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Abstract

Aerodynamic angles of �ight vehicles are necessary to pilot and automatically control

of aircraft. These angles are usually measured using probes that protrude from

the vehicle surface out into the �ow �eld. However, this arrangement was found

to be unacceptable for modern unmanned airplanes whenever stealthiness features

are required. In addition, redundant sensor arrangements, when dictated by safety

regulations, were also critical because of the possible heavy impact on the airframe of

small UAVs. New virtual software-based systems were therefore developed in order

to �nd a viable solution for reducing the number of traditional hardware-based air

data sensors, and they o�ered the bene�t of simplifying air data system architectures.

The aerodynamic angles were derived from inertial data and by exploiting the

airspeed sourced by the Pitot-static system. The relationship between these parameters

and the aerodynamic angles was a complex, non-linear function that was not easily

described by means of aircraft models. The main goal of this work, which was aimed

at UAV applications, was to analyze the aircraft system and develop virtual sensors

by exploiting soft computing methods, such as neural prediction techniques, in order

to assess the feasibility of this kind of neural system. The performance of virtual

sensors were tested using real hardware in the simulation loop and to represent

real-world �ight conditions: wind gusts, air turbulence and internal sensor noise

were simulated. A sensitivity analysis was carried out to study the performance of

virtual sensors even when realistic accuracy of measured signals, processed by neural

networks, and failure modes were simulated.

Finally, neural networks resulted to be suited for aerodynamic angle estimation

technique: the neural networks worked properly with the available vehicle data and

demonstreted to be as accurate as traditional probes.

vi



Introduction

�What is particularly signi�cant is that in both

consumer products and industrial systems, the

employment of soft computing techniques leads

to systems which have high MIQ (Machine

Intelligence Quotient). In large measure, it is

the high MIQ of SC-based systems that accounts

for the rapid growth in the number and variety

of applications of soft computing�

Lot� Zadeh - 1994

The �ight control computer (FCC) can be considered the core of modern UAVs

since several autopilot modes are implemented to guarantee stability, control and

navigation of the aircraft, even in automatic mode. Autopilots, which have the

purpose of guaranteeing automatic control, need several input parameters, such as

air data, whose measurements are taken from air �ow surrounding the aircraft: the

angle of attack, α, and sideslip, β, which are also known as aerodynamic angles, are

two such parameters.

Today, aerodynamic angles can be measured using vanes, which were �rst described

in detail by Ikard [1], in 1956, for both subsonic and supersonic applications. Another

way is to use di�erential direction probes, as was well documented by Chue [2],

Pankhurst and Holder [3] and Yajnik and Gupta [4], starting back in 1952. These

kinds of probes were �rst introduced onto the market by Rosemount Inc. in 1963.

Most modern �ow direction probes are today integrated in multifunction probes

[5], i.e. probes which have the capability of sensing both aerodynamic angles

and static and dynamic pressure, but the background theory is still the same.

Some examples exist where the angle of sideslip of an airplane is measured, when

necessary, by di�erentiating between two static pressures sensed on opposite sides

of an aircraft, exploiting the same basic principle of multi-hole probes. These

vii
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air data sensors are connected to an air data computer (ADC) which provides

the FCS with the required parameters. In all these cases, the basic �ow angle

measurement principles were already well known in the �rst half ofXX century. The

evolution in air data instrumentations that was taken over the last decade re�ects the

radical changes that have occurred in electronic measuring techniques of ADCs and

transducers, from aneroid capsules to modern MEMS transducers. Nevertheless,

the basic principles of air data measurement methods have essentially remained

unchanged and pressure and �ow measurement sensors have undergone only slight

changes. The placing of air data sensors is somewhat problematic on UAVs, due to

potential interference issues with opto-electronic sensors, because the best location

for both kinds of sensors for thei optimal operations is on the front fuselage of the

aircraft. These problems are further enhanced when a multiple installation of the

same systems is requested for redundancy to comply with airworthiness regulations.

Moreover, redundant ADS may also be needed for voting and monitoring capability

that cross-compares the signals from di�erent channels for detecting and isolating

ADS failures at a single single sensor level, depending on the level of redundancy

requested. The increasing need of modern UAVs to keep the costs and complexity

of on-board systems down has encouraged the practice of substituting, whenever

feasible, expensive, heavy and sometimes even voluminous hardware devices with

executable software codes. Another practical example, which is referred to as

analytical redundancy in the current literature, is the process of replacing some

of the actual sensors with virtual sensors, which can be used as voters in redundant

or simplex sensor systems, to detect inconsistencies of the hardware sensors and

can eventually be employed to provide alternative data. More generally, analytical

redundancy is identi�ed with the functional redundancy of the system. The idea of

using software algorithms to replace physical hardware redundancy was introduced

as soon as digital computers started being used in the 1970's to perform redundancy

management. Approaches developed to detect and isolate sensor failures were

ultimately to become important parts of later control recon�guration schemes. An

example is the Sequential Probability Ratio Tests that were carried out on the

F-8 Fly-by-Wire demonstrator in the late 1970's [6]. Throughout the 1970's and

1980's, many papers appeared describing various algorithms that could be used

to manage redundant systems and redundant sensors. Many attractive advanced

algorithmic solutions have been proposed, especially over the last two decades,
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mostly related to model-based techniques, but which are capable of taking into

account some robustness requirements with respect to exogenous disturbances and

model uncertainties. In 2000, Napolitano et al. [7] and Oosterom and Babuska [8]

independently described fault tolerant systems using soft computing techniques.

In the present work, virtual sensors will be designed with the aim of indirectly

calculating aerodynamic angles exploiting soft computing techniques. The present

virtual air data sensors are based on neural networks (NNs) to overcome discrepancies

between the mathematical model and the real aircraft of the model-based methods,

which is the main drawback of this technique, but also to de�ne economic hardware

processing systems. This kind of activity is not a novelty in the aerospace �eld, since

several practical applications of NNs exist and, more in general, of soft computing

techniques, these are used as system identi�cation devices to estimate the angle

of attack [9, 10] and sideslip [11] from data derived from other sources, without

exploiting classical methods, such as vanes or modern multifunction probes. Rohlo�

et al. [12] and Samy and Green [13] described virtual sensors, based on neural

networks, that are able to reconstruct complete suite of air data parameters, starting

from multiple static pressure measurements on an aircraft fuselage, without using

inertial data. Other examples of virtual sensors exist which have been developed on

model based techniques, such as the one designed and patented by Wise [14], which

is actually used on the Boeing X-45A aircraft. Using inertial data, in addition to an

accurate aerodynamic aircraft model and a Kalman �lter, the virtual sensor is able to

predict the aerodynamic angles with good accuracy. Overall, in the current literature

about virtual sensors for aerodynamic angle estimation, whatever the technology

on which the virtual sensors are built, they all share the use of dynamic pressure

actual values, which is clearly a fundamental air data that is quite complex to

estimate. However, only a few examples of virtual sensors that do not need dynamic

pressure exist, e.g. that patented by McCool and Haas [15], mainly dedicated to

applications on helicopters. Indeed, they invented a virtual sensor able to estimate

�ight parameters using a reconstructed value of dynamic pressure starting from,

inter alia, the exact position of the center of gravity, the engine torque on the shaft

and the actual thrust in real time. Even though the results presented by McCool

and Haas are good and encouraging, the parameters they use as input for virtual

sensor are not always available with the required accuracy.

The novelty introduced in this research project, with respect to current literature,
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is that the aerodynamic angles are estimated indirectly by means of neural systems

which need inertial data from AHRS, dynamic pressure from ADS and aircraft

commands from FCS as input data. It is clear that the use of virtual sensors does

not preclude the use of dynamic pressure estimated by exploiting, for example,

another virtual sensor. The virtual sensor solution allows one to save, or substitute,

physical sensors with software-based ones and this leads to enormous bene�ts for

the redundant systems of unmanned aircraft.

The �nal goal of this work is to assess the feasibility of a virtual sensor, based on

neural prediction techniques, for aerodynamic angle estimation in UAV applications,

while taking well de�ned requirements into cosiderations. The virtual sensor was

mainly designed using two aircraft simulators: �rstly, the well known FDC toolbox

of Matlab was used to set up neural networks using an open source simulator which

could be modi�ed to satisfy any user request and which could also be run on a

personal computer. The second simulator, developed by Alenia Aermacchi to train

pilots and ground operators on the unmanned Sky-Y aircraft , was used to train and

test neural networks for the �nal performance assessment, using a real �ight control

computer within the simulation loop.

During this research activity, several attempts had been made to represent the

real-life world were done in order to assess the estimation performance of the current

virtual sensors in realistic �ight conditions. One of the most critical issues related to

the actual neural network applications, is the gap between simulated input signals

and real input signals to NNs, which have their own accuracy and noise level, and

which must be taken into account to evaluate the actual performance of the virtual

sensors based on neural networks. When real tests cannot be performed or there is a

lack of real data, these data are replaced with noise corrupted signals, as was done by

Svoboda et al. [16] and Rowley et al. [17] to understand the behaviour of the neural

network when fed by actual input signals. Sensor noise was modeled to simulate

errors stemming from aboard actual sensors; in particular, each input signal was

characterized with its own noise level, according to available literature. Moreover,

external disturbances, such as wind gusts and turbulence, were also simulated using

the well known Dryden turbulence models.

The following chapters document the successful development of a software based on

neural networks for aerodynamic angle estimation, which indirectly measure α and β

for Alenia Aermacchy Sky-Y UAV. Chapter 1 starts with a general discussion of air
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data measurements and ends with a review of the current state of the art of air data

systems (ADSs). Chapter describes the reasons that drove this research towards the

choice of neural predictive techniques for virtual sensors; the consequences of this

decision are well described highlighting bene�ts and drawbacks of applications of

virtual sensor for UAVs with reference to the state of the art of ADS technology.

Chapter 3 provides a general discussion on neural network techniques, along with

description of the speci�c techniques used during this investigation and an application

to a simple test case. The details of the whole NN design process is provided in

chapter 4, by exploiting the FDC Matlab toolbox. Moreover a preliminary NN

performance analysis is reported and the virtual sensors were also tested when

electronic noise and air turbulence were simulated. The virtual sensors were tested in

chapter 5 using the Alenia Aermacchi Sky-Y UAV simulator, and in particular, once

downloaded onto actual FCC, they were tested using real hardware in the simulation

loop. In the last chapter a sensitivity analysis is presented in order to evaluate the

importance of all input-output relationships and the robustness of virtual sensors

when realistic accuracy models of measured signals, processed by neural networks,

and failure modes were simulated.
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Chapter 1

Air Data System

An ADS has to provide pilots, FCSs and other on-board systems with several

quantities that are derived from external air �ow measurements through signals

from aerodynamic and thermodynamic probes. These air data probes measure

the characteristics of the air locally surrounding the aircraft and then dedicated

transducers, which are integrated in the Air Data Computer (ADC) or in the

sensors themselves, convert the measurement values into electrical signals. The ADC

contains the correction algorithms that are necessary to calibrate, or convert, local

measurements into free stream ones. The signals from transducers are calibrated

and then processed to calculate all the required quantities. Since an ADS is vital

for aircraft, in order to comply with safety regulations regarding airworthiness

certi�cation, sometimes two or even three are installed on some aircraft for speci�c

safety requirements. This is particularly true for modern UAVs that have to carry

out aerial work over populated areas: in this case, they could be required to comply

with even more stringent airworthiness regulations than those applicable to manned

aircraft (e.g. AER-P2 [18] and AER-P6 [19] in Italy).

Air data probes and sensors, which were discussed in great detail by Gracey [20]

and Wuest [21] and which work solely with air �ow pressure or temperature, operate

direct measurements of air data parameters. These direct measurements from the

air surrounding the aircraft are: the static pressure (ps), the total pressure (p0), the

total or static temperature (T0 or Ts respectively) and air �ow angles with respect

to the �xed reference axis of the aircraft body.

The static pressure is used to calculate the barometric height, H.

1
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The total pressure, in addition to the static pressure, is used to calculate the relative

velocity between the aircraft and the external air �ow, which is presented to pilots

as indicated, calibrated or true airspeed (IAS, CAS and TAS respectively). The IAS

can be calculated from the measured dynamic pressure (q∞,m = p0−ps = 1/2ρ∞V
2
∞),

with reference to sea level conditions, as

IAS =

√
2qc∞,m
ρSL

.

Correcting the dynamic pressure measurement from calibration errors (mainly due

to position errors [22]), the IAS can be converted into calibrated air speed as

CAS =

√
2qc∞
ρSL

.

Finally, the actual air density value can be calculated using a temperature sensor,

and then the true air speed can be calculated as

TAS =

√
2qc∞
ρ∞

.

The CAS, or IAS, are fundamental for piloting and controlling the aircraft, while

the TAS is important for navigation purposes.

The Mach number calculation is obtained from the static and total pressure by using

the iso-entropic relation

M =

√
2

γ − 1

[
ps
p0

γ − 1/γ

− 1

]
.

where the e�ect of temperature on γ is commonly neglected for the Mach number

calculation for altitudes within 36000 ft

The air �ow angles are direct measurements of the local angle of attack, αloc, and

angle of sideslip, βloc. The free stream values, α∞ and β∞, are then obtained using

adequate calibration algorithms. Sensing the angle of sideslip is usually carried

out by means of vanes as for the angle of attack α, or, through less frequently, by

exploiting di�erential static pressure measurements from the two aircraft sides and

adopting a calibration law which converts the di�erential pressure measurement into

the angle of sideslip calculation. Owing to the x-axis symmetry of an aircraft, the

aforesaid calibration law is generally presented as

β = Kβ(ps,L − ps,R), (1.1)
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where Kβ is usually a function of the angle of attack, the Mach number and also of

the sideslip itself which takes into account the non linear aerodynamic e�ects of the

fuselage nose that occur at high attitudes and in the presence of high lateral wind.

A practical example will be given in section 4.3

A particular aspect of the angle of sideslip calculation must be addressed. This angle

is no usually sensed on civil aircraft, because it is considered a trivial information

for pilots to control the vehicle: a turn indicator has a more immediate e�ect than

the numerical indication of the angle of sideslip. The angle of sideslip (and as well

Figure 1.1: An example of unmanned �ying wing vehicle. The UCAV Dassault
nEUROn

as the angle of attack) is used on some fast-dynamics aircraft, such as military ones,

by the FCS for stability and augmentation purposes. The same issues are relevant

for UAVs, where, due to the absence of human pilots on board, a large amount

of information is needed by the FCS to �y an aircraft automatically and safely.

The angle of sideslip is especially required for intrinsically stable unmanned �ight

vehicles during the landing and takeo� phases when there is cross-wind. The angle

of sideslip is required by the �ight control system for unstable UAVs, e.g. on �ying

wing models, because of the lack of stability on the vertical axis which is caused by

their peculiar aerodynamic con�guration. Several unstable unmanned models exist

such Unmanned Combat Air Vehicles (UCAVs) Boeing X-45, Dassault nEUROn(see

Fig. 1.1) and Northrop Grumman X-47.
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1.1 ADS State of the Art

In this section, typical ADS architectures will be dealt with for both civil and

UAV applications and the main di�erences between the systems will be highlighted.

Firstly, ADS for current civil aircraft will be presented, where the IAS (or CAS),

TAS, barometric height and Mach number are strictly necessary for navigation and

control. Although the angle of attack is measured, this information is not usually

given on pilot displays but is only used by the stall prevention system to warn

pilots of oncoming aircraft stall. Secondly, the ADS for UAV applications will be

presented, where the IAS, TAS, Mach number, barometric height, and the angles of

sideslip and attack are required by the �ight control system for automatic control.

In order to have an idea of how the ADSs could be designed, several con�gurations

will be shown using realistic but not real architectures. They are in fact only

intended for comparison purposes between the advantages and disadvantages of

designed architectures using both o�-the shelf and state-of-the-art sensors.

A simplex (not redundant) standard civil ADS con�guration for stable aircraft

is depicted in Fig. 1.2. The word standard when referred to ADS is used to

Figure 1.2: A realistic standard ADS architecture for civil aircraft. The red lines
represent the total pressure lane, the blue lines the static pressures that are actually
connected and the green lines represent the electrical signals

indicate the use of o�-the-shelf sensors and ADC. The Pitot tube measures the

total pressure, while the left and right �ush ports sense the local static pressure and

they are pneumatically averaged together to minimize sideslip e�ects (tipically it is

an adequate solution for β < 10). Generally, the angle of attack, α, is measured
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by means of vanes, while the air temperature is measured using dedicated static air

temperature (SAT) or total tir temperature (OAT) probes. Moreover, as previously

mentioned, although the angle of sideslip, β, is not required for the most of civil

aircraft, it could be measured, for example, using an additional vane. All the

measured data are converted into electronic signals and then processed by the ADC

in order to be converted into known quantities, such as the IAS (or CAS), TAS,

barometric height, Mach number and angle of attack,α, and in just few cases the

angle of sideslip, β, is also measured for military or unstable aircraft.

Some simpli�cations can be introduced into the standard architecture shown in Fig.

1.2, if state-of-the-art or advanced probes are used instead of standard ones, as

depicted in Fig. 1.3. Basically, advanced probes are multi function probes that are

able to measure three quantities using only one external sensor: total pressure, static

pressure and one or two �ow angles. Several models exist, such as the integrated

Goodrich SmartProbe© used on some regional Embraer business aircraft and on

Airbus A400M, theMFP (which is a self-orienting cone) manufactured by Aerosonic

Corp. used on Alenia Aermacchi M346 and the self-orienting probe manufactured by

Thales (which is a �ow angle vane with pressure ports for total and static pressure

sensing) used on the Dassaul Rafale and on EF2000 (licensed to Marconi Avionics

by Thales). All these probes are integrated with an electronic box (Air Data Unit,

ADU) that incorporates: pressure and position transducers, as well as computing

and self-test capability thus eliminating the need for a central ADC and the need

for pressure tubing running along the airplane, as described in Fig. 1.3, and which

will be referred to in this work as advanced ADS. Each aircraft, according to its

design speci�cation, is provided with a speci�c ADS architecture. Some military

aircraft, for example, have other state-of-the-art designs. Another state-of-the-art

architecture, which exploits nonobtrusive sensors, is in fact used by hypersonic,

stealth, and some research aircraft, in order to meet their particular requirements.

This system is known as Flush Air Data System, FADS [23, 24]. It consist of

multiple �ush pressure ports distributed over the aircraft surface, and on the nose

of conventional aircraft [25]. The pressures can be processed by an ADC or by an

FCC to obtain a complete set of air data, as shown in Fig. 1.4. This function
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Figure 1.3: A possible advanced ADS architecture for civil aircraft. The red lines
represent the electrical output signals

can be carried out using equations for potential �ow around a sphere and then

correcting them for nonpotential and nonspherical �ows with calibration coe�cients.

Generally, FADS is an overdetermined system: it measures more pressure than is

actually required for the air data state. Inaccurate pressure readings can be excluded

through calculations, and its robustness can thus be improved with respect to the

other ADS presented in this section. Moreover, FADS is used on some special

aerial-space research vehicles, such as the Lockheed Martin X-33 [26], which use

their own calibration algorithms to convert the raw pressure measurements into the

requested set of air data. In the future, another class of nonintrusive sensors may

be used, that is optical airdata sensors. These sensors use lasers to measure the

speed, �ow angles and temperature of the air. They only need a �ush window in

the airplane for the laser equipment.

Unitl now, ADSs for civil and military aircraft have been presented for piloted

airplanes, but the following complete suite of air data is required for the automatic

control and navigation of any kind of manned or unmanned, stable or unstable:

{p0, ps, Ts or T0, α, β},
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Figure 1.4: FADS architecture. The green line represents the electrical output
signal and the blue lines represent static pressures lanes

where free stream values of aerodynamic angles are indicated as α and β for simplicity.

As far as unmanned aircraft are concerned, the complete air data set is necessary

to �y safely along the entire �ight envelope, from take-o� to landing. Nowadays,

UAVs are usually equipped with an air data boom (shown in Fig. 1.5), which is able

to provide a complete set of air data. It can be built using common nose booms or

�ve-hole probes [27]. Air data booms are usually used on UAVs as the primary and

Figure 1.5: A standard ADS boom architecture for UAV aircraft. The red lines
represent the total pressure lane, the blue lines the static pressures that are actually
connected and the green lines represent the electrical signals

the sole ADS because of their capability of measuring free stream air data, without

requiring calibration algorithms. Because of the last two reasons, this kind of ADS
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Figure 1.6: A possible ADS architecture for automatic control and navigation
using standard probes. The red lines represent the total pressure lane, the blue lines
the static pressures that are actually connected and the green lines represent the
electrical signals

is often used as a calibrating system (see section 1.2) and hence is indicated as a

�ight test air data system. Although the advantages ot the air data boom solution

are well known, the potential issue associated with intrusion into the �eld of view

of forward looking cameras, makes this solution not completely suitable for use on

UAVs. In addition further complexity is added if a multiple nose probe arrangement

is required.

A possible ADS for unmanned �ight vehicles, based on standard probe technology,

is shown in Fig. 1.6 and it is very similar to that presented in Fig. 1.2, but another

static pressure sensor was added which allows the angle of sideslip, β, to be calculated

using the di�erence between the left and right static pressures, as in (1.1). Even

though this architecture (the group of probes, sensors and ADC) has the enormous

advantage of being economic, it needs several external sensors mounted onto the

fuselage, and hence it is not very convenient to redound this system for modern

UAVs.

The last ADS architecture, presented in Fig. 1.6, can be simpli�ed to a great

extent using advanced probes. A possible advanced ADS, which is able to provide

a complete set of air data, is represented in Fig. 1.7. In the latter case, the multi

function probes are adequately mounted onto the aircraft on opposite sides of the

nose to correctly sense the angle of attack, in addition to the left and right static

pressures and two total pressures. Even though the redundant measurements of α
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Figure 1.7: An advanced ADS architecture using multi-function probes. The green
lines represent electric signals

(a) Air data boom (b) Standard ADS (c) Advanced ADS

Figure 1.8: Possible ADS architectures considering current air data technologies

and P0, are not required for a simplex system, the two static pressure measurements

are necessary to correctly calculate the static pressure in the presence of lateral wind

and to use in (1.1) in order to calculate the angle of sideslip, β. Considering that the

ADS costs are just considered here in a qualitative way, it is worth mentioning that

it is always more expensive when advanced probes are used in ADS, than those with

standard probes shown in Fig. 1.6, but this allows the initial 5 external probes to be

reduced to 3, two multi function integrated probes and one temperature sensor. In

order to summarize the possible ADSs for UAVs and to highlight the di�erences, Fig

1.8 describes three possible ADSs identi�ed here according to current technology: air

data boom, classic or advanced. A temperature sensor does not appear because each

system is edowed with one. In order to comply with current safety requirements,

one of the ADS represented in Fig. 1.8, which is able to provide the complete set

of air data, needs to be physically duplicated, or even triplicated, to allow UAVs
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to �y in a controlled airspace in order to carry out aerial work. The air data

boom in Fig. 1.8(a) is not suitable for redundancy purposes mainly because of

the interference with electro-optical sensors, as previously mentioned. Although

the ADS, which exploits the standard probes shown in Fig. 1.8(b), can easily be

duplicated, it requires a large number of external probes with the consequent issues

regarding the mounting positions. Considering the complexity of an ADS system,

the use of advanced probes (Fig. 1.8(c)) allows to redound the system with fewer

external probes than the standard ADS, but with higher costs. As usually occurs

in the engineering �eld, there is no best solution but rather a best compromise:

the redundant ADS design is always a compromise between technical requirements,

performance and costs.

A software-based virtual sensor will be introduced within this scenario in order to

replace physical sensors and save on hardware with the bene�ts discussed in chapter

2.

1.2 ADS Calibration

In all the described cases, the ADS probes need to be calibrated to obtain free

stream data. The probes located on the aircraft surface skin perform measurements,

commonly indicated as local measurements, which are a�ected by errors due to the

location of the sensors. Moreover, the presence of the aircraft and its motion distort

the external �ows from the free stream conditions. The resulting error from the

aforementioned contributions is simply indicated as the local-to-true error, whereas

when it is refers to static pressures (and also dynamic pressure) it is de�ned as

position error. In order to remove the errors due to the location of the probes,

ad-hoc calibration laws are introduced to convert the local sensor measurements

into the free stream ones.

The most sensitive-to-location air data is the static pressure, because of the considerable

pressure �ow distribution changes that takes place along the fuselage, see Fig. 1.9

from [22], which are functions of the aircraft shape, �ight regime (Mach number)

and aircraft attitude (α and β). While the total pressure measurements do not
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Figure 1.9: A typical pressure distribution along the fuselage

depend signi�cantly on the location of total pressure probe, the static pressure is

highly in�uenced by the position error a�ecting the calculations of dynamic pressure

and of barometric altitude which is used to vertically separate aircraft in airways

worldwide. It is indicated in hundreds of feet, for example, an aircraft �ying at

33000 ft, is indicated with the international standard FL330. The static pressure

is usually calibrated using a correction factor ∆Cp =
ps,i−ps∞
qc∞

as a function of the

Mach number (see Fig. 1.10), while considering, at this stage, only a very slight

in�uence of the aerodynamic angles. As far as low velocity is concerned, larger

Cp are acceptable according to aviation regulations, as described in [28], in fact a

±30feet error can be accepted for Mach numbers below 0.4 (M < 0.4) in the landing

con�guration.

The total pressure is only in�uenced slightly by Mach numbers over 0.9 and by

angles of attack, and also sideslip, higher than 10 deg; corrections are required

outside these boundaries. The air �ow angle vanes must be calibrated in order to

remove errors that derive from the in�uence of fuselage aerodynamics and the Mach

number. The temperature measured by the static temperature probes is higher than

the free stream air temperature because of frictional heating, radiation from the

thermometer to the external environment; total temperature probes measure higher

temperatures due to the same issues regarding the static temperature probes and

also for the non-isentropic compression of the air on the total temperature sensor. A

recovery factor is usually adopted to correct the temperature probe measurements

and it is a function of the Mach number over 2 and the angle of attack over 10 deg.

Several calibration techniques exists to calculate the compensation factors for each
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Figure 1.10: Position error tolerance [28]. If the position error is entirely within
the envelop of curve A, then no correction is required. If the position error falls
within the envelop of curve B, a compensation is required to make the position error
in within the curve A. If it falls outside the curve B, a new mounting position is
suggested. The landing pro�le regards �ight regimes for M < 0.4

of the air data.

The most commonly methods, which are presented in the next two sections, can be

split into two main groups: indirect and direct. Tower �yby is the most reliable

indirect calibration technique for pressure position error compensation. Among the

direct methods, the �ight test boom is the most accurate and simplest technique

to correct all the air data measurements. It is in fact widely used in the UAV

�eld because of its time and cost saving characteristics. The following description

of methodos used for calibrating ADSs, is here reported in order to describe how

sophisticated are the classical calibration methods and to highlight bene�ts and

drawbacks of all the methodologies presented here.

1.2.1 Indirect Methods

Three indirect methods for pitot-static system calibration will be presented in this

section. The �rst is the tower �yby method, which is mainly used for static pressure

data calibrations. The second is the radar tracking methodology, which represents

a way of extending tower �ybys to supersonic velocity. The third methodology is a

further extension of the tower �yby method. It is obtained by performing several

dynamic maneuvers, which are tracked by radar, to compare the measurements with
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those carried out by the air data system being tested.

Tower Flyby

This method is extensively used for static pressure and altimeter calibration because

of its high accuracy. Tower �yby is an indirect calibration methodology, because the

test static pressure is calibrated by comparing with another one calculated at aircraft

height starting from the pressure and temperature measured at the ground level of a

runway on the basis of the standard lapse rate. The aircraft, equipped with the ADS

being tested, is �own along a prescribed path over the runway, at constant velocity,

at a height of about 100 ft. The �ight is recorded using a visual indicator, such as a

sighting stand or a phototheodolite, and the resulting angle, as shown in Fig. 1.11(a),

is used to calculate the real, or geometric, aircraft altitude, HA/C = ∆H1 + ∆H2.

All the quantities in the tower �yby method must be referred to the international

(a) Geometric aircraft height, HA/C (b) International Standard Atmosphere
(ISA) model and current weather conditions

Figure 1.11: Description of tower �yby method

standard atmosphere (ISA) in order to avoid referring the calibrations to current

day weather conditions, for example, when temperature and pressure at sea level

are lower than standard values, as depicted in Fig. 1.11(b). In fact, in (1.2), the

measured geometric aircraft height, HA/C , is corrected to convert the measurement

to standard conditions, HA/C,ISA, in order to refer the pressure calculated in (1.2)

to standard conditions. Therefore, the static pressure used as a reference in the

tower �yby calibration is calculated starting form the static pressure measured at
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the runway level, QFE, as

ps,A/C,ISA = QFE

(
1 +

β

Tsrw
HA/C,ISA

)− g
Rβ

, (1.2)

where β = 0.0065
K

m
is considered constant inside the troposphere (H ≤ 36000 ft)

and HA/C,ISA is

HA/C,ISA =
Trw,ISA
Trw,day

HA/C . (1.3)

A graphical approach of the calibration phases of the tower �yby method is reported

in Fig. 1.12 in which the route from the measured QFE to the reference static

pressure, ps,A/C,ISA, is described by also exploiting the aircraft height referred to

standard weather conditions, HA/C,ISA, and calculated using (1.3).

Figure 1.12: Process to calculate the reference static pressure at aircraft height
referred to standard weather conditions

The tower �yby methodology can be exploited from slightly higher velocities than

stall, usually higher than 1.3Vs, for safety reasons, to the transonic regime (M <

0.85), to avoid any damage to civilian buildings. A single tower �yby �ight lasts a

few minutes, but is repeated at several velocities to cover the entire �ight envelope;

sometimes a single point (or velocity) is repeated more than once in order to collect

more data to minimize the measurement errors. In certain circumstances, data

collected during tower �yby tests can also be used for a preliminary correction of

the angle of attack at subsonic Mach numbers. In fact, since the velocity is constant,

the analytical free-stream angle of attack can be calculated using the lift coe�cient

expression and used to correct the angle of attack measured from the air data system

aboard.
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Radar Tracking

A similar method to tower �yby is that of the radar tracking calibration method,

although it is less accurate. It is in fact often used to extend the position error

compensation obtained using the tower �yby method to higher velocities than the

speed of sound (M > 1) for supersonic aircraft. The airplane is accelerated, usually

over the sea or very far from civilian buildings, till a maximum velocity is reached,

while a constant heading and geometric height are maintained and measured using

radar. The frame within the �ight data collected during acceleration, in which the

Mach number, or qcA/C/psA/C , is equal to one determined during the tower �y by is

singled out. The position error correction, Cp, is known at this time frame from the

tower �yby calibration and is considered the same for the accelerated �ight. Hence,

the real or calibrated barometric height can be calculated at this frame. The last

corrected barometric height is used to correct all the other altitudes recorded during

the accelerated �ight, and the position error correction can be calculated for all the

other time frames using the (1.2).

Dynamic Maneuvers

The radar tracking calibration method can be extended at higher altitudes, exploiting

a radar system, or other Earth-relative data sources, to reconstruct the trajectory

of dynamic maneuvers, which are corrected from external environment disturbances

using weather analysis in order to obtain the free stream data. Descents and climbs

are performed for baro-altimeter and, hence, for static pressure calibration purposes:

the altitude measured on board of the test aircraft is compared with the altitude

calculated using radar or other considered devices.

1.2.2 Direct Methods

Three direct calibration methods, which are commonly used to calculate the position

error correction for pressure measurements, will be presented in this section. Aerodynamic

angles can instead be corrected only using the �ight test boom technique.
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Flight Test Air Data Boom

The most commonly used direct calibration method exploits the pitot boom (see

Fig. 1.8(a)), which is usually equipped with two �ow angle vanes that are used

for free-stream aerodynamic angle measurements. The �ight test boom calibration

method is used to calibrate all the quantities of the previously presented air data

set and can be used at any Mach number. The aim of this calibration methodology

is to calibrate ADSs in the presence of severe dynamic maneuvers. Windup turns

are performed to obtain data at elevated normal forces or angle of attack, while

roller coaster and pushover-pullups are used for angle of attack calibration. Rudder

sweeps are performed for angle of sideslip calibration purposes.

The length of the boom probe is a related to the disturbance introduced by aircraft

in the external �ow. Although a very long boom could be an optimal con�guration

for free stream air data collection, dynamic instabilities, which can occur at certain

velocities and attitudes and which introduce noise into the measurements, due to

vibrations, can limit the length of the boom. An adequate strut is in fact designed

for the required boom length.

Trailing Cone

The trailing cone method is another direct-comparison type of calibration. A long

tube behind the aircraft can measure air data at nearly free-stream conditions using

an adequate probe. The perforated cone acts as a drag device, which, coupled with

a tube of varying length, is able to stabilize the end-tip probe (see Fig. 1.13(a)),

since the optimum extension length to guarantee trailing cone stability depends on

velocity. In order to cover the entire aircraft �ight envelope, an extending/retracting

system must be designed to avoid any dynamic instability of the tube. This calibration

method is only used for static pressure correction and, with respect to the tower �yby

method, has the advantage of being able to validate the tower �yby calibration and

extend it to higher altitudes.
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(a) Trailing cone method (b) Pacer aircraft method

Figure 1.13: Two direct methods to calibrate the static pressure

Pacer Aircraft

This direct-comparison calibration method involves a second airplane, known as the

pacer aircraft, which is used as a free-stream source of pressure data. An accurately

calibrated air data system aboard the pacer aircraft is used to calibrate the test

airplane. Both aircraft �y at nearly the same attitude and altitude and if any

di�erence exist, an altimetry correction is carried out using the altitude di�erence

measurements. Unfortunately, this method su�ers from the drawback that the

calibration accuracy cannot be better that the accuracy of the air data system

of the pacer aircraft.

1.2.3 Matlab Code for Calibrating ADS

Two methods will be presented in this section, that were developed during this

research project to calibrate ADS, in particular the total pressure and aerodynamic

angles using a direct method which exploits reference air data from a pitot boom,

while the static pressure is calibrated using the indirect tower �yby method. The

routines are aimed for UAV application, but can also be used for manned aircraft.

Tower Flyby

The Matlab tower �yby routine, called CaliTow, is essentially a code which summarizes

the internal procedure of Alenia Aermacchi.

The code needs the following inputs from �ight test conditions:

� pressure at the runway level (QFE ),
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� temperature at the runway level,

� altitude of the runway,

� any known bias of the pressure transducer.

From a graphical user interface (GUI), the user is requested to provide di�erent

information recorded during �ight tests:

� geometric altitude from the runway,

� indicated static pressure of the ADS that has to be calibrated,

� indicated dynamic pressure of the ADS that has to be calibrated,

� indicated Mach number of the ADS that has to be calibrated.

The routine then calculates the compensation factor of the ADS tested for static

and dynamic pressure, according to method presented in 1.2.1. At this stage, the

corresponding true values of any local pressure measurements are known for each

time step of the �ight data. Therefore, a new �le is created from the initial �ight test

data �le, in which new columns are added for the true, or free-stream, static pressure,

dynamic pressure (considering the total pressure to essentially be correct), CAS and

MT data. From the entire �ight test data (about one hour of data recording) only

a few points (about 10) are manually identi�ed as the most representative. These

reference points are usually extracted during the stabilized �ight conditions when the

accelerometers and gyroscopes are only slightly excited. A new �le is then generated

automatically, with the previously chosen representative points, in which both the

indicated and corrected values of ps, qc, CAS and M are contained. The user is

then asked to choose the order of the pressure error correction (PEC ) polynomial,

which, in this treatment, is only a function of indicated Mach number,

Cp =
∆P

qc,i
=
pi − p∞
qc,i

= f(Mi). (1.4)

The calculated PEC could easily be implemented, as depicted in Fig. 1.14, in ADC

as static pressure.

Generally speaking, the PEC depends on various parameters, f(ps,i, qc,i, αi,Mi), but

in the present work all the other dependencies have been considered negligible with
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Figure 1.14: Diagram block of PEC implementation in ADC

respect to that of the Mach number. The described procedure is often used without

a calibration polynomial, but look-up tables are adopted, which are able to take

into account more dependency parameters than only the Mach number, such as the

angle of attack, sideslip and so on.

Since the dynamic pressure is calculated as the di�erence between the total and

static pressure, the total pressure is sometimes considered correct, or it is corrected

using direct methods, because it is in�uenced less by position errors. Under this

hypothesis, once the static pressure is corrected, the dynamic pressure is also corrected.

Once the PEC is obtained, the resulting look-up tables are implemented in the

process for static and dynamic pressure calibration, see Fig. 1.14.

Flight Test Air Data Boom

The here presented Matlab routine, called CaliRef, is essentially an interpolating

code which minimizes the mean squared distance between local and free stream

data.

Just several points (about 10) are manually identi�ed from the entire �ight test data

(about one hour of data recording) as the most representative of the stabilized �ight

conditions with the corresponding time steps. These reference points are usually

extracted when accelerometers and gyroscopes are just slightly excited.

As the time step list is formed, it is inserted into the Matlab routine, which extracts

new columns from �ight test data with the corresponding free stream (from the

boom) and local measurements (from the test ADS) of the total pressure, angle of

attack and sideslip. At this point, the polynomial order for each of the quantities is

selected and the optimization routine returns the requested polynomial coe�cients.
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Virtual Sensor Design

In this chapter, the virtual sensor will be presented, from its �rst concept till its �nal

version. The virtual sensor concept arose after some ADS multi-probe architectures

proposed for MALE (Medium Altitude Long Endurance) applications were studied

and realized that a completely satisfactory architecture was not available on the

market for this kind of aircraft, due to the intrinsic complexity when redundant

systems are required. Some technological issues do in fact exist, such as the need to

keep costs low, which is an important driver on the UAV market, but which is often

in con�ict with the need to introduce innovations and the need to keep the aircraft

weight down, in order to increase the payload capability in terms of weight and

volume, and this is usually in opposition to certi�cation regulations, which require

redundant systems for safety reasons. As far as ADS is concerned, many other issues

also exist. Let us consider, for example, that most ADS sensors need to be installed

in the forward part of a UAV fuselage, which is already taken up by the payload,

avionic equipment, radomes, antennae and opto-electronic sensors speci�c for the

aircraft mission. Another important issue concerns the so-called bird strike event.

Because of the reduced size of UAVs, it can sometimes be a problem to assemble

several external air data probes or sensors adequately spaced out to comply with

bird strike certi�cation. Therefore, considering these, and other minor issues, the

need to reduce the number of actual sensors seemed to be of primary importance:

the virtual sensor concept thus arose. Since both total and static pressure may be

calculated using standard Pitot-static tubes, a remarkable simpli�cation of the ADS

architecture (see Fig. 2.1(a)) can be obtained through the use of virtual sensors for

20
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aerodynamic angle estimation. Hence, in this work, a virtual sensor was conceived

for aerodynamic angle estimation. It was also thought up to be used both as a

primary source of data and as a stand-by system which could be used for voting and

monitoring purposes, in order to lower the level of redundancy.

At the beginning, very few design requirements were set for the sensors:

� it had a comparable performance as with current actual sensors: maximum

errors within ±1 deg;

� it had to run in a few milliseconds on real FCC, in order to work in real time;

� it had to be able to use all the available data at the FCC as other inputs.

On the basis of experience gained in Alenia Aermacchi, a tolerance band of ±1 deg

was de�ned which stemmed from three main contributions: errors of the current

angle vanes, which is within ±0.4 deg; errors due to the calibration algorithm,

which is within ±0.3 deg; errors caused by the installation, which is within ±0.3 deg.

Each of the three error contributions could be expanded into sub-contributions, but

it would be beyond the goal of this work.

The most important novelty introduced by virtual sensor is the indirect measurement

of aerodynamic angles unlike all the other sensors built till now which measure

aerodynamic angles in a direct way adopting some pressure measurements using

air data probes from the air�ow surrounding the aircraft. Therefore, an innovative

way to estimate aerodynamic angles was required to replace the physical sensors by

exploiting the �ight data already measured on-board the UAV, such as using inertial

data. The choice between a model based technique or neural network will be dealt

with in the next sections.

2.1 Project Requirements and Objectives

A NN-based processing system was proposed as it was easier to implement and was

inherently stable alternative choice compared to model based techniques.

As far as the mathematical model based technique is concerned, an aircraft model is

required to de�ne the state vector, its derivative, and hence its ODEs that have to
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be solved to obtain the desired measures of aerodynamic angles. The modeling of a

very complex system, like an aircraft, will always introduce some discrepancies from

the real-world system. Building a reliable aircraft mathematical model can in fact be

considered a mirage: an aircraft model and its subsystems are usually approximated

and may require several tuning iterations after comparisons with actual �ight test

data. Under these conditions, neural networks may be more advantageous than

model based techniques. In fact, when neural networks are used, it is possible to

model a real-world plant without knowing anything about the dynamic model, just

by training NNs with the observed input and output patterns. It is obvious that the

knowledge of the analytical equations of actual systems, which which can be used

to describe their working and evolution, can be a great help to engineers to obtain

a better design of neural networks.

However, even though a very precise mathematical aircraft model is available, the

virtual sensors would need to be run in real time mode: indirect measurements

of aerodynamic angles require the aircraft model to run in a very short time, of

the order of magnitude of milliseconds, on the actual FCC, which is slower than

modern personal computers. First of all, this issue seemed an enormous problem

needed to be solved, using a model based technique. Moreover, programming a

mathematical model on aircraft FCC is not a simple task, due to the time consuming

recursive methods that are needed to implement the mathematical model, and for

safety reasons which always suggest avoiding sub-iterations to converge at each time

step, when possible. Regardless of how complicated neural networks are, they can

always be reduced to several matrix calculations with the use of non-linear functions.

Therefore, neural networks overcome the drawback of time consuming software and

the presence of inner loops.

The main drawback of neural networks compared to model based techniques is the

meaningless of the network coe�cients (synaptic weights), while aircraft mathematical

model coe�cients have a physical meaning. This is a very important aspect of virtual

sensors in real life operations. Let us consider, for example, changing the aircraft

center of gravity (CG) by simply relocating the payload. In order to maintain the

same virtual sensor performance, the neural network should be retrained with the
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new weight and balance con�guration. Instead, if a mathematical model is used,

changing the cg is a very simple operation. It is clear that even very slight changes

in the aircraft con�guration could decrease the virtual sensor performance and, this

requires investigations using a simulator, to avoid unexpected errors.

The proper construction of a neural network requires a training set to be developed

which would accurately and adequately represent the plant which has to be learned,

as it will be described in section 3.5. For this purpose, several maneuvers are required

at di�erent speeds in all �ight conditions (�ap extension, still or turbulent air, and

so on) in order to cover the entire �ight envelope. Obviously, this is not realistic,

and the number of maneuvers, and thus training data points, will be reduced so

that they can be managed by a common workstation, as will be described later

on. Furthermore, the optimum architecture and degree of training still has to be

determined heuristically during the training process.

The conclusion of this preliminary technique selecting activity was that the characteristics

of neural networks are better suited the initial requirements better than a model

based technique and were therefore selected as the technique on which to build the

virtual sensors.

2.2 Trade-o�: Advantages and Drawbacks

All the presented ADS solutions presented in section 1.1 are realistic layouts considering

the sensors available on the market. Since the basic set of air data (see section 1.1)

is required in any aircraft equipped with autonomous control system, the issue is

how to design the ADS according to the desired type of sensors. An analysis on

each system, presented in section 1.1, will be carried out in this section in order to

highlight some of the advantages and drawbacks of each one, and better compare

the virtual sensor with the actual ones.

The system depicted in Fig. 1.6 has the enormous advantage of being made up

of a very consolidated technology and of being available on the market. The main

drawback is the number of external devices that are necessary with the consequent

complexity due to wirings, piping and mechanical constraints.
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(a) ADS with neural networks (b) Possible ADS architecture using NNs

Figure 2.1: A possible installation of ADS probes using virtual sensors for
aerodynamic angle estimation based on neural networks

The advanced ADS presented in Fig. 1.3 allows engineers to save two external

sensors, but most of the sensors need to be installed in the front part of the fuselage,

which could be a problem for some UAVs. Even though a cost evaluation is beyond

the scope of this work, it is clear that such a system could be more expensive than

the �rst one.

Since FADSs (described in Fig. 1.4) are more complicated than the other architectures

mentioned here, they are only suitable for very particular application where a �ush

system is the only technological solution that can be adopted. The virtual sensor

can be used in a realistic architecture, as depicted in Fig. 2.1(a), and can introduce

the following advantages compared to other modern architectures:

� a saving of external actual sensors and the related costs;

� a weight saving;

� an onboard saving;

� a reduction in maintanance: fewer items means improving ADS reliability.

Moreover, it is clear that the ADS in Fig. 2.1(b) can be easily redounded if compared

with all the other possible current ADSs represented in Fig. 1.8. In fact, as shown

in Fig. 2.2, a realistic triplex ADS architecture can be simpli�ed to a great extent

introducing virtual sensors for α and β, and at least nine external probes are thus
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(a) Triplex ADS using o�-the-shelf air data probes (b) Possible triplex ADS
architecture exploiting

NNs

Figure 2.2: Realistic triplex ADS architecture using, or not, virtual sensors for
aerodynamic angles estimation based on neural network.

saved if compared with ADS based on o�-the-shelf probes: six static �ush ports

and three α vanes. Moreover, another advantage of using virtual sensors is that no

dedicated ADC is needed. Indeed, The ADCs in Fig. 2.2(b) were substituted by

ADUs, which are cheeper than the more complex ADCs because they do not o�er

any calculation capabilities but only a set of transducers.

Overall, as far as analytical redundancy is concerned, a virtual sensor, based on

neural networks, has been identi�ed as the best strategy to reduce complexity

inherent current redundant ADS sensors.



Chapter 3

Neural Network

3.1 Historical Background

In 1955, McCarthy et al. [29] coined the term arti�cial intelligence (AI) to identify

that branch of computer science in which some techniques share the ability of the

human mind to reason and learn in an environment of uncertainty and imprecision.

The aim of AI is to create intelligent machines that mimick human intelligent

behavior by expressing it in language forms or symbolic rules [30, 31]. Within the

computer science group, soft computing (SC) belongs to the arti�cial intelligence

branch. According to Zadeh [32], soft computing has the aim of adapting to the

pervasive imprecision of the real world, unlike traditional, or hard, calculation

methods. The driving principle of SC is to �exploit the tolerance for imprecision,

uncertainty and partial truth in order to obtain tractability, robustness and low cost

solutions�. Soft computing includes three human inspired techniques: the arti�cial

neural network (ANN) or simply the neural network (NN), fuzzy logic (FL) and

genetic algorithm (GA). GA is a heuristic search that mimics the process of natural

evolution. The fuzzy logic is based on calculation using linguistic labels stipulated

by functions, called membership functions. A selection of if-then rules are the core

of the fuzzy inference system, which can model human expertise in several speci�c

applications.

Inspired by the human brain structure, neural networks are expected to mimic brain

mechanisms to simulate human expertise in decision making simply by using matrix

calculations. In 1904, Cajal [33] introduced neurons as the basic component of the

26
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human brain; since then many researchers have been involved in mathematically

reproducing the complex, nonlinear and parallel computer that the human brain is.

After a few decades, several arti�cial intelligence techniques were completed and fully

demonstrated, but owing to the high calculation power that they required, they did

not spread very much. The �rst mathematical neuron model called the perceptron

model, was proposed by Rosenblatt in 1958 [34]. This model is still widely used in

the neural network �eld, but a rigorous demonstration required about forty years

and was only proposed after the neural network had been successfully used. The

fundamental equation of feed-forward neural network units (reported in (3.1)) is very

similar to the expression proposed by the neurophysiologists McCulloch and Pitts

[35], already back in 1943, to mimic nervous activity. Only starting from 1987 did

the authors, Hecht-Nielsen [36, 37], Lippmann [38] and Spreecher [39], suggest that

Kolmogorov's theorem (1957), concerning the realization of arbitrary multivariate

functions, could provide theoretical support for neural networks.

Theorem 1. (Kolmogorov's Theorem) Any continuous real-valued functions
f(x1, x2, ..., xn) de�ned on [0, 1]n, with n ≥ 2 can be represented in the form

f(x1, x2, ..., xn) =
2n+1∑
j=1

gj

(
n∑
i=1

Φjixj

)
,

where the gj's are properly chosen continuous functions of one variable, and the ij's
are continuous monotonically increasing functions independent of f .

Other authors, such as Girosi and Poggio [40], instead criticized this interpretation

of Kolmogorov's theorem and stated that it was irrelevant for neural networks as

the Φij functions are highly non-smooth. As this debate continues, the importance

of Kolmogorov's theorem has pointed out the feasibility of using parallel and layered

network structures for multivariate function mappings, and of not proving the

universality of neural nets as function approximators. Other authors, Cybenko

[41], Hornik et al. [42] and Funahashi [43], independently proved analytically that

one hidden layer feed-forward neural network is able to uniformly approximate any

continuous multivariate function, through the use of continuous sigmoid functions

(instead of non-smooth Φji), as well as other more general activation functions. Since

the late 1980's, thanks to computing progress, several complex problems have been
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solved using neural networks developed on personal computers, but the performance

of the human brain still remains a mirage. In fact, although silicon gates are six

orders of magnitude faster than human neurons, the human brain is able to process

a large amount of information much faster than modern computers.

3.2 Theoretical Background

In 1987, the neuroscientist and computer scientist Arbib [44] described the nervous

system depicted in Fig. 3.1, where the human brain continuously receives information

from surrounding environment (stimulus) and makes decisions (response). The two

sets of contrary arrows indicate that the brain can communicate with the receptors

and e�ectors; the arrows pointing right indicate the forward transmission, while the

others indicate feedback transmission. It is clear that the response could also be

sensed by the brain and then used as input. Continuing the parallelism between

Figure 3.1: A schematic representation of the nervous system

human brain and arti�cial neural network, the neurons under stimulation send out

electrical pulses (or spikes) to communicate with other neurons connected to itself

using particular connections (synaptic connections). The engineering perceptron

neuron model (see Fig. 3.2), proposed by Rosenblatt [34] in 1958, has the same

generic characteristics as human ones: the NN is stimulated by input signals (xn),

and the stimulus is sent, using dedicated links (wjn), to a mathematical function (or

activation function fj) which elaborates an output response (yi). According to the

perceptron neuron model in Fig. 3.2, the j− th neuron is mathematically described

by Eq. 3.1

yj = fj(vj) = fj

(
n∑
i=1

wjixi + bj

)
. (3.1)

In order to highlight the working of the arti�cial neural network and the importance

of the bias role, consider, for example, modeling a thermocouple [45]. The governing
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Figure 3.2: Perceptron neuron model with non-linear activation function fj and
bias bj

equation can linearly be approximated as (3.2) within a certain range of temperatures

for which the linear hypothesis is valid,

Vout = KT∆T + b. (3.2)

Using a neural network with only one neuron and a linear activation function (f = 1),

the neural network approximation is

ŷ = w11x1 + b1. (3.3)

The importance of the bias, for any single neuron, is clear from Eq. 3.3 because it

allows one to choose from among a parallel line set. Obviously, after the learning

process, the closer the weight w11 is to KT , the more the neural network will be

accurate.

Having proved that neural networks can approximate continuous multi variable

functions, a method, known as the learning process, is needed to optimize the free

parameters of neural networks.

The key to success of ANNs is represented by

� the synaptic weights optimized using a learning algorithm;

� the type of activation functions.

These two topics will be discussed in the next sections.

Generally speaking, an arti�cial neural network is made up of several neurons

organized in di�erent layers, as depicted in Fig. 3.3. This particular neural network
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Figure 3.3: General architecture of a feedforward multilayer neural network

estimates two outputs, ŷ1 and ŷ2, and has n inputs in the input layer, r neurons in

each of the h hidden layers and two neurons in the output layer. The mathematical

model of Fig. 3.3 is very similar to the human nervous system depicted in Fig.

3.1. The sensory unit is the source node that constitutes the input layer, or input

vector, while the hidden layers represent the neural network and the e�ectors are

the computation node in the output layer. This kind of neural network is commonly

known as a multilayer perceptron (MLP ). Each neuron in Fig. 3.3, nhr, in turn

contains the scheme of Fig. 3.2, therefore the outputs are calculated as in Eq.

3.4

ŷ1,2 = fo1,2

(
r∑
l=1

fhl...

(
f1i

(
n∑
k=1

wikxk + b1i

)))
. (3.4)

3.2.1 Activation Functions

Any kind of mathematical function that is de�ned in the input domain can be used

as an activation function. Here, a list of the nonlinear activation functions that were

considered in this work is given in Fig. 3.4. The linear function (Fig. 3.4(d)) is

commonly used as an activation function for the output neurons in order to give, to

neural networks, the ability to extrapolate beyond the training limits, which is not

possible with a limited function. Instead, the linear function su�ers from diverging

output: the greater the stimulus, the greater the response. For this reason, the

activation functions of inner neurons usually have limited functions, such as the

sigmoid type, in order to prevent any diverging output of the inner neurons from
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(a) sigmoid function (b) log-sigmoid function

(c) hard-limiter function (d) linear function

Figure 3.4: Examples of activation functions
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Figure 3.5: A system with input u, output y, measured disturbances w and
unmeasured disturbances v

going to the output layer.

The hard limitier (Fig. 3.4(c)) is another limited function but it has the drawback

of having non-continuous derivatives. The logarithmic sigmoid function (3.4(b)),

positive de�ned, has been shown to be less suitable because it does not o�er a good

performance for the present application.

3.3 System Identi�cation Methods

In order to study the dynamic behavior of real complex systems, such as aircraft, a

mathematical model can be used instead of an actual test to reduce costs and time.

The development of mathematical model starts from classical dynamic equations,

which are approximated according to the level of accuracy required for the simulations,

and then detailed with known parameters, such as aerodynamic coe�cients from

wind tunnel tests. The model is frozen when a comparison between the simulated

and observed data from real system tests is used to tune some of the uncertain

parameters related to the mathematical model. Consider the general aircraft system

in Fig. 3.5. The main block is made up of several sub-blocks, each of which

mathematically reproduces real sub systems, e.g. the engine block. The signals

manipulated by an external user, such as the pilot commands, are called inputs, u,

while the observable signals, as well as the vertical acceleration, are called outputs,

y. The external disturbances that can be measured, such as the compressor rotating
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velocity, or cannot be measured, such as the actual air turbulence, are also indicated.

Real-life systems are quite complex to model with high accuracy. Model developers

sometimes make use of other di�erent techniques from conventional model based

ones to model actual systems.

System identi�cation methods are widely used when the complexity of the system

and the processes involved are high, because in this way the model can be built

even if the governing equations are unknown. The model is in fact only built using

observed data from the actual system: the input and output patterns are recorded

and subjected to data analysis to infer a model. One of the keys to success of system

identi�cation methods is the correct composition of the so-called regression vectors,

which are used to predict the future output of a system. Here, a simple linear

system, which satis�es (3.5), is described in order to introduce some quantities and

notations that will be used in this work.

y(t) +a1y(t− 1) + . . .+any(t−n) = b0u(t) + b1u(t− 1) + . . .+ bmu(t−m). (3.5)

The linear system of (3.5) has been chosen to represent the system in discrete time,

because the observed data are always collected through sampling. The same system

can be written in a deterministic way, see Eq. (3.6), where the output at time t is

expressed as a function of the previous observations

y(t) = b0u(t) + b1u(t−1) + . . .+ bmu(t−m)−a1y(t−1)− . . .−any(t−n), (3.6)

Eq. (3.6) can be rearranged in more compact notation form by introducing the

vectors

y(t) = φT (t)θ, (3.7)

where

φ(t) = [u(t), . . . , u(t−m),−y(t− 1), . . . ,−y(t− n)]T , (3.8)

is the regression vector and its components are the regressors, and

θ = [b0, . . . , bm, a1, . . . , an]T . (3.9)

The model described in Eq. (3.5) calculates the output �regressing� or going back to

the regression vector, φ(t). It is also partly �Auto-Regressive� since the regression
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vector φ(t) contains old values of the variable that has to be calculated, y(t). The

model structure in Eq. (3.5) has the standard name of ARX-model: Auto-Regression

with eXtra inputs (or eXogenous variables). Once the regression vector structure has

been de�ned, i.e. how many old outputs and inputs have to be used, the ARX-model

performance depends on the de�nition of vector θ. The ARX-model often cannot

be used in real life applications because the exact old outputs, y, are not available,

so the ARX-model can be substituted with the Output-Error model (OE) according

to which the estimated outputs are used in the regression vector as regressors.

φ(t) = [u(t), . . . , u(t−m),−ŷ(t− 1), . . . ,−ŷ(t− n)]T , (3.10)

The regression vector (3.10) of the OE-model is used in this work in order to avoid

the need of knowing the exact outputs. Moreover, the use of outputs in the regression

vector is rather tricky because some errors are inserted into the input layer at each

time step from the old estimated output. To overcome this problem, the estimated

outputs were not considered in the regression vector in this work.

3.4 Multilayer Perceptron

The single perceptron model was introduced by Rosenblatt [34], and it remains

the simplest form of neural network. As previously mentioned, the neural network

depicted in Fig. 3.3 represents a common multilayer perceptron, which has been

successfully applied to solve several problems by means of training using algorithms

that belong that belong to the error correction learning process, which is characterized

by two ways of propagating through the layers, the forward pass and the backward

pass. In the forward pass, the input vector is applied to sensory nodes of the input

layers, and its e�ects propagates, layer by layer, to the output nodes. Here, a set of

outputs were calculated and the error of estimation was calculated comparing the

NN response with the desired target. During the backward pass, the error �ows from

the output node to the �rst hidden layer (see Fig. 3.6). The synaptic weights and

bias levels are adjusteds, by means of error correction rules, in order to minimize the

distance between the neural network prediction and the desired target. However,

whatever the learning algorithm is, a common learning loop, depicted in Fig. 3.7, is
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Figure 3.6: Illustration of the two propagation ways for signals and errors in the
error correction algorithm

followed. In the �rst step, the synaptic weights and bias levels (neural network free

parameters) are randomly initialized, then the neural network response is calculated.

The error in NN estimation is calculated with respect to the desired target, d. The

error is used to update the free parameters according to the chosen learning, or

training, algorithm until the convergence criterion is satis�ed.

3.4.1 Neural Network as a System Identi�cation Method

The purpose of this section is to introduce the connecting bridge between system

identi�cation methods and arti�cial neural networks. Sometimes, neural networks

are referred to as black box system identi�cation techniques for nonlinear dynamic

systems, because of the non physical meaning of the synaptic weight. Neural network

design is subject to the same rules as the system identi�cation presented in section

3.3. The neural network structure can in fact be chosen through the following two

steps:

� selection of the inputs to the network in order to de�ne the regression vector

� selection of the neural network architecture in order to de�ne vector θ.

The �rst step is equivalent to selecting a model, such as the ARX or OE, or even the

NNARX and NNOE model if referring to an arti�cial neural network. Other model
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Figure 3.7: Flow-chart of the standard learning process
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(a) The NNARX model structure (b) The NNOE model structure

Figure 3.8: Neural network models

structures taht were not considered in this work can be found in [46, 47, 48, 49, 50].

When de�ning a neural network three main steps are required

1. the choice of inputs to be used as stimulus of to the network from among the

available signals;

2. the choice of how many old, or past, inputs should be used in the input vectors

3. the choice of an activation function

Consider, for example, the SISO neural networks shown in Fig. ??. Since there

is only one input, u, the choice of input signal is forced, but in general a detailed

analysis of the system at hand is required to establish the necessary inputs. Here,

the system analysis refers to a mathematical description of the real-world system to

be modeled with the aim of highlighting the independent variables; an example is

explained in detail in the section 4.1. However, the number of old inputs and outputs

is chosen by the user according to her/his previous experience or on the basis of a

real-world system analysis. Generally speaking, each input, and output, may have

its own number of past inputs, even though this practice is not very common and

often refers to neural network architecture optimization that goes beyond the goal of

this work. Once the choice of inputs has been made, the regression vector is de�ned

as in (3.8) for the NNARX model and (3.10) for the NNOE model. The neural

network architecture, i.e. the numbers of neurons and hidden layers, is designed,

and successively optimized, in order to satisfy the network performance speci�cations

and the best generalization behavior. Performance and generalization will be de�ned
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in the next sections. Once the architecture has been frozen, vector θ, which is made

up of neural network free parameters, is also de�ned. Overall, if the neural network

input vector is de�ned, the regression vector, φ, is also consequently de�ned, whereas

if the neural network architecture is de�ned, the vector θ is ful�lled with synaptic

weights and biases. The neural network prediction can be written as ŷ(t) = φT (t)θ,

or using more conventional neural network notations as

ŷ(t) = φT (t)w(t). (3.11)

Therefore, the neural network problem can be considered as a system identi�cation

problem and all the known optimization techniques suitable for system identi�cation

can be used to train the neural networks with the aim of reducing the distance

between the NN prediction and the desired output.

3.5 Neural Network Training

In 1970, Mendel and McClaren [51] de�ned the learning process as �the process

by which the free parameters of a neural network are adapted through a process

of stimulation by the environment in which the network is embedded. The type

of learning is determined by the manner in which the parameter changes take

place�. The training process is thus a set of well de�ned rules that allows the neural

network to learn from an input-output data pattern and hence to adapt itself to

its environment. In other words, during the learning process the synaptic weights

are changed with the aim of improving the neural network performance, which is

usually referred to as the error of NN the prediction of given continuous multivariate

non-linear functions, such as complex real-world systems.

Consider, for the safe of simplicity, a neural network with only the j-th neuron

depicted in Fig. 3.2 in the output layer. The neuron is driven by an input vector,

x(t) = [x1(t), x2(t), . . . , xn(t)]T , which is applied upstream in the input layer or

produced by previous hidden layers. The error of the neural network prediction is

obtained comparing the NN output signal, yj, and the desired target dj

ej(t) = dj(t)− yj(t). (3.12)
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The �nal goal of the neural network training process is to minimize the output error

of (3.12), or to match other requirements speci�ed by the user. The algorithm used

to minimize (3.12) de�nes the learning method.

Several learning methods exist [48, 46, 47]: supervised, reinforcement and unsupervised.

In supervised learning, the learning process incorporates an external teacher and/or

performance information through a training set (input-output) of desirable network

behavior; indeed both the inputs and the outputs are provided. The network

then processes the inputs and compares its resulting outputs against the desired

outputs. Errors are then propagated back through the system in order to optimize

the synaptic weights and biases.

It has been assumed that the desired target outputs are known for each input

pattern. However, in some situations, less detailed information is available, for

example, whether the output is right or wrong. Under this hypothesis, supervised

learning is not feasible and a reinforcement learning method must be used. Sometimes

the reinforcement learning technique is seen as a particular form of supervised

learning, because the network, obtains some feedback from the surrounding environment.

There is no teacher in unsupervised learning. We still consider a network with both

inputs and outputs, but there is no feedback from the environment to say what the

desired output is or whether it is correct. The network itself must discover patterns,

features, correlations or categories in the input data and code them in the output.

The units and connections must thus display some degree of self-organization capabilitiy.

Currently, in fact, this learning method is limited to networks known as self-organizing

maps and are not in widespread use.

Overall, the best learning method for this work is the supervised method. Within

supervised learning. Several algorithms exist, here gradient methods will be considered

in particular, and �rst order and second order learning rules will be considered. As

shown in the next two sections, two classical algorithms were considered for the

training stages in this work: back propagation (BP) and Levenberg-Marquardt (LM)

algorithms. The BP method is one of the most frequently used in the past training

techniques, conversely LM is a second order training method and it was proved to

be faster than BP.
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Figure 3.9: Multi layer perceptron neural network with two hidden layers with the
same activation function and one output layer

3.5.1 Error Back Propagation Algorithm

The backward propagation of error method was �rst published in 1969 by Bryson

and Ho [52]. A few years later, in the early 1970's, several other authors independetly

developed the back-propagation technique. In 1974, Werbos [53] applied it to

behavioural sciences, and only in 1986 was it applied to the training of multi-layer

networks and called back-propagation by Rumelhart, Hinton and Williams [54].

Consider, for the sake of simplicity, a neural network with two hidden layers with

the same activation function, f , and one neuron in the output layer, as illustrated

in Fig. 3.9. The error of NN estimation, as de�ned in (3.12), can be calculated for

each time step at the output node, and the error energy for the j-th output neuron

at time step t can be written as

E (t) =
1

2

∑
j∈C

e2
j(t) =

1

2

∑
j∈C

(dj(t)− yj(t))2 , (3.13)

where C is the output signal set. If the network has only one output, C = 1 and

(3.13) will simplify toE (t) = 1
2
e2(t). Equation (3.13) represents the cost function of

the learning performance that has to be minimized by adjusting the free parameters

of the neural network. The back propagation algorithm applies a correction, ∆wji, to

the synaptic weight, wji, which is proportional to the gradient ∂E (t)/∂wji. According

to the chain rule, the gradient ∂E (t)/∂wji can be written as

∂E (t)

∂wji(t)
=
∂E (t)

∂ej(t)

∂ej(t)

∂yj(t)

∂yj(t)

∂vj(t)

∂yj(t)

∂wji(t)
. (3.14)
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Figure 3.10: Signal �ow scheme of the j-th output neuron

Considering the neuron in Fig. 3.2 to be an output neuron, the i-th input, xi,

represents the output of the previous neurons, and, for conformity of notation, it

will be indicated later in this work as yi (see Fig. 3.10). Eq. (3.1) may be rewritten

as

yj = fj(vj) = fj

(
n∑
i=1

wjiyi + bj

)
= fj

(
n∑
i=0

wjiyi

)
, (3.15)

where the synaptic weight wj0 (corresponding to the �xed input y0 = 1) equals the

bias bj. By di�erentiating Eq. (3.15) with respect to vj(t) and wji(t) separately, the

following equations can be obtained

∂yj(t)

∂vj(t)
= f ′j(vj(t)) (3.16)

and

∂vj(t)

∂wji
= yi(t) (3.17)

By di�erentiating both sides of (3.12) with respect to yj(t), and (3.13) with respect

to ej(t), we obtain

∂ej(t)

∂yj(t)
= −1 (3.18)

and

∂E (t)

∂ej(t)
=
∑
j∈C

ej(t). (3.19)

Therefore, the use of equations (3.16) to (3.19) in (3.14), yields

∂E (t)

∂wji(t)
= −yi(t)

∑
j∈C

ej(t)f
′
j (vj(t)) = −yi(t)δj(t), (3.20)
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Figure 3.11: Signal �ow scheme of the j-th hidden neuron

where δj(t) is commonly de�ned as the local gradient with the following expression

for the output layer

δj(t) = −∂E (t)

∂ej(t)

∂ej(t)

∂yj(t)

∂yj(t)

∂vj(t)
= −∂E (t)

∂yj(t)

∂yj(t)

∂vj(t)
=
∑
j∈C

ej(t)f
′
j (vj(t)) . (3.21)

The correction to the synaptic weight wji(t) is established using the delta rule

∆wji(t) = −η ∂E (t)

∂wji(t)
= ηδj(t)yi(t), (3.22)

where η is de�ned as the learning rate. Therefore, the updated weight is

wji(t+ 1) = wji(t) + ∆wji(t) = wji(t)− η
∂E (t)

∂wji(t)
= wji(t) + ηδj(t)yi(t). (3.23)

As shown by several authors [46, 48], there is no optimum learning rate, but according

to the particular problem, there is a speci�c η that assures fast and stable convergence.

Some algorithms are provided with a learning algorithm rate that varies according

to the local gradient, or other parameters, to speed up the convergence [55].

If the j-th neuron is part of a hidden layer, the error �ows backward through the

output layer before getting to a hidden layer. In order to highlight this process,

consider Fig. 3.11. In analogy with the previous j-th output neuron treatment, the

chain rule is used to �nd a useful expression of the gradient ∂E (t)/∂wji(t).

For hidden neurons, the local gradient has the same expression as (3.21), but,

this time, the index j represents the hidden neurons. In (3.13), index j must be

substituted with k, to agree with the subscripts in Fig. 3.11, in order to obtain the

new expression of the neural network error

E (t) =
1

2

∑
j∈C

e2
j(t) =

1

2

∑
k∈C

(dk(t)− yk(t))2 . (3.24)
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By di�erentiating (3.24) with respect to yj(t), it yelds

∂E (t)

∂yj(t)
=
∑
k∈C

ek(t)
∂ek(t)

∂yj(t)
=
∑
k∈C

ek(t)
∂ek(t)

∂vk(t)

∂vk(t)

∂yj(t)
. (3.25)

Considering Fig. 3.10, it is easy to obtain

ek(t) = dk(t)− yk(t) = dk(t)− fk(vk(t)). (3.26)

Hence, by di�erentiating with respect to vk(t), we obtain

∂ek(t)

∂yj(t)
= f ′k (vk(t)) . (3.27)

Equation (3.15) can be rewritten for the k-th neuron and di�erentiated, with respect

to yj(t), in order to obtain the following expression

∂vk(t)

∂yj(t)
= wkj(t). (3.28)

Using (3.28), (3.27) and (3.25), it yields

∂E (t)

∂yj(t)
= −

∑
k∈C

ek(t)f
′
k(vk(t))wkj(t) = −

∑
k∈C

δk(t)wkj(t) (3.29)

Finally, by using (3.29) in (3.14), the back propagation formula for the hidden neuron

is obtained as follows

δj(t) = f ′j (vj(t))
∑
k∈C

δk(t)wkj(t), (3.30)

where the expression for δk is (3.21), in which j is substituted by k. At the end, the

adjusting weight for a hidden neuron may be expressed as

wji(t+1) = wji(t)+∆wji(t) = wji(t)−η
∂E (t)

∂yj(t)

∂yj(t)

∂vj(t)

∂vj(t)

∂wji(t)
= wji(t)+ηδj(t)yi(t),

(3.31)

This is one of the oldest and most frequently used weight adjustment algorithms.

The back-propagation algorithm (BP) presented here can only be used for on-line

training, or, in other words, for step by step training. The BP algorithm can also

be used in batch mode, as described in the next section, in order to be used as an

o�-line training type.
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3.5.2 Batch Error Back-Propagation Algorithm

As can be noted in (3.30) and (3.22), a correction is applied for each time step,

or iteration, of the training data set that is characteristic of the on-line training

strategy. In order to use the error back-propagation technique in o�-line mode, the

whole available input-output pattern is used in a single training run. In this way,

the network synaptic weights are updated after that the entire training data set has

been inferred to the neural network. In order to consider the whole corresponding

input output set, 3.12 is rewritten for batch BP (BBP) as

Eav =
1

N

N∑
t=1

E (t) =
1

2N

N∑
t=1

∑
j∈C

e2
j(t) =

1

2N

N∑
t=1

∑
j∈C

(dj(t)− yj(t)) , (3.32)

and a very similar procedure to that presented in the previous section can be

adopted to obtain the updating weight. In order to accelerate the convergence

of the BP algorithm, a second order training algorithm will be presented in the next

section.

3.5.3 Descent Methods

Since the Levenberg-Marquardt (LM) algorithm belongs to the Newton method

category, which consists of gradient-based methods, a brief description of these

methods is presented here: �rst a digression on gradient and Newton's methods

will be presented, and then the LM algorithm will be discussed.

As for the back propagation algorithm, the focus is on minimizing the error functionE .

Moreover, in order to simplify the treatment, the on-line training method will be

presented since very few modi�cations are required to obtain batch, or o�-line,

versions.

Gradient-based Methods

As shown for the BP algorithm, the main objective is to minimize the performance

function,E of (3.12), de�ned on an n-dimensional input space w ∈ RR, where

the synaptic weights and biases are arranged in a one dimensional vector, w =
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[w1, . . . , wR]T , where R is the number of all the free parameters of the neural

network. The gradient expression on the left hand side of 3.14 can be expressed

as a function of all the weights

g(t) =
∂E (t)

∂w(t)
=

[
∂E (t)

∂w1(t)
, . . . ,

∂E (t)

∂wR(t)

]T
. (3.33)

According to gradient descent methods, the update weights, w, are calculated as

w(t+ 1) = w(t)− ηGg(t) = w(t)− η∂E (t)

∂w(t)
, (3.34)

where G is a certain positive de�nite matrix.

Steepest Descent Method

The steepest descent method is one of the oldest technique used to minimize multivariate

functions. For this method, the matrix G is de�ned as the identity matrix, I, hence

the (ErrorgradientLM) becomes the well known

w(t+ 1) = w(t)− ηg(t). (3.35)

The negative search direction, −g, means this method follows the local steepest

descent downhill direction, which implies the algorithm is e�ected to a great extent

by the initial conditions and easily falls in local minima, without globally minimizing

the given multivariate functionE .

Comparing (3.35) and (3.23), it can be noted that the equations are rather familiar.

The steepest descent method only di�ers from the back-propagation method as far

as the formal analytical expressions are concerned, but they are essentially driven

by the same principles: the updating weights depend on the gradient of functionE .

The BP algorithm is in fact often identi�ed with the steepest descent method.

Newton's Method

The descent direction for Newton's method is determined using the second order

derivatives of the objective function, if they are available. Apart from the mathematical
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concerns about the existence of derivatives, the performance function E can be

unfolded by means of a Taylor series and taken at second-order approximation

E (t+ 1) ≈E (t)

+ gT [ w(t+ 1)− w(t− 1) ]

+
1

2
[ w(t+ 1)− w(t− 1) ]T H [ w(t+ 1)− w(t− 1) ] ,

(3.36)

considering that higher order terms are omitted in the assumption that [ w(t+ 1)− w(t− 1) ]

is su�ciently small and H(t) is the Hessian matrix

H(t) =



∂2E (t)

∂2w1(t)
. . .

∂2E (t)

∂w1(t)∂wR(t)

. . . . . . . . .

∂2E (t)

∂wR(t)∂w1(t)
. . .

∂2E (t)

∂2wR(t)


. (3.37)

Since (3.36) is a quadratic function of w(t), its minimum point (wMIN) can easily

be obtained by di�erentiating (3.36) and making it equal to zero, and then solving

the following set of linear equations

0 = g(t) +H(t) [ wMIN − w(t+ 1) ] . (3.38)

If the inverse matrix of H exists, Newton's method is obtained as

wMIN = w(t)−H(t)−1g(t). (3.39)

It is clear that if the error function E is not quadratic, [ wMIN − w(t+ 1) ] only

represents a �rst step towards the minimum point. Therefore, several steps are

needed to achieve the minimum point, using an iterative scheme and updating new

weights as

w(t+ 1) = w(t)−H(t)−1g(t), (3.40)

which is the general expression of (3.34), where G = −H−1 and η = 1.



47

3.5.4 Levenberg-Marquardt Algorithm

If the inverse Hessian matrix exists but is not positive de�nite, Newton's method,

as described before, can lead to a local maximum, or a saddle point [49]. To

overcome this issue, Levenberg [56] and Marquardt [57] proposed altering the Hessian

matrix with a positive de�nite matrix P to make H positive de�nite in least square

problems. Later, Goldfeld et al. [58] applied this methodology to Newton's method,

considering P = λI. Therefore, the updated synaptic weight (3.40) can be re-written

according to Levenberg-Marquardt as

w(t+ 1) = w(t)−
(
H(t) + λI

)−1

g(t), (3.41)

where I is the identity matrix and λ is a certain non negative value. The LM method

transits smoothly between Newton's method, as λ approaches 0, and the steepest

descent method as λ grows in�nitely.

In this work, λ was chosen according to variation of performance index for each

training iteration (t). The steepest descent method is utilized at a large distance

from the minimum of the considered function, to provide steady and convergent

progress toward the solution. As the solution approaches the minimum, λ is adaptively

decreased, the Levenberg-Marquardt method approaches Newton's method, and the

solution usually converges rapidly to the local minima.

3.5.5 Validation

Once the neural network has been designed and trained, it needs to be validated

with several test cases. The test data set must be di�erent from the training one in

order to establish whether the neural network is able to predict any input-output

mapping of the system at hand within the training boundaries. The training loop

in Fig. 3.7 can be enhanced with the validation stage described in Fig. 3.12.

According to [48], a neural network is said to generalize well when the input-output

patterns predicted by the network are acceptable for a test data contained within the

training boundaries but that have never been used before. However, when a neural

network is trained using too many, or repeated input-output examples, the network
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Figure 3.12: Flow-chart of the neural network training and validation process



49

Figure 3.13: Non-linear curve-�tting problem with several local minima,
highlighting the initial synaptic weight, winit, a local minimum point, wmin1 , and
the absolute minima, wopt.

may memorize the training data, just like a human being. Such a phenomenon

is referred to as over�tting or overtraining, and, in this case, the network looses

the ability to generalize. Since, this de�ciency is stored inside the synaptic weight,

several technique have been developed such as network pruning techniques that will

be discussed later on to adjust the weights in order to make the neural network more

general.

Local minima is another issue that can be encountered when training a neural

network. Consider, for example, a single layer neural network with one hidden

neuron, a �xed bias and only one free synaptic parameter, w, as in Fig. 3.13.

Therefore, as previously mentioned, the training can be seen as a non-linear curve-�tting

problem, where the neural network error prediction, as de�ned in (3.13), depends

on the value of the free parameter, w. Starting from the �rst weight attempt, winit,

any deterministic training algorithms, such as BP or LM algorithms, will always

�nd the wmin1 as the best weight to minimize the error, or optimize the neural

network performance. This example can be translated into multi-dimensional space

and the error pro�le becomes a complex hyper surface which depends on the NN

free parameters, synaptic weights and biases. The neural network training will often

end up in local minima points of the hyper surface.

Many non-deterministic optimizing algorithms were introduced to overcome the local

minima problem. GA and swarm are only two of the most famous optimizing



50

techniques. Since these methods require high computational resources and long

times, due to the high number of independent variables, i.e. neural network free

parameters, they were not used in this work because several re-initializations of

synaptic weights were found to be suitable to avoid local minima and to be used

simultaneously on parallel CPUs. At least ten re-initializations were considered

adequate for the NN application of this work to choose the best NN training.

Therefore, ten training processes were carried out at the same time of the single

o�-line training and then compared to choose the best trained neural network,

considering the maximum error of the NN prediction using the test data set.

The method used in this work to overcome over�tting issues will be discussed later

on.

3.5.6 Generalization - Network Growing and Pruning

Organisms generalize if they respond appropriately to stimuli and situations they

have never experienced before [59]. As an organism's nervous system, a neural

network should also be capable of generalizing, i.e., of generating the appropriate

outputs in response to inputs that are not part of their training experience. A review

of generalization methods for neural networks was made by Arbib in [60]. These

methods share the �nal common goal of minimizing the errors of NN prediction

on the training set and on the test set; a practical example is reported in the last

section of the present chapter. A result of a generalization procedure is that the

neural network will have the best performance with the minimum number of neurons.

This is important because small neural network architectures are more suitable for

use with limited computational resources and in short times. Moreover, adequate

sized neural networks are less likely to su�er from learning noise from the training

data.

All the aforementioned bene�ts can be achieved starting with the network pruning

or growing techniques used in this work.

As far as the growing method is concerned, a small network is designed and a new

neuron, or a new layer, is added to the network until the performance requirements

are met.
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The network pruning approach works in the opposite way to network growing.

Starting from a large network for the problem at hand, some weights are weakened

or deleted in a selective and orderly fashion, as can be seen in [48, 50].

These two methods su�er from the fact that anytime the neural network is modi�ed,

such as when weights are deleted or neurons are added, the network must be

re-trained, while considering all the issues presented in the previous section. Even

though the generalization techniques are very useful to make a neural network as

general as possible, they are really time and hardware resource consuming.

3.6 NN Application: β Estimation Using Flush Ports

A simple FADS, made up of two static �ush ports, was considered in order to

calculate the angle of sideslip, β, for a �xed free stream velocity and null angle of

attack. The aim of this example was to de�ne some neural network procedures that

can be used in the next applications of the present work.

The fuselage considered for this activity is inspired by the Sky-Y, Alenia Aermacchi

unmanned aircraft. The aerodynamic analysis was carried out using CFD in order

to correlate the angle of sideslip of fuselage and the static pressure sensed by several

couple of virtual �ush ports, positioned on the fuselage skin, as depicted in Fig. 3.14.

The CFD simulations were performed using the commercial CFD code STAR-CCM+

Figure 3.14: Virtual �ush static ports on the left side of the fuselage. The probes
are duplicated symmetrically on the other side of the fuselage

available at Alenia Aermacchi. The results of the CFD analysis were used to collect

an input-output pattern for neural network training and testing in order to de�ne

all the procedures needed to correctly design a neural network exploiting this simple
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test case.

More information about STAR-CCM+ can be found in [61]; just a few details are

reported here. STAR-CCM+ is a three dimensional �nite volume Navier-Stokes

(a) Boundary conditions (b) Close mesh view

Figure 3.15: Computational domain, where L represents the fuselage length.

equation solver. The internal automatic mesher is used to generate the computational

grid. The computational domain is presented in Fig. 3.15, where the inlet velocity

condition, V∞ = 100 kts, is used for front and side walls, while the pressure outlet

is used for the downstream wall. The β can be calculated as a function of the sole

sensed static pressure on two opposite sides and of the dynamic pressure

β = f(qc, ps,R, ps,L) = f(Cps,R, Cps,L) = f1(∆Cp), (3.42)

where ∆Cp =
ps,R−ps,L

qc∞
is the normalized di�erential static pressure. ∆Cp, sensed at

each of the four considered positions, is depicted in Fig. 3.16(a).

Only position P3 is considered with this application and the corresponding di�erential

pressure coe�cient, ∆Cp, is plotted in Fig. 3.16(b); the linear approximation, as

described in (1.1), and the corresponding error of measured β are also plotted.

Generally speaking, two main matters should be taken into account when deciding

on the position of the static ports in order to measure the angle of sideslip. First, the

ratio ∆Cp
∆β

; second, the linearity of the relationship between β and ∆Cp, if a linear

approximation, such as (1.1), is considered to be used. The aforementioned ratio

is extremely important to obtain a certain β resolution. A couple of static ports

in position P3 would in fact only lead to a β resolution of ≈ 0.5 deg considering

state-of-the-art di�erential pressure sensors [62], whereas the resolution could be

about 0.05 deg and 0.1 deg, respectively, in P1 and P2 using the same sensor.
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(a) ∆Cp at several positions (b) ∆Cp at position P3, its linear
approximation and the corresponding β-error

Figure 3.16: Relationship between β and ∆Cp calculated using CFD

Therefore, since the more advanced the position is the higher the ratio of ∆Cp
∆β

, as

depicted in Fig. 3.16(a), positions near the fuselage nose allow sensors to measure

β with higher resolution, considering the same pressure sensor accuracy.

Linearity is the other aspect that should be considerd when using a linear formulation,

such as (1.1). The couple of pressure ports at positions P1 and P2 have a more linear

relationship, β = f(∆Cp), than to P3 and P4 positions, in which the non-linear

e�ects are enhanced. In particular, considering a linear approximation to describe

function f of (3.42) at position P3 could lead to large errors when β is measured;

as shown in Fig. 3.16(b), large errors (eβ > 1.5 deg) result, even for limited lateral

wind (β ≈ 7 deg). Moreover the error diverges for higher angle of sideslip higher

than 12 deg.

However, these kinds of issues about positioning go beyond the real goal of this

work, and a couple of static �ush ports were considered in P3 to deal with a highly

non-linear problem.

In order to model the problem of (3.42) using neural networks, training and test data

must be de�ned. The training maneuver consist of sinusoidal and hold maneuvers,

as a result of successive steady states, since unsteady CFD maneuvers are not

performed. The maximum value of β reached during the training stage was 10 deg,

see Fig. 3.17(a).

The test maneuver is made up of a sinusoidal sweep within the training boundaries,

but at a di�erent frequency than those used for training and of one β hold maneuver
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whit a maximum value of 13 deg. The test maneuver was built in this way to evaluate

(a) Training maneuver (b) Test maneuver

Figure 3.17: Pro�les of β used for the training and test stages

the ability of the NNs to generalize within the training boundaries and extrapolate

outside.

Training technique selection

The BP and LM training algorithm are here compared in terms of speed of convergence.

As known, the BP algorithm needs more iterations to reach a local minima than

a second order algorithm. However, although the LM needs more time to solve

each iteration, it needs less time to reach convergence than the back propagation

algorithm. For this reason, the Levenberg-Marquardt algorithm was be used throughout

this work to train the neural networks. In order to de�ne the neural network

architecture, two strategies were considered: pruning and growing.

Pruning technique

When the pruning technique is used to optimize NN performance, an oversized

network must initially be considered. In this case, a feed-forward single-layer perceptron

neural network is designed with 10 hidden neurons, one linear output neuron and

two inputs, as depicted in Fig. 3.18, in order to represent the MISO system of (3.42).

The results of the test maneuvers are reported in Fig.3.19(c). It is clear that these

results are unacceptable and a neural network architecture optimization is required.
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Figure 3.18: Neural net scheme. The solid lines represent positive synaptic
weights, the dashed lines represent the negative synaptic weights.

The pruning technique, as described in [48, 50], is here used to reduce errors on test

maneuvers; the results are presented in Fig. 3.19.

The pruning technique searches for those �weak� synaptic links and prune those

synaptic weights, strictly speaking, setting them to zero, with the aim of building a

more e�cient neural network. After every cut, the neural network is re-trained for

a few epochs, half the training ones at the most. As it is well known, the pruning

process takes quite a long time: in this very light test case, it takes about 4 minutes.

The mean squared error of training and test are reported in Fig. 3.19(a) for each

iteration of pruning process. The neural net stored in index 34 shows the lowest MSE

for the training and test patterns. The corresponding neural network is depicted in

Fig. 3.19(b), where it can be noted that some synaptic weights are cut o�, compared

to that of Fig. 3.18. The improvement in NN performance is clear when the results

of Fig. 3.19(d) are compared with those obtained before pruning: the maximum

error is reduced from 2.04 deg to 0.23 deg.

Growing technique

Unlike the pruning technique, when the growing approach is used, the initial neural

network is undersized. Here, the starting NN has only one neuron in the hidden

layer and it is then increased to ten. Several training processes are needed when this

strategy is used, because the neural network must be retrained for each con�guration
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(a) Results of the pruning process (b) Optimum con�guration of the neural
network

(c) Neural network performance before the
pruning

(d) Neural network performance after the
pruning

Figure 3.19: Results of the neural network pruning process

in order to avoid the local minima problem as described in 3.5.5. However, this

kind of activity is performed with an automatic ad-hoc built Matlab routine which

requires less time than the pruning approach for this particular case. From Fig.

3.20(a), it is clear that the best neural network should have three neurons inside

the hidden layer, and that an increasing lack of generalization is experienced. The

error pro�le of the β estimation is plotted in Fig. 3.20(b). The maximum error is

only one-fourth, 0.06 deg, of that obtained after the pruning activity. The growing

technique seemed faster and more reliable for this kind of activity, than the pruning

one to optimize the neural network performance. The growing method was in fact

used in all the applications presented in this work.
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(a) Results of the growing process (b) Neural network performance using the
best NN con�guration

Figure 3.20: Growing technique results



Chapter 4

Development of the NNs using the

Matlab FDC toolbox

The validation of the virtual sensor based on neural network will be presented in

this chapter. The aircraft model chosen for this purpose is the Beaver aircraft

mathematical model which is available at Mathworks. This aircraft model was

selected because its dynamics is comparable with the �nal application of virtual

sensor: the actual Sky-Y UAV designed and developed by Alenia Aermacchi. The

Beaver model was extensively used to de�ne training and test maneuvers that could

be representative of all �ight conditions and, at the same time, short enough to be

managed by a personal computer. In particular, in this chapter, attention is focused

on the cruise phase and the approach and landing phases were neglected to avoid

using �aps, because of they do not represent obstacles to training, as it will be shown

in the next chapter.

The Matlab FDC toolbox was developed starting from the De Havilland DHC-2

�Beaver� aircraft [63] and it was designed to analyze non-linear aircraft dynamics

and �ight control systems. The aircraft is modeled as a rigid body with a constant

mass value, �ying in still air. The Beaver command system presents all the primary

controls: the elevator command, δe, aileron command, δa, rudder command, δr,

throttle command, δn, and the �ap defelctions, δf . The thrust is adjusted by acting

on δn which is proportional to the non-dimensional pressure increase in the propeller

slipstream; for more details, reference can be made to [63].

58
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4.1 Dynamic Analysis of the Aircraft

The aim of this section is to recall the di�erential equations of aircraft models, as

they are commonly written [64] [65], in order to highlight the variables on which the

aerodynamic angles depend.

Aircraft equations of motion are driven by aerodynamic, propulsive and wind forces

and the moments acting at the center of gravity of the complete 6-DOF rigid aircraft

[64]. If the pilot commands, which are obviously known, are �xed all the forces and

moments depend on the aircraft orientation with respect to air�ow, or conversely,

on three quantities, de�ned as follows

� true air speed of the aircraft,V∞ or TAS, with respect to the surrounding

air�ow;

� angle of attack, α, de�ned as the rotation, about the body y-axis, of the

body-�xed x-axis needed to be aligned with the stability x-axis (see Fig. 4.1);

� angle of sideslip, β, de�ned as the rotation, about the body z-axis after the

previous rotation, of the body-�xed x-axis needed to be aligned with the wind

x-axis (see Fig. 4.1).

The angles of attack and sideslip are commonly indicated as aerodynamic angles.

The state vector is build using the velocity vector, Euler angles, angular rate vector

and the position vector, as

XT = [u, v, w, φ, θ, ψ, p, q, r, pN , pE, H] , (4.1)

where H is the altitude in the NED reference frame. The aircraft height is usually

referred to barometric height, calculated using the baro-altimeter. Today, the GPS

height is used for navigation purposes, but, for safety reason, it is not used to

separate the several �ight levels in airways, because the barometric altitude error is

much smaller than the geometric one.

The relationships between the body velocity vector of the state vector and the
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(a) angle of attack (b) angle of sideslip

Figure 4.1: De�nition of aircraft axes and angles

aerodynamic angles, can be expressed as follows
u

v

w

 = V


cosα cos β

sin β

sinα cos β

 (4.2)

or, conversely

V =
√
u2 + v2 + w2 (4.3a)

α = arctan
w

u
(4.3b)

β = arctan
v√

u2 + w2
(4.3c)

Therefore, the state vector (4.1) can be rewritten as

XT = [V, β, α, φ, θ, ψ, p, q, r, pN , pE, h] . (4.4)

The aerodynamic forces and moments depend on some state derivatives, and hence,

the model is not linear and, referring to Fig. 3.5, can be described as{
Ẋ = f(X,U, v, w)

Y = g(X,U, v, w)
(4.5)

where U is the command vector, which is de�ned as UT = [δe, δr, δa, δf , δn].

Eq.s (4.3b), (4.3c) are di�erentiated in order to �nd the state derivative equations

for aerodynamic angles, and the resulting equations constitute two of the complete

set of ordinary di�erential equations which need to be solved in order to �nd the
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analytical solution of the aircraft model for each time step.

Firstly, the angle of attack expression is developed, thus by di�erentiating the second

equation of 4.3, it follows

α̇ =
uẇ − wu̇
u2 + w2

(4.6)

Inserting expressions of u and w 4.2 and rearranging the terms of (4.6) yields

α̇ =
ẇ cosα− u̇ sinα

V cos β
(4.7)

According to [63], the relationships between the axial acceleration, gravity acceleration

and angular velocities in the body reference frame can be written as

u̇ = rv − qw − g sin θ +
Fx
m

v̇ = − ru+ pw + g sinφ cos θ +
Fy
m

ẇ = qu− pv + g cosφ cos θ +
Fz
m

(4.8)

where the contribution of the external force (Fi = mai) can also be indicated in

terms of number of g acceleration of ni = ai/g, with (i = x, y, z). Accelerometers are

used to measure the absolute (inertial) accelerations, as the sum of the aerodynamic,

propulsion and gravitational components. However, only in this section, the gravitational

terms are removed from the body inertial accelerations, ni, in order to better

highlight how this contribution depends on the aircraft attitude, which is indicated

as n′i.

If Eq. 4.8 is considered, Eq. (4.7) can be rearranged as follows

α̇ =
(qu− pv + g0 cosφ cos θ + n′z) cosα

V cos β
− (rv − qw − g0 sin θ + n′x) cosα

V cos β
(4.9)

Then, substituting (4.2), we can obtain the �nal expression of the ODE for the angle

of attack, as

α̇ =
1

V cos β
{ [V (q cosα cos β − p sin β) + n′z + g0 cosφ cos θ] cosα

− [V (r sin β − q sinα cos β) + n′x − g0 sin θ] sinα}
(4.10)

The same mathematical treatment can be followed to obtain the ODE for the angle

of sideslip. The expression of the angle of sideslip expression is developed from (4.3).

Thus by di�erentiating (4.3c), we obtain

β̇ =
u̇(u2 + v2)− v(uu̇+ wẇ)

V 2
√
u2 + w2

(4.11)



62

Substituting the u and w expressions (4.2), and rearranging the terms of (4.11

yields

β̇ =
1

V
(−u̇ cosα sin β + v̇ cos β − ẇ sinα sin β). (4.12)

If we substitute u̇, v̇ and ẇ with the (4.8), the 4.12 can be rewritten as

β̇ =
1

V
[ (−n′x + g0 sin θ + qw − rv) cosα sin β+(
n′y + g0 cos θ sinφ+ pw − ru

)
cos β+

(−n′z − g0 cos θ cosφ+ pv − qu) sinα sin β].

(4.13)

If the (4.2) is substituted in (4.13), some terms can be cancelled and the (4.13) can

be rearranged as

β̇ =
1

V
[ (−n′x + g0 sin θ) cosα sin β +

(
n′y + g0 cos θ sinφ

)
cos β+

(−n′z − g0 cos θ cosφ) sinα sin β] + p sinα− r cosα.
(4.14)

Until this point, the treatment has had a general validity. In order to introduce

an expression for Fi as a function of the pilot commands, or, more in general,

as a function of the control surface de�ections, it is necessary to characterize the

aerodynamics of the particular aircraft. As far as the Beaver aircraft model [63]

is concerned, the relationships between the inertial acceleration nz, aerodynamics,

propulsion and controls in (4.15), can be written as

n′x =
Fx
m

=
1

2
ρV 2(CX0 + CXαα + CXα2α

2 + CXα3α
3 + CXq

qc

V
+

CXδr δr + CXδf δf + CXδeαδeα + CXδnδn + CX
αδ2n
αδ2

n),
(4.15a)

n′y =
Fy
m

=
1

2
ρV 2(CY0 + CYββ + CYα3α

3 + CYr
rb

2V
+

CYp
pb

2V
+ CYδaδa + CYδr δr + +CYδrαδrα + CYβ̇

β̇b

cV
),

(4.15b)

n′z =
Fz
m

=
1

2
ρV 2(CZ0 + CZαα + CZα3α

3 + CZq
qc

V
+ CZδeδe+

CZδeβ2δeβ
2 + CZδf δf + +CZδeβ2δeβ

2 + CZδnδn).
(4.15c)

However, for any kind of aircraft, it is always possible to �nd a relationship between

the inertial accelerations, air data and pilot commands, which are obviously obviously

grouped in speci�c ways for each particular aircraft model.
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Eq.s (4.10), (4.14) are essential to understand the independent variables on which α

and β depend. Combining Eq.s (4.10), (4.14) and (4.15), it is possible to write the

following functional relationship

α = Fα (qc, nx, ny, nz, β, θ, φ, p, q, r, δe, δa, δr, δn, δf ) (4.16a)

β = Fβ (qc, nx, ny, nz, α, θ, φ, p, q, r, δe, δa, δr, δn, δf ) (4.16b)

where the velocity V (or TAS) has been substituted by the dynamic pressure because

it is the source from which the velocity is derived, as described in 1.2, and the inertial

accelerations are those calculated by the accelerometers.

As mentioned at the beginning of this section, the commands are not included in the

state vector, but are external inputs. In this work, Eq.s (4.16) were approximated

as

α = fα (qc, nx, ny, nz, β, θ, φ, p, q, r, δe, δa, δr, δn, δf ) (4.17a)

β = fβ (qc, nx, ny, nz, α, θ, φ, p, q, r, δe, δa, δr, δn, δf ) (4.17b)

in order to have the simplest virtual sensor that is able to satisfy the prescribed

requirements. At this stage of the work, because of the non-linear aircraft dynamics

is considered, we decided to keep all the variables. However, the relationship between

each input and output will be discussed later in chapter 6.

4.2 Strategy for Creating Training and Test Maneuvers

The basic training maneuver designed for the Beaver simulator set presented in this

section is the result of several attempts to build an e�ective training pattern that is

able to give as much information as possible about the whole aircraft �ight envelope.

As previously mentioned in section 3.5, the most representative training data set

should be used to train the neural network, but for certain applications, where a

large amount of data must be managed, a strategy for data reduction is required if

the hardware resources of a common workstation were designed to be su�cient.

The Simulink simulation of the Beaver aircraft requires a very small integration step

(about 20 ms), therefore, the resulting �ight data vectors are sampled at 50 Hz.
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Since only o�-line training is considered in this work, a training maneuver of 5

minutes, which contains 6000 points for each vector, and the complete input-output

pattern, as described in the previous section, which has at least 9 inputs and one

output, means a training set is obtained that contains about 60000 points. In order

to cover the entire �ight envelope, several maneuvers are repeated for several velocity

from stall velocity without using �aps (' 85 kts) to maximum velocity (' 130 kts) in

level �ight. The strategy of repeating a basic training maneuver at several velocities

was used for this work. During this work, it was noted that the neural network was

able to extrapolate adequately between velocities if separated by 10− 20 kts. This

was the �rst step taken to reduce the training set. Moreover, the input vectors were

not used at f = 50 Hz but they were sampled at lower frequency in order to further

decrease the number of data in the training vectors without removing information

about the aircraft dynamics.

Since the ADSs of unmanned aircraft are calibrated during the �rst �ight tests,

no high-dynamic maneuvers are performed for safety reasons. The same conditions

were considered to de�ne a training strategy: several dynamic maneuvers, clearly

distinguished from each other to avoid couple longitudinal, lateral and directional

dynamics as much as possible, were performed at almost constant velocity. Some

time was necessary after each maneuver waited to re-establish the initial stabilized

�ight conditions. In this way, a basic training maneuver set is created. As also

described in section 1.2.1, the basic maneuver set should be made up of maneuvers

that are able to excite aerodynamic angles for the entire working range. Unfortunately,

under the realistic hypothesis of a �rst �ight test, and therefore calm maneuvers,

the extension is left, if possible, to neural network extrapolation capabilities, as it

will be shown during the test stage. A �ight card was prepared before any training

campaign in order to give the autopilot a well prescribed �ight pattern to follow

using an ad hoc written Matlab routine. A general guideline for training maneuvers

is reported in the Fig. 4.2, where a basic maneuver set is performed for each velocity.

The hold maneuvers are performed with the aim of collecting information on stabilized

�ight conditions, while the sweep maneuver is designed to excite the short period

mode of the airplane. Maneuvers are executed using the MIMO autopilot available
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Figure 4.2: Guideline scheme for the training maneuver set

Maneuver Limits Duration
Pitch hold ±5 deg (θ) 10− 20 s
Bank hold ±20 deg (φ) 10− 20 s
Beta hold ±5 deg (β) 10− 20 s
Pitch sweep ±5 deg (θ) < 10 s
Bank sweep ±5 deg (φ) < 10 s
Beta sweep ±20 deg (β) < 10 s

Table 4.1: Details of the basic training maneuvers

in the FDC toolbox, suitably modi�ed to perform maneuvers within the prescribed

limits, which are reported in Tab. 4.1. The test maneuver set is composed of

several high-dynamic maneuvers. The three aircraft dynamics are often mixed with

speeds ranging from the stall speed, without �ap, to the maximum speed obtainable

during dive (' 130 kts), in order to evaluate the neural network performance in

extreme conditions and outside the training boundaries.

During test maneuvers (see Fig. 4.5), no limits are prescribed to single maneuvers

in order to evaluate the real neural network performance. In particular, the pitching

motion is combined with yawing and rolling maneuvers in order to evaluate the

performance of the neural network in estimating superimposed motion that is not

performed during the training stage. Then, moving the throttle to maximum power,

pushover and pullup maneuvers are performed to evaluate the results of the virtual

sensors when very low and very high dynamic angles of attack are achieved during

unsteady �ight conditions. Obviously, the conditions described here are quite extreme

and sometimes outside the real aircraft �ight envelope, but they were very useful

in order to evaluate which is the best neural net con�guration able to learn and
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Figure 4.3: A basic training set maneuver performed at 90 kts

Figure 4.4: Guideline scheme for test maneuver set

generalize Beaver dynamics. During test maneuvers several levels of turbulence

[66, 66] and wind gusts were simulated, unlike the training strategy, to increase

the gap between the training and test pattern in order to conduct a suitable study

of NN performance, capability to generalize within the training boundaries and to

extrapolate outside the training boundaries.

4.3 De�nition of the Neural network Architecture

In this section, the neural network architecture of the virtual sensors will be presented

as the result of several attempts to obtain the best performance at the lowest

computational cost. In other words, this stage may be considered the most important

for virtual sensor design. In fact, since the �nal application of the neural network is

for Sky-Y UAV which has a similar �ight envelope and dynamics to Beaver aircraft,

the Beaver simulator was used to set up the neural networks and to study its

sensitivity to each of the parameters.

At the beginning, a feed-forward single layer perceptron neural network was used
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(a) Without turbulence (b) With severe turbulence(probability =
10−6 [66])

Figure 4.5: Test maneuvers

Figure 4.6: Integration of virtual sensors (NN ) with the aircraft control system
(indicated as AFCS )
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to compare the results during the designing stage of NN architectures. After a brief

analysis of the control system, described brie�y in Fig. 4.6, the block scheme was

introduced in order to highlight the relationships between the inputs and outputs

of the Beaver aircraft and to avoid any closed loop that could introduce instabilities

into the overall control loop design. As can be seen in Fig. 4.6, the inertial data

(attitudes and rates) and the velocity (acquired from measurements of a Pitot-static

device) can be used in the present time frame, t, while the surface de�ections must

be considered at least one time step back, to avoid a loop that closes on itself.

According to these considerations, the available input data for the virtual sensors

are:

� dynamic pressure, qc(t)

� longitudinal body acceleration, nx(t)

� lateral body acceleration, ny(t)

� vertical body acceleration, nz(t)

� pitch angle, θ(t)

� roll angle, φ(t)

� body roll rate, p(t)

� body pitch rate, q(t)

� body yaw rate, r(t)

� aileron de�ections, δa(t− 3)

� elevator de�ections, δe(t− 3)

� rudder de�ections, δr(t− 3)

� �ap de�ections, δf (t)

All the listed inputs are considered without the subscript that indicates free stream,

because they are considered measured by dedicated probes or sensors. As far as the

dynamic pressure measurement is concerned, the ISA atmosphere was considered for

�ight simulations in this work. Therefore the static temperature was known at any
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altitude and it was easy to calculate the true air speed from the dynamic pressure.

However, since the aerodynamic coe�cients are functions of the (measured) true

dynamic pressure, qc, only the use of true dynamic pressure is considered for this

work, even if it is always possible to convert qc into TAS when a temperature

measure is available aboard (see section 2.2), the use of dynamic pressure resulted

to be easier than TAS and did not need any additional sensor for temperature

measurements. Moreover, the �aps were not considered for the Beaver application.

The starting neural net architecture (see Fig. ) has

� all the available signals in the input layer,

� a variable number of non-linear neurons in the single hidden layer,

� 1 output layer.

As described in section 3.5.6, the results that will be presented in this work are

the results of several (usually more than 7) re-initializations that were conducted

in order to avoid any local minima. A �rst sensitivity analysis is reported in table

4.2, where the performance of the neural nets used for angle of attack estimation

(NNA) are shown for changes in the input vector. As will be shown later on, some

Input Performance
all 2.5e−6

without qc 6.1e−4

without nz 2.3e−5

without θ 1.8e−5

without δe 3.4e−5

Table 4.2: Performance analysis of NNA without some inputs

important preliminary results were obtained. The virtual sensor must be fed with

velocity and inertial data, while the command can also be neglected for angle of

attack estimation. The same preliminary sensitivity analysis was performed for the

neural network, which was used for the estimation of the angle of sideslip (NNB), and

it is reported in table 4.3. Again, velocity and inertial data are the most important

parameters, but the commands cannot be neglected for the angle of sideslip.

The growing technique described in section was used in order to de�ne the best

neural network architecture. As known from previous applications, the number of
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Input Performance
all 1.2e−5

without qc 7.2e−4

without ny 3.7e−4

without φ 4.6e−4

without δr 5.5e−4

Table 4.3: Performance analysis of NNB without some inputs

neurons must be equal or larger than the number of input signals number, but not

too large so that neural networks can generalize.

The performance of the virtual sensor for the angle of attack estimation is reported

in table 4.4. It was noted that at over 15 neurons with a single layer neural network

Number of Training mse Max error Max error
neurons hidden layers [deg] on training [deg] on test [deg]

5 1 4.9e− 5 0.19 1.39
5 2 4.6e− 6 0.15 2.32
10 1 5.7e− 6 0.083 1.12
10 2 6.6e− 7 0.067 1.53
15 1 3.0e− 7 0.013 0.626
15 2 1.6e− 7 0.010 0.67
20 1 3.5e− 7 0.013 0.853
20 2 1.0e− 7 0.0090 1.31
25 1 7.6e− 8 0.0096 0.880
25 2 2.5e− 8 0.0080 1.30

Table 4.4: Error performance of NNA, varying the number of neurons and hidden
layers

the maximum errors obtained during test maneuvers were not further improved

(see ; while, as far as the training stage is concerned, the better the performance,

the higher the number of neuron used. This particular behaviour, i.e. the NN

performance of the training pattern is improving while the NN performance on the

test pattern is decaying, is typical when NNs memorize the training data set but

do not �learn� the system dynamics, and hence, in this case, the NNs are able to

generalize.

The same conclusion can be reached for the angle of sideslip.

In occlusion, for this kind of application, the use of a single layer neural network

with �fteen non-linear neurons showed to be the best compromise between prediction
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Figure 4.7: Maximum error for the angle of attack estimation during the test
maneuvers

accuracy and hardware complexity.
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Figure 4.8: Starting layout of neural network architecture

4.4 Virtual Sensor Performance

The results of the application of the virtual sensor to the Beaver aircraft model are

shown in this section, in order to evaluate the actual neural network performance

for both the angle of attack and sideslip. As stated in the previous section, the same

neural network architecture, depicted in Fig. 4.8, was used for both aerodynamic

angles.

4.4.1 Angle of Attack

The reference angle of attack pro�le is reported in Fig. 4.9 with a solid line, while

the virtual sensor prediction is plotted using a dashed line. This plot format is used

throughout this work. The two curves are very close and the maximum error is close

to zero degrees, as can be noted in Fig. 4.9(b). The free stream, or reference angle

of attack registered during the test maneuver is presented in Fig. 4.9(c), where the

virtual sensor estimation is also plotted. The two curves remain very close during all

the simulations, except for some frames, where the estimation error is not negligible,

even though it is always within the acceptance limits, as reported in Fig. 4.9(d).

By analyzing the error pro�le, it can be seen that the maximum estimation error

(' 0.8 deg) occurs when the throttle is pushed quickly to the maximum position and

the rudder and elevator were actuated to yaw (β = ±6 deg) and pitch (α = ±9 deg)

simultaneously. The neural network designed for the α estimation for the Beaver

simulator was accurate enough and it was therefore used as the starting point for
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(a) Reference and estimated angle of attack
during training maneuver

(b) Error of angle of attack estimation
during training maneuver

(c) Reference and estimated angle of attack
during test maneuver

(d) Error of angle of attack estimation
during test maneuver

Figure 4.9: Virtual sensor performance in Beaver angle of attack estimation for
training and test maneuvers

the Alenia Aermacchi Sky-Y applications.

4.4.2 Angle of Sideslip

The reference angle of sideslip and neural network prediction pro�les for the training

and test maneuvers are reported in Fig. 4.10. The reference and estimated pro�les

overlap almost perfectly in Fig. 4.10(a) and the maximum error is almost null, as

can be seen in Fig. 4.10(b). The reference angle of sideslip collected during the test

maneuver is presented in Fig. 4.10(c), where the virtual sensor estimation is also

plotted. Again, the two curves are very close during the entire simulations, and the

errors of β prediction are negligible even though severe turbulence was simulated, as

reported in Fig. 4.10(d). Overall, the NN designed for the β estimation of the Beaver
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(a) Reference and estimated angle of sideslip
during training maneuver

(b) Error of angle of sideslip estimation
during training maneuver

(c) Reference and estimated angle of sideslip
during test maneuver

(d) Error of angle of sideslip estimation
during test maneuver

Figure 4.10: Virtual sensor performance in Beaver angle of sideslip estimation for
training maneuver

application is very accurate: the maximum estimation error is less than one-tenth

of all the maneuvers considered here, during which high dynamics and turbulence

were simulated. Therefore, the NN designed here for the angle of sideslip, was used

as starting the architecture for the Sky-Y simulator.

4.4.3 Simulating Real Flight Instrument Noise

In the previous section the real external world has been represented by turbulence

and wind. In this section, the reality of the test campaign is augmented by also

considering the electronic noise on each of input signals from its corresponding

sensor.

General speaking, the actual inertial signals, if compared to simulated signal, are
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Variable Noise level
(peak to peak)

qc ±0.03 mBar
nx ±0.0085 g
ny ±0.0085 g
nz ±0.0085 g
θ ±0.01 deg
φ ±0.01 deg
p ±0.1 deg/s
q ±0.1 deg/s
r ±0.1 deg/s

Table 4.5: Noise level used to corrupt the mathematical model data

always a�ected by noise that comes from several sources, such as engine induced

vibrations and on board sensor electronic noise. The electronic noise is here represented

using the data speci�cations of commercial MEMS Attitude Heading Reference

Signals (AHRS) [67, 62]. The electronic noise of dynamic pressure, qc, was modeled

according to some available data sheets [68]. Usually, the electronic noise is given as

the density over the square root of frequency (1/
√
Hz) in data sheets, as depicted in

Fig. 4.11 for inertial acceleration measurements. The solid line is the noise density

Figure 4.11: Example of noise density for inertial accelerations. The pro�le from
data sheet [67] and the approximation used in this work are plotted

pro�le measured by the manufacturer, while the dashed line is the white noise level

chosen for the present test, where the maximum value was selected at 50 Hz, in

agreement with the refresh rate here considered, to establish the peak-to-peak level

reported in Tab. 4.5. A white noise, with a zero mean value, was added to each
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Figure 4.12: Example of pitch rate with and without noise

signal and the peak-to-peak values in Tab. 4.5 were selected according to available

literature [67, 68, 69, 70]. Electronic noise on the surface de�ection signals was

neglected because it was of the order of magnitude of 0.001 deg, which was less than

the resolution of considered actuators. Fig. 4.12 shows an example related to the

pitch rate, q.

The same neural network trained at the end of previous section was used here for

testing, using input signals corrupted with white noise in order to represent the

worst case of real sensors.

The same NNs described in the previous section were tested using noisy input signals.

The error pro�le of neural network estimation for the angle of attack during test

maneuvers is plotted in Fig. 4.13(b). Fig. 4.13(a) shows the error in α prediction

(a) Angle of attack (b) Angle of sideslip

Figure 4.13: Virtual sensor performance in the Beaver angles of attack and sideslip
estimation for test maneuvers using noisy input signals
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for a test maneuver set. The use of input signals corrupted with arti�cial noise led

to error of α prediction of less than half degree.

As far as the β estimation is concerned, Fig. 4.13(b) shows that the maximum error

is limited to 0.5 deg like that of the angle of attack.

In conclusion, the noisy inputs introduced additional errors (results in the previous

section) less than one-tenth degree, if compared with results obtained using noise-free

inputs. The electronic sensor noise can therefore be neglected for this particulate

NN application because did not introduce signi�cant disturbances.

4.4.4 Impact of Noisy Inputs on Neural Network Performance

The degradation of performance of NN-based virtual sensors, which is occurs when

noisy data are used instead of simulated data, was analyzed in this section. As

discussed in the previous section, the electronic noise is adequately managed by the

NNs, since the aerodynamic angle predictions are always within tolerance limits,

even in the worst conditions. If the noise is increased several times, the NN estimations

degrades beyond the acceptance limits established at the beginning of this work.

The inertial measurements could be highly in�uenced by other stimuli which are not

the sole aircraft acceleration or angular rates. The presence of external disturbances

contributed to create corrupted signals which were considered here as another source

of noise for the NN input signals. The additional disturbances mainly stem from

structural vibrations of the aircraft.

As far as structural vibration is concerned, the vibration frequency spectra of real

aircraft consists of a broadband background with superimposed narrow band spikes.

The background spectrum results mainly from the engine, combined with many lower

level periodic components, due to the rotating elements (engines, gearboxes, shafts,

etc.) associated with the propeller, and some speci�cations were collected in ref. [71]

for several aircraft categories. The vibration sensed by onboard inertial instruments,

such as AHRS, depends on the kind of material used for the aircraft structures, the

method adopted to isolate the structural vibrations, and so on. The discrepancies

between the mathematical model and the real aircraft can be considered as another

source of noise, especially when the sensor sampling is close to the �rst structural
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mode frequencies, such as in slender bodies. Therefore, the noise characterization

depends on the particular aircraft at hand and it should be treated case by case

using, for example, ad hoc notch �lters, or other non-conventional �lters, e.g base

on neuro-fuzzy (NF) techniques, which do not introduce time delays []. However,

this kind of discussion is related to special cases and does not have a general validity

and is therefore beyond the main focus of this document.

In order to estimate the noise level beyond which the NN estimations were not

acceptable, the uncertainty propagation method [72, 73] was considered here; several

levels of noise were therefore tested. The peak-to-peak noise levels in Tab. 4.5 were

doubled, triplicated and so on until the acceptance limits were passed.

A comparison of the error pro�le of NN estimation for the angle of attack, α, is

shown in Fig. 4.14 when several input vector noise levels were considered. A noise

(a) Noise free inputs (b) Noise level 1 w.r.t. Tab. 4.5

(c) Noise level 5 w.r.t. Tab. 4.5 (d) Noise level 34 w.r.t. Tab. 4.5

Figure 4.14: Virtual sensor performance of the angle of attack estimation for the
Beaver application during test maneuvers with several noise levels on inputs
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level below 34 (Fig. 4.14(d)) did not cause errors greater than ±1 deg. A noise level

of �ve times, with reference to those in Tab. 4.5, produced additional errors on NN

estimations bounded within ±0.1 deg, as shown in Fig. 4.14(c), if compared with

the NN α estimations obtained with noise-free input signals (Fig. 4.14(a)).

Error pro�les of angle of sideslip estimation when the input vector is corrupted with

several levels of noise are shown in Fig. 4.14. A noise level below 16 (Fig. 4.15(d))

(a) Noise free inputs (b) Noise level 1 w.r.t. Tab. 4.5

(c) Noise level 2 w.r.t. Tab. 4.5 (d) Noise level 16 w.r.t. Tab. 4.5

Figure 4.15: Virtual sensor performance of the angle of sideslip estimation for the
Beaver application during test maneuvers with several noise levels on inputs

did not cause errors greater than ±1 deg. A noise level of �ve times, with reference

to those in Tab. 4.5, produced additional errors on NN estimations bounded within

±0.1 deg, as shown in Fig. 4.15(c), if compared with the NN β estimations obtained

with noise-free input signals (Fig. 4.15(a)).

Overall, wherever the noise comes from, if the its spectra is below 16 times of those

presented in Tab. 4.5, the virtual sensors were able to predict both α and β with an

error less than ±1 deg; over 16 times and up to level 32, only the NNA was still able
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to estimate α with acceptable accuracy, unlike NNB. By comparing results obtained

for β with those obtained for α, is therefore clear that the neural network for the

angle of sideslip estimation was more sensitive to noise on input signals than neural

network designed for angle of attack estimation. This preliminary noise-sensitivity

analysis is extended in the chapter 6 and disbudded with more details.



Chapter 5

Neural Network Test on the Alenia

Aermacchi Sky-Y UAV Integration

Rig

The Sky-Y aircraft is an unmanned airplane that was designed by Alenia Aermacchi

for medium altitude and long endurance (MALE ) for demonstration and research

purposes.

Figure 5.1: The Alenia Aermacchi Sky-Y

Some of the speci�cations of the aircraft are:

� length: 9.7 m

� wing span: 9.9 m

� MTOW: 1200 Kg

� cruising speed: 140 kts

81
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� ceiling altitude: > 25000ft

� endurance: 14 h

Sky-Y is a dedicated UAV platform that cab be used to validate several key enabling

technologies so that surveillance unmanned uerial uystem (UAS) can be used in

either military or civil operational scenario. These thechnologies include: innovative

carbon �ber composite construction, heavy fuel/JP-8 engine (automotive diesel

derivative), advanced datalinks, surveillance sensor (EO/IR, Hyperspectral, Synthetic

Aperture Radar) and a mission management system that is able to relevant data

treatment, elaboration, fusion and distribution by means of an interoperable Tactical

Control Station. Sky-Y, thanks to its all-composite structure and a 160 HP diesel

engine, is able to �y up to 12 hours. On 30 October 2007 it set a new European

endurance record in the over 1000 kg category with a spotless eight-hour �ight.

Simulators are usually used extensively in order to train UAV pilots. The Sky-Y

simulator has been designed by Alenia Aermacchi with the aim of training pilots in

UAV dynamics and of making them more familiar with ground control stations. For

this work, the simulator was used to train and test the neural network developed for

Sky-Y UAV for aerodynamic angle estimation. The NN tests, which were perfromed

using the Sky-Y simulator, were then extended for validation on real hardware, with

the aim of validating the NN software on the real FCC of the Sky-Y aircraft.

The main bene�t of using the Sky-Y simulator, instead of real �ight data, is the

possibility of studying virtual sensors in extreme conditions that cannot be �own

during Sky-Y �ight tests for safety reasons, for example during severe turbulence

conditions or at speeds higher than VNE up to VD. This is useful to investigate

performance degradation beyond the training limits, as will be shown in this chapter.

The knowledge of neural network functioning, beyond the training boundaries, is one

of the most important aspects for real world use, since it allows engineers to prove

that neural net performances are acceptable in all �ight conditions and even during

maneuvers that the aircraft will never �y. In particular, the understanding of the

neural network operating behaviour, even when the training limits were exceeded,

could be one of the key points to a successful certi�cation, as will presented brie�y

at the end of this chapter. First, the training and test maneuvers performed
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on the Sky-Y simulator will be presented in detail. The performance of virtual

sensors designed for angles of attack and sideslip will be documented using both the

Sky-Y simulator, simulating sensor noise, and the real �ight control computer in

the simulation loop. Finally, neural networks will be tested using real data collected

during the Sky-Y �ight test campaign.

5.1 Training and Test Maneuvers

The training and test strategies for the virtual sensors adopted for this activity were

the same as those presented in the previous chapter: a basic training maneuver set

was repeated at several velocities in order to cover the entire �ight envelope (from

minimum speed with �ap to maximum speed). The test consisted of several high

dynamic and full authority command maneuvers which exceeded aerodynamic angle

limits �own during the training stage. For the training stage of the Sky-Y simulator

activity, several dynamic maneuvers were performed at almost constant velocity,

each maneuver being clearly distinguished from the others in order to avoid coupling

longitudinal, lateral and directional dynamics as much as possible. Moreover, for

this purpose, an interval of time was left between maneuvers in an attempt of to

re-establish the initial level �ight conditions. This is very important for two reasons.

Firstly, to represent the same �ight conditions encountered during the �rst �ight

tests; secondly, to train the neural networks with low-dynamic maneuvers in order to

evaluate, during the validation or test stage, the neural network ability to estimate

aerodynamic angles, even during high-dynamic maneuvers. This latter point is

really a key factor in neural network design. In fact, since it is almost impossible to

foresee any �ight conditions of a real life aircraft envelope during the training stage

and, even if it were possible, there would be hardware resource issues regarding

the management of such an amount of data. It was therefore very important to

investigate the extrapolation and generalization performance of neural networks.

A �ight card was prepared for simulations before each training campaign� in order

to give the pilot a well prescribed �ight pattern to follow. A general guideline for

training maneuver is reported in the Fig. 5.2, where a basic maneuver set was
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Figure 5.2: Guideline scheme for training maneuver set

performed by pilots aided by auto-pilot modes for each velocity.

The basic maneuver set was made up of six maneuvers: pitch hold, bank hold, beta

hold, pitch sweep, bank sweep and beta sweep. Indications were provided to the

pilot for each one, as reported in table 5.1. The hold maneuvers are performed

Maneuver Limits Duration
Pitch hold ±5 deg (θ) 10− 20 s
Bank hold ±20 deg (φ) 10− 20 s
Beta hold ±5 deg (β) 10− 20 s
Pitch sweep ±5 deg (θ) < 10 s
Bank sweep ±5 deg (φ) < 10 s
Beta sweep ±20 deg (β) < 10 s

Table 5.1: Details of basic training maneuvers

with the aim of collecting information on leveled �ight conditions, while the sweep

maneuvers are designed to excite the short period mode of the airplane. For this

goal, and on the basis of the results that emerged from the previous chapter, very

light turbulence (which is often encountered by actual aircraft at low altitudes) could

be added for very short time (less than 5% of the whole training maneuver) to better

excite short period aircraft modes [65]. At the end of the training maneuver, a slow

down, from Vmax to Vs, was introduced to investigate the low velocity regime, with

all the possible �ap settings. All the �ight simulated in this chapter were obtained

using the real Sky-Y autopilot modes used during real �ights.

The test maneuver set was composed of several high-dynamic maneuvers and mixed

of the three aircraft dynamics in order to evaluate the neural network performance
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(a) Angel of attack (b) Angle of sideslip

Figure 5.3: Aerodynamic angles obtained during the Sky-Y training maneuvers

Figure 5.4: Guideline scheme for the test maneuver set

in extreme conditions, as mentioned at the beginning of this section.

The test maneuver strategy is depicted in Fig. 5.4, where no limits were prescribed

to single maneuvers in order to evaluate the real neural network performance. In

particular, pitching motion was combined with yawing and rolling maneuvers in

order to evaluate the performance of the neural network in estimating superimposed

motion that was not performed during the training stage. Pushover and pullup

maneuvers were then performed to evaluate the virtual sensor result when very low

and very high angles of attack are achieved in unsteady conditions. This group of

maneuvers was indicated as classic. Steady sideslip, obtained with cross-commands,

was performed to obtain high angles of sideslip (β > 10 deg) in order to evaluate the

extrapolation capability of the neural networks. The dive was used to investigate the

neural network performance at higher velocities than those obtainable in realistic
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(a) Angel of attack during several
simultaneous combinations of yaw, roll and

pitch

(b) Angle of sideslip during several
simultaneous combinations of yaw, roll and

pitch

(c) Angel of attack during light and medium
turbulence

(d) Angle of sideslip during light and
medium turbulence

(e) Angel of attack during dive (f) Angle of sideslip during steady β with
cross commands

Figure 5.5: Aerodynamic angles pro�les during di�erent Sky-Y test maneuvers
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�ight, as was done during the training stage, in other words, the velocity was

increased up to VD of Sky-Y. Again, slow down was performed to evaluate the

performance of the virtual sensors when manoeuvring, even with the �aps down. The

best strategies have been tuned considering the experience gained with the Beaver

simulator. The most important aircraft dynamics observed during test maneuvers

are reported in Fig. 5.5.

5.2 Modi�ed Virtual Sensor: New Input Vectors

As stated in the previous section, the neural networks designed for Sky-Y were

designed to be used during the maneuvers with the �aps down. NNA and NNB

designed for Beaver simualtor neede to be modi�ed in order to consider the �ap

position signal. Two new neural networks were therefore introduced and depicted

in Fig. 5.6. The �ap de�ection signal was used as input with respect to the Beaver

application and some of the surface control de�ections were removed from the input

vectors when was seen that they had no in�uence on the NN performances at any

extent. In fact, several con�gurations were tested and the results are summarized

in Tab. 5.2. In particular, the importance of commands in the input vectors was

variable inputs MSE [deg] Max error [deg]
all inputs 8.2 · 10−5 0.25

α w/o δe 9.4 · 10−5 0.27
no commands 1.1 · 10−4 0.27
all inputs 1.0 · 10−4 0.47

β w/o δe 1.5 · 10−4 0.53
w/o δr and δa 7.6 · 10−3 1.7

Table 5.2: Performance of neural networks changing the commands in the input
vector

investigated. Some position demands were cut from the input vectors in order

to understand their in�uence on the aerodynamic angle estimations of the neural

networks. Tab. 5.2 suggests that the use of commands, δe, δa and δr, could be

excluded from the input vector for neural network for angle of attack, α, because it

implied a slightly worse performance. Instead, as far as the neural network for angle

of sideslip estimation is concerned, acceptable performance were obtained using at
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least rudder and aileron de�ections as inputs. Therefore, the �nal version of the

neural networks was characterized for α and for β, as depicted in Fig. 5.6, and,

since the inputs were increased for NNB, the neuron number was also increased,

from 15 to 17.

(a) (b)

Figure 5.6: Modi�ed neural networks for the angle of attack (a) and sideslip (b)
estimation. The dashed connections represent negative synaptic weight, the solid
connections represent positive synaptic weight

The subsequent neural network performances were obtained using the several test

maneuvers described before. As expected, the errors of the aerodynamic angle

estimation were very small when maneuvers similar to those of the training set

are performed. The real validation of the neural network was carried out using the

test maneuvers presented in Fig. 5.5. In the following �gures, the absolute values

are plotted in the left columns and the absolute errors of the estimation performed

by NNs in the right columns both for the angle of attack and sideslip; where errors,

de�ned in (3.12), are

eα = α̂− α∞ and eβ = β̂ − β∞

for angle of attack and sideslip, respectively. The errors of the estimation of the angle

of attack, during maneuvers, in which there was a simultaneous combinations of

yaw, roll and pitch were performed, were very small and contained within ±0.3 deg.

Outside the training maneuver boundaries, when in dives the VNE was exceeded, the

extrapolation was still good: the estimation error was again within ±0.3 deg, but

the most important aspect was that the neural network did not generate diverging
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(a) Reference and Estimated angle of attack
during several simultaneous combinations of

yaw, roll and pitch

(b) Error of angle of attack estimation
during several simultaneous combinations of

yaw, roll and pitch

(c) Reference and Estimated angle of sideslip
during several simultaneous combinations of

yaw, roll and pitch

(d) Error of angle of sideslip estimation
during several simultaneous combinations of

yaw, roll and pitch

Figure 5.7: Test of the neural network designed for aerodynamic angle estimation
using the Sky-Y simulator performing test maneuvers similar to those performed
during actual Sky-Y �ight tests
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(a) Reference and Estimated angle of attack
during steady sideslip

(b) Error of angle of attack estimation
during steady sideslip

(c) Reference and Estimated angle of attack
during dive

(d) Error of angle of attack estimation
during dive

(e) Reference and Estimated angle of attack
during light and medium turbulence

(f) Error of angle of attack estimation during
light and medium turbulence

Figure 5.8: Test of the neural network designed for for angle of attack, α,
estimation using the Sky-Y simulator performing the test maneuvers
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outputs. When turbulence was activated, the maximum absolute errors of the

estimation increased to 0.85 deg. Results of presented here (Fig. 5.9) are worse

than those presented in section 4.4. This is mainly due to accuracy of all calculation

processes implemented in the Sky-Y simulator: time dalays due to �ltering and the

non-synchronization between all the aircraft subsystems were in fact simulated and

led to larger estimation errors if compared to those obtained for the Beaver simulator.

Overall, the validation of the neural network for angle of attack estimation could be

considered positive, since the maximum error is within the acceptance limits and,

more important, the neural network works very well even in the presence of high

dynamic maneuvers and medium turbulence.

The errors of estimation on angle of sideslip, during maneuvers in which there

was a simultaneous combinations of yaw, roll and pitch were simulated, were very

small and within ±0.6 deg, but were higher than those found for α. When �ying

with air turbulence, the absolute errors of the estimation increased to 0.95 deg

which was comparable with those obtained for the angle of attack. During dives,

the extrapolation was almost acceptable: the errors of the NN estimation were

within ±1.1 deg. However, dives were simulated with the aim of investigating if the

neural network produced diverging outputs, since speeds hgher than VNE were not

realistic �ight conditions. Overall, the validation of the neural network for the angle

Type of Absolute max
maneuver error [deg]
classic 0.30

α turbulence 0.85
V > VNE 0.30
classic 0.60

β turbulence 0.95
V > VNE 1.1

Table 5.3: Summary of virtual sensor performance

of sideslip estimation, summarized in Tab. 5.3, can be considered positive since

the neural network performance was acceptable, even in presence of high-dynamic

maneuvers and medium turbulence, although errors beyond the acceptance limits

occurred for unrealistic �ight conditions.
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(a) Reference and Estimated angle of sideslip
during steady sideslip

(b) Error of angle of sideslip estimation
during steady sideslip

(c) Reference and Estimated angle of sideslip
during dive

(d) Error of angle of sideslip estimation
during dive

(e) Reference and Estimated angle of sideslip
during light and medium turbulence

(f) Error of angle of sideslip estimation
during light and medium turbulence

Figure 5.9: Test of the neural network designed for angle of sideslip, β, estimation
using the Sky-Y simulator performing the test maneuvers
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5.2.1 Performance Simulating Sensor Noise

In this section, the neural network were tested in the presence of measurement

noise of sensors which provide input signals to NNs, as described in 4.4.3, while

the noise derived from structural vibration was discussed in the section 4.4.4. The

performance of the virtual sensors were not highly in�uenced by noise of current

pressure transducers and inertial sensors, as desribed in the section 4.4.4. Fig. 5.10,

shows the worst case for α (during turbulence) and for β (during diving), which were

found in the previous section. Overall, the neural networks used for the angle of

(a) Error of angle of attack estimation during
light and medium turbulence

(b) Error of angle of sideslip estimation
during dive

Figure 5.10: Virtual sensor performance during the worst possible �ight
condistions simulating realistic sensor noise

attack and sideslip estimation used for the Sky-Y simulator were validated against

severe �ight conditions and realistic sensor noise without �ltering. Therefore, these

network were now ready to be tested on real hardware for a �nal validation.

5.3 Validation on Real FCC

In this section, the virtual sensors were tested in a real hardware environment with

he aim of assessing:

� the integrity of the software (written and compiled in-house),

� the real execution time (texe),
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Figure 5.11: A possible of UAV subsystem working scheme. The FCC receives
several inputs from ADC and AHRS and communicates with other subsystems

� the estimation performance of aerodynamic angles, α and β.

The present activity included the development of an executable code and its subsequent

download into a real �ight control computer. This was followed by a laboratory

testing session conducted at the Alenia Aermacchi integration rig. This integration

rig includes a �ight simulator which had the capability of including hardware in the

loop simulations, thus allowing the virtual sensors to be tested in a real hardware

environment using similar maneuvres to those previously described for the testing

phase (see section 6) for a data comparison. The Sky-Y �ight simulator and the rig

simulator are identical, in terms of dynamic models and operations (e.g. hardware

schemes of Fig. 5.11), the only di�erences being the necessary connections of the real

aircraft equipment with the rig test bench and the simulator computer (e.g. speed

of computations). These di�erences have been assessed separately as being of no

impact on our simulation tests. As is clear, the virtual sensors need to be translated

into a language that is able to be interpreted by the Sky-Y FCC. In this case, all the

Matlab routines and subroutines, such as the sigmoid function of the hidden neurons,

were previously translated into a C++ code and then adequately compiled in order

to be downloaded into the FCC. Although the series of signal manipulation from all

the subsystems in the previous Sky-Y simulations were simulated, the calculations

speed could only be tested on real hardware. As stated at the beginning of this

work, the �nal neural networks have to run in a few milliseconds: the current virtual

sensors need less than half a millisecond (texe < 0.5 ms), from the input reading to

output generation, to estimate aerodynamic angles.



95

5.3.1 Virtual Sensor Test

A preliminary test was carried out to evaluate the di�erence in precision between

Matlab, which works in double precision (64 bit), while the real FCC did not

manage operations using numbers greater than 32 bit. Moreover the input signals

are sampled according to their own processing series. Fig. 5.12 shows the typical

gap that occurred between Matlab and real FCC during the aerodynamic angle

estimation of the neural networks. Unfortunately, the errors were sometimes quite

(a) Typical precision error (α̂FCC − α̂Matlab)
on angle of attack

(b) Typical precision error (β̂FCC − β̂Matlab)
on angle of sideslip

Figure 5.12: Precision errors of the neural network estiamtion between Matlab
and Sky-Y FCC

large and there was no possibility of reducing them, because they depended on the

hardware characteristics of the used FCC. Therefore, even though simulation with

real FCC produced greater errors than those obtained presented in section 5.2, they

did not in�uence the absolute errors of the neural network estimations to any extent.

First, a �ight simulation (Fig. 5.13), similar to a real Sky-Y �ight test, was carried

out to assess the virtual sensor performance during a realistic �ight, in which light

turbulence, low aircraft dynamics and �ap de�ections are involved. Both the angle

of attack and sideslip were estimated by virtual sensors with a very good accuracy,

the maximum errors are always within ±0.8 deg. As described in section 6, the

virtual sensors were tested during high dynamic test maneuvers with full authority

commands, where medium turbulence was also involved, in order to evaluate the

performance of the neural network during extreme conditions. The neural networks
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(a) Reference and estimated angles of attack
during several simultaneous combinations of

yaw, roll and pitch

(b) Error of angle of attack estimation
during several simultaneous combinations of

yaw, roll and pitch

(c) Reference and estimated angles of sideslip
during several simultaneous combinations of

yaw, roll and pitch

(d) Error of angle of sideslip estimation
during several simultaneous combinations of

yaw, roll and pitch

Figure 5.13: Validation, on actual FCC, of the neural network designed for
aerodynamic angles of attack estimation using test maneuver similar to those
performed during actual Sky-Y �ight tests
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were also tested outside the real Sky-Y �ight envelope to investigate the ability

of the virtual sensor to generalize and extrapolate on real hardware. Fig.s 5.14

and 5.15 show the performance of the virtual sensors both for angle of attack and

sideslip. During the classic maneuvers shown in Fig. 5.14(a), the virtual sensor

showed a maximum error (Fig. 5.14(d)) bounded within 0.58 deg for angle of

attack estimation. During �ight with light and medium turbulence levels (Fig.

5.14(e)), higher errors occurred as can be seen in Fig. 5.14(f), where the maximum

absolute error is less than ±1.2 deg. However, the performance can be considered

acceptable, even in the simulated environmental conditions. The performance of

the virtual sensor still remained acceptable even for speeds higher than VNE. The

maximum errors (Fig. 5.14(d)) were in fact within ±0.59 deg, and the virtual

sensor is as reliable as in normal conditions even in this unrealistic �ight conditions.

Moreover, it was proven that the angle of attack estimation does not diverge, even

when the virtual sensor was working outside the training boundaries or outside the

real operating �ight envelope of the aircraft. Fig. 5.15 shows that the errors of

β estimation during test maneuvers. During steady sideslip (Fig. 5.15(a)), where

β > 10 deg were obtained, the maximum error (Fig. 5.15(b)) was within ±0.98 deg.

This error lasted for a single time step, and occurred during the maximum slope when

the synchronization of the NN estimation with the reference signal was obviously a

key factor. Moreover, the points close to the acceptance limits are mainly due to

high-dynamic maneuvers, which were achieved using step commands (never used

during training stages), during medium turbulence. It was noted that, in the

same conditions, piloting the aircraft using a conventional pilot's control stick, the

maximum errors were again within the tolerance limits.

Higher errors are shown in Fig. 5.15(f) when maneuvering during light and medium

turbulence (Fig. 5.15(e)), these errors could be enclosed in a ±1.5 deg range for

medium level and ±0.7 deg for light level. At this stage must be considered that

UAVs do not usually �y in medium turbulence for safety reasons, and the test

was therefore needed to evaluate if some problems, such as divergence of outputs,

emerged during turbulent �ight simulations.

As far as velocities higher than never exceed are concerned, the maximum errors (Fig.
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(a) Reference and estimated angles of attack
during steady sideslip

(b) Error of angle of attack estimation
during steady sideslip

(c) Reference and estimated angle of attack
during dive

(d) Error of angle of attack estimation
during dive

(e) Reference and Estimated angles of attack
during light and medium turbulence

(f) Error of angle of attack estimation during
light and medium turbulence

Figure 5.14: Validation on actual FCC of neural network designed for angle of
attack, α, estimation using test maneuver. The red lines represents the acceptance
limits
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(a) Reference and estimated angles of
sideslip during steady sideslip

(b) Error of angle of sideslip estimation
during steady sideslip

(c) Reference and estimated angles of sideslip
during dive

(d) Error of angle of sideslip estimation
during dive

(e) Reference and estimated angles of sideslip
during light and medium turbulence

(f) Error of angle of sideslip estimation
during light and medium turbulence

Figure 5.15: Test on actual FCC of the neural network designed for angle of
sideslip, β, estimation using test maneuver. The red lines represent the acceptance
limits
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5.15(d)) are within ±1.5 deg. Even in this unrealistic �ight condition, the virtual

sensor is almost a reliable predictor of the angle of sideslip since the estimation did

not diverge and the overall accuracy was bounded within ±1.5 deg. A considerations

must be made about this �ight condition for which the errors of β estimations

were not acceptable. Tests were carried out beyond the training boundaries in

order to evaluate the neural network performance outside the real aircraft �ight

envelope and mainly to investigate the occurrence of diverging outputs. Therefore,

maximum errors of less than ±1.5 deg con�rmed that NNs do not diverge and the

NN predictions can be still considered reliable aerodynamic angles estimation even

during extreme �ight conditions.

Overall, the global performance of the virtual sensor for β estimation can be considered

acceptable, considering that a maximum error of the angle of sideslip prediction

bounded in ±1.5 deg could also be obtained, during medium turbulence.

In conclusion, although maximum errors are higher than acceptance limits in some

extreme situations, such as maneuvers at speeds higher than VNE (up to VD) or

during medium turbulence, the virtual sensors were still suitable aerodynamic angles

estimators without diverging. The errors greater than the tolerance limits are only

experienced for isolated time steps, due to the high dynamics involved and step

commands, but this did not represent a real problem because the errors are bounded.

Moreover, this kind of errors can be easily removed, for example, using a high

frequency cutting �lter. Therefore, the current neural networks designed for angle

of attack, α, and sideslip, β, estimation may also be considered ready to be tested

in real �ight conditions.

5.4 Aeronautical Certi�cation

Over the last few decades, soft-computing techniques have reached in last decades

such a stage of maturity stage that they can be used in real world applications [74].

These techniques can be characterized by on-line and o�-line training methods,

see section ??. The o�-line training strategy was used in this work because it

allows neural networks, or other soft techniques, to be a deterministic software
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after training, like any other software on modern FCCs. On the other hand, the

on-line training technique allows neural networks, or any other soft techniques, to

be trained during their operative lives in order to always be updated and able

to adapt to system evolutions: when damage or failures occur, the software can

re-adapt to the new and unusual system con�guration. Clearly, this kind of training

strategy is not deterministic and it is rather hard to certify according to current

airworthiness certi�cation regulations. Today, the only training method that can be

certi�ed is the o�-line strategy which can assure a deterministic software after the

training stage. However, even though the o�-line approach is used, several aspects

still need to be considered before full aeronautical certi�cation. In fact, before

an NN can be used in safety critical applications, like UAV intended to �y over

populated and not segregated areas, a certi�cation process must be established. In

this context, certi�cation is the process of obtaining a certi�cate from an authority

(e.g. ENAC in Italy) to indicate conformance with airborne software standards

and aircraft certi�cation speci�cations (usually DO-178B, CS-23, AER-P.2). As a

general overview, the airborne software standards provide guidelines for the production

of software for systems and equipment that performs its intended function with a

level of con�dence in safety that complies with airworthiness requirements. These

guidelines are in the form of:

� objectives for software life cycle processes,

� descriptions of activities and design considerations for the achieving of those

objectives,

� descriptions of the evidence that indicate that the objectives have been satis�ed.

The aircraft certi�cation speci�cations typically contain a set of technical airworthiness

requirements that are primarily intended for the airworthiness certi�cation of manned

and unmanned airplanes that are intended for regular use in unsegregated airspace.

The certifying authorities may apply these certi�cation requirements outside these

limits whenever appropriate.
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5.4.1 Life Cycle of the Neural Network Certi�cation

A pre-trained NN, such the one used in this work, is a purely deterministic mapping,

and it may be analyzed just like any other function. Hence, the veri�cation should

not be more di�cult than that of other well accepted implementations of non-linear

mappings, such as the polynomials or look-up tables currently employed in air data

computers for the storage of PEC and other air data calibration functions. A

possible high-level veri�cation and validation process that could be used to ensure

that the design of the NNs, or virtual sensors, yield a safe system, in compliance

with requirements, is:

� de�nition of the system requirements and the software requirements

note. The documentation should include the speci�cation for the NN and its

architecture (e.g.: learning algorithms, number of layers, description of inputs

and outputs, etc.).

� De�nition of the training data (the data should consist of all the variables

used as input as well as the desired output of the system).

� De�nition of the test data note. In order to test the NN, it may be

necessary to design and develop speci�c veri�cation tools in parallel, but

independent from the primary developers. If possible, the non-diverging neural

network outputs should be demonstrated when they exceed the training data

set.

� Code veri�cation, pertaining to the NN software rather than the training of

the NN, in order to ensure that:

� the code is traceable to the design and the requirements,

� the code can be derived from the design and requirements,

� the code implements the safety and other critical requirements correctly

� Integration veri�cation. It is assumed that the NN is an integral part

of another system. For example, the NN developed for the virtual sensors

in this work is an integral part of the �ight control computer. Therefore, it
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is important to verify that all the inputs/outputs between the systems are

properly scaled and that the NN properly interfaces with the FCS.

� Documentation veri�cation to ensure that the documentation is adequate,

consistent and complete and, moreover, that the con�guration management of

the documents follows speci�ed procedures.



Chapter 6

Sensitivity Analysis of the Virtual

Sensors

Sensitivity analysis is the study of how the uncertainty in the output of a mathematical

model or system can be apportioned to di�erent sources of uncertainty in its inputs

[75]. In this chapter the sensitivity analysis was applied to virtual sensors based on

neural networks in order to evaluate

� the robustness of virtual sensors in response to uncertainty on inputs or simulated

failure of sensors which provide inputs;

� identify strong and weak relationships between inputs and output in order to

propose simpli�ed neural networks.

In particular, the sensitivity analysis for an aircraft model could be performed in

di�erent ways depending on the �ight condition characteristics. Steady �ight, for

example, could be analyzed through a local method involving the linearization of

the equations of motions:

f(Ẋ,X, U) = 0, (6.1)

where X and U are respectively the state and control variables and f indicated

the implicit nonlinear body-axis �rst order di�erential equations of motion [65].

Linearization around the steady condition implies calculating the partial derivatives

of each equation with respect to each variable:

∇ẊfδẊ +∇XfδX +∇UfδU = 0, (6.2)

104
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where ∇ represents a row vector of �rst partial derivative operators. Analytical

and numerical investigations reveal that, under the speci�c assumption that the

stability-axis inertia matrix Js [65] is symmetric, the longitudinal and lateral-directional

equations are decoupled. This implies that α is a�ected mainly by the longitudinal

variables qc, nx, nz, q, θ and δf , while Ì�β is a�ected mainly by the lateral-directional

variables qc, ny, p, r, φ. In unsteady conditions the non linear dynamic equations

must be considered and the sensitivity analysis can be performed through the

uncertainty propagation method [72, 73], which assumes independence among the

measured variable: test maneuvers were simulated in the time-domain and the sensor

input signal was modelled assuming that uncertainties had a Gaussian standard

probability distribution, where the root mean square deviation was given by the

particular sensor accuracy. In fact, the virtual sensors could be considered as a

classical measuring devices with their own performance, in terms of accuracy and

robustness to external disturbances. The accuracy of measurements is in fact a

speci�c characteristic of the particular sensor, which is declared by manufacturers in

datasheets. The uncertainty analysis was performed in unsteady conditions over all

the variables included in Eq.s 4.17 in several �ight conditions. In real operations, the

virtual sensor works with input signals which come from measurements of dedicated

probes or sensors with their own uncertainties. Four sources of uncertainties on NN

inputs were considered in the present analysis: measurement accuracy of sensors,

which provide NNs with input signals, and three failure modes that will be described

later on. Moreover, for the sake of generality, in the present analysis, accuracy was

given as a percentage deviation with respect to the nominal value inspired by current

sensor data-sheets [68, 67, 69, 62] without any reference to the particular sensor.

Results are presented in tables containing the maximum absolute error and MSE

of NN predictions with reference to any level of single input corruption: each input

was considered to fail individually because no hypothesis were here assumed on the

sensor platform which provide neural network with inputs.

The way to read all the tables of this chapter is here described. The �rst row of

all tables indicates the kind of simulated �ight. By classic we intended maneuvers

that were performed during the test stage, which are described in the section . In
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approach were grouped those classic maneuvers with speed below 100kts in order

to simulate the approach and landing phases using all the available �ap settings.

Finally, turbulence is about to indicates that set of classic maneuvers performed

during light and medium turbulence, which was simulated according to the Dryden

model [66, 76]. All the inputs, for which individual failure were considered, are

reported in the �rst column. The numbers inside the tables are the absolute errors of

NN estimation. The second rows indicates the type of failure and its damage degree.

Let us consider, for example, to be interested in how the angle of attack estimation

degrades during the approach phase when the accuracy of the measured dynamic

pressure, qc, is 10%. Hence, the row corresponding to considered failed input (qc in

this example) in Tab. 6.1(b) must be crossed with the column of considered degree

of failure (10%) in the approach table. Therefore, the cross-checked number is the

maximum absolute error produced by virtual sensor for the α estimation when the

accuracy on measured qc is 10%.

6.1 E�ect of Accuracy Measurements of NN Inputs

In this section, the several accuracy levels of inputs to NNs will be used as source of

external disturbance to the virtual sensors. As previously mentioned, the accuracy

is here simulated considering a percentage error of the nominal value.

The virtual sensor was in fact fed by several sensors, each of them with its own

accuracy of provided measurements. In particular, the accuracy is a speci�c characteristic

of the sensor which is declared by manufacturers in terms of several contributions:

sensor non-linearity, hysteresis and non-repeatability, other than temperature e�ects

on the o�set and hysteresis themselves. Therefore, each input signal can be corrupted

using a realistic accuracy inspired by current datasheets [68, 67, 69, 62] of the sensor

at hand.

As said before, the virtual sensors were simulated to work with a single corrupted

input signal by using ±2%, ±5%, ±10% and ±20% accuracy error with reference

to nominal conditions indicated with 0%; in the tables are reported the worst

conditions.
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Classic
Input Nominal ±2% ±5% ±10% ±20%
qc 0.23 0.38 0.64 1.06 1.85
nx 0.23 0.23 0.23 0.23 0.23
ny 0.23 0.22 0.21 0.21 0.20
nz 0.23 0.37 0.73 1.34 2.59
θ 0.23 0.23 0.23 0.23 0.23
φ 0.23 0.23 0.23 0.23 0.23
p 0.23 0.23 0.23 0.23 0.23
q 0.23 0.23 0.23 0.23 0.23
r 0.23 0.23 0.23 0.23 0.24
δf 0.23 0.23 0.23 0.23 0.23

(a)

Approach
Input Nominal ±2% ±5% ±10% ±20%
qc 0.52 0.76 1.56 2.63 4.11
nx 0.52 0.55 0.59 0.66 0.79
ny 0.52 0.53 0.53 0.54 0.55
nz 0.52 1.16 2.21 4.23 9.59
θ 0.52 0.52 0.51 0.49 0.46
φ 0.52 0.52 0.52 0.52 0.53
p 0.52 0.53 0.53 0.54 0.55
q 0.52 0.53 0.53 0.54 0.56
r 0.52 0.53 0.53 0.53 0.54
δf 0.52 0.34 0.53 0.91 1.59

(b)

Turbulence
Input Nominal ±2% ±5% ±10% ±20%
qc 0.52 0.64 0.83 1.12 1.87
nx 0.52 0.52 0.51 0.51 0.51
ny 0.52 0.52 0.53 0.53 0.54
nz 0.52 0.63 0.84 1.25 2.61
θ 0.52 0.52 0.52 0.52 0.52
φ 0.52 0.52 0.52 0.52 0.52
p 0.52 0.52 0.52 0.52 0.52
q 0.52 0.52 0.52 0.52 0.52
r 0.52 0.52 0.52 0.52 0.51
δf 0.52 0.52 0.52 0.52 0.52

(c)

Table 6.1: Failure analysis for angle of attack, α, estimation when the input signal
accuracies decrease. The errors represent the maximum eα [deg]
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In Tab. 6.1 the maximum absolute errors for the NN estimation of the angle of

attack are reported. It can be seen that for the virtual sensor of the angle of

attack, α, the dynamic pressure, qc, and the vertical inertial acceleration, nz, are

the most in�uencing inputs. Indeed, in Tab. 6.1(a) is clear that when the accuracy of

measures is between ±5% and ±10% the error is greater than the acceptance limits

(±1 deg), whereas the other inputs can have an accuracy of up to ±20% without

a�ecting the neural network estimation of the α. It can also be seen that for the

current �ight conditions, whatever the accuracy on measurements of nx, θ, φ, p, q

and r, it do not a�ect the α estimation, and even errors on ny measurements improve

the performance of virtual senor for angle of attack. This particular behaviour is true

only for the current �ight conditions. The scenario in fact changes during approach

maneuvers or turbulent �ight conditions. In fact, the maximum allowed accuracy

for measurements of qc and nz is less than 2%, in order to keep the error of neural

network estimation within the acceptance limits. During these �ight conditions,

emerges that also nx has an in�uencing role in the α estimation, even though

an accuracy on measurements of up to 20% do not lead the maximum error of

α estimation beyond the acceptance limits. The �ap angle de�ection, δf , which

considers the real time position of �aps, obviously a�ect the NN estimation of the

α during the approach maneuvers, when accuracy on �ap de�ections are worse than

10% with reference to true values (Tab. 6.1(b)). Moreover, some inputs, such as ny,

φ, p, q and r, can have very large measuring errors without a�ecting the angle of

attack estimation for the Sky-Y application. Overall, considering all the three �ight

phases, the vital inputs are qc, nz, nx and δf for the approach and landing phases.

As done for angle of attack, errors of the angle of sideslip estimation due to loss of

the accuracy on inputs are reported in Tab. 6.2. It can be seen in Tab. 6.2(a) that

the most in�uencing quantity for angle of sideslip, β, was the lateral acceleration, ny,

and the dynamic pressure, qc. Indeed, when the accuracy of ny measurements was

worse than ±10%, the error on β estimation, eβ, was greater than the acceptance

limits (±1 deg). As far as the dynamic pressure is concerned, the allowed accuracy

on measurements can be up to ±20%, the maximum error was in fact within the

tolerance limits (|eβ|max ≤ 0.96 deg) for the β estimation. All the other inputs do
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Classic
Input Nominal ±2% ±5% ±10% ±20%
qc 0.59 0.50 0.46 0.60 0.93
nx 0.59 0.58 0.57 0.55 0.51
ny 0.59 0.67 0.81 1.03 1.50
nz 0.59 0.59 0.59 0.60 0.60
θ 0.59 0.59 0.59 0.60 0.62
φ 0.59 0.58 0.58 0.57 0.56
p 0.59 0.58 0.57 0.55 0.53
q 0.59 0.59 0.59 0.59 0.59
r 0.59 0.59 0.60 0.62 0.65
δf 0.59 0.59 0.59 0.59 0.59
δr 0.59 0.60 0.62 0.65 0.70
δa 0.59 0.59 0.61 0.63 0.67

(a)

Approach
Input Nominal ±2% ±5% ±10% ±20%
qc 0.76 0.76 0.76 0.76 0.76
nx 0.76 0.77 0.77 0.78 0.80
ny 0.76 0.78 0.81 1.06 1.58
nz 0.76 0.76 0.75 0.75 0.75
θ 0.76 0.76 0.76 0.76 0.77
φ 0.76 0.76 0.76 0.76 0.76
p 0.76 0.76 0.76 0.76 0.76
q 0.76 0.76 0.76 0.76 0.76
r 0.76 0.76 0.75 0.73 0.74
δf 0.76 0.77 0.79 0.81 0.86
δr 0.76 0.77 0.77 0.77 0.87
δa 0.76 0.76 0.76 0.76 0.75

(b)

Turbulence
Input Nominal ±2% ±5% ±10% ±20%
qc 0.96 1.04 1.17 1.36 1.66
nx 0.96 0.96 0.96 0.96 0.97
ny 0.96 0.90 0.88 1.25 2.09
nz 0.96 0.96 0.97 0.99 1.04
θ 0.96 0.96 0.96 0.95 0.95
φ 0.96 0.95 0.95 0.95 0.95
p 0.96 0.95 0.96 0.98 1.02
q 0.96 0.96 0.96 0.95 0.95
r 0.96 0.97 0.99 1.04 1.14
δf 0.96 0.96 0.96 0.96 0.96
δr 0.96 0.95 0.93 0.91 0.91
δa 0.96 0.96 0.96 0.96 0.96

(c)

Table 6.2: Failure analysis for angle of sideslip, β, estimation when the input signal
accuracies decrease. The errors represent the maximum eβ [deg]
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not in�uence signi�cantly the estimation of the angle of sideslip, and, in particular,

the higher errors on measurements of nx, φ or p the better estimation of β. This

particular behaviour is related to the particular conditions �own during classic

maneuver set. The same particular behaviour was not found again during the

approach and turbulence maneuver sets. It is clear that the most in�uencing inputs

were again ny and qc even for during the approach phase and the turbulent �ights,

while all other inputs slightly in�uence the errors on β estimation of NNs.

From the analysis of sensitivity of NN-based β estimator, presented in Tab. 6.2,

it is clear that for this speci�c application some inputs, such as nz, θ, q δa and

δr, may have very bad accuracies (up to 20%) without a�ecting signi�cantly the β

estimation.

Overall, for Sky-Y application, the neural network α estimation is mainly in�uenced

by accuracy of measured qc, nz and δf , whereas the β estimation is a�ected to great

extent by accuracy on qc, ny, nz, p and r signals, according to results presented in

this section.
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6.2 Failure Analysis

In this section, the following three main failure modes of the sensors providing inputs

to the NNs are considered

� locked signals

� o�set drift

� null signal.

When a sensor stops working properly, the hypothesis of locked signal is realistic,

while the null signal is only realistic when the failure is recognized. The o�set drift

is a another source of error that is well known by manufacturers which can be due to

hysteresis, temperature changes or simply to long term stability characteristics. For

these reasons, the o�set drift, which always occurs in the current sensors during their

operative life, cannot strictly speaking be considered a real failure mode but rather

just the way the sensor works. However, the o�set deviation was here indicated as

a failure because deviates the measurements from their true values.

6.2.1 Locked Signals

Locked signals were considered here as one of the expected failure modes of neural

network inputs. The input signals to NNs were individually corrupted simply locking

the signal at take-o� (CAS≈ 70 kts) and at maximum speed (CAS> 140 kts)

in order to evaluate the worst conditions for this particular failure mode. The

Classic Approach Turbulence

Input Nominal From TO From VNE Nominal From TO From VNE Nominal From TO From VNE
qc 0.23 51.10 5.14 0.52 16.13 8.16 0.52 62.75 4.33

nx 0.23 0.94 0.94 0.52 2.29 2.29 0.52 0.98 0.98

ny 0.23 0.27 0.27 0.52 0.42 0.42 0.52 0.49 0.49

nz 0.23 8.89 8.94 0.52 10.76 10.81 0.52 8.91 8.94

θ 0.23 0.26 0.25 0.52 0.44 0.89 0.52 0.50 0.53

φ 0.23 0.23 0.23 0.52 0.52 0.52 0.52 0.52 0.52

p 0.23 0.47 0.47 0.52 0.47 0.47 0.52 0.64 0.64

q 0.23 0.23 0.23 0.52 0.41 0.41 0.52 0.53 0.53

r 0.23 0.22 0.22 0.52 0.46 0.46 0.52 0.53 0.53

δf 0.23 2.58 0.23 0.52 11.50 20.85 0.52 2.43 0.52

Table 6.3: Failure analysis for angle of attack, α, estimation when signal lock
occurs. The errors represent the maximum eα [deg]

maximum absolute errors of α estimation are reported in Tab. 6.3. Considering the

three kinds of maneuvers discussed before, the locked dynamic pressure, qc, vertical
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inertial acceleration, nz, and �ap de�ection, δf , are those that had most in�uence

on the inputs and led the absolute error of α estimation to go beyond the tolerance

limits, while the inertial axial acceleration, nx, can only cause estimation errors

greater than ±1 deg during the Sky-Y approach phase. Instead, no one of the other

quantities, when locked during take-o� or at maximum velocity, in�uence the angle

of attack estimation carried out by the neural networks for the Sky-Y application

to any great extent.

The degradation analysis on β estimation, when the input signals are locked independently,

is reported in Tab. 6.4. The input quantities that led the estimation to go beyond

Classic Approach Turbulence

Input Nominal From TO From VNE Nominal From TO From VNE Nominal From TO From VNE
qc 0.59 8.54 2.31 0.76 0.76 3.74 0.96 8.53 2.18

nx 0.59 0.95 0.95 0.76 1.06 1.06 0.96 0.91 0.91

ny 0.59 6.34 6.34 0.76 4.57 4.57 0.96 8.12 8.12

nz 0.59 0.95 0.96 0.76 1.85 1.86 0.96 1.33 1.33

θ 0.59 0.64 0.52 0.76 0.81 0.87 0.96 1.01 0.95

φ 0.59 1.03 1.03 0.76 1.06 1.06 0.96 1.61 1.61

p 0.59 0.98 0.98 0.76 0.88 0.88 0.96 0.90 0.90

q 0.59 0.57 0.57 0.76 0.76 0.76 0.96 1.01 1.01

r 0.59 1.00 1.00 0.76 1.19 1.19 0.96 1.28 1.28

δf 0.59 0.86 0.59 0.76 0.84 1.08 0.96 0.96 0.96

δr 0.59 1.30 1.30 0.76 1.50 1.50 0.96 1.87 1.87

δa 0.59 0.76 0.76 0.76 0.82 0.82 0.96 1.01 1.01

Table 6.4: Failure analysis for angle of sideslip, β, estimation when signal lock
occurs. The errors represent the maximum eβ [deg]

the acceptance limits were: dynamic pressure, qc, lateral acceleration, ny, bank

angle, φ, yaw rate, r and rudder de�ections, δr. However, even if the loss of the

φ, r and δr signals did not have a signi�cant e�ect on the absolute errors of β

estimation (since |eβ|max ≤ 1.30), ny and qc could cause errors grater than 6 deg and

10 deg, respectively. When the Sky-Y �ight was simulated in landing and approach

con�gurations, the aforementioned inputs and also nz had more in�uence on error of

β estimation. When considering �ight in turbulent air, the aileron de�ection signal

made the angle of sideslip estimation error went outside the acceptance limits, even

though the additional error was less than one-tenth degree, the maximum expected

error due to locked δa was higher than tolerance lmits (|eβ|max < 1.1).

From this kind of analysis, it is clear that the most important parameters for an

acceptable β estimation were the dynamic pressure, qc, the three inertial accelerations,

the bank angle, φ, pitch and yaw rate, q and r, and rudder de�ections, δr. The �ap,

δf , could be neglected because the maximum absolute errors slightly exceed the

acceptance limits, |(eβ)δf=0|max = 1.08. Conversely, the pitch angle and roll rate,
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θ and p, may be locked for this particular analysis, since their precision was not

crucial for neural network β estimation.
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6.2.2 O�set Drift

Another failure mode expected in the current sensors that provide NNs with the

necessary inputs is the o�set drift they experience during their operative lives.

Manufacturers usually declare the sensor drift as sum of several factors (temperature

e�ects, hysteresis and long term stability) with reference to the full scale (FS) range

of the sensor itself. The FSs of the NN input signal were here inspired by the real

probes and sensors used on board the Sky-Y UAV; the following FS values were

therefore considered:

� 50 mBar for qc

� ±10 g for nx, ny and nz

� ±90 deg for θ

� ±180 deg for φ

� ±90 deg/s for p, q and r

� ±80 deg for δr and δa.

The results of the present analysis are reported in Tab.s 6.5 and 6.6 for α and β,

respectively.

From Tab. 6.5(a), it is clear that when the absolute o�set drift is ≤ 0.5% the

absolute errors of α estimation are within the tolerance range. If the Sky-Y approach

con�guration is considered, unacceptable errors already occur when the o�set error

is only 0.5% for nx, nz and qc; the absolute errors of α estimation are in fact higher

than ±1 deg. Instead, always the o�set error is within ±10%, none of the other

inputs in�uence the α estimation to any great extent, except for ny and δf whose

drift should be less than 5% to avoid exceeding the prescribed tolerance boundaries.

Simulating turbulent �ights, the scenario was still the same: absolute o�set errors

< 0.5% could assure acceptable accuracy of the α virtual sensor, while, as soon as the

input o�set drift was increased, the qc, nx or nz accelerations can cause estimation

errors greater than ±1 deg. As seen before, there are some inputs, θ, φ and p, for

which high o�set accuracy is not requested for acceptable α estimation for Sky-Y
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applications.

As far as angle of sideslip is concerned, Tab. 6.6(a) shows that the most accurate

parameters should be lateral acceleration ny. As the o�set drift of ny is 0.5% FS,

the maximum absolute errors of β estimation are in fact greater than three degrees,

while for all other inputs it can be noted that as long as the o�set deviation is

lower than 1% FS, the errors in β estimation are still acceptable, except for nx

for which small errors are produced, |eβ|max = 1.04. Almost the same situation is

found when the landing and approach con�gurations are considered. In fact, all

the inputs can have drift up to ±1% FS o�set, except for ny, nx and r, for which

a better accuracy is required to assure the acceptability of the neural network β

estimations. The scenario becomes worse if turbulence is introduced during the

Sky-Y simulations. When the o�set drift of ±1% occur, most of the inputs cause

large errors on β prediction: all the inputs cause errors greater than 0.95 deg. In

short, in the analysis of the e�ects of o�set drift on β estimation, all the input

quantities must have a better o�set drift than half a percent of the corresponding

FS (drift< 0.5% FS) in order to keep the accuracy of the neural networks within

the tolerance limits.
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Classic
Input Nominal ±0.50% ±1.0% ±2.0% ±5.0% ±10%
qc 0.23 0.35 0.51 0.87 1.84 3.07
nx 0.23 0.70 1.51 6.18 35.87 37.98
ny 0.23 0.30 0.42 0.85 4.32 22.74
nz 0.23 0.68 1.30 2.57 7.35 18.62
θ 0.23 0.22 0.22 0.22 0.24 0.29
φ 0.23 0.22 0.22 0.21 0.22 0.22
p 0.23 0.24 0.26 0.31 0.47 0.60
q 0.23 0.22 0.22 0.20 0.27 0.46
r 0.23 0.25 0.26 0.27 0.37 0.58
δf 0.23 0.32 0.44 0.71 1.40 2.36

(a)

Approach
Input Nominal ±0.50% ±1.0% ±2.0% ±5.0% ±10%
qc 0.52 1.21 2.07 3.36 5.62 7.25
nx 0.52 1.29 4.33 17.73 37.27 39.93
ny 0.52 0.63 1.36 3.44 14.78 26.71
nz 0.52 2.27 4.36 9.94 37.52 70.45
θ 0.52 0.50 0.47 0.42 0.29 0.43
φ 0.52 0.53 0.53 0.53 0.53 0.54
p 0.52 0.49 0.46 0.38 0.44 0.64
q 0.52 0.40 0.30 0.46 0.84 1.22
r 0.52 0.57 0.62 0.72 1.02 1.51
δf 0.52 0.38 0.47 0.73 1.54 2.72

(b)

Turbulence
Input Nominal ±0.50% ±1.0% ±2.0% ±5.0% ±10%
qc 0.52 0.60 0.69 0.85 1.53 2.61
nx 0.52 1.09 1.82 8.91 36.32 36.66
ny 0.52 0.56 0.68 0.76 3.83 21.95
nz 0.52 0.84 1.16 2.19 6.42 16.23
θ 0.52 0.52 0.51 0.51 0.50 0.52
φ 0.52 0.52 0.52 0.54 0.54 0.59
p 0.52 0.53 0.57 0.63 0.69 0.88
q 0.52 0.51 0.51 0.54 0.54 0.68
r 0.52 0.54 0.58 0.61 0.64 0.80
δf 0.52 0.60 0.68 0.84 1.30 2.24

(c)

Table 6.5: Failure analysis for angle of attack, α, estimation when input signal
o�set occurs. The errors represent the maximum eα [deg]
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Classic
Input Nominal ±0.50% ±1.0% ±2.0% ±5.0% ±10%
qc 0.59 0.51 0.45 0.53 0.84 1.44
nx 0.59 0.85 1.04 1.37 2.94 6.32
ny 0.59 3.26 6.12 11.80 26.89 33.59
nz 0.59 0.59 0.60 0.60 0.72 0.82
θ 0.59 0.60 0.61 0.64 0.68 0.67
φ 0.59 0.62 0.69 0.80 1.04 1.27
p 0.59 0.81 0.97 1.11 1.14 1.10
q 0.59 0.56 0.55 0.53 0.85 1.33
r 0.59 0.68 0.75 1.18 1.97 2.83
δf 0.59 0.59 0.61 0.65 0.71 0.80
δr 0.59 0.62 0.68 0.79 1.14 1.99
δa 0.59 0.66 0.73 0.79 0.88 0.98

(a)

Approach
Input Nominal Null Nominal Null Nominal Null
qc 0.76 0.76 0.76 0.76 1.01 1.72
nx 0.76 0.92 1.19 1.66 1.97 1.59
ny 0.76 4.55 8.64 15.96 29.46 32.93
nz 0.76 0.75 0.75 0.75 0.89 1.16
θ 0.76 0.76 0.77 0.78 0.84 0.89
φ 0.76 0.73 0.70 0.76 0.92 1.03
p 0.76 0.77 0.80 0.90 1.39 2.07
q 0.76 0.76 0.77 0.81 1.01 1.04
r 0.76 0.97 1.04 1.41 2.33 2.88
δf 0.76 0.77 0.78 0.79 0.83 0.90
δr 0.76 0.70 0.73 0.85 1.21 1.74
δa 0.76 0.78 0.80 0.85 1.04 1.24

(b)

Turbulence
Input Nominal Null Nominal Null Nominal Null
qc 0.96 1.01 1.06 1.17 1.44 1.87
nx 0.96 0.91 1.17 1.71 3.91 7.72
ny 0.96 2.96 5.42 11.10 24.38 35.88
nz 0.96 0.97 0.99 1.05 1.09 1.16
θ 0.96 0.95 0.95 0.95 0.98 1.11
φ 0.96 0.96 1.02 1.11 1.27 1.40
p 0.96 0.95 0.95 1.04 1.16 1.25
q 0.96 0.98 1.02 1.11 1.33 1.79
r 0.96 1.08 1.31 1.80 2.48 3.21
δf 0.96 0.96 0.97 0.99 1.04 1.02
δr 0.96 0.99 1.03 1.16 1.56 1.97
δa 0.96 0.98 1.06 1.13 1.23 1.13

(c)

Table 6.6: Failure analysis for angle of sideslip, β, estimation when input signal
o�set occurs. The errors represent the maximum eβ [deg]
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6.2.3 Null Inputs

In this section, the virtual sensors were supposed to work with independent null

input signals and the resulting absolute errors of the neural network estimation

were presented. The input signals to NNs were individually set to zero in order

to simulate this particular failure mode. As aforementioned, this event may occur

when a failure, after being identi�ed by using dedicated monitoring processes, is set

to zero by the FCC. The maximum errors obtained during the event of a single null

signal are reported in Tab.s 6.7 and 6.8 for angle of attack and sideslip prediction,

respectively. During maneuvers representing real Sky-Y �ight tests, the parameters

Classic Approach Turbulence
Input Nominal Null Nominal Null Nominal Null
qc 0,23 90,72 0,52 85,54 0,52 90,13
nx 0,23 0,94 0,52 2,29 0,52 0,98
ny 0,23 0,27 0,52 0,42 0,52 0,49
nz 0,23 8,45 0,52 10,28 0,52 8,58
θ 0,23 0,25 0,52 0,89 0,52 0,53
φ 0,23 0,23 0,52 0,52 0,52 0,52
p 0,23 0,47 0,52 0,47 0,52 0,64
q 0,23 0,23 0,52 0,41 0,52 0,53
r 0,23 0,22 0,52 0,46 0,52 0,53
δf 0,23 0,23 0,52 20,85 0,52 0,52

Table 6.7: Failure analysis for angle of attack, α, estimation when null input signals
occur. The errors represent the maximum eα [deg]

that led the estimation to go beyond the acceptance limits are: dynamic pressure,

qc, and vertical acceleration, nz; these inputs, when null, caused errors greater than

8 deg. The lack of all the other inputs did not make the absolute errors of NN

estimation, eα, worse than the tolerance band. During the Sky-Y �ight simulations

in approach and landing con�gurations, the axial acceleration, nx, �ap setting, δf ,

and the aforementioned qc and nz had the most in�uence on error of α prediction. In

this case, the maximum absolute error was higher than 2 deg, whereas all the other

failed signals did not have a signi�cant in�uence on the neural network estimation

of the angle of attack. When turbulent �ights were simulated, a similar situation

to classic maneuvers is reported. In fact, the only two quantities of in�uence were

again qc and nz, and these caused errors greater than 8 deg. It was clear, from
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this kind of analysis, that the dynamic pressure, qc, the vertical and axial inertial

accelerations, nz and nx, and the �ap de�ections, δf , were the key-factors for a

successful NN-based α estimator (according to current acceptance limits of ±1 deg).

There were some inputs, ny, φ, p, q and r, which did not a�ect the α estimation

at any extent. The maximum absolute errors of β estimation are reported in Tab.

Classic Approach Turbulence
Input Nominal Null Nominal Null Nominal Null
qc 0,59 10,39 0,76 2,50 0,96 10,35
nx 0,59 0,95 0,76 1,06 0,96 0,91
ny 0,59 6,34 0,76 4,57 0,96 8,12
nz 0,59 0,91 0,76 1,72 0,96 1,27
θ 0,59 0,52 0,76 0,87 0,96 0,95
φ 0,59 1,03 0,76 1,06 0,96 1,61
p 0,59 0,98 0,76 0,88 0,96 0,90
q 0,59 0,57 0,76 0,76 0,96 1,01
r 0,59 1,00 0,76 1,19 0,96 1,28
δf 0,59 0,59 0,76 1,08 0,96 0,96
δr 0,59 1,30 0,76 1,50 0,96 1,87
δa 0,59 0,76 0,76 0,82 0,96 1,01

Table 6.8: Failure analysis for angle of sideslip, β, estimation when null input
signals occur. The errors represent the maximum eβ [deg]

6.8 when null input signals occur. Considering the maneuvers representing realistic

Sky-Y �ights, the parameters that led β estimation to go beyond the acceptance

limits were: dynamic pressure, qc, lateral acceleration, ny, bank angle, φ, yaw rate,

r, and rudder position, δr. However, even though the loss of φ, r and δr signals did

not e�ect the absolute errors of β estimation to any extent (since |eβ|max ≤ 1.30), ny

and qc could cause errors larger than 6 deg and 10 deg, respectively. When Sky-Y

was in landing and approach con�gurations, nz, nx and all the aforementioned inputs

had more in�uence on the errors of β estimation: in this case, the maximum error

was less than 5 deg. When simulating Sky-Y �ights in turbulent air, in addition to

the aforementioned inputs (qc, nx, ny, nz, φ, r and δr), the aileron position signal, δa,

and the pitch rate, q could also lead the error of angle of sideslip estimation outside

the acceptance limits, even though the expected errors, due to δa and q, were very

small (|eβ|max = 1.01).

Overall, all the inputs of the neural network designed for β estimation were important
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for an acceptable β prediction except for pitch angle, θ, and roll rate, p, which may

be also neglected according to present analysis, because their presence among the

inputs was not crucial for the virtual sensor used as β estimator.

6.3 Considerations

Results presented in this chapter can drive through a deeper understanding of

relationships between input and output pattern of present NN.

Results of the sections 6.1, 6.2.3 can give information about the more in�uencing

inputs for NN estimation of aerodynamic angles. As far as α is concerned, relationships

between qc, nx and nz and angle of attack prediction were the most important (see

Tab. 6.7; the δf is vital only when �aps are used. Secondly, even the pitch angle

had a weaker in�uence on the accuracy of the angle of attack estimation (see Tab.

6.7) than aforementioned inputs. Results presented in Tab.s 6.7,6.1 suggest that

eliminating all the other inputs (ny, φ, p, q and r) should not a�ect the α estimation

to any extent according to present study. Moreover, as far as ny, φ, p, q and r is

concerned, results of the sections 6.2.1, 6.2.2 indicate that as soon as there was a

drift or the a signal was locked the errors of α estimation were a�ected at a great

extent. The presence of ny, φ, p, q and r in the input vector of NNA, did not

produce any bene�t, and as long as there was an error on one of those signals, the

NN performance decayed according to the present results. So that, results of the

previous section seemed to suggest to build a new input vector for α estimation with

qc, nx, nz, θ and δf , and the (4.17a) could therefore be reduced as follows

α = fα,red (qc, nx, nz, δf ) .

Results of the sections 6.1, 6.2.3 can give information about the more in�uencing

inputs for NN estimation of aerodynamic angles. As far as β is concerned, relationships

between qc, nx, δr and angle of sideslip prediction were the most important (see Tab.

6.8; the δf is important only when �aps are used, but is not as important as for α

estimation. Secondly, even nz, φ, p, r had a weaker in�uence on the accuracy of

the angle of attack estimation (see Tab. 6.8) than aforementioned inputs. Results

presented in Tab.s 6.8,6.2 seemed to suggest that eliminating all the other inputs
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(θ, q, and δa) should not a�ect the β estimation to any extent according to present

study. Moreover, as far as θ, q, and δa is concerned, results of the sections 6.2.1,

6.2.2 indicate that as soon as there was a drift or the a signal was locked small errors

on β estimation were introduced. The presence of θ, q, and δa in the input vector of

NNB, did not produce any bene�ts or drawbacks according to the present results.

So that, results of the previous section seemed to suggest to build a new input vector

for α estimation with qc, nx, nz, θ and δf , and the (4.17b) could therefore be reduced

as follows

β = fβ,red (qc, nx, ny, φ, p, r, δr, δf ) .

A complete study of proposed new input vectors required a complete analysis about

the architecture, as discussed in the section 4.3. At this stage of the research activity,

we chose to maintain all the input variables in order to keep the �exibility to modify

the neural network working in agreement to particular �ight conditions (e.g. the

aircraft con�guration change due to such a damage) and for further developments

of current NNs.



Conclusions

This document concerns the development and practical demonstration of a powerful

innovative approach for aerodynamic angle estimation on �ight vehicles using virtual

air data sensors based on the neural predictive techniques. Two neural networks were

developed with the aim of predicting the angles of attack and sideslip, by processing

inertial data, command surface positions, �ap positions and dynamic pressure. The

accuracy target of ±1 deg maximum error (with reference to free stream conditions)

was considered as the fail-pass criterion. The developed NN-based virtual sensors

demonstrated to be accurate over the entire �ight envelope of two mathematical

aircraft models. The De Havilland DHC-2 �Beaver� implemented in the Matlab FDC

toolbox and the Alenia Aermacchi Sky-Y simulator were used during the course of

this work to train and test the neural networks.

One of the purpose of this work was to establish a general training methodology

that could be used for next real applications. During the training stage, several

maneuvers were in fact simulated by reproducing those performed by pilots during

the real Sky-Y �ight tests. Conversely, test maneuvers were de�ned to simulate both

�ight conditions inside the aircraft �ight envelope and extreme �ight conditions not

achievable during airplane operative life and not expected to be in the training data

set. The aim of the test stage was therefore to stress the NNs as much as possible

in order of evaluating the neural network performance both in realistic and extreme

�ight conditions and to evaluate any possible diverging behaviour of NN predictions.

The best training and test strategies were set up using the Matlab FDC toolbox;

moreover, the same simulator was also used to de�ne the NN architecture for

applications on the Sky-Y simulator.

The test of virtual sensors using the Alenia Aermacchi Sky-Y simulator, showed that
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the neural networks estimated aerodynamic angles with acceptable errors (lower than

±1.0 deg) when �ight simulations were performed within the training boundaries

with light and medium air turbulence according to the Dryden turbulence model.

For the purpose of this work, using a �ight simulator, rather than a real aircraft,

allowed to test NNs in some �ight conditions not obtainable in real operations or

outside the aircraft �ight envelope (e.g. high dynamic maneuvers) as done for test

maneuvers in this work. Beyond the training boundaries and outside the real �ight

envelope, when high dynamic maneuvers were performed at speeds of up to VD, the

NNs continued to work properly with maximum absolute errors of less than 1 deg.

In order to reproduce more realistic �ight conditions, NNs were also tested simulating,

in a conservative way, realistic electronic noise of sensors which provide the neural

networks with the input signals. Even under these circumstances, the NN predictions

resulted to be acceptable. The presence of noisy signals in the NN input vectors in

fact produced very small additional errors of less than 0.1 deg.

At the Sky-Y integration rig of Alenia Aermacchi there was the chance to test

virtual sensors using the Sky-Y simulator with a real FCC within the simulation

loop. Virtual sensors, programmed in Matlab, were translated into C + + language

and then adequately compiled and downloaded on real FCC. This activity allowed to

de�ne a process from concept (essentially a Matlab-assisted design) to realization of

a �nal software usable on the real Sky-Y �ight computer, and to investigate virtual

sensor performance when the NNs were running on the real FCC. This activity

highlighted that additional errors were introduced in the NN predictions because

the current FCC does not work in double precision like Matlab does. The maximum

errors were therefore beyond the tolerance limits in some circumstances. The virtual

sensors estimated aerodynamic angles with maximum absolute errors of up to 1.2 deg

for α and 1.5 deg for β, when high dynamic maneuvers were performed for speeds

of up to VD or for medium turbulence. Although these latter results are outside

the prescribed tolerance limits, the following two considerations should be made.

Firstly, tests were carried out beyond the training boundaries in order to evaluate

the neural network performance outside the real aircraft �ight envelope and mainly

to investigate the occurrence of diverging outputs. Therefore, maximum errors of
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less than ±1.5 deg con�rmed that NNs do not diverge and the NN predictions

can be still considered reliable aerodynamic angles estimation even during extreme

�ight conditions. Secondly, within the �ight envelope, the points lying outside

the acceptance limits are mainly due to highest dynamic maneuvers, which were

achieved using step commands (never used during training stages), during medium

turbulence. It was noted that, in the same conditions, piloting the aircraft using

a conventional pilot's control stick, the maximum errors were again within the

tolerance limits. It is obvious that more accurate NNs could be obtained both for α

and β by incorporating all the possible �ight conditions, even extreme ones, inside

the training set. However, in this work, a realistic training strategy was adopted

to de�ne a general methodology that could be used as a training technique for real

aircraft. Overall, NN predictions were outside tolerance limits during particular

�ight conditions (e.g. V > VD and/or using step commands) that were not actually

achievable during normal �ight of the UAV aircraft considered here. The NNs, which

were developed initially for Beaver application and then for Sky-Y simulator, may

therefore be considered for tests on real Sky-Y unmanned airplane.

In this work, neural network models were adapted to the particular aircraft considered

here, while the techniques used during the development and application of these

neural models are generally applicable to any kind of real aircraft, manned or

unmanned. Therefore, the training techniques, the signal processing systems developed

and results obtained during this study may also act as a guide for the fundamental

aspects of the further developments of current and future virtual sensors based on

soft computing techniques.

Overall, the test stage of the virtual sensors using real FCC highlighted:

� NNAAEs were able to accurately generalize within the real aircraft �ight

envelope exploiting several maneuvers inspired to those performed by pilots to

collect �ight data for air data system calibration. NNs in particular worked

properly during high dynamic maneuvers, and for light and medium turbulence,

if no step commands are used, as occurs on real aircraft.

� NNAAEs can still be considered suitable estimators of α and β outside the

training boundaries (aircraft speed up to VD) if a greater error is accepted. In
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fact, NNs were proven to be able to extrapolate outside the training boundaries,

without diverging, and with maximum errors limited to ±1.5 deg.

� NNAAEs were tolerant to realistic electric noise on the input signals, which, in

the present case, was simulated according to the available literature on current

inertial sensors and dynamic pressure transducers.

� The architecture of NNAAEs was not very sensitive to speci�c aircraft and

those used in this work can easily be re-used as starting points for other aircraft

with similar �ight envelopes to �Beaver� and Sky-Y aircraft.

A general training strategy was identi�ed during the training stage in terms of

dedicated maneuvers adequate to be �own by real aircraft, even during the �ight

tests for the air data calibration, and able to create a training data set su�ciently

representative of the aircraft dynamics. Both BP and LM training algorithms were

proven to be suitable for training neural networks for the estimation of aerodynamic

angles and for use in modern workstations; however, the LM algorithm showed a

higher speed of convergence and was therefore used throughout the present work.

Moreover, thanks to the several re-training sessions, by using random initialization

of neural synaptic weights, local minima did not reveal real obstacles for this activity.

In the last chapter of this work, a sensitivity analysis was presented in which the

accuracy measurements of NN inputs was considered and several failure modes of

input signals were simulated. The results seemed to suggest that both inputs for

NNA and NNB could be reduced without a�ecting the neural network performance

to any extent. However, the new proposed NN input vectors were not further

investigated, because the full input vectors in NN software allowed other future

investigations of the present virtual sensors.

In fact, even though the virtual sensors were successfully downloaded and tested

on real hardware, there are some issues that need to be addressed before NN-based

virtual sensor could be operatively used on a real aircraft.

During the present activity, one of the most important issue emerged when noisy

signals were processed by arti�cial neural networks. If the noise grew over certain

limits, NNs produced non acceptable estimations of the aerodynamic angles. Such
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noise levels could be achieved when considering the e�ect of structural vibrations on

inertial sensors of a particular aircraft, for example. In this work, high noise levels

were only simulated to evaluate their e�ects on errors produced on neural network

estimations. In fact, the analysis of noise deriving from structural vibrations depends

on the particular case at hand and the structural vibration noise is usually reduced

using classic methods, such as notch �lters. Other unconventional techniques may

be considered (e.g. NF) in order to evaluate the ability to �lter noise without

introducing a time delay as common �lters do.

As far as the aeronautical certi�cation needed by NNAAE to be safely used on

aircraft is concerned, no real obstacles were identi�ed. Since a trained neural network

is a deterministic data processor, e.g. a software, NNs could be certi�able following

current procedures for aeronautical software. Moreover, the standard procedure

for selection of the NN architecture and the training strategy, which was de�ned

through this work, retraces other common calibration procedures already certi�ed

in the aeronautical �eld.

Finally, although some issues emerged throughout this work, they do not seem to

represent blocking points for the future applications on UAV and further developments.

In fact, since the virtual sensors based on NNs were already tested and validated on

real hardware (FCC), the software can now be considered ready to be implemented

in real time on a test aircraft in order to uncover any characteristics of the virtual

sensors that have not been discovered yet.
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