
POLITECNICO DI TORINO

SCUOLA DI DOTTORATO

Dottorato in Ingegneria Aerospaziale – XXVI ciclo

Tesi di Dottorato

Multiscale approaches for the failure
analysis of fiber-reinfoced composite

structures using the 1D CUF

Marianna Maiarù
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Summary

Composites provide significant advantages in performance, efficiency and costs; thanks to
these features, their application is increasing in many engineering fields, such as aerospace,
naval and mechanical engineering. Although the adoption of composites is rising, there
are still open issues to be investigated, in particular, understanding their failure mecha-
nism has a prominent role in enhancing component designs. Fiber reinforced composite
structures are built using laminates composed by different layers with different fiber ori-
entations; for this reason their behavior is characterized by different length scales in the
sub-lamina (fiber and matrix), the ply and the whole laminate characteristic dimensions.
The proper modeling of these scales and of their interactions is of primary importance to
detect reliable stress fields and to evaluate the structural integrity of a composite struc-
ture. Indeed, many micromechanical effects have to be taken into account to evaluate
the different possible failure modes. Numerous methodologies are available to compute
accurate stress/strain fields for laminated structures, multi-scale approaches are required
when micro- and macro-scales are accounted for. Despite the increasing development in
computer hardware, the computational effort of these methods is still prohibitive for ex-
tensive applications, especially when a high number of layers is considered. Then, the
reduction of the computational time and cost required to perform failure analysis is still
a challenging task.
This work proposes a novel approach for the FE analysis of fiber-reinforced composites
which is able to provide accurate stress and strain fields with very low computational
costs using 1D refined theories. The structural models are derived in the framework of the
Carrera Unified Formulation (CUF) which provides hierarchical higher-order structural
models with arbitrary expansion orders where the order of the unknown variables over the
cross-section is a free parameter of the formulation. Taylor- and Lagrange-type polynomi-
als are used to interpolate the displacement field over the element cross-section. The 1D
CUF formulation is herein exploited to develop two multi-scale approaches, respectively
a concurrent method and a hierarchical technique. The proposed novel concurrent ap-
proach is referred to as Component-Wise (CW). Within the CW approach, different scale
components (fiber, matrix, laminae and laminates) can be simultaneously modelled with
separate sets of unknown displacement variables and material characteristics. That is, in
a given model homogenized laminates or laminae can be interfaced with fiber and matrix
portions. This method permits us to tune the model capabilities by choosing in which
portion of the structure a more detailed model has to be used and setting the order of the
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structural model to be considered. In the CW approach, a single fiber/matrix cell is con-
sidered the simplest assessment for the analysis. Cells can be opportunely included in more
complex structural configurations to refine the model in order to obtain a more detailed
description of the stress/strain field. To validate this approach, different assessments and
numerical results are provided in comparison with solid models. Then, a hierarchical multi-
scale approach is proposed for the progressive failure analysis of fiber-reinforced composite
structures. In this perspective, two-scales analyses are performed where the macro-scale
and micro-scale are taken into account. The first scale, ranging in the global dimension of
the model is described as continuum through a a homogenized model. The latter, ranging
in the component dimensions (i.e. fibers, matrix portions), the heterogeneity of materials
is introduced directly modeling the fiber and matrix phases. At this level, for reducing
the computational cost of the analysis, fiber/matrix cells are modelled through the 1D
CUF. This second approach is based on the micro-mechanic assumption that in the whole
structure a repeating cell of the fiber-reinforced material can be identified, for this reason
cells are also addressed as Representative Unit Cells (RUCs) . The information are passed
through the scale through a scheme where specific boundary conditions are applied. The
multi-scale analysis leads to the prediction of the overall behaviour of the structure from
the known material properties of components. Once the stress and strain distributions
are given, failure criteria are be taken into account to perform failure analysis. Since the
micro-scale is analysed, failure parameters can be calculated directly on components and
the different behavior of fiber and matrix materials can be addressed. Integral failure
parameters can also be evaluated within the cells or in critical portion of the structure.
The hierarchical approach is also used to perform progressive failure analysis introducing
the Crack band method in a mesh objective way.
This work is organized as follows: an introduction on the state-of-the-art of composite
structures is provided in chapter 1. A brief theoretical introduction to the present 1D
Carrera Unified Formulation is given in chapter 2, then the CW approach is described in
chapter 3 where numerical examples are provided. In perspective of failure analysis the
CW is exploited for the evaluation of integral parameters as shown in chapter 4. Then, the
hierarchical two-scale analysis for the progressive failure analysis is introduced in chapter
5 where numerical examples are provided. The failure criteria and the Crack Band method
are presented in chapter 6. Main conclusions are drawn in chapter 7.
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Chapter 1

Introduction

The present chapter introduces to the motivations of this work: a brief overview on com-
posite materials and their applications in aerospace is presented in section 1.1; topics and
goals are discussed in section 1.2.

1.1 Composite applications in aerospace

The use of composite materials for aerospace applications is greatly advantageous since
composites have better specific properties than traditional metallic materials. A composite
structure, for instance, could have a ten times higher stiffness and two times lower density
than an aluminium made one. Composite material use has proven that strength, corro-
sion resistance, weight, fatigue life and durability can be significantly improved. Better
performances and an efficient reduction in weight are leading to “full composite” design
for modern aircraft.
High performance composites (i.e., first boron and then carbon fibers) started being devel-
oped in the mid-1960s and early-1970s for military applications. The earliest production
usage of high performance composites were on the empennages of the F-14 and F-15 fighter
aircraft. Boron/epoxy were used for the horizontal stabilators on both of these aircraft
and for the rudders and vertical fins on the F-15. In the mid-1970s, with the maturity
of carbon fibers, a carbon/epoxy speedbrake was implemented on the F-15. These first
applications resulted in a significant weight saving (about 20%), but they accounted for
only a small amounts of the airframe structural weight. The composite usage quickly
expanded from only 2% of the airframe on the F-15 to as much as 27% on the AV-8B
Harrier by the early-1980s, see Figs. 1.1, [1]. Significant applications included the wing
(skins and substructure), the forward fuselage and the horizontal stabilator, all fabricated
of carbon/epoxy. Similar trends have been followed for commercial aircraft, although at
a slower and more cautious pace.
Nowadays, commercial aircrafts such as the 787 by Boeing as well as the A350 by Airbus
are about 50% composite made. Airbus introduced composites primarily for horizontal
stabilizers and vertical fins on their A300 series, see Figure 1.2. Recently the A350 XWB
has successfully completed its first test flights operating with more than 53% of the overall
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1 – Introduction

(a) (b)

(c) (d)

Figure 1.1. Utilisation of composite material in military airplanes: (a) F-15 (early 1970s),
2% composites, (b) F/A-18 A/B (mid-1970s), 10% composites, (c) AV-8B Harrier (early
1980s), 27% composites, (d) F/A-18 E/F (mid-1990s), 22% composites.

airframe in composite materials, as reported in Figure 1.5. Figure 1.3 depicts how the use
of composite materials has led to a structural weight reduction of aircrafts over the last
decades. The first large scale usage of composites in commercial aircraft occurred in
1985 when the Airbus A320 first flew with composite horizontal and vertical stabilizers.
Airbus has applied composites in up to 15% of the overall airframe weight for their A320,
A330 and A340 family of aircraft. It has to be noted that, while the percentages are lower
for commercial aircraft, the part sizes are much larger in respect to military applications.
For example, the Boeing 777 horizontal stabilizer has approximately the same surface area
as a Boeing 737 wing. Composites represent about a quarter of the A380 structural weight
and more than 50% on the A350XWB. Boeing recently made major commitment in com-
posites deciding to use upwards of 50% on its 787 for both wing and fuselage structures as
shown in Fig. 1.6. Data refer to the official websites for both Airbus (www.airbus.com)
and Boeing (www.boeing.com).
There are different types of composite that are increasingly being used; the most common
are particulate, fiber reinforced and laminated materials. This work focuses on fiber rein-
forced composites where fibers are characterized by a very high length to diameter ratio.
Fibers make the structure stiffer and stronger and are bonded together by means of a ma-
trix material. Matrix materials can be polymers, metals, ceramic or carbon. Composite
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1 – Introduction

Figure 1.2. Evolution in use of composite structures in Airbus.

Figure 1.3. Composite structural weight development.

materials display different characteristics and behave differently from metallic materials.
A good introduction to the mechanics of composite materials is given by Jones [2]. For
certain applications, both macromechanics and micromechanics must be considered for the
analysis of composite structures. Micromechanics concerns the analysis of the components
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1 – Introduction

Figure 1.4. Composite Parts in the A400M.

Figure 1.5. Use of composite materials in the A350XWB airframe.

(fibers and matrix) on a microscopic scale. Macromechanics studies the structure from a
macroscopic point of view where in which the structure is considered homogeneous.
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1 – Introduction

Figure 1.6. Boeing 787 Material Distribution.
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1 – Introduction

1.2 Motivations and Topics of the Thesis

In spite of the advantages previously addressed, there are still many problems that need
to be considered when rationalizing the use of composite materials: optimization, scale
of production, non-destructive test inspection, fatigue, bolding, etc.. Among these the
analysis of the failure mechanisms of layered components is of particular interest. Failure
of laminates has, quite a different behaviour than the one of traditional metallic isotropic
and homogeneous materials. Composite laminates are non-homogeneous materials with
anisotropic behaviour; the failure can initiate at the same time in many different zones
and propagate differently. Furthermore each failure mode can influence the other to a
considerably degree. Many studies have been conducted on these topics, the most ac-
cepted result is that the failure of composites can be seen as a multi-scale phenomenon
in which the micro- and macro-scales are involved; both of them have to be considered
to determine the failure initiation and propagation. Recent studies have proposed the use
of the molecular dynamic analysis at the nano-scale, Representative Volume Elements at
the micro-scale and structural elements (solids, beams, plates, shells) at the macro-scale
to model the problem. This kind of solution is limited by prohibitive computational costs
(hundreds of million of degrees of freedom) and requires the knowledge of the material
properties at nano-, micro- and macro-scale. Failure conditions originate as microcracks, as

Multiscale Analysis

Computational Cost/Time

Figure 1.7. Motivations of the present thesis.

fiber breakage and delamination debonding and it depends on the loading configurations.
Comprehensive analyses require accurate descriptions at the different scales. However, the
accuracy of the model is limited by computational ability; time and cost of the simulations
have to be reduced in order to use multiscale approaches. A compromise between accuracy
and cost is then required as depicted in Figure 1.7. Many multiscale methods have low
reliability and necessitate the introduction of less expensive approaches. The present the-
sis is focused on the development of a multiscale structural beam model to investigate the
failure mechanisms of fiber reinforced composite materials. Beam structures are widely
used in many engineering applications. Well known examples in aerospace engineering
are aircraft wings and helicopter rotor blades and concrete beams in civil constructions.
One-dimensional models are powerful tools for structural analysis due to their simplicity
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1 – Introduction

and low computational cost compared to two- (plate/shell) and three-dimensional (solid)
models analyses. The adopted 1D models are derived through Carrera’s Unified For-
mulation (CUF). Advanced displacement-based theories can be exploited since the order
of the unknown variables over the cross-section is a free parameter of the formulation.
The kinematical field over the beam cross-sections is described by means of Taylor- or
Lagrange-like polynomials. Equivalent Single Layer (ESL) and Layer-Wise (LW) descrip-
tion can be used. The main drawbacks of the classical multi-scale models are avoided
since:

• the computational costs are very convenient; only few thousands of degrees of free-
dom (DOF) are used;

• each structural component at any scale level can be modelled by itself. That means
that, if a fiber-reinforced laminate is considered, both matrix and fibers can be
modelled with 1D elements having their own material properties. This allows:

1. accounting for non-homogeneities;

2. using proper failure criteria directly on components;

3. being able to determine the failure initiation as well as the failure type.

CUF was initially devoted to the development of refined plate and shell theories, see Car-
rera [3, 4]. Recently, it has been extended to beam modelling in Carrera and Giunta [5]
and [6]. The CUF is a hierarchical formulation that considers the order of the theory
as an input of the analysis. This particular feature allows dealing with a wide variety of
problems with no need of ad hoc formulations. Non-classical effects (e.g. warping, in-plane
deformations, shear effects, bending-torsion coupling) are accounted for by opportunely
increasing the order of the adopted model. Furthermore, since this approach is developed
in the finite element framework it is possible to deal with arbitrary geometries, boundary
conditions and loadings. Within the CUF, two classes of models are proposed, the Taylor-
expansion class (TE) and the Lagrange-expansion class (LE). TE models exploit N−order
Taylor-like polynomials to define the displacement field above the cross-section with N as
a free parameter of the formulation. Static [7, 8, 9] and free-vibration analyses [10, 11, 12]
showed the strength of CUF 1D models in dealing with arbitrary geometries, thin-walled
structures and local effects. Moreover, asymptotic-like analyses leading to reduced refined
models were carried out [13].
The LE class is based on Lagrange-like polynomials to discretize the cross-section displace-
ment field. LE models have only pure displacement variables. Static analyses on isotropic
[14] and composite structures [15] revealed the strength of LE models in dealing with
open cross-sections, arbitrary boundary conditions and obtaining Layer-Wise descriptions
of the 1D model.
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Chapter 2

Structural models

This chapter is devoted to introduce the 1D CUF. The coordinate system and the notation
to define the displacement, stress, and strain vectors used in the following chapters have
been introduced in section 2.1; the constitutive equations can be found in section 2.2. In
the present work, two main hierarchical higher-order models have been exploited on the
base of two polynomial classes: the Taylor (TE) and Lagrange (LE) polynomials. The
TE and LE formulations are explained in section 2.3. The Finite Element framework is
addressed in section 2.4 where the “Foundamental Nuclei” are obtained.

2.1 Coordinate Frame and Preliminaries

Structures which have one or more predominant dimensions compared to the others can
be analyzed efficiently using 1D- or 2D-formulations: In the finite element framework, a
1D (beam) element is a structure whose longitudinal length is predominant with respect
to the other two orthogonal dimensions; a 2D (plate/shell) element is a flat structure
which has two dimensions bigger than the third one, called thickness. The use of 1D-
and 2D-elements can be extremely advantageous in many engineering problems. Classi-
cal structural theories work well for certain class problems (slender beams, thin plates,
etc.) but more sophisticated theories are required to analyze more complex configura-
tions. When compared to 3D results, higher order models can provide accurate results
with a reduced computational cost, they can be use to overcome the limitations of clas-
sical theories and to perform analysis with a more convenient computational cost. The
CUF is a hierarchical formulation which considers the order of the theory as an input
of the analysis. This permits us to deal with a wide variety of problems with no need
of ad hoc formulations. Non-classical effects (e.g. warping, in-plane deformations, shear
effects, bending-torsion coupling) are accounted for by opportunely increasing the order
of the adopted model. The formulation is implemented within the finite element method
to deal with arbitrary geometries, boundary conditions, and loading configurations. The
displacement vector is defined as:

u(x,y,z) =
{

ux uy uz
}T

(2.1)
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2 – Structural models

where x, y, and z are orthonormal axes as shown in Figure 2.1. Stress, σ, and strain, ε,

Figure 2.1. Coordinate frame.

components are grouped as follows:

σ =
{

σxx σyy σzz σxy σxz σyz
}T

(2.2)

ε =
{

εxx εyy εzz 2εxy 2εxz 2εyz
}T

(2.3)

where the superscript T represents the transposition operator. Stress and strain compo-
nents can be split into terms related to the beam axis σn, εn and the beam cross-section
σp, εp:

σn =
{

σyy σxy σyz
}T

, εn =
{

εyy γxy γyz
}T

(2.4)

σp =
{

σxx σxz σzz
}T

, εp =
{

εxx γxz εzz
}T

(2.5)

where the engineering shear strains are introduced:

γij = 2εij i /= j (2.6)

Linear strain-displacement relations are used.

ǫ = Du = (Dy +DΩ)u (2.7)

where

D =



















∂
∂x

0 0

0 ∂
∂y

0

0 0 ∂
∂z

∂
∂y

∂
∂x

0
∂
∂z

0 ∂
∂x

0 ∂
∂z

∂
∂y



















=

















∂
∂x

0 0
0 0 0

0 0 ∂
∂z

0 ∂
∂x

0
∂
∂z

0 ∂
∂x

0 ∂
∂z

0

















+



















0 0 0

0 ∂
∂y

0

0 0 0
∂
∂y

0 0

0 0 0

0 0 ∂
∂y



















= [DΩ] + [Dy] (2.8)

9



2 – Structural models

2.2 Constitutive Equations

If the deformations remain small, linear constitutive laws, known as generalized Hook’s
law, can be exploited to obtain the stress components.

σ = Cε (2.9)

According to the notation introduced in 2.1

σp = Cppεp +Cpnεn

σn = Cnpεp +Cnnεn

(2.10)

Considering the 3D state of stress C is a 6 × 6 square matrix where the 36 coefficients
may not be all independent from each other and depend on the material constitution.
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(2.11)

In particular, when material properties depend on the direction in which they are measured
all 36 parameters are independent from each other; if in the material system can be
identified any plane of symmetry, the coefficients can be reduced. If orthotropic material
are taken into account the material system has three mutually perpendicular planes of
symmetry. In this case the coefficients can be reduced to 9 as shown in Equation 2.12
where C23 = C32, C13 = C31 and C12 = C21.































σ33
σ22
σ11
σ23
σ13
σ12




















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

=

















C33 C32 C31 0 0 0
C23 C22 C21 0 0 0
C13 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66
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(2.12)

The stiffness coefficient Cij for an orthotropic material expressed in terms of the engineer-
ing constants are also reported in [16].

C11 =
E1(1−ν23ν32)

∆ ; C12 =
E1(ν21+ν23ν31)

∆ ; C13 =
E1(ν31+ν21ν32)

∆ ;

C21 =
E2(ν12+ν13ν32)

∆ ; C22 =
E2(1−ν13ν31)

∆ ; C23 =
E2(ν32+ν12ν31)

∆ ;

C31 =
E3(ν13+ν12ν23)

∆ ; C32 =
E3(ν23+ν13ν21)

∆ ; C33 =
E3(1−ν12ν21)

∆ ;

C44 = G12 C55 = G13 C66 = G23

(2.13)
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2 – Structural models

where Ei denotes Young’s moduli in the ith-material direction, νij is the Poisson’s ratio
for transverse strain in the j − th direction when stressed in the i− th direction and

∆ = 1− ν12ν21 − ν13ν32 − ν23ν32 − ν12ν23ν31 − ν13ν21ν32 (2.14)

If an isotropic material is considered the properties don’t change depending on the direc-
tions in which they are measured and the C matrix is further reduced. Infinite planes of
symmetry can be found and there are just 3 independent coefficients as shown in 2.15

C11 = C22 = C33 = (1−ν)E
(1+ν)(1−2ν)

C44 = C55 = C66 = E
2(1+ν)

C13 = C12 = C23 = νE
(1+ν)(1−2ν)

(2.15)

where E, G = E
2(1+ν) and λ = νE

(1+ν)(1−2ν) are also called Lamé’s coefficients. The C matrix
for isotropic material is reported in equation 2.16.
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
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




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

=

















C33 C13 C13 0 0 0
C13 C33 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44
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






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(2.16)

2.2.1 Constitutive equations in the physical coordinate frame

Constitutive relations are written in the principal material coordinate frame, refered as
(1,2,3) and shown in Fig. 2.2. For composite laminate, the principal material coordinate
frame can be different for each ply depending of the laminate layup. The physical coor-
dinate system is referred to the whole structure while the material system is defined with
respect of the fiber directions for each ply. The material system for the laminate in Fig.
2.2 is defined as follow: the 2-axis is going in the fiber longitudinal direction, the 3-axis
is aligned with the fiber transversal in-plane direction T (in the plane of the lamina) and
the 1-axis is the transversal out-of-plane direction Z. Coordinate transformation equations
are employed to obtain the stress vector in physical coordinates (x,y,z). In this case, to
convert the stress and strain in the physical frame, the material axes 2 and 3 are rotated
by a positive counter clockwise angle θ about the z axis, coincident to axis 1, x- and y-axes
of the physical coordinate frame. The current state of stress and strain is then obtained
applying the transformation matrix T , to the material system coordinates:

{σ} = [T ] {σ}m {ε} = [T ] {ε}m (2.17)
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2 – Structural models

Figure 2.2. Physical (x,y,z) and material (1,2,3) reference systems.

Ply - 1 (0°)

Ply - 2 (45°)

Ply - 3 (90°)

Figure 2.3. Composite layup.

where [T ] is reported in 2.18:

[

T
]

=

















cos2θ sin2θ 0 0 0 sin2θ
sin2θ cos2θ 0 0 0 −sin2θ
0 0 1 0 0 0
0 0 0 cos θ −sinθ 0
0 0 0 sinθ cos θ 0

−cosθsinθ sinθcosθ 0 0 0 cos2θ − sin2θ

















(2.18)
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2 – Structural models

{σ} = [T ][C][T ]T {ε} (2.19)

C̃ is the transformed material stiffness matrix where the elastic coefficients are referred to
the physical coordinate system (x,y,z):

C̃ = [T ][C][T ]T (2.20)

The Hook’s law can then be written in the physical coordinate frame as follow 2.21:

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
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C̃33 C̃23 C̃13 0 0 C̃36

C̃23 C̃22 C̃12 0 0 C̃26

C̃13 C̃12 C̃11 0 0 C̃33

0 0 0 C̃44 C̃45 0

0 0 0 C̃45 C̃55 0

C̃36 C̃26 C̃16 0 0 C̃66
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
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
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
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
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












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























(2.21)

C̃33 = C33cos
4θ + 2(C23 + 2C66)sin

2θcos2θ + C22sin
4θ

C̃23 = C23(sin
4θ + cos4θ) + (C33 + C22 + 4C66)sin

2θcos2θ

C̃13 = C13cos
2θ + C12sin

2θ

C̃36 = (−C33 + C23 + 2C66)sinθcos
3θ + (C22 − C23 − 2C66)sin

3θcosθ

C̃22 = C22cos
4θ + 2(C23 + 2C66sin

2θcos2θ + C33sin
4θ

C̃12 = C12cos
2θ + C13sin

2θ

C̃26 = (−C33 + C23 + 2C66)sin
3θcosθ + (C22 − C23 − 2C66)sinθcos

3θ

C̃11 = C11

C̃16 = (C12 − C13)sinθcosθ

C̃44 = C44cos
2θ + C55sin

2θ

C̃45 = (C44 − C55)sinθcosθ

C̃55 = C55cos
2θ + C44sin

2θ

C̃66 = (C33 + C22 − 2C23 − 2C66)sin
2θcos2θ + C66(sin

4θ + cos4θ)

(2.22)

2.3 Hierarchical Higher-Order Models

In the CUF framework, the displacement field can be approximated through the expansion
of generic functions, Fτ , as shown in Equation 2.23,

u = Fτuτ , τ = 1,2,....,M (2.23)

where Fτ vary over the cross-section. uτ is the displacement vector and M stands for
the number of terms of the expansion. According to the Einstein notation, the repeated
subscript, τ , indicates summation. The choice of Fτ determines the adopted class of 1D
CUF model.
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2 – Structural models

2.3.1 The Taylor Expansion class (TE)

The Taylor Expansion class (TE) is based on Taylor-like polynomial expansions, xi zj ,
of the displacement field over the cross-section of the structure (i and j are positive
integers). The order N of the expansion is arbitrary and is set as an input of the analysis.
A convergence study is usually needed to choose N for a given structural problem. For
example, the second-order model, N = 2, has the following kinematic model:

ux = ux1
+ x ux2

+ z ux3
+ x2 ux4

+ xz ux5
+ z2 ux6

uy = uy1 + x uy2 + z uy3 + x2 uy4 + xz uy5 + z2 uy6
uz = uz1 + x uz2 + z uz3 + x2 uz4 + xz uz5 + z2 uz6

(2.24)

The 1D model described by Eqs. 2.24 has 18 generalized displacement variables; three
constant, six linear, and nine parabolic terms. Classical beam theories, Euler-Bernoulli
(EBBT) and Timoshenko (TBT), can be obtained as particular cases of the N = 1 model,
as shown in [7]. Nevertheless the use of Taylor-type expansions has some intrinsic limita-
tions that led to the introduction of different polynomial classes. In particular the use of
TE involves that:

1. the introduced variables have a mathematical meaning (derivatives at the beam
axes);

2. higher order terms cannot have a local meaning, they can have cross-section prop-
erties only;

3. the extension to large rotation formulation could experience difficulties.

2.3.2 The Lagrange Expansion class (LE)

The Lagrange Expansion class (LE) exploits Lagrange polynomials to build 1D refined
models that have displacement variables only. This aspect is of particular interest because:

1. each variable has a precise physical meaning (the problem unknowns are only trans-
lational displacements);

2. unknown variables can be put in fixed zones (sub-domains) of the cross-section re-
fining the model in certain areas only;

3. geometrical boundary conditions can be applied in sub-domains of the cross-section
(and not only to the whole cross-section);

4. geometrical boundary conditions can also be applied along the beam-axis;

5. cross-sections can be divided into further beam sections and easily assembled since
the displacements at each boundary are used as problem unknowns;

6. the extension to geometrically non-linear problems appears more suitable than in
the case of Taylor-type higher-order theories.
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2 – Structural models

The isoparametric formulation is exploited to deal with arbitrary shaped geometries. La-
grange polynomials are herein used to describe the cross-section displacement field. Three-,
L3, four-, L4, and nine-point, L9, polynomials are adopted. This leads to linear, quasi-
linear (bilinear), and quadratic displacement field approximations over the beam cross-
section. More refined beam models are implemented by introducing further discretiza-

1 2

3

z

x

(a) Three-point element, L3.

1 2

34

z

x

(b) Four-point element, L4.

1 2 3

7 6 5

8 9 4

z

x

(c) Nine-point element, L9.

Figure 2.4. Cross-Section elements in actual geometry.

tions over the beam cross-section in terms of implemented elements. L3 polynomials are
defined on a triangular domain which is identified by three points as shown in Figure 2.5.
These points define the element that is used to model the displacement field above the
cross-section. The interpolation functions are given by [17]:

F1 = 1− r − s F2 = r F3 = s (2.25)

Where r and s belong to the triangular domain defined by the points in Table 2.1.

s

τ1 2

3

0

0 1

1

(a) Three-point element, L3.

-1
1 3

5 4

s

τ

-1 1

1

(b) Four-point element, L4.

1 2 3

7 6 5

8
9

4

s

τ

-1

-1 1

1

(c) Nine-point element, L9.

Figure 2.5. Cross-Section elements in the natural frames.

Similarly, L4 and L9 cross-section elements are defined on quadrilateral domains. Fig. 2.4b
shows the point locations in actual coordinates. The L4 element interpolation functions
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Point rτ sτ
1 0 0
2 1 0
3 0 1

Table 2.1. L3 cross-section element point natural coordinates.

are given by:

Fτ =
1

4
(1 + r rτ )(1 + s sτ ) τ = 1,2,3,4 (2.26)

Where r and s vary from −1 to +1. Fig. 2.4b shows the point locations and Table 2.2
reports the point natural coordinates. For the L9 elements the interpolation functions are

Point rτ sτ
1 −1 −1
2 1 −1
3 1 1
4 −1 1

Table 2.2. L4 cross-section element point natural coordinates.

given by:

Fτ = 1
4(r

2 + r rτ )(s
2 + s sτ ) τ = 1,3,5,7

Fτ = 1
2s

2
τ (s

2 − s sτ )(1− r2) + 1
2r

2
τ (r

2 − r rτ )(1 − s2)
τ = 2,4,6,8

Fτ = (1− r2)(1− s2) τ = 9

(2.27)

Where r and s from −1 to +1. Fig. 2.4c shows the point locations and Table 2.3 reports
the point natural coordinates. The displacement field given by an L4 element is:

Point rτ sτ
1 −1 −1
2 0 −1
3 1 −1
4 1 0
5 1 1
6 0 1
7 −1 1
8 −1 0
9 0 0

Table 2.3. L9 cross-section element point natural coordinates.
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ux = F1 ux1
+ F2 ux2

+ F3 ux3
+ F4 ux4

uy = F1 uy1 + F2 uy2 + F3 uy3 + F4 uy4
uz = F1 uz1 + F2 uz2 + F3 uz3 + F4 uz4

(2.28)

Where ux1
,...,uz4 are the displacement variables of the problem and they represent the

translational displacement components of each of the four points of the L4 element. The
cross-section can be discretized by means of several L-elements. Elements can be assembled
through the common nodes to obtain a refined description of the cross-section. Further
refinements can be obtained by adding cross-section elements, the beam model will be
then defined by the number of cross-section elements used.
It is therefore possible to deal with linear (L3), bilinear (L4), and quadratic (L9) beam
theories. The choice of the cross-section discretization (i. e. the choice of the type, the
number and the distribution of cross-section elements) is completely independent of the
choice of the beam finite element to be used along the beam axis. The L9 interpolation
polynomials are given by [17]

Fτ = 1
4(r

2 + r rτ )(s
2 + s sτ ) τ = 1,3,5,7

Fτ = 1
2s

2
τ (s

2 − s sτ )(1 − r2) + 1
2r

2
τ (r

2 − r rτ )(1− s2) τ = 2,4,6,8

Fτ = (1− r2)(1 − s2) τ = 9

(2.29)

where r and s range from −1 to +1 and rτ and sτ are the natural coordinates of the
interpolation points over the cross-section. The displacement field given by a L9 element
is

ux = F1 ux1
+ F2 ux2

+ F3 ux3
+ F4 ux4

+ F5 ux5
+ F6 ux6

+ F7 ux7
+ F8 ux8

+ F9 ux9

uy = F1 uy1 + F2 uy2 + F3 uy3 + F4 uy4 + F5 uy5 + F6 uy6 + F7 uy7 + F8 uy8 + F9 uy9
uz = F1 uz1 + F2 uz2 + F3 uz3 + F4 uz4 + F5 uz5 + F6 uz6 + F7 uz7 + F8 uz8 + F9 uz9

(2.30)
where ux1

,...,uz9 are the displacement variables of the problem and they represent the pure
displacement components of each of the nine points of the L9 element. This means that
LE models provide elements that have only pure displacement variables. L6 models are
obtained in the same manner, the explicit expression of these polynomials are not reported
here, they can be found in [17].

2.4 FE Formulation and the Fundamental Nucleus

The FE approach is herein adopted to discretize the structure along the y-axis, this process
is conducted via a classical finite element methodology based on the Principle of Virtual
Displacements. The shape functions, Ni, and the nodal displacement vector, qτi, are used
and the displacement vector becomes

u(x,y,z) = Ni(y)Fτ (x,z)qτi, i = 1,2,....,K (2.31)

with
qτi =

{

quxτi
quyτi

quzτi

}T
(2.32)
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where K is the number of the nodes on the element. In this work, three different finite
element are taken into account that respectively provide a linear, quadratic and cubic
approximations along the beam axis. Elements with 2 nodes are denoted as B2 while
elements with 3 and 4 nodes are referred respectively as B3 and B4. In Figure 2.6 beam
elements are depicted in their natural coordinate frames, node coordinates are also shown
for each case. Shape functions are Lagrange polynomials which value is 1 on the ith node
and 0 on all the others. The shape functions, Ni, for B2 elements are shown in Equation
2.33 where the coefficients ri are reported in Table 2.4.

N1 = ri(r − 1)

N2 = ri(r + 1)
(2.33)

Equation 2.34 and 2.35 report respectively shape functions for B3 and B4 elements while

Point ri
1 −1/2
2 1/2

Table 2.4. Shape function coefficients for B2 elements.

the ri values are listed in Tables 2.5,2.6.

N1 = rir(r − 1)

N2 = rir(r + 1)

N3 = rir(r + 1)(r − 1)

(2.34)

Point ri
1 1/2
2 1/2
3 −1

Table 2.5. Shape function coefficients for B3 elements.

N1 = ri(r +
1
3)(r −

1
3 )(r − 1)

N2 = ri(r +
1
3)(r −

1
3 )(r + 1)

N3 = ri(r −
1
3)(r + 1)(r − 1)

N4 = ri(r +
1
3)(r + 1)(r − 1)

(2.35)

It can be noted that B2 shape functions are first order Lagrange Polynomials while B3
and B4 respectively second and third orders. Shape functions for these elements can be
also found in [18].
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Point ri
1 −9/16
2 9/16
3 27/16
4 −27/16

Table 2.6. Shape function coefficients for B4 elements.

1 2

r-1 1
(a) Two-point beam element, B2.

1 2

r-1 1

3

0
(b) Three-point beam element, B3.

1 2

r-1 1

3 4

-1/3 1/3
(c) Four-point beam element, B4.

Figure 2.6. Beam-axis shape functions.

The stiffness matrix is obtained via the Principle of Virtual Displacements,

δLint = δLext (2.36)

Lint stands for the internal work and Lext is the work of the external loadings. δ stands
for the virtual variation. The virtual variation of the internal work is given by

δLint =

∫

V

(δǫTσ)dV =

=

∫

V

δqT
τi

[

D
T
(

Ni(y)Fτ (x,z)I
)]

C

[

D

(

Nj(y)Fs(x,z)I
)]

qsjdV

(2.37)
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where V is the beam volume. By introducing Eq.2.7 in Eq.2.37, it is possible to rewrite
the virtual variation of Lint as

δLint = δqT
τi

{

∫

V

[(

DΩ +Dy

)T(

Fτ (x,z)Ni(y)I
)]

C

[(

DΩ +Dy

)(

Nj(y)Fs(x,z)I
)]

dV

}

qsj =

= δqT
τi

{

∫

l

(

Ni(y)
(

∫

Ω

[

D
T
Ω

(

Fτ (x,z)I
)]

C

[

DΩ

(

Fs(x,z)I
)]

dΩ
)

Nj(y)
)

dy+

+

∫

l

(

Ni(y)
(

∫

Ω

[

D
T
Ω

(

Fτ (x,z)I
)]

CFs(x,z)dΩ
)

Dy

(

Nj(y)I
))

dy+

+

∫

l

(

D
T
y

(

Ni(y)I
)(

∫

Ω
Fτ (x,z)C

[

DΩ

(

Fs(x,z)I
)]

dΩ
)

Nj(y)
)

dy+

+

∫

l

(

D
T
y

(

Ni(y)I
)(

∫

Ω
Fτ (x,z)CFs(x,z)dΩ

)

Dy

(

Nj(y)I
))

dy

}

qsj

(2.38)

where Ω is the cross-section domain and I is the unit matrix. The variation of the internal
work is then written by means of the CUF fundamental nucleus,

δLint = δqT
τiK

ijτsqsj (2.39)

Kijτs is the stiffness matrix in the form of the fundamental nucleus. The explicit forms of
the 9 components of Kijτs are reported in Equation 2.42.
No assumptions on the approximation order have been done to obtain the fundamental
nucleus. It is therefore possible to obtain refined 1D models without changing the formal
expression of the nucleus components. This is the key-point of CUF which permits, with
only nine FORTRAN statements, to implement any-order one-dimensional theories.
The work of the external forces, δLext, can be expressed as

δLext =

∫

V

δuT
F̃ dV =

= δqT
τi

∫

V

Ni(y)Fτ (x,z)F̃ dV

= δqT
τiP

τi

(2.40)

where F̃ is the generic load and Pτi is the vector of the nodal forces.
The global stiffness loading and the unknowns arrays are indicated as K̃, F̃ and q, respec-
tively. The following linear algebraic system has to be solved:

K̃q = P̃ (2.41)
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Kijτs
xx = C̃22

∫

Ω
Fτ,xFs,xdΩ

∫

l

NiNjdy + C̃66

∫

Ω
Fτ,zFs,zdΩ

∫

l

NiNjdy+

C̃44

∫

Ω
FτFsdΩ

∫

l

Ni,yNj,ydy

Kijτs
xy = C̃23

∫

Ω
Fτ,xFsdΩ

∫

l

NiNj,ydy + C̃44

∫

Ω
FτFs,xdΩ

∫

l

Ni,yNjdy

Kijτs
xz = C̃12

∫

Ω
Fτ,xFs,zdΩ

∫

l

NiNjdy + C̃66

∫

Ω
Fτ,zFs,xdΩ

∫

l

NiNjdy

Kijτs
yx = C̃44

∫

Ω
Fτ,xFsdΩ

∫

l

NiNj,ydy + C̃23

∫

Ω
FτFs,xdΩ

∫

l

Ni,yNjdy

Kijτs
yy = C̃55

∫

Ω
Fτ,zFs,zdΩ

∫

l

NiNjdy + C̃44

∫

Ω
Fτ,xFs,xdΩ

∫

l

NiNjdy+

C̃33

∫

Ω
FτFsdΩ

∫

l

Ni,yNj,ydy

Kijτs
yz = C̃55

∫

Ω
Fτ,zFsdΩ

∫

l

NiNj,ydy + C̃13

∫

Ω
FτFs,zdΩ

∫

l

Ni,yNjdy

Kijτs
zx = C̃12

∫

Ω
Fτ,zFs,xdΩ

∫

l

NiNjdy + C̃66

∫

Ω
Fτ,xFs,zdΩ

∫

l

NiNjdy

Kijτs
zy = C̃13
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∫
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∫
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∫
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∫
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∫

l
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(2.42)

In multiscale analyses, both TE and LE can be used to model the structure up to the
component dimensions. For composite materials, structures have non homogeneous cross-
sections. Figure 2.7 and 2.8 provide a graphic explanation of the procedure to assembly the
stiffness matrix for a multicomponent structure for both the TE and the LE approaches.
It is necessary to observe that TE lead to a Equivalent Single Layer (ESL) description

while through the LE a Layer-Wise formulation is obtained. In this sense, TE operate
a sort of homogenization of the fiber and matrix properties. Also, for TE, the number
of unknown variables is given by the order of the adopted 1D model; if LE are used, the
number of variables depends on the number of L-elements on the cross-section and on their
order. To better explain the assembly technique, a simple example for both Tailor and
Lagrange polynomial classes is herein given. A generic cross section is described through
TE formulation, order of expansion N = 2, while, for the LE, 1 L4 element is used to model
the cross-section. 2 B3 elements are used in the y-direction to discretize the y-axis in both
cases. In Figure 2.9 the assembly technique for the TE case is shown while in Figure 2.10
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the stiffness matrix is obtained for the LE case study. The total stiffness matrix is shown
in Figure 2.11, where the square block related to the first and the second beam elements
are respectively the 1 B3 stiffness matrices shown in Figures 2.9 and 2.10. For a generic
case study the resultant global stiffness matrix is depicted in Figure 2.12. The liner
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system in Equation 2.41 is solved in FORTRAN environment though a numerical method.
A Gauss elimination algorithm is employed.The stiffness matrix K is rewritten in terms
of a lower and upper triangular matrices, L and LT and a diagonal matrix D through the
LDLT factorization.

K = LDLT (2.43)
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Chapter 3

The Component-Wise Approach

In this chapter the Component-Wise Approach (CW) is introduced. The 1D-CUF La-
grange formulation, described in chapter 2, is exploited in a multiscale perspective for
the analysis of fiber-reinforced composite structures. This method has been designed
to perform composite failure analysis since it allows a more detailed description of the
stress/strain field in certain regions of the model. Preliminary assessments with solid
model results are made and numerical examples are carried out on different configura-
tions.

3.1 Introduction

The use of composite materials for aerospace applications is greatly advantageous since
composites have better specific properties than traditional metallic materials. A compos-
ite structure, for instance, can be some ten times stiffer and two times lighter than an
aluminium one. This is the main reason leading to the design of ’full composite’ struc-
tures for the most advanced aerospace vehicles. In spite of that, there are still many
key-problems which have to be considered for a more rational use of composite materials
such as fatigue and the characterization of failure mechanisms. A better understanding
of these key-problems in composite structure applications demands for enhanced analysis
capabilities in various fields. Among these, the present work proposes enhanced structural
capabilities to detect accurate stress/strain fields in the matrix, fibers, layers and inter-
faces of composite layered structures with convenient computational costs.
Many techniques are available to compute accurate stress/strain fields in the different
components of a laminated structure (i.e. fibers, matrices and layers), these techniques
are briefly discussed hereafter. The natural manner of refining the analysis of 1D and 2D
components consists of using 3D solid finite elements. These elements might be employed
to discretize single components (fibers and matrices) or to directly model the layer of a
laminated structure, that is, fibers and matrices can be modeled as being independent ele-
ments or they can be homogenized to compute layer properties. Due to the limitations on
the aspect ratio of 3D elements and to the high number of layers used in real applications,
computational costs of a solid model could be prohibitive.
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Classical theories which are known for traditional beam (1D) and plate/shell (2D) struc-
tures had been improved for their application to laminates. Many contributions are known
based on higher-order models [19, 20], Zig-zag theories [21, 22, 23, 24] and Layer-Wise
(LW) approaches [25, 26, 15]. So-called global-local approaches had also been developed
by exploiting the superposition of Equivalent Single Layer models (ESL) and LW [27], or
by using the Arlequin method to combine higher- and lower-order theories [28, 29, 30].
Many studies on multiscale problems in composites have recently been conducted as in [31];
one of the most important result is that “processes that occur at a certain scale govern the
behavior of the system across several (usually larger) scales” [32]. This result implies that
the development of analysis capabilities involving many scale levels is necessary in order
to properly understand multi-scale phenomena in composites. Various spatial and tempo-
ral multiscale methods for composite structures have recently been described by Fish [33]
including concurrent and information-passing schemes, block cycles and temporal homog-
enization approaches. Another excellent overview on multiscale simulations was made by
Lu and Kaxiras [32] while an exhaustive description of a new bottom-up multiscale mod-
eling strategy for fiber-reinforced structural composites has been carried out in [34] where
virtual test simulations are carried out through the transfer of information between three
different length scales defined by the fiber diameter, the ply and laminate thickness. Other
recent studies [35, 33, 32] have proposed the use of the molecular dynamic analysis at the
nano-scale level, Representative Volume Elements (RVE) at micro-scale and structural
elements (e.g. solids, beams, plates or shells) at macro-scale. Various multiscale linear
and non-linear techniques can be found in literature for different loading configurations
and focused on the prediction of failure processes [36, 37]. Multiscale approaches were
exploited to examine the failure of fiber-reinforced laminates subjected to static loading
conditions in [38]. The ’Generalized Method of Cell’ (GMC) developed by Paley and
Aboudi [39, 40, 41] considers fiber and matrix subcells as periodic repeating unit cells or
Representative Volume Elements. GMC was used by Pineda and Waas for the multiscale
failure analysis of laminated composite panels subjected to blast loads [42] and for the
progressive damage and failure modeling of notched laminated fiber reinforced compos-
ites [43]. An accurate GMC description can be found in [44]. Two- and three-scale domain
decompositions were used by Allix et al. [45] for the delamination analysis. A laminated
composite structure was divided in two meso-constituents, substructures and interfaces,
whose behavior was derived from the homogenization of micromodels. A two-level domain
decomposition method was proposed by Ladeveze et al.[46] as a computational strategy
for the analysis of structures described up to the micro-level. In this approach, the un-
knowns are split in a set of macroscopic quantities, related to the macro-scale, and a set of
additive quantities related to the micro-scale. The LATIN method was used as iterative
strategy. This approach was tested on fiber-reinforced composite and honeycombs under
the assumption of plane strains. Some applications on the damage micro-model of fiber-
reinforced laminated composites were reported in [47, 48].
Critical issues of many multiscale approaches proposed in literature are related to the
high computational costs (in some cases hundreds of million of degrees of freedom) and
the need of material properties at nano-, micro- and macro-scale. These aspects can affect
the reliability and applicability of these approaches.

28



3 – The Component-Wise Approach

The method proposed in this work is referred to as Component-wise and it is based on
higher-order 1D models. ’Component-wise’ means that each typical component of a com-
posite structures (i.e. layers, fibers and matrices) can be separately modeled by means of
a unique formulation. Moreover, in a given model, different scale components can be used
simultaneously, that is, homogenized laminates or laminae can be interfaced with fibers
and matrices. This permits us to tune the model capabilities by (1) choosing in which
portion of the structure a more detailed model has to be used; (2) setting the order of
the structural model to be used. A graphic description of the present model capabilities
is provided in Figure 3.2 where different components (layers, fibers and matrices) are as-
sembled. In particular, a four layers laminate is modeled including all the components
in the third ply and one fiber/matrix cell in the fourth ply, while the first two layers are
modelled as single plies. Such a model could be seen as a ’global-local’ model since it can
be used either to create a global model by considering the full laminate or to obtain a local
model to detect accurate strain/stress distributions in those parts of the structure which
could be most likely affected by failure. In other words, the present modeling approach
permits us to obtain progressively refined models up to the fiber and matrix dimensions.

3.2 A Component-Wise Approach in the 1D CUF Frame-

work

As intruduced in chapter 1, since composites are increasingly being used in many engi-
neering fields, understanding their failure mechanism has a prominent role in enhancing
component designs but requires an accurate description of the mechanical behavior at
different levels. Indeed, many micromechanical effects have to be taken into account to
evaluate the different possible failure modes. Among many available techniques for the
structural analysis of composite structures, multiscale approaches are able to provide a
refined description of the stress and strain within the constituent phases. Nevertheless, de-
spite the increasing development in computer hardware, the computational effort of these
methods is still prohibitive for extensive applications. The reduction of the computational
time and cost required to perform failure analysis has still a prominent role in extending
multiscale techniques to large-scale applications.
The aim of the Component-Wise approach is to allow us to model each typical component
of a composite structure through the 1D CUF formulation. In a finite element framework,
for instance, this means that layers, fibers and matrices are modeled by means of the same
1D finite element and, therefore, do not need specific formulations for each component.
In other words, the same Kijτs is used for each component. Therefore, fibers and related
matrix portions, entire layers and whole multilayers can be modeled at same time. Com-
ponent can be included in different locations of the structure. As introduced in chapter
2, within the 1D CUF both Taylor- and Lagrange-type polynomials can be used to inter-
polate the displacement field over the element cross-section. Nevertheless, LE polynomial
classes provide a number of benefits that have led to prefer this expansion type to the TE
in the developing of the CW approach. In fact, through the 1D LE based based beam
formulation the stress and strain fields can be provided with solid-like accuracy with a
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significant reduction of DOFs involved. In this chapter CW results are compared to those
obtained through the TE-polynomial classes and solid models. Figure 3.1 provides a de-
scription of a possible modeling approach. A five layer plate is illustrated and, in the

Figure 3.1. Component-Wise approach to simultaneously model layers, fibers and matrices.

top-bottom order, the components are the following: the first two layers, two fiber/matrix
cells of the third layer and an equivalent layer of the 4th and 5th lamina. Each component
has its own geometrical and material characteristics. In this example, 3 different scales
are modeled at the same time, d, the component dimension at micro-scale, hL, the ply
dimension, at meso-scale, and h the whole laminate dimension, at the macro-scale. Single
fiber/matrix cell, or RUC (Repeated Unit Cell), refers as a single fiber embedded in a
matrix.
Numerical examples were carried out on three different structural models. A single
fiber/matrix cell is considered the simplest assessment for the analysis. Cells can be
modeled with different geometries and can be combined to build more complex cell con-
figurations to include in any position of the considered model. A double fiber/matrix
cell assessment is hereafter proposed. This approach allow to refine the model just in
determinate areas keeping the model light and, at the same time, obtaining an accurate
description of the stress and strain fields where necessary. Then, multilayered plates are
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Figure 3.2. Component-wise approach to simultaneously model layers, fibers and matrices.

considered by means of the different modeling approaches offered by the present formu-
lation. A composite C-shaped beam is analyzed as last numerical example. In order to
be able to provide comparisons between different CW models, the material properties of
laminae were retrieved from those of the constituent fibers and matrices by means of the
Rule of Mixtures. For each case study, ANSYS solid models built with Solid95 elements,
are used for comparison. Isotropic materials were chosen for the preliminary assessments
in order to provide straightforward comparisons with solid models. This approach allow to
refine the model just in determinate areas keeping the model light and, at the same time,
obtaining an accurate description of the stress and strain fields where deemed necessary.
Then, given the stress and strain distribution, failure criteria can be taken into account
to perform failure analysis.

3.3 Single Cell Analysis

This section deals with the analysis of a single cell structure that is geometrically similar
to a fiber/matrix cell in order to assess the simplest structural layout. Two modeling
approaches were analysed. In the first model, the cell was treated as a homogeneous
structure, in the second model the fiber and matrix were modeled separately. The material
properties are reported in Table 6.5 where the first column refers to the homogeneous
model while the second and third columns refer to the fiber/matrix cell.
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Homogeneous Fiber Matrix

Material Properties
E [GPa] 127.6 250.6 3.252
ν [-] 0.3 0.2456 0.355

Failure Coefficients
Maximum Stress [MPa]

XT 1730 3398.1 66.5
XC 1045 2052.6 255
SL 95.1 186.8 74

Maximum Strain [-]
εT 0.0138 0.0138 0.00436
εC 0.01175 0.01175 0.002
γL 0.002 0.004 0.0016

Table 3.1. Material properties and failure coefficients.
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3.3.1 Homogeneous Single Cell Analysis

The homogeneous cell is square with side h = 0.1 mm, and L/h = 10 where L is the
longitudinal length of the structure. The structure is clamped at y = 0 while a vertical
point load, Fz = −0.1 N, was applied at [h/2, L, 0]. Results were obtained by means of TE
models with different expansion order N and 40 B4 elements along the y-axis. Figure 5.6
shows three different meshes with one, four and sixteen nine-point elements (L9), for the
LE cross-section model and a 10 B4 mesh was used along the beam axis.

Figure 3.3. Model descriptions: 1 L9, 4 L9, 16 L9.

Table 3.2 presents the results obtained in terms of transverse displacement, uz, at loading
point in the homogeneous case study. The number of degrees of freedom (DOFs) of each
model is shown in the last column of the table. The σyy and σyz trends above the cross
section at x = h/2 are compared with solid results in Figure 3.4 at two different beam
sections y = 0 and y = L/2.

3.3.2 Single Fiber/Matrix Cell Analysis

The CW geometry is depicted in Figure 3.5 for the fiber/matrix case study. The fiber
diameter is d = 0.08 mm, while other characteristic dimensions are the same to the
homogeneous cell. The LE mesh is shown in Figure 3.6, it is composed of 12 L9 and 8 L6
elements. Transversal displacement uz at loading point is shown in Table 3.3 and the axial
and shear stress at points B[b/2,L/2,d/2] and D [d,L/2,0], B’ [b/2,0,d/2] and D’ [d,0,0]
are reported in Table 3.4. Results above the clamped cross-section in terms of axial and
shear stress in solid, LE and TE models are depicted in Figure 3.7 and 3.8.

Furthermore, strains above the clamped cross-section of the solid and LE models are
compared in Figure 3.9. The corresponding strain values at points B’ and D’ are listed in
Table 3.5.
A further assessment for a one single fiber/matrix cell is hereafter provided. In this case,
the cylindrical component’s Young modulus, E, is equal to 202.038 GPa and the Poisson
ratio, ν, is equal to 0.2128. The surrounding portion of the structure was also considered
isotropic with E = 3.252 GPa and ν = 0.355. The structure is clamped at y = 0 while
a vertical point load, Fz = −0.1 N, was applied at [b/2, L, 0]. Results were obtained by
means of TE, LE and solid models. In case of TE, a 40 B4 mesh along the y-axis was
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Model uz × 102[mm] DOFs

Classical Beam Model
EBBT −3.135 363
TBT −3.155 605

TE
N=1 −3.155 1089
N=2 −3.129 2178
N=3 −3.134 3630
N=4 −3.137 5445
N=5 −3.138 7623
N=6 −3.139 10164
N=7 −3.139 13068
N=8 −3.140 16335

LE
1 L9 −3.126 837
4 L9 −3.136 2325
16 L9 −3.137 7905

SOLID
−3.154 210483

Table 3.2. Displacement of the single cell homogeneous model at the loading point.

Model uz × 102[mm] DOFs

Classical Beam Model
EBBT −6.356 363
TBT −6.376 605

TE
N=1 −6.376 1089
N=2 −6.335 2178
N=3 −6.338 3630
N=4 −6.345 5445
N=5 −6.345 7623
N=6 −6.349 10164
N=7 −6.349 13068
N=8 −6.350 16335

LE
12 L9 + 8 L6 −6.440 7533

SOLID
−6.357 268215

Table 3.3. Displacement for the single cell CW model at the loading point.
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Figure 3.4. Stress distribution for the homogeneous cell: (a) Axial Stress σyy at x = h/2,
y = 0, (b) Shear stress σyz at x = h/2, y = 0, (c) Axial Stress σyy at x = h/2, y = L/2, (d)
Shear Stress σyz at at x = h/2, y = L/2.
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Model σyy × 10−2 σyz × 10−1 σyz × 10−2

Point B Point D Point B’ Point D’

Classical Beam Model
EBBT 9.558 − − −
TBT 9.558 −1.966 -0.196 -0.196

TE
N=1 9.558 −1.966 -0.196 -0.196
N=2 9.487 −2.353 -4.965 2.051
N=3 9.487 −2.481 -4.820 2.009
N=4 9.447 −2.475 -5.291 2.395
N=5 9.447 −2.407 -5.257 2.399
N=6 9.431 −2.406 -5.258 2.355
N=7 9.431 −2.348 -5.236 2.354
N=8 9.455 −2.348 -5.172 2.307

LE
12 L9 + 8 L6 9.451 −2.551 -2.644 1.669

SOLID
9.531 −2.428 -2.423 1.797

Table 3.4. Stress values [N/mm2] for the single cell CW model at Point B,D (y =
L/2) and Point B’,D’ (y = 0).

Model εyz × 103

Point B Point D

Classical Beam Model
EBBT - -
TBM -0.195 -0.195

TE
N=1 -0.195 -0.195
N=2 -4.935 2.038
N=3 -4.791 1.996
N=4 -5.259 2.381
N=5 -5.225 2.385
N=6 -5.226 2.341
N=7 -5.204 2.339
N=8 -5.140 2.294

LE
-2.669 1.756
SOLID
-2.409 1.786

Table 3.5. Strain values for the CW cell model at y = 0.
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Figure 3.5. CW cell geometry.

Figure 3.6. LE Element distribution: 12 nine-point (L9) elements and 8 six-
point (L6) elements.

adopted. The LE cross-section discretization is shown in Figure 3.6, in this case, a 10 B4
mesh was used. The solid model was implemented in ANSYS.
Table 3.6 and 3.7 respectively presents the results obtained in terms of transverse dis-
placement (uz) and axial stress (σyy). uz was evaluated at the loading point while σyy
was evaluated at Point A[b/2, L/2, d/2] and Point B[b/2, L/2, 0.03], trasversal stress σyz
was evaluated at Point C[0.01, L/2, d/2]. The last column of the Table 3.6 shows the
number of degrees of freedom (DOFs) of each model. The analysis of the results leads to
the following considerations:

1. There is a general good agreement between the proposed model and the solid model
solutions for the homogeneous and fiber/matrix cell;

2. For the homogeneous cell, the maximum value of σyy is reached at Point A’[h/2, 0,
h] where the 1 L9 mesh is not able to catch the solid results, this implies the need
for refined meshes. Moreover a refined mesh is required to provide the shear stress
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Model uz × 102 Loading Point mm DOFs

Classical Beam Model
EBBT −7.811 363
TBT −7.835 605

TE
N = 1 −7.835 1089
N = 2 −7.774 2178
N = 3 −7.777 3630
N = 4 −7.794 5445
N = 5 −7.795 7623
N = 6 −7.800 10161
N = 7 −7.800 13068
N = 8 −7.804 16335

LE
12 L9 + 8 L6 −7.933 7533

SOLID
−7.818 268215

Table 3.6. Displacement values for the single cell model.

Model σyy Point A σyy Point B σyz Point C
×10−2 MPa ×10−1 MPa

Classical Beam Model
EBBT 9.469 7.102 −1.962
TBT 9.469 7.102 −1.962

TE
N = 1 9.469 7.102 −1.962
N = 2 9.358 7.019 −2.311
N = 3 9.358 7.019 −2.464
N = 4 9.327 7.090 −2.454
N = 5 9.327 7.090 −2.375
N = 6 9.315 7.105 −2.373
N = 7 9.315 7.105 −2.304
N = 8 9.346 7.117 −2.301

LE
12 L9 + 8 L6 9.450 7.046 −2.500

SOLID
9.492 7.094 −2.383

Table 3.7. Stress values for the single cell model.
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Figure 3.7. Axial stress at the clamped cross-section.
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Figure 3.8. Shear stress at the clamped cross-section.

distribution, σyz, at y=L/2. The 4 L9 and 16 L9 meshes used are able to provide
the needed improvement;

3. The Component-Wise model provides a refined description of the stress/strain field
of the cell, in particular it gives a good description of the interfaces;

4. At the clamped cross-section the LE models provide better results than TE models;

5. The computational costs of the proposed 1D models are far lower than those required
for the solid model.

3.4 Double Cell Analysis

A double cell model is examined in this section. A graphic description of the cross-section
geometry is provided in Figure 3.10 while in Figure 3.11 a 3D view of the case study is
shown. The characteristic dimensions are b = 0.1 mm, a = 0.2 mm and L/b = 10 where
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Figure 3.9. Axial εyy and shear εyz, εyx strain at L = 0 for the Solid and LE CW cell models.
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Figure 3.10. Double cell geometry.

L is the longitudinal length of the structure. The fiber diameter is d = 0.08 mm, as in
the previous single cell case study. Results were obtained by means of TE, LE and solid
models. The LE mesh is composed of 20 L9 and 16 L6 elements above the cross-section,
10 B4 elements are employed along the y-axis while 40 B4 elements are used for the TE
model. The structure was clamped at y = 0 while two vertical point loads, Fz = −0.02 N,
were applied at the center of each cell. Table 3.8 presents the results obtained in terms

Figure 3.11. Double cell case study.

of transverse displacement, uz, at [a/2, L, h/2], the last column shows the number of
degrees of freedom (DOFs) of each model. Table 3.9 shows axial and shear stress, σyy and
σyz, at points E [a/4, L, h/2] and F [a/2+d, L, h/2] and their corresponding points at
clamped cross-section E’[a/4, 0, h/2] and F’[a/2+d, 0, h/2]. Figure 3.13 depicts the stress
distribution above the clamped cross-section for the LE, TE (N=8) and the solid model.
Increasing the two vertical point loads, Fz = −0.05 N, applied at Point A [a/4, L, h/2]
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Model uz × 102[mm] DOFs

Classical Beam Model
EBBT −1.271 363
TBT −1.275 605

TE
N=1 −1.275 1089
N=2 −1.259 2178
N=3 −1.260 3630
N=4 −1.262 5445
N=5 −1.263 7623
N=6 −1.264 10164
N=7 −1.264 13068
N=8 −1.265 16335

LE
20 L9 + 16 L6 −1.285 12555

SOLID
−1.268 536430

Table 3.8. Displacement of the double cell CW model at [a/2,L,h/2].

Model σyy × 10−2 σyz σyy × 10−2 σyz
Point E Point F Point E’ Point F’

Classical Beam Model
EBBT 1.912 − 3.823 -
TBT 1.912 −3.933 3.823 -3.933

TE
N=1 1.912 −3.933 3.823 -3.933
N=2 1.897 −6.636 3.814 6.489
N=3 1.897 −7.347 4.417 6.383
N=4 1.878 −7.312 4.402 5.014
N=5 1.878 −6.834 4.375 5.137
N=6 1.879 −6.864 4.343 7.064
N=7 1.879 −6.611 4.513 7.072
N=8 1.889 −6.575 4.511 6.303

LE
20 L9 + 16 L6 1.909 −6.277 4.317 4.360

SOLID
1.905 −6.034 4.263 4.404

Table 3.9. Stress values [N/mm2] for the double cell CW model at Point E,F (y =
L/2) and Point E’,F’ (y = 0).

and Point B [3a/4, L, h/2]. Table 3.10 presents the results obtained in terms of transverse
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Figure 3.12. L9 + L6 distribution of the double cell cross-section.

displacement uz at loading points. Table 3.11 shows the axial (σyy) and transversal (σyz)
stress respectively evaluated at Point C [0.01, 0, 0], D [3a/4, L/2, 0.03] and E[a/4, L/2,
0.04]. The results are evaluated in terms of displacements, stress/strain fields. Three

Model uz × 102 Point A,B mm DOFs

Classical Beam Model
EBBT −3.906 363
TBT −3.917 605

TE
N = 1 −3.917 1089
N = 2 −3.868 2178
N = 3 −3.869 3630
N = 4 −3.879 5445
N = 5 −3.879 7623
N = 6 −3.885 10161
N = 7 −3.885 13068
N = 8 −3.887 16335

LE
20 L9 + 16 L6 −3.958 12555

SOLID
−3.901 536430

Table 3.10. Displacement values for the double cell model.

main cell configurations were investigated under point loads. Comparisons with solid
models from the FEA (Finite Element Analysis) ANSYS commercial code were proposed.
Failure analyses were conducted taking into account Maximum Stress andMaximum Strain
criteria. The analysis of the results leads to the following considerations:

1. The CW approach allows the modelling of a fiber-reinforced composite structure.
Approximations introduced by the homogenization theories are avoided;

2. As in the previous cases there is a general good agreement with solid and CW results;
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Model σyy Point E σyy Point F σyz Point C
×10−2 MPa ×10−1 MPa

Classical Beam Model
EBBT 4.734 3.551 −0.981
TBT 4.734 3.551 −0.981

TE
N = 1 4.734 3.551 −0.981
N = 2 4.679 3.509 −1.591
N = 3 4.679 3.509 −1.771
N = 4 4.625 3.513 −1.759
N = 5 4.625 3.513 −1.655
N = 6 4.641 3.552 −1.670
N = 7 4.641 3.552 −1.590
N = 8 4.664 3.556 −1.583

LE
20 L9 + 16 L6 4.647 3.522 −1.584

SOLID
4.744 3.546 −1.519

Table 3.11. Stress values for the double cell model.
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Figure 3.13. Shear stress σyz at the clamped cross-section. Double cell Solid and CW models.

3. The LE model provides the best convergence of axial and shear stress to solid results
while the TE model requires a high order, N, to provide good convergence at the
clamped cross-section;
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