It means that the integration of interfaces and algorithms 

do not affect the execution of the tasks. 

3. IMU string has a rate of good acquisition very close to 100% as well as the command values 

are always received and used by the simulator. 

4.4.2.3 On board microcontroller: choice and tests 

The ADCS microcontroller is the RD129 (See APPENDIX E), produced by ELPA s.a.s. [36]. It is 

based on ARM9 architecture and makes use of a Samsung microprocessor. Among the various 

peripherals, the used ARM9 I/Os are three serial channels (one only for debug), three timers, and other 

general-purpose pins. The USART0 allows communication with the IMU, acquiring data (with a 

specific data protocol) related to the angular velocities, the linear accelerations and the EMF. 

USART1 allows the communication with the OBC and USART2 is the debug/test line. Each port has 

a own setting:  

 USART0 = 115200 bit/s, 8N1 for the protocol checks; 

 USART1 = 9600 bit/s, 8N1 for the protocol checks; 

 USART2 = 115200 bit/s, 8N1 for the protocol checks. 

The PWM logic signals are generated by the three “timer” outputs of the RD129 properly set by the 

software. In fact, the ports management is made with virtual files in which the port features are set , 

defined the PWM frequency, and finally the duty cycle value. 

The Operating System for ADCS is Linux Embedded. The kernel (version 2.3.32.xx) has been 

customized in order to enable only the required I/O ports and related functions, optimizing the 

performance of the RD129. 

The software is written in C/C++ thanks to the simulator that auto-generates the code from the user 

selection of the models. In the StarSim v1.0, the cross-compiling is still not automatic and the operator 
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shall perform this activity manually. If the cross-compiling is successfully completed the generated 

file are manually loaded on the RD129.  

At the same time to perform verifications through the methodology, other two codes are compiled and 

then will run on the simulation unit: the simulation process and the OBC process. 

4.4.2.3.1 CIL simulations for PWM settings verification 

4.4.2.3.1.1 Objectives 

The test aims at verifying the ADCS capabilities to command the timer outputs in order to set the 

desired PWM duty cycles to drive MT. 

4.4.2.3.1.2 Setup & configurations 

The configuration (Figure 123) foresees the preparation of two codes: one for the SU (yellow block in 

the figure) running in the StarSim WS and one for the RD129 micro-processors (blue block in the 

figure). This software is defined thanks to the simulator and then cross-compiled and loaded on the 

micro-processor. Moreover, GSE (in violet) are used to power the micro-controller (a power supply 

unit), to connect the test object (RD129) and the simulator unit, and an oscilloscope to visualize the 

generated output. 

 

 

 

Figure 123: CIL simulations for PWM verification – processes settings 

Simulation process generates the PWM commands in order to emulate the attitude control values as 

computed by the controller. This choice has been made because it allows an easier updating of the 

values from the user through the GUI. In fact, a second possibility (see next paragraph) is the complete 
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simulation of dynamics & kinematics and controller but it results overmuch in relation to the stage of 

this kind of test.  
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Figure 124: CIL simulations for PWM verification - models flow 

The ADCS software receives the data through the serial_debug and the duty cycle is computed from 

the commanded values. The ADCS software sets these values on timer_outputs. The user can verify 

the right behavior by the use of a oscilloscope that autonomously saves the measurements on files. The 

set values are both saved in the PWM.txt file for future comparisons and sent to simulation process for 

displaying them (Figure 124). It is expected that the outputs change from the minimum value (and vice 

versa) varying the time in which the output is at high level voltage wrt a defined time interval (inverse 

of the frequency of PWM and fixed to 2000 time/s for RD129)  

4.4.2.3.1.3 Results 

The ADCS software sets properly the timer ports output of the RD129: in fact, when the lowest value 

is set the duty cycle has the minimum values 0.1%, when the highest value is set the duty cycle has the 

maximum value of 99.9%, and when the center value is set the duty cycle has the value of 50% (it 

means that the signal remains at the high level for half of the time interval and at low level for the 

same time). Figure 125, Figure 126, and Figure 127 show the three cases illustrated as plotted by the 

oscilloscope. Note that the high level voltage is 5 Volt as well as the low level is 0 V. 
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Figure 125: CIL simulations for PWM 

verification - duty cycle 99.9% (oscilloscope 

display) 

 

Figure 126: CIL simulations for PWM 

verification - duty cycle 0.1% (oscilloscope 

dispaly) 

 

Figure 127: CIL simulations for PWM verification -duty cycle 50% (oscilloscope display) 

4.4.2.3.2 CIL simulation for IMU data management 

4.4.2.3.2.1 Objectives 

The test aims at verifying the capability of the RD129 to acquire IMU’s data through the USART0 

(serial_imu) port and the quality of the link in terms of lost and wrong packets. 

4.4.2.3.2.2 Setup and configurations 

CIL configuration is used throughout the Design and Development phase to verify the data acquisition 

and IMU management of ADCS software loaded into the microcontroller ARM9. The configuration 

(Figure 128) foresees that a single process (called simulation process, the yellow block) runs on the 

Simulation Unit in order to emulate the IMU’s output, formats the data according to the datasheet and 

sends the obtained string through a serial port (serial_imu), emulating the real communication 

between the sensor and the micro-controller. This is possible thanks to the communication GSE (in 

violet) that adapt the logical levels (from 12V to 5V through a MAX232 chip-based circuit) of the 

ports. The microcontroller (blue block in the figure) is powered on thanks to power GSE and acquires 

the string from the serial port (USART0), extracts the data and re-formats it in order to sends it again 

(through the serial_debug) to the simulation process that displays and saves it into the file 

output_sim.txt for future handling and comparison (Figure 129). 
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Figure 128: CIL simulations for IMU data management - processes settings 

The acquisition capability can be observed by the user during the execution because the RD129 prints 

the information and sends them through the serial_debug connected with the simulation process. 

Moreover, the raw and the extracted values are saved in the file IMU_arm.txt on RD129’s non-volatile 

memory. Recovering this file, it is possible to compare the raw and the “real” values with those 

generated by the simulation process. 

Figure 129 shows the “models flow” of the two processes. The simulation process (on the left) 

simulates the system motion and the on orbit environment (orange blocks), the gyroscope and 

magnetometers behavior (red blocks), the data and signal handling, data saving and time management 

(green blocks). In particular, there are: the model of the ADC necessary to effectively replicate the 

sensor behavior, the special function built to simulate the data formatting and packing made by the 

processor of the sensor. The LINUX generic function write allows sending via serial port the 

IMU_string to the ADCS process, which is passed to the ADCS software process. This process 

acquires string thanks to the generic LINUX function read, validates each string and extracts values; 

moreover it saves on file (imu_adcs.txt) and visualizes information. The post-processing activities 

consist of reading the two binary files IMU_sim.txt and IMU_ADCS.txt, saved independently by the 

two processes and comparing both the binary sequences and the real “physical” data.  

These simulation parameters have been chosen: 

 Simulation time = 10 minutes/1 hour/4 hours 

 Step time= 0.5 seconds 

 RT is activated  

Simulation processSerial_imuADCS micro-controller 
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GSE
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GSE

(power)



231 

 

4.4.2.3.2.1 Results 

The results highlight the capability of the microcontroller to acquire data from the serial port. The 

simulation process sends the IMU packets with a frequency of 100 Hz (as the real sensor) and the 

microcontroller does not lose information after half an hours. Pay attention that the ADCS process 

works at 2 Hz so the main difficult was the synchronization. At this step no problem arises and the 

strings extraction from the buffer is always completed with success. 
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Figure 129: CIL simulations for IMU data management - models flow 

4.4.2.3.3 CIL-Integration – ADCS/OBC communication 

4.4.2.3.3.1 Objectives 

The test aims to verify the ADCS’ data transmission and reception with OBC through the USART0 

port of the RD129 and the USART0 port of the OBC micro-processor. 

4.4.2.3.3.2 Setup and configurations 

Figure 130 shows the CIL configuration adopted to verify the serial communication between ARM9 

and OBC processors. Two processes are involved: on the Simulation Unit the simulation process and 

the OBC process. The third element is the RD129 micro-controller (in blu), on which the developed 

software runs. The RD129 is powered by GSE that provides 3.3V and 5V regulated. Front-end GSE 

are cables serial/serial 9pins, signal levels adapter based on MAX232 chip. The RD129 

microcontroller is connected to OBC process addressed as serial_OBC on the codes and physically 

connected to USART1. The RD129 exchanges information with simulation process through the 

USART2, addressed as serial_debug on the code. 
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Figure 130: CIL simulation for OBC/ADCS communication verification - processes and settings 

The simulation process generates IMU_string and passes it through the serial_debug to RD129 that 

formats it together other information (quaternion and currents flowing into the MT) according to the 

“A2O” protocol rules. The formatted string is passed to OBC process through the serial_obc and, for 

redundancy, to simulation process (always through the serial_debug) that displays and saves the string 

within the file A2Osim.txt. The OBC process receives and extracts the string, saving the values in a 

file OBC.txt together with the O2A_string that has previously been generated and passed to the ADCS 

process through the serial_obc. ADCS processor receives the string, extracts and displays the data. 

(See Figure 131). Pay attention that the ADCS software operates according to the mode set by the 

OBC (wrt the requests of the GS) 
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Figure 131: CIL simulation for OBC/ADCS communication verification - models flow 

Figure 132 shows the test setup and arrangement using the EM of the ADCS (on the right in the 

figure) and, also, the development board of the OBC (on the left in the second figure). 

  

Figure 132: CIL simulation for OBC/ADCS communication verification – test arrangement using 

EM 

4.4.2.3.3.3 Results 

Figure 133 highlights the flag-read variable trend during a simulation session of 2 hours: this flag 

variable is saved in O2A_ARM.txt and is set to 1 when the OBC packet is received and is set 0 if the 
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packet is not received. No packets are lost at runtime. Moreover, making a comparison among the 

O2A strings within O2A_ARM and O2A_OBC 1 packet (wrt 240) contains corrupted values. 

 

Figure 133: CIL simulations for OBC/ADCS 

communication verification - flag read OBC  

 

Figure 134: CIL simulations for OBC/ADCS 

communication verification - number of bits 

written by the ADCS software on serial-obc port 

Figure 134 shows that the ADCS software is able to write the correct number of bits (70) 

corresponding to the A2O-string dimension. OBC has received all these packets but 5 (wrt 480) of 

them have some wrong values; this consideration derives from the comparison between the A2O-

strings saved on ADCS and OBC memory, respectively in A2O_ARM.txt and A2O_OBC.txt files. 

4.4.2.4 HW design and test 

The ADCS hardware has been designed, developed and built with the fundamental support of Eng. 

Davide Daprà. The heart of the ADCS hardware is a custom PCB that hosts the RD129 

microcontroller, the IMU (Xsens’ MT9), and electronic circuits to amplify or acquire the signals. The 

driving circuits for the MT transform the low level/low voltage [0-5V] command signals (output of the 

microcontroller) to the higher level voltage applied to the actuators. Other electronic circuits are 

designed to measure the current (flowing into the MT) data: in particular, these outputs are [0-3.3] V 

signals and the values are proportional to the current flowing into the MT: in this way it is easy to 

monitor the power consumption. The microprocessor receives the signals on the GPIO pins and the 

values are put into virtual files, directly managed by the software. In fact, the ADCS-SW shall be able 

to initialize and then open, read, write and close the virtual files each times that a new measurement is 

available. A circuit based on MAX232 chip is used to regulate the signal output of the serial port 

USART0 because IMU logic and RD129 are different. NO similar circuits are necessary for the serial 

channel between OBC and ADCS. 

The Figure 135 and Figure 136 reports the electronic circuits sketches. First figure highlights the 

connections of the 120 pin of ARM9, the connections of the 104 pin of the satellite bus and other 

circuits: the levels adapter circuits for the interface between the RD129 and the IMU is signed as 

“Magnetometro” and is based on the MAX3232 chip that adapts the 12 V signals of the IMU TX line 

to 3.3 V accepted in input by the microcontroller. The other presented circuits have the same function 

of signal adapter but they are not involved directly in A-ADCS subsystem   
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Figure 135: Schematic of the ADCS board (I) 

Figure 136 depicts two type of circuits: the PWM logic circuit and the current sense circuits. The 

command signal enters in PWM-1: it is a square signal with varying duty cycle. After IC1A the signal 

passes to a not inverting and not inverting stage (the circuits related to AD8397 amplifiers). When the 

DC is 50% a mean value voltage of 2.5 V passes through the stage and no potential difference arises 

on the torque connected to “53047-04” connector. If a low DC is applied, a voltage close to 0V is the 

output of the not inverting stage and a voltage close to 5V is in output of the inverting stage, 

generating a potential difference on the MT in which will flow a current from X1-4 to X1-1. Vice 

versa, if a high DC is commanded, a voltage close to 5V is on the not inverting stage and a voltage 

close to 0V on the inverting stage, generating a potential difference on the MT into which a current 

will flow from X1-1 to X1-4. The current sense circuit is based on amplifying differential stage. 

According to the current flowing into MT a different voltage is applied to R68. The potential 

difference passes through the LT1498 amplifier whose output is proportional to the input. In 

particular, if no current flows the output is 1.6 V, if current flows from X1-4 to X1-1 then the output 

tends to 0V  (corresponding to maximum in absolute value), and if current flows from X1-1 to X1-4 

then the output tends to 3.3V (corresponding to maximum in absolute value). In this way it is possible 

not only to evaluate the power consumption but also the direction of the current flowing. All the 

circuits in Figure 136 are replicated three times, one for each MT command channel. 

Finally, a linear technology is adopted instead a switching technology because the currents are very 

low and the MT are often powered off during the mission. In this condition the linear technology is 

more efficient in terms of power consumption because no currents flow in the circuit when it is 

switched off. 
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Figure 136: Schematic of the ADCS board (II) 

The Figure 137 shows (on the left) the printed board view (made in Eaglecad [35]) in which all the 

circuits, chip and passive elements take place. The red elements stay on the top of the board, the blue 

ones stay on the bottom. The same figure presents on the right a picture of the FM model board during 

a continuity check test: on the lower part of the picture it is possible to see the 104-pin connector 

(produced by Samtec)[39]; in the right there is the RD-129 and on the left there is the IMU sensor 

(produced by Xsens)[40]. 

  
Figure 137: ADCS board, view from Eaglecad and FM during basic electrical tests 
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Figure 138: Magnetic torquers (MT) 

Also the Magnetic Torquers have been made in-house at the StarLab of Politecnico di Torino. Their 

design and construction is not a topic for the thesis, so only a picture to show (Figure 138) the final 

product is here included. [42] 

4.4.2.4.1 HIL simulation for IMU functional test 

4.4.2.4.1.1 Objectives 

The test aims at the verification of ADCS microcontroller capability to acquire and handle the data 

from real IMU. 

4.4.2.4.1.2 Setup and configurations 

Figure 139 shows the HIL configuration for real IMU acquisition and calibration. One process runs on 

the Simulation Unit (yellow) and receives information through the serial_debug. The ADCS is 

equipped with the RD129 microcontroller and the IMU. The micro-controller receives the IMU raw 

through the serial_imu port (USART0) and passes the output of the data handling function to the 

simulation process. The ADCS board must be provided with 3.3V, 5 V and a voltage in the range [7-

8.2] V regulated using a power supplier. GSE Frontend as cables RS232 9pins and MAX232 adapter 

circuits are required to complete the setup. 
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Figure 139: HIL simulations for IMU functional test: processes settings 

The “models flow” (Figure 140) illustrates that the real IMU sensor provides the information under 

data raw form through the serial_imu port. The software loaded in the RD129 reads the data and 

inserts them in the vector “Imustring” from which it extracts the telemetry related to accelerations, 

angular velocities, and EMF with respect to the sensor frame (that will be assumed coincident with the 

body frame). These values are passed to the simulation process to display and save them for future 

comparison.  

Changing IMU orientation and the temperature conditions, different measurements are derived and 

saved: the acquisitions allow estimating the real values and reconstructing the ADC error, the bias 

drift and the misalignment. 
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Figure 140: HIL simulations for IMU functional test -models flow 

Figure 141 contains two pictures of the arrangement of the test: the first shows an overview with the 

simulator (Simulation Unit and Control Console) on the right, the power supplier in the middle and the 

ADCS board (FM) both on the left and in the second picture. The IMU is mounted near the RD129 
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mounted with the gyroscopes as close as possible to the CoM. A Frontend GSE adapts the serial 

communication level among the ARM9 and the Simulation Unit. 

  
Figure 141: HIL simulations for IMU functional test – arrangement of the test using FM unit 

Figure 142 shows the generated code for the simulation process. 

The first window show the initialization code with the included libraries and database, the log files 

settings, and the variables initialization. The second window shows the functions and the models 

involved for time management, data raw reading from the serial port, data extraction and file saving 

management 
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Figure 142: HIL simulations for IMU functional test - C++ code skeleton  

4.4.2.4.1.3 Results 

A high number of simulations has been performed for the IMU acquisition in CIL because it resulted 

very difficult to guarantee a sufficiently reliable communication between IMU and the ADCS board 

because the sensor provides 100 complete strings every second while the ADCS process runs at 2 Hz: 

this fact causes an overflow for the buffer variable devoted to gather all the IMU packets. The second 

problem occur because often the extracted string from the buffer does not corresponded to the latest 

and the obtained values were not the real time values. For these reasons, a change in the ADCS 

software has been necessary: the IMU acquisition is now in charge of a thread (see chapter 3.3 for the 

definition of thread), a sub-process that runs at the same speed of the IMU, acquires all the strings and 

passes the last ones to the main process (the ADCS process) when it is required. This solution allows 

giving a good affordability on the IMU acquisition task. In fact, the number of wrong or lost IMU’s 

packets by ADCS process is 3 every 100. Actually, it is not the best solution but it is sufficient to 

guarantee that the on board algorithms were able to determine attitude from magnetometers and/or 

gyroscopes measurements. 

4.4.2.4.2 HIL simulation for IMU calibration 

4.4.2.4.2.1 Objectives 

The test [43] aims at the calibration of the IMU and the validation of the data acquired by RD129. 

4.4.2.4.2.2 Setup and configurations 

Figure 143 shows the HIL configuration for real IMU calibration. The elements involved in the test 

are the simulation process (yellow frame), running on the Simulation Unit, the real IMU sensors, the 

MT9 produced by Xsens (the red block), the RD129 microprocessor (in the blue frames) and different 

types of GSE (violet blocks). The simulation process commands the voltages and currents of a power 

supplier (GSE-1 (power) blocks) through the serial_alim1 port and receives, for redundancy, the data 

acquired by the ADCS board through the serial_debug channel and thanks to Frontend GSE based on 

MAX232 serial logic levels adapter. The power supplier (GSE-1) is used to control the motor of a 1-

DOF platform used to rotate a plate on which the test object (IMU and ADCS board) is arranged with 

particular careful in order to have a mechanical connections (the green line) as good as possible both 

between the board and the plate and between the sensors and the board on which the sensor is 

mounted (thank to four M2 aluminum skrews). IMU provides data to ADCS-board through the 

serial_imu port (USART0). The GSE-2 (power) supplies regulated voltages to ADCS board through 

the main satellite bus and IMU is powered directly from the ADCS-board). 
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Figure 143: HIL simulations for IMU calibrations - processes settings 

The “models flow” is illustrated in Figure 144. The real IMU sensor provides the data raw through the 

serial_imu port to USART0 of RD129. The ADCS software reads IMU data (with the generic LINUX 

function read) and extracts the telemetry related to accelerations, angular velocities, and EMF values 

wrt the sensor frame (that will be assumed coincident with the body frame). These values are saved in 

IMU_adcs.txt file passed to the simulation process to display and save them for future comparison. 

The simulation process manages time and synchronizations and contains a function written ad hoc for 

this test. This function is an algorithm studied to provoke controlled rotation of the plate mounted on 

the 1-D platform: in particular, different voltages are set and consequently the plate rotate with 

different angular velocities allowing testing the capabilities of the gyros. Finally, the simulation 

process receives the IMU data through the serial_debug port (USART2) and saves it in the file 

IMU.txt. 
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Figure 144: HIL simulations for IMU calibration - models flow 

Figure 145 contains three pictures of the arrangement: the first shows an overview and details of the 

simulator (Simulation Unit and Control Console) on the right, the power suppliers in the middle and 

the ADCS board (FM) mounted on the 1D platform. The second and third ones are focused on GSE 

and test object (the ADCS board with IMU). 



243 

 

 

  
Figure 145: HIL simulation for IMU calibration – arrangement of the test with QM 

4.4.2.4.2.3 Results 

The results of the test are shown in Figure 146, Figure 147, and Figure 148Gyroscopes’ behaviour is 

quite similar to that expected: small variations could be related to the homemade rotating plate, and 

surely with a more accurate GSE, results will reflect exactly the expected ones. 

 

Figure 146: HIL simulation for IMU calibration - 

X-axis gyroscope characterization 

 

Figure 147: HIL simulation for IMU calibration - 

Y-axis gyroscope characterization 
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Figure 148: HIL simulation for IMU calibration – Z-axis gyroscope characterization. 

4.4.2.4.3 HIL simulation for PWM and current sensors calibrations 

4.4.2.4.3.1 Objectives 

The test aims at the verification of the PWM commands generation on the timers RD-129’s ports and 

the measurement of the currents flowing into the actuators.  

4.4.2.4.3.2 Setup and configurations 

The configuration (Figure 149) foresees that the simulation process generates the commands in order 

to emulate the attitude control values as computed by the controller. The ADCS software receives the 

data through the serial_debug and the duty cycle is computed from the defined values. The ADCS 

software sets these values on timer_outputs connected to the PWM logic circuits in charge of settings 

the corresponding currents flowing into the MTs.  
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Figure 149: HIL simulations for PWM and current sensors calibration – processes settings 

The user can verify the right settings thanks to an oscilloscope that autonomously saves the 

measurements on files. Another circuit “transforms” these currents, thus generating output signals 

within the range [0-3.3] Volts. They are acquired by the microcontroller on GPIO pins through gpio-

adc channels and, through an internal 10-bits ADC, that gives proportional values that are transmitted 

to the simulation process together with the set PWM’s values and then saved (file MT.txt) for post-

processing use. In the same way, the simulation process acquires the MT telemetry string, displays, 

and saves (file output.txt) the extracted values.  

The Figure 150 illustrates the “models flow” of the simulation process (in the yellow frame)  and the 

ADCS software executed by the RD-129 (blue frame). In the Simulation Unit, the generated code 

derives from the models in charge of 1) managing simulation time and synchronization, 2) generating 

PWM string, and 3) using the LINUX generic function write the string is sent to the ADCS board via 

serial communication. SU reads the MT telemetry (deriving from the current sense circuits), extracts 

them, and, finally, saves all the sensible data of the session (MT telemetry, duty cycles, currents) on 

the file output.txt. The flow in the blue frame starts with UTC management function; then ADCS-

software reads the strings with PWM commands, extracts them, computes the duty cycle (with the 

relative algorithm), and sets the values in the co respective virtual files. In the loop, there are the real 

hardware in terms of PWM circuits, MTs, and current sense circuits. The current values are saved in 

the virtual file that the ADCS-software reads and then puts into the file MT.txt. Moreover, the values 

are sent to the simulation process for debug and successive comparisons and other post-processing 

activities. 

The generated code for the simulation process is reported in Figure 151. 
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Figure 150: HIL simulations for PWM and current sensors calibration - models flow 
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Figure 151: HIL simulations for PWM and current sensors calibration . C++ code skeleton 

The picture in Figure 152 shows the arrangement of the test, using the QM ADCS board. The picture 

on the left provides a global view: there are the Simulation Unit (the WS, rear in the picture) with the 

control console on the right, the power supplier (in the middle) and the oscilloscope on the left. The 

picture on the right shows the detail of the Test Object: the MT is on the left and it is connected to the 

QM board; on the left there is GSE Front-end (a MAX232 circuit), connected with the Simulation 

Unit.  

  

Figure 152: HIL simulations for PWM and current sensors calibration – picture of the arrangement 

for the test with FM 
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4.4.2.4.3.3 Results 

The Figure 153 shows an approximately linear trend of the ADC wrt the duty cycle, except for the 

initial part (corresponding to low duty cycle values) where instead a saturation is present: this problem 

will be fixed on the ADCS board with changing resistors’ values of the circuit. Figure 154 and Figure 

155 report the relationships between the duty cycle values and the corresponding voltages and the 

measured currents flowing into the MTs connector.  

 

Figure 153: HIL simulation for PWM 

and current sensors calibration -  

PWM logic circuit calibration 

 

Figure 154: HIL simulation for PWM and 

current sensors calibrations - PWM tuning 

 

 

Figure 155: HIL simulation for PWM and current sensors calibration  

current sensor calibrion 

Figure 154 highlights that the center point is at 483: it means that when this value is set no current 

flowing within the MT. Moreover, the trend of the points underlines a quite linear relationship 

between duty cycle and output voltage. A quite linear relationship exists also between the duty cycle 

and the current flowing within the actuators (Figure 155). 
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4.4.2.4.4 HIL simulation for complete A-ADCS verification 

4.4.2.4.4.1 Objective  

The main test objective is the verification of the full assembled and integratd ADCS: it means to verify 

the system functions, modes of operations and performances. 

4.4.2.4.4.2 Setup and configurations 

The architecture for the ADCS verifications is in Figure 156. The simulation process passes the IMU 

string through the serial_imu and receives the PWM commands on the serial_debug. A Front-end 

GSE is required to adapt the signals levels on both the links. The data exchange between ADCS board 

and OBC board (USART1) is guaranteed by a serial link. The ADCS microprocessor sends the PWM 

commands to MT setting the values on the RD129 timer channels’ outputs; the signals are amplified in 

specific electronics circuits. The ADCS and OBC boards are powered on three different voltages 

(3.3V, 5V and [7-8,2]V) by a dedicated GSE. 

Simulation process

Serial_obc

Serial_imu

Serial_debug

OBC process

ADCS board (RD129, 

with software, + current 

sensors & PWM 

circuits) MT

GSE

(communication)

Serial_imu

Serial_debug

GSE

(power)
5V 3.3 V and 5 V

IMU

 

 

Figure 156: HIL simulations for complete A-ADCS verification – processes settings 

Figure 157 shows the “models flow” of the three processors involved in this final simulation campaign 

on A-ADCS at subsystem level. In the figure only the OBC functions necessary for interacts with the 

ADCS are reported: they are the communication of “O2A” strings and “A2O” strings on the 

serial_obc link. The ADCS processor (RD129) executes the software already described in the 
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paragraph 4.4.2.2: it reads the O2A data and verifies what mode of operations shall be setup and 

extracts other telemetry of interest. If no determination and control modes (ADCS-MODE 1 and 

ADCS-MODE 2) are set, the execution flow jumps to the end of the loop where the A2O string with 

the subsystem telemetry and status is formatted and sent to OBC. If the ADCS-MODE1 is activated 

the measurements of gyroscopes and magnetometers are read and used in the EKF and q-method 

algorithms to estimate the satellite’s attitude (and the angular rate). If the ADCS-MODE 2 is activated, 

the control laws and the commands for MT are put in the loop. Moreover, the ADCS process handles 

and manages the received command from the OBC (and from the GS): they are the: 

 “new desired attitude “ 

 “update orbit parameters” 

 “update UTC time” 

Accordingly to the active mode, the ADCS software executes the algorithms for attitude determination 

and the control laws. 

The simulation process shall manage time and synchronization, reproduce the on orbit behavior of the 

satellite using dedicated models chosen by the user: for this final simulation the most accurate and 

with highest level of fidelity models have been selected both for equipment and for environmental and 

spacecraft motion virtual models. For example, the IMU models is characterized with the bias, 

misalignment, noise, and scale factor stability of the real sensor and taking into account the 

temperature changes. The IMU_string is transmitted (through the serial_imu) from the simulation 

process to the IMU-connector on the ADCS board. It receives also the PWM duty cycle commands 

calculated from A-ADCS and simulates the MT behavior. Finally, all the variables values and trends 

are saved in output.txt file. 
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Figure 157: HIL simulation for complete A-ADCS verification - "models flow" 

Figure 158 shows the C++ code for initialize the simulation: C++ libraries and databases files and all 

the variables and constants are properly defined. 
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Figure 158: HIL simulation for complete A-ADCS verification: C++ code generated skeleton (I) 
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Figure 159: HIL simulation for complete A-ADCS verification: C++ code generated skeleton (II) 

  
Figure 160: HIL simulation for complete A-ADCS verification - arrangement for the test with QM 

Figure 160 shows the test setup arrangement. On the left, there is an overview of the test bench with 

Simulation Unit and Control Console, the power supplier and the test object. On the right, the details 
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of the test object is highlighted: the ADCS board is connected to the power supplier output to receive 

the regulated power on the main bus pins through the 104-pin connector. 

4.4.2.4.4.3 Results 

An extensive simulation campaign has been performed in order to verify the operational, functional 

and performances requirements of the ADCS before it was integrated with the other subsystems. The 

first simulations session fail mainly because the arrangement was not suitable and also because the 

communications do not result not sufficiently synchronize such that the real time operations were not 

guaranteed. 

Hereafter, the results from the final session are shown: Figure 161 plots the body angular velocities 

wrt the orbital frame and the Figure 162 graphs the four components of the quaternion that represent 

the satellite attitude. The figures show that the ADCS is able to reach the determination and control 

attitude: it commands the actuators MT the initial angular velocities and pointing to the nadir the 

antenna. Consequently, the capabilities to activate and de-activate sensors and actuators have been 

successfully verified. From the communication point of view, the communication between the 

simulator and the ADCS are sufficiently stable. Although data anomalies are observed, from a 

minimum of 15 (best case) to a maximum of 45 (worst case) packets are corrupted as shows by peaks 

and discontinuities on the graphs, the ADCS has completed successfully the mission. In particular, 

these extrinsic performances have been obtained: 

 AKE(q)=[ 0.02511    0.077    0.0801    0.005] NB. After a post-processing activities made 

o eliminate/recovery the communication error. 

 RKE(q)= [ -0.0154   -0.0373    0.0223    0.0040] NB. wrt the last simulation acquisition 

 APE (q)= [0.2232    0.3000    0.2030    1.0465] after the detumbling and acquisition 

phases 

 MPE(q)= [-0.1150   -0.0823   -0.0927    0.0839] 

 RPE(q)= [-0.0258   -0.0402   -0.0066    0.0045] NB. wrt the last simulation acquisition 

 

Figure 161: HIL simulation for complete A-

ADCS verification - body angular  velocity 

 

Figure 162: HIL simulation for complete A-ADCS 

verification – attitude 

4.4.2.4.5 Comparison between AIL and HIL simulations results 

The simulation results have been  compared with the AIL simulations with the same initial conditions 

and general setup. Figure 163, Figure 164, and Figure 165 show the comparison among angular 

velocities and Figure 166, Figure 167, Figure 168, and Figure 169 the comparison among the 

quaternion values. 
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Figure 163: Body angular velocity wrt orbital 

frame (axis x), AIL(blue) vs. HIL(red) 

 

Figure 164: Body angular velocity wrt orbital 

frame (axis y), AIL(blue) vs. HIL(red) 

 

Figure 165: Body angular velocity wrt orbital frame (axis z), AIL(blue) vs. HIL(red) 

 
 

 

 

Figure 166: Attitude (component 1 quaternion 

vector part), AIL(blue) vs. HIL(red) 

Figure 167: Attitude (component 2 quaternion 

vector part), AIL(blue) vs. HIL(red) 
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Figure 168: Attitude(component 3 quaternion 

vector part), AIL(blue) vs. HIL(red) 

 

Figure 169: Attitude (component 4 quaternion 

vector part), AIL(blue) vs. HIL(red) 

Apart for the communication errors, the AIL solutions tend to converge quickly than HIL: this is 

because not all the HW internal dynamics can be reproduced with the virtual models and they occur 

during a real time test. Moreover, the communication errors and transient misbehavior (e.g. the 

software reboot) not present in AIL actually affect the work of the hardware and software. 

Finally, Figure 170 shows the current consumption due to the actuators for complete the detumbling 

and the stabilization phase. The total consumption for attitude control is about 2.45 W. 

 

Figure 170: Current flowing within the MTs 

4.4.2.5 HIL – integration and qualification phases at the system level 

4.4.2.5.1 HIL simulation for complete e-st@r verification 

4.4.2.5.1.1 Objectives 

The test aims at verifying the complete A-ADCS system (and more, in general, the entire satellite) 

capabilities. 

4.4.2.5.1.2 Configuration and setup 

This section describes the StarSim configuration for the complete HIL simulation and test campaign 

carried out on the e-st@r CubeSats. The Test Object under verification at this stage is the whole 

satellite. Physical models of all the subsystems are in the loop in order to verify all functional and 

operational requirements, as Table 37.  
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Description Verification 

close-out 

The CubeSat shall automatically deploy the antenna Verified 

The CubeSat shall send telemetry to GCS Verified 

The CubeSat shall receive commands from GCS Verified 

The CubeSat shall send telemetry packets every 120 s Verified 

Telemetry packets shall be formatted according to KISS AX.25 protocol  Verified 

Telemetry shall be stored on board a non volatile memory (SD card) Verified 

The CubeSat shall execute commands received from GCS Verified 

The current consumption @5V shall be less than 150 mA in nominal mode of operation 

(mean value) 

Verified 

The current consumption @3.3V shall be less than 180 mA in nominal mode of operation 

(mean value) 

Verified 

The current consumption @5V shall be less than 200 mA in nominal mode of operation 

(peak value) 

Verified 

The current consumption @3.3V shall be less than 230 mA in nominal mode of operation 

(peak value) 

Verified 

Battery shall be charged in less than 10 hours Verified 

CubeSat shall determine its attitude Verified 

CubeSat shall control its attitude Verified 

CubeSat shall be able to maintain its attitude Verified 

CubeSat shall be able to change its attitude upon command from GCS Verified 

The pointing accuracy shall be at least 5° Verified 

The end of the detumbling phase, the angular velocities shall not exceed 0.005 rad7s for each 

axis 

Verified 

Current consumption of each MT shall be than 150 mA Verified 

Antenna deployment shall create any debris Verified 

Antenna shall wait to deploy a minimum of 30 minutes after the CubeSat deployment switch 

(DS) is activated from P-POD ejection 

Verified 

Transmitter shall wait to transmit a minimum of 30 minutes after the CubeSat’s DS is 

activated form P-POD ejection 

Verified 

The CubeSat shall be able to receive a transmitter shutdown command as per FCC regulation Verified 

The CubeSat shall be able to switch from one operation mode to another operation mode 

upon command from GCS 

Verified 

No electronics shall be active during launch to prevent any electrical or RF Verified 

All systems shall be turned off by the DS, including real time clocks Verified 

CubeSats with batteries shall be fully deactivated or launch with discharge batteries Verified 

Table 37: Functional and operational requirements verified by complete HIL simulation 

The hardware interfaces of the HIL test bench are listed hereafter: 

 Serial_debug port connects the Simulation Unit to RD129 USART2 debug port on the A-

ADCS board using a GSE Front-end based on the MAX232 chip. The A-ADCS board returns 

the Pulse Width Modulation (PWM) commands to the simulation unit. Through this channel, 

the operator controls the A-ADCS’s behavior in real time.  

 Serial_imu port connects the simulation unit to the IMU on the A-ADCS board. Simulated 

IMU’s raw data are transmitted to the A-ADCS board in terms of angular velocities and local 

EMF, formatted as specified in the IMU data-sheet. 

 Serial_alim1 connects the Simulation Unit to power GSE (power pack N1). The simulation 

software conveys solar panels current and voltage values to set power pack N1 in order to 

simulate solar panels +x, +y, -y. The three power pack’s outputs are connected directly to the 

six-pin connectors on the PCDU. 
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 Serial_alim2 connects the simulation unit to power GSE (power pack N2). The simulation 

software conveys solar panels current and voltage values to power pack N2 in order to 

simulate solar panels +z and -z. Two out of the three power pack’s outputs are connected 

directly to the six-pin connectors on the PCDU. 

 Serial_obc connects the ADCS and OBC systems through a serial cable or, in the QM e FM 

units, through the 104-pin connector of the e-st@r bus. Actually, this communication channel 

does not involve the SU but it is entirely part of the Test Object. 

 

 

Figure 171: HIL simulation for complete e-st@r verification – processes and interfaces settings 

Figure 172 shows the details of the configuration through the “models flow” for the simulation 

process and the ADCS software. The simulation unit also includes electrical emulation of sensors and 

actuators. The output value of each sensor is computed by the simulator and it is read by the ADCS 

board  under test. In the same way, the ADCS software commands the actuators by means of proper 

control signals and it sends back to the simulator the control values. 
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Figure 172: HIL simulation for complete e-st@r verification – models flows 
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The simulated satellite’s equipment are: 

1. Solar panels and EPS’s temperature sensors. Their models have been developed from data 

according to [29]. Using the simulated information of Sun position, satellite attitude, and 

thermal conditions, the voltage and current supplied by each panel are computed. These 

information are used to set the power units that are connected to the EPS board to power the 

CubeSat with the desired voltages and currents 

2. IMU. The models of the gyroscopes and of the tri-axial magnetometer are included in the 

simulator [30]. These models are used in the attitude determination loop 

3. MT. The models of the magnetic actuators [30] and the PWM drivers [31] are used to 

calculate the dipole moment that, together with the EMF simulated data, generates the control 

torque. 

 

Figure 173: HIL simulation for complete e-st@r verification – C++ generated code skeleton 

(initialization) 

The orbital conditions are simulated through the models of: 1) the orbit by a Simplified General 

Perturbation propagator (SGP4); 2) the rotational dynamics and kinematics of the satellite; 3) the 

thermal flows hitting the satellite [32]; and 4) the EMF [33]. The orbital position is necessary for 

obtaining the local sun vector and the local magnetic field. The sun vector is used to calculate thermal 

flows and temperatures on solar panels. All these models are implemented in the simulation unit of the 

HIL simulator. Sensors and actuators of the CubeSat are electrically connected to the power bus, but 

only for verification of total power consumption. They are not used for sensing data or for generating 

torques. Figure 174 shows the core of the generated code. 
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The final HIL configuration for the entire satellite requires a deeper discussion. 

After the simulation is initialized, PWM commands are calculated in terms of duty cycles. These 

commands are sent to the simulation unit through serial_debug channel. The simulation software 

calculates the applied voltages, and the currents flowing into the MTs. In the end, the generated dipole 

moment is determined. 

The dipole moment together with the Earth’s magnetic field (measured by the modeled magnetometer) 

generates the value of the magnetic control torque. Using the dynamics and kinematics models of the 

CubeSat it is possible to obtain the values of the angular velocities around the satellite’s body axes 

with respect to the inertial reference frame. 

The angular velocities values (measured by gyros) and EMF values (measured by magnetometer) are 

converted in data strings in order to emulate the actual IMU’s behavior; they are finally transmitted to 

the A-ADCS board through serial_imu channel. The simulated measurements are used by the A-

ADCS board to determine the attitude. Moreover, attitude, angular velocities and EMF values serve to 

control the attitude of the satellite computing the new PWM duty cycles and finally sending them back 

to the simulation unit.  

The simulation software determines the heat fluxes on each face of the CubeSat and the temperatures 

on each solar panel. Values of heat fluxes and temperatures enter the solar cells model in order to get 

the power generated by solar panels in terms of voltage and current. These information are transmitted 

(through serial_alim1 and serial_alim2 channels) to the two 3-channels power packs which supply the 

EPS board.  

Telemetry is also radio-transmitted by the CubeSat to the GCS where it can be visualized and saved 

for further analysis. The CubeSat may also receive commands from GCS during a simulation session. 

Figure 173 reports the first part of the generated code in which all the variables and constants of the 

models are initialized, the interfaces are setup, and the output files are selected.  
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Figure 174: HIL simulation for complete e-st@r verification – C++ generated code skeleton (II) 

Figure 175 shows the arrangement of the test object, GSE and the simulator for the complete HIL test 

on the integrated system. 

  

Figure 175: Complete HIL for e-st@r functional reqs verification – arrangement for the test with QM 

Key parameters are defined before the simulation starts, such as the duration of the simulation (1 day), 

the time step (0.5 seconds), and the models to be used. CubeSat’s characteristics are also chosen and 

their values (peak or trends) are continuously monitored as they shall be verified against requirements. 

For e-st@r, the parameters are the EPS and ADCS telemetries and other system’s health and status 

data. 
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The analysis of simulation results is made from data collected through three independent sources: 1) 

GCS log files: updated every time that a radio communication between the satellite and the GCS 

occurs and a new packet, containing the telemetry data, is received; 2) Satellite SD card files: updated 

every 2 minutes; they contain the same telemetry strings received by the GCS but they are free of 

transmission errors; 3) Simulator log files: updated every 0.5 seconds; they hold all data about the 

environmental and system simulation and not only the telemetry data. 

At the present moment, data analysis is performed off real time, following a procedure that consists of 

importing data from files, handling, converting and interpreting them. The most meaningful 

parameters are chosen and the respective graphs are plotted and evaluated. 

4.4.2.5.1.3 Results 

In this paragraph, the results of a simulation session are presented and discussed. The global objective 

of the campaign was the study of the satellite’s behavior in the first day of in-orbit operations. The test 

aims at demonstrating that the CubeSat performs according to a reference mission as described 

hereafter. Mission and orbit data are given in Table 38. 

 

Table 38: Mission and orbit data 

The CubeSat is released into orbit at time T0. It enters the detumbling mode during which the A-

ADCS reduces the angular velocities until threshold values are reached. The CubeSat remains in this 

mode of operations for about 2 hours. At T0 + 2 hours: 1) the antenna deploys autonomously, 2) 

COMSYS is activated by OBC, and 3) the communication link from/to Earth is established. In the 

nominal mission, telemetry packets are sent to GCS every 2 minutes. According to the test plan, 

commands from the GCS are sent to the CubeSat to update mission parameters and to change modes 

of operations.  

At the end of the simulation session, the log files are analyzed to evaluate the CubeSat’s behavior, and 

to verify if the requirements are met. In the following graphs, most interesting parameters’ trends are 

plotted from data in the GCS log file. The simulation has been running for 100000 seconds. After that 

period of time, the simulator did not control the process anymore but data were still collected at the 

GCS because the CubeSat was operative to perform additional off-line tests. 

In Figure 176, battery-bus voltage, 5V-bus current, and 3.3V-bus current trends are shown. The 

battery bus voltage graph shows that the batteries are recharged during the orbits, reaching the 

maximum voltage value equal to 8.17 V in less than 10 hours (given a starting value of 7.80 V). Power 

consumption on the 5V-bus is almost constant. The peak in the plot is due to a wrong data acquisition; 

power consumption on the 3.3V-bus varies depending upon the use of OBC and A-ADCS boards. 

Semi-major axis [km] 7359.46 
Eccentricity 0.06664 

Inclination [deg] 69.5 
RAAN 0 

Argument of perigee [deg] 130 
Mean anomaly [deg] 0 

Epoch 1 Jan 2012 
Date of launch 13 Feb 2012 

Launch site Kourou, French Guyana 
Launch Vehicle Vega 
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Figure 176: (a) Battery-bus voltage as a function of time, (b) 5V-bus current as a function of time, 

and (c) 3.3V-bus current as a function of time 

In Figure 177, the trends of relevant parameters of one battery cell are shown. Each battery pack is 

constituted by two Li-Ion (Lithium Ions) cells. As far as voltage of cell is concerned, the graph 

confirms the trend seen in Figure 176 for the battery-bus voltage. The plot of the current shows 

consumption peaks which depend on the variable instantaneous operations of the subsystems. Since 

the test was performed in laboratory conditions, the temperature is almost constant and is equal to 

about 27 °C (which is higher than the room temperature, due to the fact that the battery heats up 

during operations, in particular during charge). 

 

Figure 177: Telemetries of battery pack no. 1 as a function of time. (a) Voltage, (b) current, and (c) 

temperature of one cell of battery pack 

Figure 178 illustrates the plots of solar panels voltages during the one-day mission, showing the 

sunlight/eclipse cycles. The graphs show that the satellite experiences, within the same day, both 

orbits with short-eclipse/long-sunlight periods and orbits with no eclipse. This is due to the 

combination of orbit geometry and launch date. It represents a transition condition toward a one-week 

period of full sunlight. During the simulated mission, the power consumption of the CubeSat is quite 

low, as only vital functions are executed. Moreover, Figure 178 shows very short-duration eclipses. 

For these reasons, we can see very light voltage drops in Figure 176(a). The anomalous values in the 
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solar panels’ voltage trends beyond 10
5
 seconds are due to the fact that the simulation was stopped and 

the power supply units were not controlled by the simulator. 

 

Figure 178: Solar panel voltages. (a) panel +x, (b) panel +y, (c) panel –y, (d) panel +z, and (e) panel –

z. Panels are named after the perpendicular vector of the face they lie on, in body axes. 

After the detumbling phase ends, the angular velocities of the CubeSat remain constant with respect to 

the inertial frame, therefore the satellite is not spinning anymore. In Figure 179, it is possible to notice 

that the angular velocity with respect to the orbital frame is close to 0. The trends of the angular 

velocities during the detumbling phase are not visible in Figure 179 because the graphs have been 

plotted from the GCS log file which does not record any data before the detumbling phase is 

completed. The peak in the ωx plot is ascribable to an acquisition error. 

Figure 180 shows that the desired attitude (antenna pointing to the ground, reference quaternion [0 0 0 

1]) is achieved with the expected accuracy in the first day of the mission. The pointing error measured 

at the end of the test is less than 10 deg. 
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Figure 179: Angular velocities as a function of time. (a) angular velocity along x axis, (b) angular 

velocity along y axis, and (c) angular velocity along z axis 

 
Figure 180: Quaternion. (A) First component of the quaternion vector part, (B), second component 

of the quaternion vector part (C) third component of the quaternion vector part, (D,) quaternion 

scalar part 

Moreover, from all graphs, it is possible to see that no data are received at GCS during the first 2 

hours after injection into orbit. This was one of the operational requirements to be verified. The set of 

requirements and constraints verified in the same HIL simulation session is reported in Table 37. In 

addition to the closeout of these requirements, other interesting information is obtained from the test: 

1. No packet is lost (not saved and/or not received) in one-day span simulation 

2. One system reset occurred over one-day span simulation, demonstrating the robustness of the 

software design 

3 out of 720 packets contain no-coherent data (comparison between data saved on the onboard SD 

card and data recorded in the GCS log file). The data error rate (measured in terms of packets per day) 

is less than 5x10
-3

. 
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4.4.3 Test case: lessons learned 
The test case shows an application of the HIL simulation technique based on the simulator developed 

within the PhD program. The simulator has been developed to support the engineering team with a 

versatile tool which can be used throughout the design and development process of a space system. 

Thanks to its modular architecture, the simulator shows a good flexibility with respect to project 

phases and types of missions/systems. It may be tailored for different applications without major 

changes and it can handle simulation of several kinds of space missions and systems. Simulation 

models may be loaded in the simulator according to the specific design stage: models with different 

levels of detail and complexity are available and new models can be implemented and integrated in the 

simulator in the future. The type of mission of interest can also be chosen by setting the simulator in 

terms of specific mission parameters and systems involved in the simulation session. 

At the present moment, only simple designs can be investigated through this platform, but it can be 

extended for testing more complex mission without re-designing the simulator’s architecture. Some 

improvements can be done in order to enhance the simulator performance and accuracy, as well as to 

simplify the test bench and to reduce the time for test set up. Most common interfaces are already 

implemented in the simulator, but we are working to include other protocols. For example, the 

integration of the CAN bus interface could make the simulator suitable for testing pieces of hardware 

not supported at present. The addition of a robotic arm for improving attitude simulation capability is 

also planned. A key feature of the simulator is the use of freeware. However, well known commercial 

products have been used to “validate” the HIL simulations results wherever possible.  

The HIL simulator has been used for the verification of the functional and operational requirements of 

the e-st@r-I CubeSat. A one-day span mission has been simulated during which the CubeSat 

demonstrated to be able to accomplish the required functions and to operate as expected. 

The whole mission simulation has been carried out without relevant errors, showing that the HIL 

simulator can support the verification process of a CubeSat. A large number of requirements have 

been verified within a single simulation session, thus saving resources in terms of time for test set-up 

and running, man-hours and costs if compared to other testing techniques. Moreover, the test allowed 

following out the behavior of the equipment included in the simulation loop. For example, the actual 

power consumption of each piece of hardware has been measured and used to refine the power budget.  

The HIL testing results have been compared with AIL and SIL simulations to “validate” the 

methodology and the facility. These comparisons showed a good correlation between the different 

simulations, even if some differences have been noticed. For example, using the HIL facility helped to 

identify unexpected interactions between different devices during the integration of the CubeSat. The 

design has been reviewed to eliminate these potential failure causes using the information given by the 

HIL simulations.  

In conclusion, it has been proven that HIL simulation can effectively support the AIV process of a 

CubeSat. Improving the verification activity of CubeSats is a key factor for the development of 

innovative CubeSat missions. It has been demonstrated that a simple HIL architecture can serve well 

the purpose, even if some limitations exist. The HIL simulator’s capability can be further extended to 

support a broader class of applications. The collaboration among all the stakeholders in the CubeSat 

Community is necessary to achieve the final goals of improving mission reliability and enhancing 

CubeSat performance. 
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Chapter 5. Conclusion 
The research aims at the design and verification of complex systems with particular attention to the 

challenging system Guidance Navigation and Control (GNC) for space vehicles. The main topic is the 

development of a tool (the simulator StarSim) associated to a methodology that has been studied and 

developed to improve the design and V&V process in terms of effectiveness, cost-reduction, and 

reliability without loss of performance. 

The proposed methodology pursues a Model and Simulation-based approach that is making inroads in 

System Engineering field unlike the document-centric approach.  

The simulator has been developed to support the engineering team with a versatile tool which can be 

used throughout the design and development process of a space system. Thanks to its modular 

architecture, the simulator shows a good flexibility with respect to different project phases and types 

of missions/systems. Simulation virtual models may be uploaded in the simulator according to the 

specific design stage: models with different levels of detail and complexity are available and new 

models can be implemented and integrated in the simulator in the future. Software and hardware 

interfaces have been developed in order to cover the most common application cases (e.g. (un)named 

pipes, serial, USB, LAN). Power and telecommunication Ground Support Equipment has been 

designed and built (according to the limited budget), mainly to support the case study but it can easily 

be re-use in future programs. In fact, another advantage of the methodology is the possibility of re-

using models, tools and items both from a certain phase of the product life cycle to the next ones and 

from past programs to future ones. 

The type of mission of interest can also be chosen by setting the simulator in terms of specific mission 

parameters and systems involved in the simulation session.  

Another key feature of the simulator is the use of freeware. Python has been used to manage the 

software and firmware of StarSim: the user interface, the simulation architecture construction, the 

databases and data repository handling. C/C++ is the language in which any virtual model is written, 

and, above all, the langiage in which the simulation code and the on board software are generated.  

Well known commercial products have been only used to “validate” the HIL simulations results 

wherever possible.  

StarSim has been used for the verification of the functional and operational requirements of the e-st@r 

CubeSats. A great number of simulation sessions have been performed in different “in-the-loop” 

configurations (AIL, SIL, CIL HIL and Hybrid among the previous). At the end of the verification 

campaign, the CubeSat has proven to be compliant with the required functions and to operate as 

expected. 

A large number of requirements have been verified within a single simulation session, thus saving 

resources in terms of time for test set-up and running, man-hours and costs, if compared to other 

testing techniques. Moreover, the test has allowed following out the behaviour of the equipment 

included in the simulation loop. For example, the actual power consumption of each piece of hardware 

has been measured and used to refine the power budget. AIL, SIL and CIL simulation have concurred 

to design and verify step-by-step the determination and control algorithms, software and, finally, the 

hardware (microcontroller, sensors, actuators and other items and devices).  

The HIL testing results have been compared with AIL and SIL simulations to “validate” the 

methodology and the facility. These comparisons have shown a good correlation between the different 

simulations, even if some differences have been noticed. For example, using the HIL facility has 

helped to identify unexpected interactions between different devices during the integration of the 

CubeSat. The design has been reviewed or some requirements have been negotiated to eliminate these 

potential failure causes, thanks to the information provided by the HIL simulations.  
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The first release of the simulator (with the related specifications and the first validation through a case 

study) is the final target of this thesis that has been successfully met. In fact, StarSim 1.0 has been 

completed from the design point of view and the simulator software version 1.x can be delivered. 

The present thesis lays the groundwork for future works. At the moment, simple designs can be 

investigated through this platform, but the patform can be extended for testing more complex missions 

without re-designing the simulator’s architecture.  

Some improvements can enhance the simulator performance and accuracy; general suggestions may 

be provided according to the PhD activities experience, the state of the art and the ESA indications:  

1. to make the highest number of functions within the methodology process automatic: i.e. the 

capability to acquire data directly from the design outputs and the verification of requirements; 

2. to update databases: virtual models and interfaces are now sufficiently rich to perform an entire 

simulation campaign for a CubeSat and they are already outfitted for the feasibility and first 

design steps simulation of RV spacecraft and launch vehicles; most common interfaces are 

already implemented in the simulator, but other protocols could be easily included, e.g. the 

integration of the CAN bus interface; 

3. to improve the ground support equipment, in order to reproduce the attitude dynamics and 

relative linear motion between two objects: i.e. the addition of a robotic arm will improve 

attitude simulation capability; 

4. to upgrade the simulator for the design and verification of the GNC system for other missions, 

spacecraft and onboard subsystems: in fact, StarSim may be tailored for different applications 

without major changes and, in principle, it can handle simulation of several kinds of space 

missions and systems. 

In conclusion, it has been proven that the methodology is effective and a modular and flexible 

simulator (StarSim v1.x) can support the design and verification process for GNC systems of space 

vehicle through the application of the methodology. Moreover it has been demonstrated that 

improving the design verification activity is a key factor for the development of innovative missions, 

as the CubeSat missions, and leads to higher confidence in the success of a space mission.  
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Appendix A: Reference Frames 
The GNC needs the definition of unambiguous reference frames attitude measurements, guidance and 

control as well as for orbit navigation. Reference frames can be inertial or not inertial and they can be 

associated to sensor s or actuators for attitude measurement and control or they refer to a guidance 

target. For a detailed discussion on reference frames, the ECSS-E-ST-10-09 is the reference taken into 

account in the development of this thesis. 

It is possible to identify different types of coordinate systems based on the number and type of the 

coordinates. The most common three-dimensional coordinate systems are: 

Cartesian: also called rectangular, it is formed by three perpendicular lines whose intersection 

identifies the origin. Each of the three lines, normally indicated as X, Y and Z, has an associated unit 

and direction. The generic coordinates of a point in the space are indicated with the letters x, y and z 

and the three coordinates are written with the symbol (x,y,z). 

Cylindrical: in this reference system the coordinates are ρ , ϕ and z. Considering a generic point P, 

and its projection Q on the X-Y plane, the coordinate z indicates the distance PQ is the distance from 

the origin and the point Q, while ϕ is the angle between the vector ρ and the X axis. 

Spherical: it is based on the coordinates ρ, θ and ϕ. Considering a generic point P, and its projection Q 

on the X-Y plane, the coordinate ρ indicates the distance of P from the origin, θ is the angle between 

the vector ρ and the Z axis and, calling ρ’  the vector that connect the origin and the point Q, ϕ is the 

angle that this vector form with the X axis. 

It is possible to describe the same point in more than on coordinate system, so a set of transformations 

exist in order to be able to change from a coordinate system to another. Now the different frames used 

in this report are defined. 

Inertial Reference Frames 

An Inertial reference frame is a coordinate system in which is verified Newton’s first law: with an 

acceptable approximation the so called fixed star reference frame is considered inertial and it includes 

the Sun, the stars and every other body with a uniform rectilinear motion as regards to it (not 

accelerating or rotating). 

Earth-Centered Inertial (ECI) frame 

Considering the Earth as third body, the reference frame obtained cannot be considered as a real 

Inertial Reference Frame because of Earth’s revolution and rotation movements. In particular, the 

rotary motion submits the objects on the surface of the Earth far from the poles to a little centrifugal 

force. However this acceleration can be neglected in some cases and the Earth considered, with a good 

approximation, as an inertial reference frame (called ECI). The ECI frame is an inertial frame used for 

navigation. It is fixed in space and its origin is located at the center of the Earth with the Z-axis 

pointing towards the North Pole. The X-axis points towards vernal equinox, the point where the plane 

of the Earth’s orbit around the Sun crosses the Equator going from south to north, and the Y-axis 

completes the right hand Cartesian coordinate system. All the different motions of the satellite could 

be presented in this frame, but only the velocity of the Orbit frame and the motion of the Sun are 

directly compared to this frame. The frame is denoted I. 

The rotary motion, present in reality, brings objects far from the equator to the so called Coriolis force 

that causes a deviation of the motion of every object towards right in the north hemisphere and 

towards left in the south hemisphere, as demonstrated by the well known Foucault pendulum. For 

every object orbiting the Earth it is possible to define an inertial reference frame based on the ECEF 

reference frame with the following rotation matrix: 
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Where α is the angle given by ωet, with ωe the Earth rotational speed and t the time and β is the angle 

given by the following equation: 
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Non-Inertial Reference Frames 

A Non-Inertial reference frame is a coordinate system in which the description of the dynamic of 

objects does not verify the principle of inertia. It is a system in which an object subject to a resultant of 

forces equal to zero however has a non-uniform motion. All and only the reference frames that move 

of accelerated motion in reference to the fixed star reference frame have this property and can be 

defined as Non-Inertial. 

Earth-Centered Earth-Fixed (ECEF) frame 

The ECEF reference frame has its origin located in the center of the Earth but the X and Y axes rotate 

with the Earth relative to the ECI frame. This rotation is around the Z-axis, both of the ECI and the 

ECEF frame, and has a rate of 
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The Z-axis points towards the North Pole, X-axis points toward the intersection between the 

Greenwich meridian and the Equator, which is at 0° longitude and 0° latitude, and the Y-axis 

completes the right handed orthogonal system. The frame is denoted E. 

North-East-Down (NED) frame 

The North-East-Down reference frame is one of the Geodetic coordinate systems. It is a local 

reference frame and it depends on the position on the Earth. The X-Y plane coincides with the local 

horizon and it has unit vectors pointing the local North and East; the Z axis completes the right-handed 

triad pointing toward the center of the Earth (Down). Thanks to this property the NED reference frame 

is one of the most utilized for Earth surface studies. The frame is denoted N. 

It is possible to define a rotation matrix in order to pass from the ECEF to the NED reference frame 

as: 
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Orbital frame 

The origin of this frame coincides with the center of mass of the satellite. It rotates relative to the ECI 

frame, with a rate of ωo depending on the altitude of the orbit. 
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The X-Z plane is the orbital plane with unit vectors pointing one in the direction of the orbital velocity 

of the satellite and the other as the local vertical, while the Y-axis is orthogonal to this plane and 

complete the right-handed triad. The frame is denoted O. 

It is possible to convert the coordinates of a point from the Orbital to the Inertial reference frame with 

the following rotation matrix: 
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with c and s compact notations for cos and sin. The other variables here used are defined in the 

Appendix B, in which is treated the description of the orbit. 

 
ECEF 

 
NED 

 
Orbital Frame 

Figure 181: Reference frames 

Body frame 

The body frame is fixed to the satellite and for practical reasons the origin is placed at the satellite’s 

center of mass. The axes are locked in the satellite, X-axis is forward, Z-axis is downwards and the Y-

axis completes the right-hand orthogonal system. This frame is denoted B.  

In order to transform a set of coordinates from the Body to the Orbital reference frame, or vice versa, 

the introduction of a rotation system is needed. The classical rotations used to describe these 

transformations are based on the use of the quaternion or the Euler Angles, both described in 

Appendix C. 

Sensor frame 

These coordinate frames are used to describe translations and rotations of the spacecraft w.r.t. location 

and direction of equipment, such as sensors, thrusters or mechanism. 

The origin is in a particular point on the spacecraft, e.g. the point defining the origin of the spacecraft 

coordinate system, the centre of the docking port, defining the docking frame, the centre of a sensor, 

defining the measurement frame. 

The axes are coordinate-aligned with, or under a fixed angle to, the body frame. 

The transformation from the spacecraft attitude frame to one of the geometric frames is a parallel shift 

in x, y, z from the centre of mass of the spacecraft and a fixed rotation φx, φy, φz around the origin of 

the frame. It requires, therefore, the knowledge of the instantaneous position of the CoM of the 

spacecraft.  
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Appendix B: Attitude representation 
There are some different ways to represent the attitude of the satellite in a reference frame. These, 

along with tools to convert between the frames, are described here. 

Euler Angles 

The Euler Angles can be used to describe the angular position of a Body reference frame XYZ, with a 

set of rotations, relative to another reference frame xyz considered fixed. Here only rotations are 

considered, so the two reference frame are taken so that the origin is the same for both of them. If the 

x-y and X-Y planes do not coincide, a line of intersection will exist and it is called line of nodes (N). If 

they coincide then the line of nodes is taken coincident with the X axis. The Euler Angles are: 

 α is the angle between the line of nodes and the x-axis, it is called precession; 

 β is the angle between the z-axis and the Z-axis , it is called nutation; 

 γ is the angle between the line of nodes and the X-axis, it is the intrinsic rotation. 

The Euler Angles allow a representation of the rotation matrix in a easy form obtained with a 

multiplication of three rotation matrices. In other words the complete rotation described above can be 

done in three distinct passages: 

 rotation around the z-axis of an angle α, to obtain the x-axis coinciding with the line of nodes 

N: 
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 rotation around the line of nodes N of an angle β: 
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 rotation around the Z-axis of an angle γ: 
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The sequence described above is only one of the twelve possible sequences describing same rotation. 
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It is called ZXZ from the axes around which the rotations take place. The other possibilities are XZX, 

XYX, YXY, YZY, ZYZ, XZY, XYZ, YXZ, YZX, ZYX and ZXY. These sequences are obtained from 

all the possible permutations of not consecutive equal axes. 
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Figure 182: Euler angles representation 

Quaternion 

The main reason for using unit quaternion instead of Euler parameters is to avoid singularity which 

can occur when using Euler angles. In math quaternion are a numerical system used in order to extend 

the complex numbers. They were introduced for the first time by Sir William Rowan Hamilton in 

1843 and successively applied to mechanics in three-dimensional spaces. One of the principal 

properties of quaternion is the fact that the product of two quaternion is not cumulative, which means 

that the product depends on the order of its terms. Hamilton defined a quaternion as the quotient of 

two vectors, but they can be also represented as sum of a scalar number and a vector. Quaternion are 

used vastly by theoretical and applied math, specially for rotations in the three-dimensional space. A 

generic quaternion can be written as: 

kdjcibakqjqiqqq ˆˆˆˆˆˆ
3210 


 

with a, b, c and d real numbers.  

Quaternion contains naturally real numbers if b = c = d = 0 (q = a) and complex numbers if c = d = 0 (q 

= a + bˆi). 

From the Euler theorem, that guarantees the possibility to rotate a fixed reference frame on another 

arbitrary reference frame with a simple rotation around an axis a  (also called Euler rotation axis) fixed 

in both reference frames, it is possible to adopt quaternion to define any change of reference system in 

the three-dimensional space. 

Thanks to their properties it is possible to represent uniquely any rotation without having degenerating 

points, that are points in which at least a parameter lose its meaning. The rotation of an angle α around 

a generic axis u can be described introducing the Euler parameters and obtaining the quaternion: 
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or in matrix form: 
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Using quaternion above introduced, it is possible to define rotation matrix as: 
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where S(q) is the skew-symmetric matrix, that is: 
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The last two equations allow to write rotation matrix from body to orbital frame as: 
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so a representation of the rotation matrix from Orbital to Body frame can be calculated as follow: 
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This rotation matrix can also be written as: 
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Appendix C: In orbit disturbances that affect the GNC 

operations 
The space environment strongly affects the GNC project and imposes constraints on what type of 

control methods are more effective. An example is the EMF that is a great source of disturbance for in 

LEO objects but passive permanent magnets or magnetic actuators take advantage from EMF to 

control attitude. Another example is the Earth’s gravity field that attracts on objects in the Earth 

center: it causes the deorbiting and, in general, disadvantages the attitude control of flattened 

spacecraft but it results very useful when Earth pointing is a mission requirement. 

In literature, GNC sections list, explain, and model the space phenomena that affect the spacecraft 

dynamics and kinematics both linear and rotational: the main four source of disturbance are:  

 EMF: it is generated by the core of the Earth that interacts with the magnetic moment caused 

by electronic devices on borad. In fact, a electronics circuit can be approximated as a coil in 

which flowing current generating a dipole moment perpendicular to the plane of the circuit. 

 Atmospheric drag 

 Gravity: in the essential uniform gravity , the difference between center of mass and center of 

gravity is indistinguishable, but in free fall of a space orbit gravity gradient torque are caused 

when a spacecraft center of gravity is not aligned with the center of mass wrt the local vertical. 

The gravity gradient torque increases with the angle between the local vertical and the 

spacecraft’s principal axis, always trying to align the minimum  principal axis with the local 

vertical. 

 Solar radiation pressure  

Other kinds of disturbance should be considered even if they do not directly hit the dynamics aspects. 

This is the case of the radiations that can interact with electronics devices and sensors provoking them 

transient or permanent misbehaviors. E.g. CCDs camera have bad behavior within the Van Allen belts 

and APSs (Active Pixel Sensor) are more robust; the Sun radiation is very useful for sun sensor 

measurements but, like the Moon, it avoids the star sensors measurements. In general, thermo vacuum 

environment can degrade the electronic devices performance: outgassing phenomenon can waste lens 

of earth or star sensors; Occasionally, what is normally neglected becomes strangely large, for this 

reason the GNC design shall be sufficiently robust to reject the undesirable behaviors due to 

disturbances. 

Sometimes literature forgets internal disturbances, where internal means caused by the internal 

phenomena. It is possible to categorize them from their causes: 

 Fuel sloshing that change the spacecraft mass properties, in particular the inertia  

 Rotating mechanisms that cause undesired torques 

 Electronics devices that provoke magnetic dipole generating, together the EMF, a residual 

magnetic torque 

 Dynamics of flexible body and deployment of antennas and solar arrays that changes the 

spacecraft mass properties and causes forces and torques  

 Thruster misalignment and mismatch of thruster outputs 

Internal disturbances often become comparable with the external ones for intensity and influences the 

control design. For this reason, they should be modelled using verified parameters (e.g. manufacturer 

data) or parameters identified by dedicated tests. Worst case parameters can be used to avoid tests 

provided that robustness is demonstrated w.r.t these parameters. 
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Appendix D: Control techniques 

PID (Proportional Integrative Derivative) Control 

PID: is the most simple and widely used controller Table 39 lists the different combination of the 

proportional, integrative and derivative actions. Note that u(t) is the control variable and e(t) the error 

signal. 
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Table 39: PID 

Optimal Control 

Optimal control deals with the solution of one of the most celebrated problems of modern control 

theory. This problem is defined as the determination of the best possible control strategy (usually of 

the optimum control vector u(t)), which minimizes a certain cost function or performance index. 

Starting from the linear systems state space equations, the objective of the optimal control problem is 

to determine a control vector u(t) which will ‘‘force’’ the behavior of the system under control to 

minimize some type of cost function, while at the same time satisfying the physical constraints of the 

system. 

Cost functions can be for : 

 the minimum time control: 
0

0

ttdtJ

t

t

   

 the terminal control: )]()([)]()([ fdf

T

fdf txtxStxtxJ  , where xd is the final 

desired value and S is a real, symmetric, positive semi-definite weighting matrix. 

 The minimum control effort: 
t

t
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 The optimal control servomechanism or tracking: 
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real symmetric, positive semi-definite, weighting matrix. 

 The optimal regulator:  
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where S,Q(t),R(t) are weighting matrices. 
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LQR 

From a mathematical point of view. The optimal regulator problem may be formulated as follows. 

Consider the linear, time-varying system described in state space by the vector differential equation: 

)()()()()( tutBtxtAtx   and 00 )( xtx   

Find a control signal u(t) which minimizes the cost function: 
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This criterion is a sum of inner products of the vectors x(t) and u(t), and for this reason it is called the 

quadratic cost function. The matrices S, Q(t), and R(t) are weighting matrices and are chosen to be 

symmetric. Here, we stress again that the main reason for including the energy-like quadratic terms 

)]()[()]([ txtQtx T
 and )]()[()]([ tutRtu T

in the cost function J is to minimize the dissipated energy in 

the system and the required input energy (control effort), respectively. The quadratic term 

)()( ff

T tSxtx is included in J to force the final value x(tf) of x(t) to be as close as possible to the 

equilibrium point of the system. Note that x(tf) is unspecified. The minimization of the cost function J 

will be done using the method of maximum principle. Defining the Hamiltonian: 
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where λ(t) is the vector of Lagrange multipliers. Now, it is possible to define a cost function J’: 
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maximum or minimum is that the derivate of J’ is equal to 0. Consequently, x and u vectors have to 

satisfy the equation δJ’=0, in which the following relations should hold: 
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The first three conditions represents the boundary conditions of the problem, that solved with respect 

to u(t) carries out to: 

)()()()( 1 ttBtRtu T   

The last equation can be expressed as a linear state feedback law, resulting: )()()( ttKtu  . 

Moreover, assuming that the vector of Lagrange multipliers (called costate) is linear and, through 

skipped mathematical operations, the Riccati equation is obtained: 

)()()()()()()()()()()( 1 tQtPtBtRtBtPtPtAtAtPtP TT    

where Q(t) is a symmetric matrix and P is an unknown matrix. Solving this equation the K(t) is 

determined )()()()( 1 tPtBtRtK T .  

Figure 183 shows the block diagram of the linear optimal regulator 
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Figure 183: Block diagram of the optimal linear regulator, using Riccati equation 

Hinfinity control 

The Hinfinity control is the most common robust common among a wide number of possibilities. The 

robust control problem is to find a control law which maintains system response and error signals 

within prescribed performances despite the effects of the uncertainty on the system. Forms of 

uncertainties, as already presented in the Chapter 2 of this thesis, include: 

 Measurements noise 

 Disturbance effects on the plant 

 Modeling error due to non-linearity 

 Modeling error due to time-varying parameters 

It has been demonstrated that non linear functions can be linearized for small perturbation about an 

operating point. It is therefore possible to describe a non linear system by a series of linear models 

each constructed about a known operating point. If the operating point can be linked to a 

measurement, yhem a simple robust system may be constructed using a LQG approach. The feedback 

and Kalman gain matrices are calculated in advance for each operating point and some form of 

interpolation used to provide a “Gain Scheduling Controller”. 

In general, however, robust control system design uses an idealized or nominal model of the plant. 

Uncertainty in the nominal model is taken into account by considering a family of models that include 

all possible variations. As seen, a system is robustly stable if the controller can be found that will 

stabilize all plants within the family that are on the verge of instability. A controller is said to have 

robust performance if all the plants within the family meet a given performance specification. 

With Hinf-optimal conteol the inputs are aassumed to belong to a set of norm-bounded functions with 

weight. Each input in the set will result in a corrsponding error. The Hinf-optimal controller is 

designed to minimize the worst error that can arise from any input in the set, and can be expressed as 



282 

 

)()(supmin)(min sWsSte





 

where sup is a short for supremum, which means the final result is the least upper bound. Thus the 

Hinfintiy optimal controller minimizes the maximum magnitude of the weighted sensitivity function 

aver the frequency range ω or, in the matemathical terms, minimizes the ∞-norm of the weighted 

sensitivity function. 

Adaptive Control (main concepts) 

An adaptive control system is a system which adjusts automatically on-line the parameters of its 

controller, so as to maintain a satisfactory level of performance when the parameters of the system 

under control are unknown and/or time varying. 

Generally speaking, the performance of a system is affected either by external perturbations or by 

parameter variations. Closed-loop systems involving feedback (top portion of Figure 184), are used to 

cope with external perturbations. In this case, the measured value of the output y(kT) is compared 

with the desired value of the reference signal r(kT). The difference eðkTÞ between the two signals is 

applied to the controller, which in turn provides the appropriate control action u(kT) to the plant or 

system under control. A somewhat similar approach can be used when parametric uncertainties 

(unknown parameters) appear in the system model of Figure 184. In this case the controller involves 

adjustable parameters. A performance index is defined, reflecting the actual performance of the 

system. This index is then measured and compared with a desired performance index and the error 

between the two performance indices activates the controller adaptation mechanism. This mechanism 

is suitably designed so as to adjust the parameters of the controller (or modify the input signals in a 

more general case), so that the error between the two performance indices lies within acceptable 

bounds.  

 
Figure 184: Adaptive Control Structure 

Closer examination of Figure 184 reveals that two closed loops are involved: the ‘‘inner’’ feedback 

closed loop, whose controller involves adjustable parameters (upper portion of the figure); the 

supplementary ‘‘outer’’ feedback closed loop (or adaptation loop), which involves the performance 
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indices and the adaptation mechanism (lower portion of the figure). The role of the adaptation loop is 

to find appropriate estimates for the adjustable controller parameters at each sampling instant. 

It should be mentioned that a general definition, on the basis of which one could characterize a system 

as being adaptive or not, is still missing. However, it is clear that constant feedback systems are not 

adaptive systems. The existence of a feedback loop involving the performance index of the closed-

loop system is a safe rule for characterizing a system as adaptive or not. 

An adaptive control system is inherently nonlinear, since the controller parameters are nonlinear 

functions of the measured signals through the adaptation mechanism. This is true even for the control 

of linear systems with unknown parameters, a fact which makes the analysis of adaptive systems very 

difficult. This analysis involves the stability characteristics of the closed-loop system, the satisfaction 

of the performance requirements, and the convergence of the parameter estimates. Adaptive control 

has been under investigation for many years. Major breakthroughs in the area have been reported in 

the last two decades. Adaptive control schemes have been applied in the paper industries, rolling mills, 

power plants, motor drives, chemical reactors, cement mills, autopilots for aircrafts, missiles and 

ships, etc. Microprocessor advances have made it quite easy to implement adaptive controllers and at 

low cost. The use of adaptive controllers may lead to improvement of product quality, increase in 

production rates, fault detection, and energy saving. 

The two basic techniques to control discrete-time systems with unknown parameters are the model 

reference adaptive control (MRAC) scheme and selftuning regulators (STRs).  

In MRAC, a reference model is used explicitly in the control scheme and sets the desired performance. 

Then, an appropriate on-line adaptation mechanism is designed to adjust the controller parameters at 

each step, so that the output of the system converges to the output of the reference model 

asymptotically, while simultaneously the stability of the closed-loop system is secured. In STRs, the 

control design and the adaptation procedure are separate. Different parameter estimators can be 

combined with appropriate control schemes to yield a variety of STRs. 

Model reference adaptive controllers can be either direct or indirect. The essential difference between 

them is that in direct MRAC the controller parameters are directly adjusted by the adaptation 

mechanism, while in indirect MRAC the adjustment of the controller parameters is made in two steps. 

In the first step, the control law is reparametrized so that the plant parameters appear explicitly in the 

control law. A relation between the controller parameters and the plant parameters is thus established. 

The plant parameters are adjusted by the adaptation mechanism. In the second step, the controller 

parameters are calculated from the estimates of the plant parameters.  

STRs can be either explicit or implicit. In explicit STRs an estimate of the explicit plant-model 

parameters is obtained. The explicit plant model is the actual plant model. In implicit STRs the 

parameters of an implicit model are estimated. The implicit model is a reparametrization of the 

explicit plant model. The parameters of the implicit model and those of the controller are the same; 

therefore, we call the plant parameters explicit or indirect and the controller parameters implicit or 

direct. 

Though of different nature and origin, a close relation between MRAC systems and STRS has been 

established. It is clear that explicit self-tuners correspond to indirect MRAC schemes, while implicit 

self-tuners correspond to direct MRAC schemes.  

Another approach to discrete-time MRAC is that of using Lyapunov functions to prove asymptotic 

stability and the satisfaction of performance requirements. An expression for the error between the 

output of the reference model and that of the plant is formed and then the adaptation mechanism is 

chosen in order to make the increments of a Lyapunov candidate function negative. 

The difficulty of finding an appropriate Lyapunov candidate function in the general discrete-time case 

restricts the use of this method. The hyperstability approach is preferable for discrete-time MRAC 

systems, while for continuous- time systems the Lyapunov design has mainly been used. 
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A first approach to MRAC was based on the gradient method. The parameter adaptation scheme 

obtained for synthesizing the adaptive loop was heuristically developed, initially for continuous-time 

systems and is known as the MIT rule. 

Neural network control 

The human brain is comprised of many millions of interconnected units called neurons. Each neuron 

consists of a cell to which is attached several dendrietes (inputs) and single axon (output). The axon 

connects to many other neuron via connection points called synapses. A synapses produces a chemical 

reaction in response to an input. The biological neuron fires if the sum of the synaptic reactions is 

sufficiently large. The brain is a complex network of sensory and motor neurons that provide a human 

being with the capacity to remember thinks, learn and reason.  

 
Figure 185: Basic model of a single neuron 

An Artificial Neural Network try to emulate that. Along the years a great number of studies were 

dedicated to neural network. Artificial NN have the following potential advantages for intelligent 

control: 

 They learn from experience rather than by programming 

 They have the ability to generalize from given training data to unseen data 

 They are fast and can be implemented in real time 

The basic model of the single artificial neuron consists of a weighted summer and an activation 

function. Figure 185 shows a neuron in the j-th layer where: 

X1....Xn are inputs 

Wj1...WjN are weights 

bj is a bias  

fj is the activation function 

yj is the output 

The weighted sum sj is therefore: 
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The activation function f(s) can take many forms, some of which in the Figure 186. 
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Figure 186: activation functions 

From Figure 186 it can be seen that the bias bj in the previous equation will move the curve along the 

s-axis i.e. effectively settings the threshold at which the neuron fires. 

So in the case of hard-limiting function, if bj=0, the neuron will fire when sj(t) changes from negative 

to positive. 

The sigmoid activation function is popular for neural network applications since it is differentiable and 

monostatic, both of which are a requirement for the back-porpoagation algorithm.  

Different architecture of NN has been invented and studied: 

 Multilayer Perpectrons (MLP) NN 

 Radial Basis Function (RBF) NN 

 Fuzzy Basis Function (FBF) NN 

 Sigma-Pi (SP) NN 

 Supervised Growing (SG) NN 

 Recurrent NN 

A fundamental importance is covered by the learning in NN: learning in the context of a n eural 

network is the process of adjusting the wrights and biases in such a manner that for given inputs, the 

correct responses, or outputs are achieved. Learning algorithms can be divided in: 

Supervised learning: the network is presented with training data that represents the ranhe in input 

possibilities, together with the associated desired outputs. The weights are adjusted until the error 

between the actual and desired outputs meets some given minimum value. 

Unsupervised learning. Also called open-loop adaption because the technique does not use feedback 

information to update the network’s parameters. Applications for unsupervised learning include the 

KSOM (Kohonen Self-Organizing Map) which is a competitive network, and Grossberg Adaptive 

Resonance Theory (ART) which can be used for on-line learning. 
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Appendix E: RD129- ARM9 processor 
The CPU board adopted for 3STAR is the RD129 - ARM9 Embedded CPU (see Figure 187) produced 

by ELPA: it is an ARM9 CPU, designed to give good performance at a very low price for this kind of 

item; the same company produces also a development board (RD126,Figure 188: RD126 development 

board for RD129) for this CPU that gives the possibility to make all operations more convenient, 

providing many inputs for various devices. Features of this CPU are: 

Technical features: 
 32-bits ARM 9 CPU, clocked at 240MHz; 

 32MB of SDRAM (64MB optional) at 120MHz (32-bits interfaced); 

 64MB of on board Flash memory; 

 3 Serial interfaces; 

 2 USB host interfaces (1 switchable to USB device); 

 10-bits ADC converter; 

 IIC bus interface; 

 4 internal PWM timers; 

 Watchdog timer; 

Dimensions: very small sizes, 45x40x8 mm; 

Power: 0.5W typical, 1W max; only a single 3.3Vdc 5% is required; 

Operating temperature range: from -25°C to +85°C; 

Development board features: 
 3.3V switching power supply; 

 level translator for 2 RS232 serial interfaces; 

 USB to Ethernet converter; 

 USB Host connector; 

 MMC or SD flash memory card connector; 

 IIC bus EEPROM; 

 

Figure 187: RD129 microprocessor 
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Figure 188: RD126 development board for RD129 
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Appendix F: StarSim Core features 
The StarSim Core is based on a Work Station with the following characteristics: 

 

Processor: Intel Xeon E5-2620 

MotherBoard: Asus P9 X79 ws 

RAM: 16GB DDR3 ECC 

HardDisk: Toshiba 1TB 7200rpm x2 

SSD: Samsung SSD Pro 128GB 

Professional graphic card: Nvidia Quadro 4000 

I/O ports: 

12 USB ports (2x 3.0) 

2 serial ports  

2 ethernet ports 

DVD burner 

Operating System: Linux Real Time 
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Riassunto 
Negli ultimi decenni, la complessità dei sistemi è aumentata in modo considerevole. Sono aumentati 

esponenzialmente sia il numero di funzioni che possono essere eseguite da un singolo sistema, grazie 

al enorme balzo tecnogico, sia la quantità di relazioni tra funzioni e hardware nonché le interazioni di 

elementi e discipline che concorrono alla definizione del sistema stesso. La crescente complessità 

sottolinea l'importanza di definire metodi e strumenti che migliorino la progettazione, la verifica e la 

validazione del sistema: efficienza e riduzione dei costi senza la perdita di affidabilità e di confidenza 

nel prodotto finale sono gli obiettivi da perseguire. 

Nel campo del System Engineering, il moderno approccio Model and Simulation-based sembra 

rappresentare una strategia promettente per il raggiungimento degli obiettivi , perché è in grado di 

permettere la riduzione delle risorse sprecate rispetto ai metodi tradizionali, oltre che il risparmio di 

denaro e di tempo nell’esecuzione di lavori lunghi e noiosi. Il Model Based System Engineering 

(MBSE) è una disciplina che sta prendendo piede nel campo dell’ingegneria perché rende possibile in 

qualsiasi momento (concordemente con la fase del progetto in corso) la fattibilità , le capacità e le 

prestazioni del sistema attraverso la simulazione. La simulazione viene utilizzata lungo l’intero ciclo 

di vita del prodotto e può svariare da sessioni di simulazioni puramente numeriche (in cui il 

comportamento del sistema e delle condizioni ambientali e di funzionamento è completamente 

riprodotto da modelli virtuali) a simulazione con il software e l’hardware di bordo completamente 

integrati nelle reali condizioni ambientali. All’interno di questo range, è quindi possibile definire 

differenti stadi di simulazione intermedi: algorithm in the loop (AIL), software in the loop (SIL), 

controller in the loop (CIL), hardware in the loop (HIL), ed ulteriori configurazioni ibride tra queste. 

L'attività di ricerca di questa tesi intende definire e validare una metodologia iterativa (basata appunto 

su modelli e simulazioni) in grado di fornire supporto al team di ingegneria con l’ambizione di 

migliorare l'efficacia del progetto e della verifica di un sistema spaziale, con un particolare interesse 

verso il sottosistema di Guida Navigazione e Controllo (GNC). La scelta di concentrarsi sul GNC 

deriva dagli interessi comuni e dal background dei gruppi coinvolti in questo programma di ricerca: 

ASSET (AeroSpace System Enginering Team) del Politecnico di Torino e AvioSpace s.r.l., una 

società del gruppo EADS. Il sistema di GNC è sufficientemente complesso (e richiede sia conoscenze 

specialistiche sia competenze tipiche dell’ingegnere di sistema), di vitale importanza per qualsiasi 

veicolo spaziale e, soprattutto, la verifica del suo funzionamento risulta molto difficile a terra, a causa 

delle notevoli limitazioni sulla capacità di riprodurre contemporaneamente e per lunghi periodi la 

dinamica di un veicolo orbitante ed i fenomeni dell’ambiente operativo in orbita. 

Considerando che il processo di verifica deve esser eseguito lungo l'intero ciclo di vita del prodotto, è 

fondamentale avere a disposizione uno strumento, individuato in un simulatore, che permetta il 

progetto e la verifica attraverso la simulazione, indipendentemente dal grado di complessità 

dell’oggetto, del test da performare e della fase progettuale in corso. Buona parte del lavoro di tesi è 

incentrata sulla progettazione del simulatore, chiamato StarSim, che rappresenta il vero cuore pulsante 

della metodologia proposta. StarSim è stato interamente progettato e sviluppato all’interno di questo 

lavoro: dalla definizione dei requisiti all’integrazione hardware e implementazione software, fino 

all’assemblaggio e integrazione delle varie parti e alla verifica e validazione che ha portato al 

completamento della prima versione. StarSim è una piattaforma stand-alone al fine di ridurre i rischi 

di incompatibilità e perdita di informazioni che possono insorgere utilizzando diversi software e/o 

strumenti durante le diverse fasi del ciclo di vita, e in particolare nel passaggio da una fase alla 

successiva. Modularità, flessibilità, velocità, connettività, funzionamento in tempo reale, facilità di 

gestione dati, efficacia e congruenza degli output rispetto agli input sono le caratteristiche ricercate 

nella progettazione di StarSim. Ad ogni iterazione della metodologia, StarSim garantisce la possibilità 

di verificare il comportamento del sistema da testare grazie alla disponibilità di modelli virtuali, che 
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sostituiscono tutti quegli elementi non ancora disponibili, oltre che tutte le dinamiche e le condizioni 

ambientali non riproducibili. Per favorire il proprio impiego, StarSim fornisce un database fornito e 

“user-friendly” di modelli e interfacce, in grado di coprire diversi livelli di dettaglio e fedeltà; inoltre 

viene supportata la possibilità di aggiornamento del database, in modo tale da consentire all'utente la 

possibilità di creare modelli personalizzati (rispettando poche e semplici regole di base). 

Progressivamente, parti del software e dell’hardware di bordo possono (e devono) essere introdotti, 

senza che tuttavia sia mai necessario interrompere il processo di progettazione e verifica, evitando 

ritardi e dispendio inutile di risorse. 

StarSim è stato usato per la prima volta all’interno del programma e-st@r: si tratta di un progetto 

educativo mirato alla realizzazione di satelliti appartenenti allo standard CubeSat che coinvolge gli 

studenti del CubeSat Team del Politecnico di Torino e i ricercatori di ASSET. In e-st@r, StarSim è 

stato principalmente impiegato per lo sviluppo del payload, cioè un sistema attivo di determinazione e 

controllo dell’assetto (A-ADCS), ma in conclusione è stato anche aggiornato ed utilizzato per valutare 

le funzionalità, i modi operativi e le prestazioni dell'intero prodotto (il CubeSat). Lungo l’intera 

attività del programma, sono state effettuate simulazioni AIL, SIL, CIL e HIL, verificando con 

successo un gran numero di requisiti funzionali e operativi. In particolare, sono stati selezionati e 

verificati gli algoritmi di determinazione dell’assetto, le leggi di controllo e le modalità di 

funzionamento dell A-ADCS; il software di bordo è stato sviluppato passo dopo passo sul simulatore e 

i file eseguibili con la versione finale, privi di bachi, sono stati caricati sul microcontroller. Tutte le 

interfacce e protocolli e la gestione dei dati e dei comandi sono stati verificati. Gli attuatori, i circuiti 

elettrici e logici sono stati progettati, costruiti e testati, ed è stata eseguita la calibrazione dei sensori e 

degli stessi attuatori. Problemi relativi alla sincronizzazione, alla gestione dei dati a bordo e 

all’esecuzione in tempo reale sono stati risolti proprio grazie alle simulazioni con StarSim. Infine sono 

state eseguite simulazioni hardware in the loop sia con il solo sottosistema A-ADCS sia con l’intero 

satellite, verificando il soddisfacimento di numerosi requisiti funzionali ed operativi dei CubeSat. 

Il caso di studio rappresenta la prima validazione della metodologia attraverso l’impiego della prima 

versione di StarSim. Sono state mostrate le peculiarità deòòa metodologia che vuole portare al 

miglioramento delle attività di progettazione e di verifica, punti nevralgici per aumentare il livello di 

confidenza nel successo di una missione spaziale. 
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