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ABSTRACT 

Masonry arch structures, and, more in general, vaulted structures, are 

traditionally assessed using a well-established approach, such as linear elasticity 

or limit analysis, whereby system behaviour at the intermediate stage −that occurs 

when the material’s tensile strength has been exceeded but the collapse 

mechanism has not yet formed− is disregarded. With an evolutionary fracturing 

process analysis for the stability assessment of a masonry arch it is possible to 

capture the damaging process that takes place when the conditions evaluated by 

means of linear elastic analysis no longer apply, and before the conditions 

assessed through limit analysis set in. Furthermore, the way the thrust line is 

affected by the opening of cracks and the redistribution of internal stresses can be 

checked numerically. 

The evolutionary calculation method presented in this paper takes into account 

the intermediate cracking stage and uses a constitutive law providing a closer 

approximation to the actual behaviour of the structural material. By applying this 

numerical model the monumental arches of the Vittorio Emanuele I Bridge over 

the Po River, and the Mosca Arch Bridge over the Dora River both in Turin (Italy) 

are described. The different behaviors under increasing load of the two structural 

schemes –the Mosca Bridge is a very thin shallow masonry arch, while the 

Vittorio Emanuele I Bridge presents three-centered rounded arches– are deeply 

investigated by means of the evolutionary analysis. 

 

 

NOTATION 

Ai  cross-sectional area of the i-th segment of the arch 

a  crack depth 
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b  section width 

E  Young’s modulus 

e  axial force eccentricity with respect to the section centroid 

Fi  axial force applied to the i-th arch segment 

F0  axial force due to the real load acting on the arch 

F1  axial force due to horizontal fictitious force X1=1 

Ii  moment of inertia of the i-th arch segment 

KI  stress intensity factor 

KIC  fracture toughness 

l  beam finite element length 

Ltot  arch total strain energy 

Li  strain energy for each arch segment 

M  bending moment 

Mi  moment applied to the i-th arch segment 

M0  moment due to the real load acting on the arch 

M1  moment due to horizontal fictitious force X1=1 

M2  moment due to fictitious moment X2=1 

t  section thickness 

X1, H  unknown axial force applied to the crown of the arch 

X2, B   unknown moment applied to the crown of the arch 

∆s  arch segment 

ξ  normalized crack depth 

ξ*  normalized closure depth 

 

 

INTRODUCTION 

Albeit well-established, the linear elastic and/or limit analysis approaches 

traditionally employed to assess the behaviour of arch structures, and, more in 

general, vaulted structures, often leave the structural engineer at a loss (Page 

1993). While linear elastic analysis is applicable when the thrust line stays within 

the central kern to prevent tension arising, and not to exceed the limits of elastic 

theory, limit analysis gives a thrust line, between hinges, which lies everywhere 

within the masonry of the arch ring. Therefore, neither analysis can capture the 

intermediate damaging stage, which occurs during the loading process, 

immediately before and after the conditions addressed by the previous schemes. In 

other words, whereas linear elastic analysis can describe a structure up to the onset 

of the first non-linearities, limit analysis defines the ultimate conditions prior to 

the final collapse, produced when the thrust line is tangent at least four times –

four hinges– to the arch edges. There is a need for a more sophisticated 
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computational method that uses a real constitutive law of the material, and enables 

the cracking stages between elastic behaviour and final collapse to be taken into 

account (Lourenço 2000, Zucchini and Lourenço 2000). Such a method is 

introduced in this work by adopting an elastic-softening schematization for 

masonry and, more generally, for quasi-brittle materials. As Hillerborg has shown 

(Hillerborg et al. 1976), considering an elastic-softening constitutive law for the 

material is equivalent to employing an elastic constitutive law coupled with a 

fracture process according to Linear Elastic Fracture Mechanics (LEFM) concepts. 

The opening of cracks in elastic-softening structures is believed to affect the 

thrust line to modify the static behaviour of the structures and to redistribute the 

internal stresses; similarly, elasto-plastic frame structures are believed to profit 

from the formation of plastic hinges. The aim of this study was to address the 

problems associated with the softening and cracking process in masonry arches; to 

this end, a discrete model of the Mosca arch bridge over the Dora river in Turin 

was developed using beam finite elements, and a step-by-step loading process was 

applied in analogy with Castigliano’s analysis (Castigliano 1879). For each 

loading increment, the axial force and the bending moment at the ends of each 

beam element were computed. Based on such values, a check against crushing and 

tensile failure was performed. When a crushing crisis occurs, this is considered 

final for the arch section, while in the case of a local tensile failure the routine 

simulates the formation of a crack and introduces an elastic hinge of suitable 

stiffness. Crack depth is determined according to LEFM concepts (Broek 1984; 

Carpinteri 1992; Carpinteri et al. 1982; Milne et al. 2003): it stabilizes at a value 

which is a function of the axial force and its eccentricity, as well as of the 

geometric and mechanical characteristics of the cross-section. Based on crack 

depth, it is possible to compute the rotational stiffness of an elastic hinge 

simulating the crack; then, the local stiffness matrix of each individual cracked 

element is updated, and so is for the global stiffness matrix of the entire arch. The 

procedure takes into consideration the possibility of  partial or total crack closure, 

during loading increments subsequent to the one that generated the crack. 

 

STABILITY OF MASONRY ARCHES 

Over the centuries, the evolution of masonry arch design methods has been 

addressed through a variety of critical approaches (Karnovsky 2012, Paradiso et 

al. 2007, Benvenuto and Radelet de Grave 1995; Page 1993); they are briefly 

described below in chronological order to show how a partial understanding of the 

structural behaviour of an arch, as can be garnered from traditional methods, may 

be effectively improved by an elastic-softening approach that takes the possibility 

of crack formation into due account. 
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For centuries, vaulted structures were dimensioned according to methods that 

relied solely on geometric parameters. While they provided an answer to the static 

problem, such methods originated from experience did not probe the intrinsic 

factors underlying the phenomena observed. 

Design in its modern sense began in the eighteenth century, when De La Hire 

(1731) and Mascheroni (1785), among others, performed theoretical analyses and 

experimental tests to determine the state of an arch at final collapse (Benvenuto 

and Radelet de Grave 1995). The developed design philosophy is similar to the 

notions at the basis of modern limit state and plastic design (Fig. 1). 

 

 
Figure 1. Collapse mechanism according to Mascheroni. 

 

Navier (1839) was the first to make accurate observations on the distribution of 

stresses at the interfaces between the segments of an arch and to shift the focus of 

the analysis on the actual state of stress of the material. He introduced the thrust 

line concept to analyse stress distribution over a cross-section, and demonstrated 

that the resulting line of action had to lie within the central kern in order to 

prevent tension. 

Mery’s studies (1840) gained widespread recognition and were used 

extensively in the dimensioning of arch structures; his method used a graphic 

procedure to check the thrust line according to the limits identified by Navier.  

The application of  the theory of elasticity had some inevitable shortcomings in 

that the concepts of homogeneity and isotropy were totally disregarded. 

Alberto Castigliano (1879) addressed the problem by applying the theorem of 

minimum strain energy to masonry arches, and introduced the “elastically 

imperfect system” concept: “Les corps qui, après avoir été comprimés, ne 

reprennent pas exactement leur formes primitives en enlevants les forces 

extérieurs” (Castigliano 1879). 

In the famous example of iterative calculation applied to the arch of the Mosca 

Bridge over the Dora River in Turin (Castigliano 1879), Castigliano determined 
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the position of the thrust line by assuming the internal forces in the crown section 

to be unknown. The expression of deformation work was written by taking into 

account these unknown values while neglecting the contribution of shear. By 

imposing congruence conditions for the displacements in the crown section (i.e., 

assuming, by symmetry, rotation and horizontal displacements to vanish), the 

unknown parameters were determined by applying the energy theorem formulated 

by Castigliano himself. This also made it possible to determine the normal force 

and the bending moment for each section of the structure, the position of the 

neutral axis and hence the portion of the stress-carrying section under 

compression. 

The stratagem to be adopted to verify the validity of the elastic hypotheses 

(especially the homogeneity of the material) consists of ensuring that the thrust 

line lies entirely within the middle third of the section, the presence of tension 

being incompatible with the nature of the material. Castigliano addressed this 

problem by resorting to the concept of an elastically imperfect system, whereby 

the elastic solution was worked out iteratively: the analysis was repeated so as to 

progressively reduce the parts in tension, and the initial dimensions of the model 

were modified at each step until the value obtained through subsequent 

approximations was deemed correct. 

Starting from the assumption that “the derivative of the complementary strain 

energy of a body with respect to a point load acting on that body is equal to the 

deflection, in the direction of the load, of the point on the body to which the load 

is applied”, Castigliano calculated the strain energy due to the contribution of the 

moment, M, and the axial force, F, for each of the segments, ∆s, into which the 

arch was divided, each segment being characterized by cross-section, A, moment 

of inertia, I, and Young’s modulus, E. 

Considering the arch to be symmetrical, with fixed ends and the unknown X1 

and X2 at the arch crown (Fig. 2), the total work, Ltot, was determined from the 

quantities calculated for the individual segment based on the unknown axial force 

and moment applied to the crown: 
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Figure 2. Schematic Mosca Bridge Arch Model from Castigliano’s Analysis. X1 is the unknown 

axial force applied to the crown of the arch; X2 is the unknown bending moment applied to the 

crown of the arch; φ is the rotation of the arch crown and u is the horizontal displacement of the 

arch crown. 
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obtained by applying the Principle of Virtual Works. Thus, total work is given by 

the following expression: 
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Taking into account the congruence conditions −rotation and horizontal 

displacement of the arch crown equal to zero− and deriving by X1 and X2, 

respectively, we get: 
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from which it is possible to obtain the redundant unknowns X1 and X2. Once these 

values have been determined, the above expressions can provide all the necessary 

information regarding the stress state of each segment. 



 7 

Castigliano also took into consideration the beneficial effects of the mortar 

beds interposed between the voussoirs of the Mosca Bridge in moving back the 

thrust line toward the centre line of the arch. He considered the energy applied by 

the axial force and bending moment on the prismatic shape of the mortar bed, 

defined a so-called “dragging work”, which corrects the deformation work of the 

arch initially considered to consist exclusively of stone segments. Thus, the thrust 

line re-centring effect produced in the arch becomes evident. 

The rigid blocks model used in the eighteenth century to study the behaviour of 

masonry arches underwent major revisions during the last century, based on 

several experiments carried out by Pippard (Page 1993; Pippard and Baker 1962) 

on arch models. One of the most significant revisions to eighteenth century 

theories was formulated by Heyman (Heyman 1966; Heyman 1969; Heyman 

1982) who, referring back to Kooharian’s studies (Kooharian 1953), proposed a 

systematic application of the limit analysis theorems to the problem of masonry 

arches stability in kinematic terms. Heyman introduced three basic assumptions 

for the application of limit analysis to masonry structures: “stone has no tensile 

strength; stone has infinite compressive strength; the sliding of a stone on another 

cannot occur”. 

The choice of this constitutive law for the material appears penalising 

compared to the actual behaviour of the material: even if we admit that the shear 

component of the stress exerted between two adjacent voussoirs can never exceed 

the friction between them, we are still dealing with a material having no tensile 

strength and infinite compressive strength. 

Starting from these assumptions, it is possible to admit the formation of a hinge 

where the line of thrust is tangent to the edges of an arch: a rigid rotation of the 

two adjacent segment faces occurs around the extreme fibre of the section (Orduna 

and Lourenço 2001). 

Three tangential points give rise to the formation of three hinges, resulting in a 

statically determinate structure; the limit for triggering a kinematic collapse 

mechanism is the formation of a fourth hinge. Thus, limit analysis consists of 

identifying the smallest possible load system generating a line of thrust that is 

always contained within the volume of the arch and tangent to arch edges at four 

points (Fig. 3). 
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Figure 3. Collapse mechanism due to the formation of four hinges. 

 

The finite element analysis of arch and shell structures has been studied 

extensively, and numerous studies, from the earliest by Towler and Sawko to the 

most recent (Choo et al. 1991; Crisfield and Wills 1986; Towler and Sawko 

1982), show the potential of the finite elements method for computing load-

deflection curves (Giambanco et al. 2000) and the interaction with the filling. We 

should also mention recent methods for the assessment of the stability of masonry 

arch structures consisting of structural monitoring by means of the Acoustic 

Emissions Technique (Carpinteri et al. 2007; Invernizzi et al. 2010). 

 

FRACTURING PROCESS IN MASONRY ARCHES 

Constitutive law 

Masonry is characterised by anisotropic and non-linear behaviour even at low 

strain values (Berto et al. 2002). Masonry materials subject to uniaxial load tests 

exhibit appreciably different tensile strength and compressive strength values: the 

latter being significantly higher than the former.  

The constitutive law that best represents the behaviour of natural or artificial 

masonry materials is an elastic-softening constitutive law (Fig. 4). This is 

equivalent to simply considering an elastic constitutive law combined with a crisis 

condition for fracturing in accordance with the concepts of LEFM; that is to say, 

the material has a purely elastic behaviour with the possibility of cracks forming 

and propagating. 
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Figure 4. Elastic-softening constitutive law. 

 

Mechanism of crack opening and closure 

As anticipated, the elastic-softening material is replaced by a material with a 

purely elastic behaviour with the possibility of cracks formation and extension. 

This hypothesis applies only to structures large enough to allow tension profiles to 

develop close to the crack tip, as foreseen by Linear Elastic Fracture Mechanics. 

Let us take normalized crack depth ξ = a/b (Fig. 5a) as damage parameter, and 

the stress intensity factor, KI, (Fig. 5b) as load parameter. The stress intensity 

factor is an amplification factor of the stress field when the loads are symmetrical 

relative to the crack (e.g. axial force and bending moment) (Carpinteri 1982; 

Murakami 1987; Tada et al. 1985). Shear is disregarded. 

 

 
Figure 5. Cracked beam element: ξ = ab

−1
; σ = KI(2πr)

−0.5
. 

 

It is interesting to remember the energetic meaning of KI: the square of this 

parameter –omitting a proportionality factor– represents the elastic energy 

released by the system per unit of virtual crack extension. KI reaches its critical 

value KIC when this virtual extension becomes real, since the energy released in an 

elementary crack extension is sufficient to supply the surface energy of the new 

geometry (Irwin 1957; Carpinteri 1982; Murakami 1987; Tada et al. 1985). 

The bending moment produces a stress intensity factor at the crack tip, 

expressed as (Murakami 1987; Tada et al. 1985): 
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Similarly, a tensile axial force, F, produces (Murakami 1987; Tada et al. 1985): 
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When the axial force is compressive and the bending moment tends to open the 

crack, as is usually the case in masonry arches, the total stress intensity factor can 

be determined by applying the Superposition Principle: 
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where e stands for the eccentricity of the equivalent axial force, relative to the 

centroid of the cross-sectional area. 

From the critical condition KI = KIC, it is possible to determine the 

dimensionless crack extension axial force as a function of crack depth ξ and 

relative eccentricity of the load, e/b: 
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 .      (13) 

The curves in Fig. 6 graphically represent this expression and show how, when 

eccentricity e/b is fixed, the fracturing process reaches a condition of stability only 

after showing an unstable condition. If the load F is unable to follow the 

decreasing unstable branch of the e/b = constant curve in a “strain-softening” 

unloading process, the fracturing process leads to catastrophic behaviour and the 

representative point advances horizontally until it meets the e/b = constant curve 

again on the stable branch. On the other hand, the possibility of load relaxation 

and a more or less catastrophic fracturing behaviour depends on the structure’s 

geometric and mechanical characteristics and is affected in particular by degree of 

redundancy and size (scale effect) (Carpinteri 1992). 
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Figure 6. Fracturing process for eccentric axial load. 

 

It is also important to consider that, for each relative crack depth ξ, there is a 

relative eccentricity value below which the crack tends, at least partially, to close 

again. From the closing condition KI = 0, we get: 
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from which: 
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Equation (15) is graphically represented in Fig. 7. The area below the curve 

represents the crack and loading conditions whereby KI < 0. 
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Figure 7. Crack closure curve. 

 

Stiffness of the cracked section 

Let us now consider the loss of stiffness in the cross-section of a cracked beam. 

A cracked cross-section (Fig.5a) behaves like an elastic hinge with the rotational 

stiffness determined by an energy balance between elastic work and fracture work 

(Carpinteri 1983; Chondros and Dimarogonas 1998; Krawczuk et al. 2000; 

Okamura et al. 1975; Parmerter 1976). 

The rotational stiffness of an elastically fixed joint is: 
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where E is the Young’s modulus of the material. 
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Figure 8. Cracked beam element: elastic hinge simulating a crack. 

 

The stiffness matrix of the cracked element (Fig.8) is changed only by the four 

rotational terms as follows (Carpinteri 1983; Chondros and Dimarogonas 1998; 

Krawczuk et al. 2000; Okamura et al. 1975; Parmerter 1976): 

 
where A and I are the area and the inertia moment of the cross-section, 

respectively, and l is the length of the beam finite element. 

From the stiffness matrix, it can be seen that terms which link the moments M1 

and M2 to the rotations φ1 and φ2, obtained by applying the Principle of Virtual 
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Work to a beam with an elastic hinge simulating a crack at the midspan, return the 

standard values of the uncracked beam finite element as W tends to infinity: 

 
  l

EI

lWEIl

lWEIEI

W

443
lim  






,      (17) 

 
  l

EI

lWEIl

lWEIEI

W

223
lim  






.      (18) 

 

Calculation procedure 

Setting the geometrical characteristics of the structure and the mechanical 

characteristics of the material, like the maximum compressive stress and the 

fracture toughness KIC, the arch is analysed by creating a FEM model and 

considering the stone structure clamped to rigid abutments. The calculation uses a 

step-by-step loading process, and for each load increment the code returns the 

axial force and bending moment in each section; from these values, using the 

classical relations of beam theory, it is possible to determine the maximum tensile 

or compressive forces and their eccentricity with respect to the centroid in each 

section of the structure. 

When a section crisis is triggered by tensile stresses, the relative crack depth ξ 

is determined from eq.13, that gives the relation between the crack depth ξ and the 

relative eccentricity e/b of the axial force. In this way the updated crack depth is 

determined. For this equation some dimensionless curves are shown in Fig.6. 

Therefore, the routine is applied again considering the modified stiffness of the 

cracked elements (see eq.16). If the new relative crack depth ξ is equal to that 

formerly determined, the process stabilizes. If the new relative crack depth ξ is 

lower than the former, the routine resorts to the “curve of closure” (see eq.15), 

which allows to check the value of the stress intensity factor KI, determining the 

admissible crack depth. After this check, the ξ values which fall in the field KI ≥ 0 

(see Fig.7) are considered. 

Increasing the load, the inefficiency of the arch section takes place when ξ ≥ 

0.7 [UIC 1995], or when the compressive strength in the considered element is 

reached. 

 

 

NUMERICAL APPLICATIONS 

 

Mosca bridge 

An application of the aforementioned evolutionary method to a masonry arch 

bridge (Fig. 9) designed by Carlo Bernardo Mosca (1792-1867) is described 
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below and then compared with the iterative analysis carried out by Alberto 

Castigliano (1879) on the same bridge. 

Mosca Bridge, inaugurated in 1830, still spans the Dora river in Turin (Fig. 

10,11). This shallow stone arch bridge is unanimously recognized as a pioneering 

work and, at the same time, as a milestone in the history of stone bridge 

construction (Chiorino et al. 2001). The importance of the bridge lies both in the 

innovative design and construction techniques adopted by Mosca and in its 

outstanding geometrical characteristics (see Table 1). The arch bridge masonry 

fabric consists of 93 granite segments. 

 

 
Figure 9. Original structural model of the Mosca Bridge (19th century), Department of 

Structural, Geotechnical & Building Engineering, Politecnico di Torino (Italy). 

 

 
Figure 10. Mosca Bridge over the Dora River in Turin, Piedmont (Italy). 
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Figure 11. Mosca Bridge under Service Loads. 

 
Table 1. Mosca Bridge geometrical characteristics. 

Span Rise Radius Arch 

Angle 

Crown 

Depth 

Springing 

Depth 

Total 

Width 

45.00 

m 

5.50 

m 

48.80 

m 

54°56’42’’ 1.50 m 2.00 m 12.60 m 

 

Mosca Bridge iterative analysis by Castigliano 

Castigliano, based on the geometry of the Mosca Bridge (Fig. 12), considered 

the loads on a strip of the bridge, of unit width, to consist of the segments weight 

(Manalaggio Granite: 27.50 kNm
−3

), the filling weight (23.00 kNm
−3

), and an 

evenly distributed live load of 6.00 kNm
−2

 (Castigliano 1879). Considering the 

arch to be symmetrical, Castigliano divided one half of the structure into six 

segments of equal length, each loaded by the respective segments weight, filling 

weight and live loads. 

 



 17 

 
Figure 12. Geometric scheme of Mosca Bridge by Castigliano. 

 

Applying the procedure described above, the iterative analysis of Castigliano is 

summarized as follows. 

(i) By taking the horizontal thrust, H = X1, the bending moment, B = X2, and 

disregarding the presence of mortar joints, from the first iteration, we get B = 

−218.00 kNm (negative moment, which puts the intrados under tension according 

to Castigliano’s reference system) and H = 3247.10 kN. Hence, at the springings 

we have B0 = 2597.37 kNm, and H0 = 3928.27 kN. 

The resultant eccentricity at the springing, relative to the section centroid, is 

B0/H0 = 0.66 m, a value larger than the depth of the section divided by six (2.00/6 

= 0.33 m). For this reason, the thrust line is outside the central kern. 

Applying the Navier equation, the depth of the section in compression would 

be 1.51 m from the intrados, and the depth of the reduced part would be 0.49 m 

from the extrados. It is therefore necessary to identify the actual stress-carrying 

section, smaller than its apparent size, through subsequent approximations. 

To determine the actual position of the thrust line, the stress-carrying section at 

the springings is now assumed to be as deep as the part determined to be in 

compression in the previous calculation, i.e., 1.51 m. For all the remaining 

sections, the entire depth is considered, since the eccentricity of the axial force is 

always smaller than the depth of the totally compressed section divided by six. 

(ii) Repeating the procedure described in Section 2, from the second iteration 

we obtain the following values: B = −111.20 kNm, and H = 3339.60 kN in the 

crown; and at the springings: B0 = 1221.66 kNm, and H0 = 4038.32 kN. 

With these values, eccentricity at the springings is B0/H0 = 0.30 m, a value 

which is still larger than the depth of the stress-carrying section divided by six 

(1.51/6 = 0.25 m). It follows that, near the springings, the line of thrust still 

remains outside of the central kern. 
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The depth of the compressed section now is 1.37 m from the intrados; and 

hence the reduced part is 0.13 m. 

(iii) Then, Castigliano’s procedure presents a third iteration, using a 

proportionality relationship. The real compressed section at the springing is 

defined as 1.37 – x, in which x is the final error of the calculation. By considering 

a starting depth at the springings of 2.00 m, the initial error is 2.00 – (1.37 – x) = 

0.63 + x. In the first iteration, a compressed section of 1.51 m is obtained, so that 

the error is 1.51 – (1.37 – x) = 0.14 + x. In the second iteration, a compressed 

section 1.37 m deep is obtained, with an error x. 

Assuming the initial errors to be proportional to the final errors, we can write: 

 

(0.63 + x) : (0.14 + x) = (0.14 + x) : x,     (19) 

 

which gives x = 0.05. Then the depth of the real section will be 1.37 – 0.05 = 1.32 

m from the extrados, and hence the depth of the crack forming at the springings 

will be 2.00 – 1.32 = 0.68 m. Since the thrust line at the springings now lies at the 

limit of the central kern of the real compressed section, the eccentricity of the 

axial force is 2.00/2 – 1.32/3 = 0.56 m. 

 

 

Mosca Bridge evolutionary analysis 

With reference to the geometric parameters described above, for a bridge 

longitudinal segment of unitary width, we developed a FEM model consisting of 

16 beam finite elements (Fig. 13), each 2.97 m in length, and having the geometric 

characteristics listed in Table 2 (the model was seen to be symmetrical). 

The loads used in this study were the same as those considered by Castigliano. 

The loads related to each segment are summarized in Table 3. 

 
Table 2. Geometrical properties of the Mosca Bridge beam finite elements. 

Segment Inertia Area 

 [m
4
] [m

2
] 

1 0.67 2.00 

2 0.61 1.93 

3 0.56 1.86 

4 0.50 1.79 

5 0.45 1.71 

6 0.39 1.64 

7 0.34 1.57 

8 0.28 1.50 
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Table 3. Loads used in the analysis of Mosca Bridge. 

Voussoir Segment Weight Filling 

Weight 

Live 

Load 

Total 

 [kNm
−1

] [kNm
−1

] [kNm
−1

] [kNm
−1

] 

1 60.56 96.51 6.00 163.07 

2 59.93 76.72 6.00 139.66 

3 53.65 59.65 6.00 119.30 

4 50.88 45.52 6.00 102.40 

5 48.15 33.91 6.00 88.06 

6 45.69 25.11 6.00 76.80 

7 43.39 19.11 6.00 68.51 

8 41.29 18.35 6.00 65.64 

 

 
Figure 13. FEM calculation scheme of Mosca Bridge. 

 

As described above, the bridge is composed of granite segments (Piedmont 

Manalaggio Granite) bonded with mortar beds. The system was assumed to have a 

compressive strength of 50 MPa, a tensile strength of 1.50 MPa, a Young’s 

modulus of 50000 MPa, and a fracture toughness KIC = 1.00 MN/m
3/2

 (Bocca et 

al. 1989; Buyukozturk and Hearing 1998; Carpinteri 1981). 

The loading process takes place in three steps, involving (i) the segments 

weight only, (ii) the segments weight and the filling weight, (iii) the segments 

weight, the filling weight and the live loads. The results are summarized in Table 

4. The values refer to the sections at the springings, where the fracturing process 

occurs. 
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Table 4. Evolution of fracturing process in the structure of the Mosca Bridge. 

Step Load Description FC e   C e/b ξ ξ* 

  [kN] [m] [-] [-] [-] [-] 

i Segments Weight 2375.80 0.47 1.68 0.24 - - 

iia Segments + Filling Weight 4025.51 0.67 2.85 0.33 0.45 - 

iib Segments + Filling Weight 4122.24 0.45 2.91 0.23 0.45 0.25 

iic Segments + Filling Weight 4059.60 0.59 2.87 0.30 0.27 - 

iii Segments W. + Filling W. + 

Live Load 

4373.58 0.56 3.09 0.28 0.27 0.44 

 

(i) It is evident that under the segments weight alone there is no fracturing of 

the arch. 

(ii) The application of the filling weight triggers a fracturing process at the 

springings. The routine calculates   C = 2.85 and an initial crack depth ξ = 0.45 at 

the extrados, with e/b = 0.33. At this point, an elastic hinge of suitable stiffness is 

introduced in the cracked elements at the springings, i.e. the original structure 

assumes a lower global stiffness, and the calculation is repeated. We find   C = 

2.91 and e/b = 0.23: the diagram of Fig.6 shows how, for such values, a crack 

depth ξ is not available. 

Then the routine resorts to the “curve of closure” (Fig.7) that, for e/b = 0.23, gives 

ξ* = 0.25 < ξ = 0.45. The calculation is repeated using the updated value ξ*, 

because for ξ = 0.45, and e/b = 0.23, KI < 0 is found (see Fig.7). From the 

calculation with ξ = 0.25, we find   C = 2.87, e/b = 0.30, and ξ = 0.27: therefore 

the crack stabilizes at ξ = 0.27. 

(iii) Moreover, by adding the live loads to the dead ones, because of the 

modified stiffness, we get:   C = 3.09, e/b = 0.28, and ξ = 0.17 that is smaller than 

the previous crack depth ξ = 0.27. Then the routine resorts to the “curve of 

closure” (Fig.7) which, for e/b = 0.28, gives ξ* = 0.44 > ξ = 0.27. In this case from 

Fig.7 KI > 0 is found. Thus, considering the value ξ = 0.27 because is lower than 

0.44, the final results are ξ = 0.27 and e/b = 0.28. 

Finally, using the loads specified by Castigliano, by means of the evolutive 

analysis of the fracturing process, we obtain a crack depth at the springing 

extrados of the bridge arch corresponding to 27% of the depth of the section, with 

an axial load eccentricity at the springings e = 0.28b = 0.56 m. 

Comparing the iterative and evolutionary analyses, it is interesting to note that 

the two results coincide. In fact, also Castigliano, by neglecting the effects of the 

mortar beds, calculated an eccentricity at the springings of 0.56 m, resulting in the 

formation of a 0.68 m deep crack, equal to the part of the section subjected to 

tension. 
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Vittorio Emanuele I Bridge 

Vittorio Emanuele I Bridge (Fig.14) crosses Po River in Turin, joining Vittorio 

Veneto Square to Gran Madre di Dio Square. Vittorio Emanuele I Bridge is 

popularly called the "stone bridge". It consists in 5 five-centered arches, made out 

of Cumiana stone, and it is 150 m in length and 12 m in width. 

The bridge was built during the French occupation of Turin of the early '800, 

under the direction of engineers Claude-Joseph La Ramée Pertinchamps and 

Charles-Francois Mallet from the Corps des Ponts et Chaussées of Paris. Vittorio 

Emanuele I Bridge was completed in 1813 (Re 1999; Re 2009). 

Each five-centered arch is 25 m in span, and 8.33 m in rise. The thickness of 

the Cumiana stone segments is equal to 1.27 m. Vittorio Emanuele I Bridge 

geometry is reported in Figure 15. 

 

 
Figure 14. Vittorio Emanuele I Bridge over Po River in Turin. 
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Figure 15. Polycentric Arch according to Perronet and applied to Vittorio Emanuele I Bridge 

(Re 2009). 

 

Vittorio Emanuele I Bridge evolutionary analysis 

With reference to the geometry described above, for a bridge stripe of unitary 

width, we developed a FEM model consisting of 16 beam finite elements (Fig. 

16), having area Ai = 1.27 m
2
, and moment of inertia Ii = 0.17 m

4
 each. 

The length and loads related to each segment are summarized in Table 5 (the 

model was seen to be symmetrical). 
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Table 5. Loads used in the analysis of Vittorio Emanuele I Bridge. 

Voussoir Length Segment Weight Filling Weight Live 

Load 

Total 

 [m] [kNm
−1

] [kNm
−1

] [kNm
−1

] [kNm
−1

] 

1 1.54 34.92 129.86 6.00 170.78 

2 1.49 34.92 97.62 6.00 138.54 

3 1.31 34.92 72.03 6.00 112.95 

4 1.32 34.92 52.67 6.00 93.59 

5 2.25 34.92 33.62 6.00 74.54 

6 2.35 34.92 16.98 6.00 57.90 

7 2.44 34.92 7.03 6.00 47.95 

8 2.65 34.92 1.71 6.00 42.63 

 

 
Figure 16. FEM calculation scheme of Vittorio Emanuele I Bridge. 

 

As described above, the bridge is composed of gneiss segments (Piedmont 

Cumiana Stone). The system was assumed to have a compressive strength of 50 

MPa, a tensile strength of 1.50 MPa, a Young’s modulus of 50000 MPa, and a 

fracture toughness KIC = 1.00 MN/m
3/2

 (Bocca et al. 1989; Buyukozturk and 

Hearing 1998; Carpinteri 1981). 

The loading process takes place in three steps, involving (i) the segments 

weight only, (ii) the segments weight and the filling weight, (iii) the segments 

weight, the filling weight and the live loads. The results are summarized in Table 

6. The values refer to the sections at the haunches. 
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Table 6. Evolution of fracturing process in the structure of the Vittorio Emanuele I Bridge. 

Step Load Description FC e   C e/b ξ ξ* 

  [kN] [m] [-] [-] [-] [-] 

i Segments Weight 618.78 0.57 0.55 0.45 - - 

ii Segments + Filling Weight 907.41 0.41 0.81 0.32 - - 

iii Segments W. + Filling W. + Live 

Load 

101373 0.42 0.90 0.33 - - 

 

(i) It is evident that under the segments weight alone there is no fracturing of 

the arch. 

(ii) The application of the filling weight triggers no fracturing process at the 

haunches. 

(iii) Moreover, by adding the live loads to the dead ones, there is no fracturing 

of the arch. 

Finally, using the loads specified by Castigliano for Mosca Bridge analysis and 

considering mortar beds between stone segments, we get a very safe behaviour of 

the Vittorio Emanuele I Bridge structure with respect to all load increments. 

 

 

CONCLUSIONS 

Through a comparison with the methods traditionally used for the assessment 

of vaulted structures, it has been demonstrated that a more thorough analysis, 

which takes into account the intermediate fracturing stage of the structure (i.e., the 

process that takes place once the material’s tensile strength has been exceeded and 

before the formation of the collapse mechanism), is able to provide a closer 

interpretation of the actual behaviour of an arch structure during its lifespan. By 

taking into account the damage phase that follows the elastic one, this procedure is 

able to overcome the conceptual shortcomings of limit analysis, in that it 

considers the real mechanical characteristics of the material, verifies the position 

of the thrust line, and takes into account the redistribution of internal stresses. 

Furthermore, a description has been provided of how to carry out an 

evolutionary analysis of the fracturing process by drawing upon the concepts of 

Linear Elastic Fracture Mechanics and making use of automatic computation 

methods. The procedure described was applied to existing structures, Mosca 

Bridge and Vittorio Emanuele I Bridge, both in Turin. The results of the analysis 

conducted on Mosca Bridge structure were found to be consistent with the 

historical results obtained by Alberto Castigliano. A comparison between Mosca 

Bridge and Vittorio Emanuele I Bridge evolutionary analyses shows how shallow 

arch structures are much more sensitive to the investigated phenomena of fracture 

opening and closure than multi-centered arch structures. 
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