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Abstract 

This paper describes the Nuance–Politecnico di Torino (NPT) 
speaker recognition system submitted to the NIST SRE12 
evaluation campaign. Included are the results of post-
evaluation tests, focusing on the analysis of the effects of score 
normalization and condition-dependent calibration. The 
submitted system combines the results of five acoustic 
recognizers all based on Gaussian Mixture Models (GMMs). 
Each system has its own front end, with features differing by 
their type and dimension. We illustrate the process of 
development data selection and configuration of state-of-the 
art technology, which contributed to obtaining good perfor-
mance in all the test conditions proposed in this evaluation. 

Index Terms: Speaker Recognition, i-vectors, Probabilistic 
Linear Discriminant Analysis, AS-Norm 

1. Introduction 

The 2012 Speaker Recognition Evaluation (SRE12) organized 
by the National Institute of Standards and Technology (NIST), 
focuses on the speaker detection task. The goal is to decide 
whether a target speaker is speaking in a segment of conversa-
tional speech. The main difference of the 2012 evaluation with 
respect to the previous ones is that most target speakers were 
taken from all previous SRE corpora. Furthermore, some of 
the test segments had additive noise imposed, and knowledge 
of all targets was allowed in computing each trial’s detection 
score. System performance has been assessed using a new 
Detection Cost Function (DCF) defined in the evaluation plan 
[1] as the combination of two costs, one using the cost 
parameters from SRE10 and one using a larger target prior. 

SRE12 included 3 training and 5 testing conditions, but 
only 9 different test configurations. One of these was the core, 
or mandatory, condition and included a set of excerpts from a 
telephone conversation or interview containing nominally 
between 20 and 160 seconds of target speaker speech. A 
detailed description of the data, tasks and rules of SRE12 can 
be found in the evaluation plan available in [1].  

In this paper we present the techniques exploited for this 
evaluation and we highlight the factors most relevant to the 
training of good speaker models. Furthermore, we analyze the 
effects on the system performance of the selected 
normalization and calibration techniques. 

The paper is organized as follows: Sections 2 illustrates the 
system architecture, the voice activity detection, the feature 
extraction and the speaker models. Section 3 describes the 
design of the development data. Section 4 is devoted to the 
classification and scoring modules. Experimental results and 
post-evaluation considerations are given in Section 5, and 
conclusions are drawn in Section 6. 

2. System architecture 

The system that has been used for this evaluation includes 5 
main modules, i.e., Voice Activity Detection (VAD), feature 
extraction, i-vector extraction and PLDA modeling, score 
normalization, and score combination and calibration. These 
modules are described in the next sections. 

2.1. Voice Activity Detection 

Voice Activity Detection is performed by means of a phonetic 
decoder. The decoder is a hybrid HMM-ANN model trained to 
recognize 11 language independent phone classes, including 
silence. More details are given in [2]. The microphone and 
interview calls were amplified and sub-sampled. Moreover, 
before applying the HMM-ANN VAD, a preliminary filtering 
process was performed for reducing cross-talk effects. On 
telephone and microphone test segments, overlapping regions 
with high energy level on both channels were detected as 
potential cross-talk indicators. The validation of the cross-talk 
hypothesis was obtained by training and comparing the speak-
er models associated to those regions in the two channels. In 
case of cross-talk, the regions corresponding to speech activity 
on the other channel were removed from the target side. For 
interview, detection of regions of target speaker activity is 
based on the comparison of the relative energy of the 
interviewer and interviewee channels over a sliding window. 
We retain the frames of the target channel having energy 
greater than the energy of the interviewer channel in the 
corresponding windows. A smoothing filter is then applied to 
avoid chopping the target channel into small segments. 

2.2. Feature extraction  

Five sets of features have been extracted for training the 
models used in this evaluation, including two with a relatively 
“small” dimension and three with a relatively “large” 
dimension. The use of “small” and “large” versions of the 
same features was motivated by past experience and 
development results. All the features, summarized in Table 1, 
are warped by means of short term Gaussianization [3]. 

The first set (MFCC-25) includes 12 Mel Frequency 
Cepstral Coefficients plus 13 delta cepstrum. The second set 
of “small” features (PLP-26) includes 13 PLP coefficients (p0-
p12) and their first order derivatives. The two sets of “large” 
features (MFCC-60, PLP-60) consist of 60 parameters, 20 
coefficients and their first and second order derivatives. The 
fifth set MFCC-46 has 46 parameters, 19 MFCC coefficients, 
19 first order derivatives and 8 second order derivatives. All 
sets of features were computed with a frame rate of 100 
observation vectors per second.  



Table 1. Extracted features. 

Feature 
type 

Feature 
number 

Features Δ ΔΔ 

MFCC 25 c1-c12 Δc0- Δc12  

PLP 26 p0-p12 Δp0- Δp12  

MFCC 60 c0-c19 Δc0- Δc19 ΔΔc0- ΔΔc19 

PLP 60 p0-p19 Δp0- Δp19 ΔΔp0- ΔΔp19 

MFCC 46 c1-c19 Δc0- Δc18 ΔΔc0- ΔΔc7 

 
For the MFCC-25 and MFCC-46 sets of features, the 

analysis bandwidth is 300-3400 Hz. Feature warping to a 
Gaussian distribution is performed for each static parameter 
stream on a 3 sec sliding window excluding silence frames. 
All the other feature sets are extracted analyzing the full 0-
4000 Hz bandwidth and feature warping is performed before 
the VAD has been applied, thus including silence frames. 

2.3. Speaker models 

The acoustic speaker models for this evaluation are i-vectors 
[4] extracted from Gaussian Mixture Models (GMMs). The 
models, consisting of 2048 diagonal Gaussian mixtures, were 
trained running 10 iterations of an approximation of the EM 
algorithm. In this approximation, only the best Gaussian sta-
tistics within each frame are updated for the sake of efficiency. 

The gender independent MFCC-25 and the gender 
dependent MFCC-46 UBMs were trained using the 
conversations of the NIST SRE 2006, 2008 and 2010 
databases of the speakers in the SRE 2012 training list. The 
training set includes 737 hours of speech selected from the 
21780 conversations of 1095 female speakers and 512 hours 
from 15726 conversations of 723 male speakers. Since we had 
available gender dependent UBMs with 1024 Gaussians for 
PLP-26, MFCC-60, and PLP-60 front ends, which were 
trained for the NIST 2010 evaluation, the new 2048 Gaussian 
models have been trained by splitting these models and re-
estimating their parameters using the SRE 2012 training data. 

Maximum-Likelihood estimation of the sub-space matrix 
T was obtained by minor modifications of the Joint Factor 
Analysis approach [5], using the same dataset exploited for 
training the UBMs. The dimension of the i-vectors has been 
set to 600 for the 60-feature models and to 400 for the other 
models, respectively. 

2.4. Speaker classification 

Gaussian PLDA systems have been used for recognition, 
implemented according to the framework illustrated in [6], [7]. 
In particular, we trained PLDA models with full–rank channel 
factors, using 200 dimensions for the speaker factors. The i–
vectors used for the PLDA models are L2 normalized. 

PLDA training was performed using a balanced set of 
clean and noisy utterances for every speaker. The Filtering and 
Noise Adding Tool [8] implementing the “C-message” 
weighting function for SNR estimation has been used for 
obtaining noisy replicas of clean utterances. In particular the 
noisy utterances were obtained artificially adding HVAC or 
crowd noise according to the NIST specifications.  Random 
Signal-to-Noise Ratios in the range of 4 to 17dB were used. 
Three versions of each development conversation were obtain-
ed, namely one that is clean, one contaminated with HVAC 
noise, and one contaminated with crowd noise. No appreciable 
improvement on development tests was obtained when 

training a different PLDA for clean and for noisy speech. 
The training and test datasets for development were 

selected from the SRE 2012 training data of the target models.  
Here we eliminated the 10sec and the summed conversation 
utterances.  We ensured that highly correlated segments (e.g. 
same interview from different microphones) were assigned 
either to the training or to the test set. The development 
training set finally included 737 hours of speech selected from 
the 21780 conversations of 1095 female speakers and 512 
hours from 15726 conversations of 723 male speakers. 

The PLDA of each sub-system was trained randomly 
selecting one clean or noisy version of each utterance from the 
development training set. These PLDAs were used for 
estimating the fusion and calibration parameters. For scoring 
the evaluation data, a new set of PLDAs was trained including 
all the SRE 2012 training data. Post evaluation demonstrated 
the validity of this approach both in term of accuracy and 
calibration. 

3. Development test sets 

The common evaluation conditions in the SRE12 evaluation 
plan defined five subsets of trials in the core test.  These 
satisfy additional constraints including recordings of 
interviews and of telephone calls, with and without added 
noise, plus speech segments intentionally collected in a noisy 
environment. The latter subset, however, has an average SNR 
comparable with the one of the clean segments, as also can be 
appreciated by comparing the results of the clean and noisy 
telephone calls trials. Moreover, three optional test segment 
conditions were defined: the extended test set, much larger 
than the core test set, the “Known” subset, which is the set of 
segments belonging to trained speakers, and the “Unknown” 
subset, which includes, as impostor trials, segments that do not 
belong to any trained speaker model. 

The 75% partition of SRE 2012 training data was used for 
training the PLDA, the remaining 25% for estimating the 
fusion and calibration weights, and as the development test set. 
This partition was further extended adding two utterances 
from 100 male and 100 female speakers from SRE05. The aim 
was to test the accuracy of the models in a condition similar to 
the “Unknown” evaluation condition. Moreover, the set was 
extended adding conversation copies with different SNR and 
durations. This set was also used for training the condition-
dependent calibration parameters. Four classes corresponding 
to the segment duration ranges 4-12 sec, 12-20 sec, 20-40 sec, 
and 40-60 sec, respectively, were defined to quantify the 
variability of accuracy due to the speech amount. Additionally, 
in order to account for tests with different SNR, we included 
two versions corrupted with HVAC/crowd noise at 6 and 15dB 
according to the NIST specifications. Finally, to contrast the 
effect of having few training segments by estimating a tuned 
calibration on them, we added a set of target speaker models 
trained with only one and two segments. These speakers were 
selected among the target speakers having more than 3 training 
segments, for a total of 1880 and 1212 additional female and 
male models, respectively. 

For speakers having more than one or two segments, the 
development test sets included 3015 and 2086 true speaker 
trials for female and male speakers, respectively. The 
corresponding impostor trials were 328K and 216K, 
respectively. The addition of models trained with less than 3 
segments, allowed us to enlarge the test sets to 5658/3954 true 
speakers and 564K/360K impostor trials for female and male 
speakers respectively. 



 

Figure 1: Simplified Adaptive Symmetrical score 
Normalization. 

4. Score normalization 

The score of each classifier was normalized according to a 
simplified version of the Adaptive Symmetrical score 
Normalization (AS-Norm) [9]. The AS-Norm is derived from 
the AT-Norm [10], but preserves the symmetrical property of 
the S-Norm [4]. The PLDA score s comparing two i-vectors i1 
and i2 is normalized according to: 
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where 1 and 1 are the mean and standard deviation of the 
scores obtained by matching i-vector i1 against a normalization 
subset N2 depending of i-vector i2, and the same notation 
dually applies to the second term in parenthesis. The selection 
of the normalization subset follows the procedure in [10]. 

In the simplified AS-Norm implementation, used for 
SRE12 and shown in Figure 1, the normalization set for the 
test segments (“T-Norm” component of the “S-Norm”), is the 
whole set of target models, augmented by the models trained 
with one and two segments only, for a total of 3035 and 1975 
female and male models, respectively. The normalization set 
for the target voiceprint normalization (“Z-Norm” component 
of the “S-Norm”) is instead obtained selecting a random 
segment for each target speaker, and adding clean, HVAC and 
crowd versions to the normalization set. The total number of 
segments for normalization was 3285 and 2169 for female and 
male, respectively. 

The number of elements for computing the means and 
standard deviations, selected by the adaptive AS-Norm 
approach, was set to 100. The combination of the AS-Norm 
scores of the 5 models described in Section 2.3 is obtained by 
linear fusion with prior-weighted Logistic Regression 
objective [11]. Here, we estimated the combination parameters 
on the development test set (described in Section 3) using the 
BOSARIS toolkit [12]. Condition dependent calibration 
parameters are trained on the basis of the segment gender, 
number of training segments, the test segment duration and 
SNR, according to the classes given in Table 2, for a total of 
80 calibration parameter sets. No distinction has been made 
between HVAC and crowd noise, but we decided to use 4 
classes conditioned to the SNR, for better sampling the 
accuracy variation as a function of the noise level. 

For each test segment, we scored all the target models, 
regardless the test segment condition (Core, Extended, Known 

 Table 2. Calibration classes. 

Category      

Gender Male Female    
Training 

segments N. 
<=2 >2    

Test segment 
duration [sec.]

<12 12-20 20-40 40-60 >60 

SNR [dB] <9 9-14 14-21 >21  

 
or Unknown) and then we applied the transformation for 
obtaining the compound LLR, as described in [12]. The 
transformation was not applied for the ‘Unknown’ condition. 

5. Results 

The same combination of systems has been used for all the test 
conditions. Figure 2 summarizes the results of the five 
subsystems, and their fusion for the telephone without added 
noise condition common conditions (CC2). 

Looking at the DET curves, and at the minimum and actual 
DCFs, it can be seen that when excluding the small Gender 
Independent MFCC-25 system, all the others give comparable 
performance in terms of the DCF defined for the SRE12 
evaluation [1]. Significant improvement is obtained by the 
combination of the subsystems. 

Figure 3 illustrates the performance of the fused system for 
the 5 common conditions defined by NIST, including 
recordings of interviews and of telephone calls, with and 
without added noise. The test are performed on 4 test 
conditions of the official training / test matrix, i.e. Core, 
Extended, Known and Unknown, using the set of target 
speaker of the core training condition. Each tuple of bars 
shows the actual and minimum DCF obtained in the 
corresponding condition. 

On telephone common conditions, we obtained almost 
perfect calibration when scoring the known subsets. On 
interviews instead, the best calibration was obtained on 
extended and unknown test conditions. On average however, 
the calibration on the core tests seems to be more critical with 
respect to other test conditions: this is particularly evident in 
the interview with added noise (common condition 3) where 
there is a large calibration error on the core test and an almost 
perfect calibration on the extended condition. 

 

 
Figure 2: Telephone without added noise condition CC2. 



Table 3. Comparison on the extended set tests of a subsystem (MFCC-46) with different normalization and calibration techniques. 
 

Condition Tel without noise (CC2) Tel with noise (CC4) Tel Noisy(CC5) Interview without noise (CC1) Interview with noise (CC3) 

ASNorm Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No 

Cond-dep Cal Yes Yes No No Yes Yes No No Yes Yes No No Yes Yes No No Yes Yes No No 

EER 2.42 1.66 2.42 1.84 3.14 4.55 2.87 5.07 2.73 2.06 2.68 2.24 1.97 2.28 2.35 2.51 2.75 3.47 3.06 3.71 

Min_DCF100 0.223 0.176 0.218 0.179 0.260 0.281 0.245 0.243 0.261 0.200 0.252 0.201 0,133 0.124 0.141 0.143 0.110 0.106 0.119 0.120 

Min_DCF1000 0.359 0.319 0.344 0.302 0.368 0.408 0.366 0.372 0.390 0.343 0.378 0.327 0.201 0.195 0.215 0.219 0.162 0.170 0.176 0.183 

Min_DCF12 0.272 0.248 0.281 0.241 0.314 0.344 0.306 0.308 0.326 0.272 0.315 0.264 0.167 0.160 0.178 0.181 0.136 0.138 0.148 0.151 

Act_DCF12 0.296 0.328 0.283 0.274 0.354 0.425 0.312 0.337 0.344 0.384 0.323 0.318 0.170 0.167 0.185 0.184 0.137 0.144 0.158 0.159 

 

 
Figure 3: Min (solid) and Actual (dashed) DCF12 

 
Figure 4: DCF plot comparison for interview, core-core 

and core-extended test conditions 

Figure 4 unveils the nature of this phenomenon: the plot on 
the left refers to the core test condition, whereas the plot on the 
right refers to the extended test condition. The graphs show the 
two components of the SRE12 DCF function, with 1/100 and 
1/1000 target prior probabilities, for interview without noise 
(blue and green curves) and interview with noise (cyan and red 
curves). Comparing the core and extended plots, it can be seen 
there is a right offset of the DCF curves in the left figure: this 
means that the calibration data used in development does not 
perfectly match the actual core test condition. Moreover the 
blue and the red curves of the left graph are quite stepped, 
suggesting data sparseness and unreliability. 

5.1. Post-evaluation 

Table 3 summarizes the results of post-evaluation tests of one 
of the submitted subsystems (MFCC-46), aimed at analyzing 
the effect of AS-Norm and condition dependent LLR 
calibration, as used in the evaluation system. In particular the 
two first lines of the table define the configuration of the 
experiment, while the remaining lines show the results in 
terms of Equal Error Rate, Minimum DCF100 and 1000, (with 
1/100 and 1/1000 target prior probability, respectively) and 
Minimum / Actual DCF12 as defined by the SRE12 evaluation 

plan [1]. The MFCC-46 subsystem has been selected because 
it provided the best performance, as a single system, in all 
conditions. Also it is representative of the fused system 
behaviors, as can be appreciated comparing the figures in 
Table 3 with the bars in Figure 3. 

When the condition dependent LLR calibration is not used, 
the calibration accounts for gender dependency only (two 
classes calibration). The main outcomes can be summarized as 
follows: 
 On the interview conditions (CC 1 and 3), the condition 

dependent calibration was effective on accuracy. The 
effect of AS-Norm was relevant on EER, whereas is 
minimal on DCF 12 (both minimum and actual). 

 AS-Norm provides quite good calibration in all 
conditions (the maximum difference between min and 
actual DCF12 is ~13% in CC 4), but it was suboptimal on 
telephone conditions (CC 2, 4 and 5). 

 Two classes calibration, with or without AS-Norm, is 
more effective in actual DCF, than condition dependent 
calibration, on telephone conditions. 

 Best EER on telephone without added noise (CC 2 and 5) 
is obtained without AS-Norm. 

Overall, our SRE12 evaluation does not supply clear evidence 
of the AS-Norm effectiveness. However, since condition 
dependent calibration was used for all conditions, AS-Norm 
was essential on telephone tests for limiting the calibration 
loss, which otherwise would be in the range 23-40%. As far as 
condition dependent calibration is concerned, it provided 
roughly a 10% improvement in interview common conditions 
but it was not effective on telephone tests. 

In conclusion, considering the two extremes, i.e., AS-
Norm plus condition dependent calibration with respect to two 
class calibration alone some advantage has been obtained in 
the interview conditions, while we lose up to 8% in minimum 
DCF on telephone conditions 

6. Conclusions 

We presented the components and analyzed the results of the 
Nuance–Politecnico di Torino (NPT) speaker recognition 
system submitted to the NIST SRE12 evaluation campaign. 
We have shown that the use of AS-Norm plus condition 
dependent calibration has been successful for the evaluation, 
although the results do not provide a clear evidence of a wide 
range effectiveness of the selected score normalization and 
calibration techniques. In particular, these post-evaluation 
results are sometimes in contrast with our past experience with 
AS-Norm, which usually provides appreciable benefits when 
tuned on data consistent with the target application scenario. 
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