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Figure 3.15 Sensitivity indices obtained with the Regression Based Sensitivity Analysis. Down-link
margin.

formances was already evident from the graphs previously discussed. However, the RBSA
provides us with a quantitative measure of the absolute importance of the design factors in
the determination of the performances. The Output RF Power and the Antenna Diameter con-
tribute for more than 50% of the variability of the subsystems mass while they influence almost
all the variability of the down-link margin. The Type of Antenna (C) and the Type of Transmitter (E)
affect the mass of the subsystems because of their power density with respect to the aperture
diameter and the output power, according to the mathematical models discussed in Appendix
A. These interactions are evident in the bars of Figure 3.14 named (BC) and (AE), respectively.
The Type of Solar Array (D) contributes to a limited extent to the variability of the mass of the
two subsystems. This is due to the relatively low difference between the values of the power
density of the solar cells selected from the data base for the analysis, see Table A.3. Their
contribution is mainly quadratic, correctly indicating that there is a minimum (in this case)
of mass when the selected array is the one corresponding to the second level of the discrete
design variable. The contribution of the Type of Antenna (C) to the down-link margin is very lim-
ited, and hidden in the Other bar of Figure 3.15. For a given diameter, in the given frequency
range, the aperture and horn antenna have similar performances in terms of gain, which lead
to similar performances in terms of down-link margin. On the other hand, the influence on the
mass of the Type of Antenna is more significant, with the aperture antenna being lighter than
the horn one for a given reference diameter.

The sum of the total-order sensitivity indices is larger than one, in both cases. This means
that interactions or higher-order effects are present. Indeed these effects were detected and
quantified in the computation of what we called first-order effect (the meaning of the term
first order was already discussed). A quantitative indication of the importance of the factors
for the determination of the performances, provides the engineering team with fundamental
information to understand the effects of the design choices on the final design. In this case, for
instance, one may easily conclude that the Type of Solar Array does not affect the performances
much, thus it might be frozen to a particular type, based for instance, on the availability at
the moment of implementation, or its cost, or based on experience on past missions. The
Type of Antenna can be selected on the basis of its sole contribution to the mass (the aperture
antenna minimizes the mass for a given down-link margin performance). This reduces de facto
the dimensions of the design space allowing the engineering team to channel the effort on
the more relevant design parameters. Very often the expert engineers, or the developers of
the mathematical model themselves, are already able to predict in advance the effects of the
design choices on the output. However, this does not have to be the case, especially in the
presence of less expert engineers or team members, which were not directly involved in the
development of the mathematical model.

In the following subsection, a formal validation of the performances of the RBSA is pre-
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sented. The RBSA is compared to other methods for sensitivity analysis in the computation of
the sensitivity indices of six test functions of increasing complexity.

No analytic solution is available for the problems proposed hereafter. The comparison
is made between the results obtained with RBSA and the results provided by the software
package Simlab (Simlab, 2011). In particular the sensitivity indices using the method of Sobol’
with a large number of sample points is taken into account as comparative baseline.

3.2.5 Comparison of the methods for global sensitivity analysis

In this section some methods for global sensitivity analysis, including RBSA, are tested against
six problems of increasing complexity, derived from Helton and Davis (2002). The purpose is
to evaluate the performance of RBSA in determining the sensitivity indices of the various fac-
tors, comparing it with the method of Sobol’, FAST, the method of Morris, and the SRCs. The
comparison is based on the number of model evaluations, indicated with N , needed to obtain
the sensitivity indices, and their accuracy. For a given model, a smaller number of evaluations
indicates that the computational time needed to obtain the sensitivity indices is lower. It is
useful to remind that the evaluation of the model is considered the computationally expensive
part of the analysis. The analysis of the data to perform sensitivity analysis is relatively fast in
all cases presented here.

The main purpose of this comparison is to demonstrate that the regression-based sensi-
tivity analysis approach is able to successfully provide quantitative sensitivity indices (as the
Sobol’ and the FAST approach) with a low number of model evaluations (as most of the screen-
ing methods). The method of Morris is executed with increasing levels (P ) and increasing
number of samples-per-level (R) for the same purpose. The values of the SRC are reported
from the original study of Helton and Davis (2002) for comparison with the results obtained
with the other methods. The RBSA method is executed with models of increasing order and
with an increasing number of sample points until a satisfactory level of R2

adj is obtained, as
discussed in Section 3.2.3. The sensitivity indices obtained with the method of Sobol’, FAST
and RBSA are only reported in terms of total-order sensitivity indices, ST i. The methods are
executed on each problem with an increasing number of sample points to determine the mini-
mum number of model evaluations that allows to stabilize the value of the sensitivity indices.
By stable it is intended that the sensitivity indices do not change significantly for increasing
sample size, i.e., they are constant to the second meaningful decimal digit. To obtain the sen-
sitivity indices with the methods of Sobol’, FAST, and Morris, the Simlab software suite was
used (Simlab, 2011). In the comparison presented in this section, we consider the converged
values from the method of Sobol’ and FAST to be the correct results for the sensitivity indices.
With RBSA, we try to obtain the same results, in a computationally cheaper way.

The first test problem considered is linear with only three uniformly distributed variables
(Problem 1, Helton and Davis (2002)):

f(x) =

3∑
i=1

xi, x = [x1, x2, x3] (3.36)

with xi : U(x̄i − σi, x̄i + σi), x̄i = 3i−1, σi = 0.5x̄i for i = 1, 2, 3.
The results of the comparison are summarized in Table 3.9. Considering the low complex-

ity of the problem, the method of Sobol’ and FAST converge to a stable value of the sensitivity
indices with a relatively large sample size, 1000 model evaluations, while the RBSA provides
satisfactory results already after 20 model evaluations.

This is demonstrated with the graphs in Figure 3.16. They show the trend of the sensitivity
indices computed with the method of Sobol’ (a), FAST (b), and RBSA (c), as a function of the
number of model evaluations. The first two methods provide a definite distinction between
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Sobol’ FAST Morris method SRCa RBSAb

N = 1000 N = 1000 N = 8 N = 100 N = 20

Variable name STi STi Rank µ∗ σ Value STi

x1 0.011 0.014 3 9 0 0.105 0.013
x2 0.099 0.101 2 3 0 0.316 0.097
x3 0.892 0.890 1 1 0 0.946 0.890
aStandardized Regression Coefficients. Data adapted from Helton and Davis (2002)
bLinear regression model with 2-factors interaction terms. R2

adj = 1.00

Table 3.9 Comparison of sensitivity analysis methods. Problem 1 (see Eq. (3.36)).
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Figure 3.16 Total-order sensitivity indices as a function of the sample size. Problem 1 (see Eq.
(3.36)).

the effects of the three factors already with few sample points but the values of the sensitivity
indices are stable only after many more model evaluations. This effect will be more evident
in the presence of more complex problems. Much less model evaluations are needed by the
method of Morris to obtain a qualitative measure of sensitivity, i.e., the ranking of the factors
according to their importance in the determination of f(x). RBSA provides very precise quan-
titative sensitivity indices with a reduced computational effort when compared to the method
of Sobol’ and FAST. Indeed, only 20 model evaluations are required to obtain in practice the
same results as the method of Sobol’ and FAST. The SRCs provide a correct ranking of the
relevance of the factors, but the sensitivity indices are much different from these provided by
the other methods. Indeed, x2 results to be much more important than it actually is.

The second test problem is again a linear one but with a larger number, i.e., 22, of uniformly
distributed variables (Problem 2, Helton and Davis (2002)):

f(x) =
22∑
i=1

ci (xi − 0.5) , x = [x1, x2, · · · , x22] (3.37)

with xi : U(0, 1) and ci = (i− 11)2 for i = 1, 2, · · · , 22.
The large number of variables of Problem 2 causes the method of Sobol’ and FAST to con-
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Sobol’ FAST Morris method SRCa RBSAb

N = 10, 000 N = 24, 000 N = 46 N = 100 N = 600

Variable name STi STi Rank µ∗ σ Value STi

x1 0.149 0.192 2 100 0 0.381 0.152
x2 0.0979 0.115 3 81 0 0.308 0.100
x3 0.0619 0.0660 4 64 0 0.243 0.0633
x4 0.0369 0.0372 5 49 0 0.186 0.0369
x5 0.0199 0.0212 6 36 0 0.136 0.0198
x6 0.0093 0.0130 7 25 0 0.0951 0.0096
x7 0.0038 0.0081 8 16 0 0.0608 0.0039
x8 0.0012 0.0023 9 9 0 0.0342 0.0012
x9 0.0002 0.0013 10 4 0 0.0152 0.0002
x10 0 0.0011 11 1 0 0.0038 0
x11 0 0.0011 12 0 0 0 0
x12 0 0.0011 11 1 0 0.0038 0
x13 0.0002 0.0012 10 4 0 0.0152 0.0002
x14 0.0012 0.0026 9 9 0 0.0342 0.0012
x15 0.0038 0.0059 8 16 0 0.0609 0.0039
x16 0.0093 0.0076 7 25 0 0.0951 0.0096
x17 0.0199 0.0160 6 36 0 0.136 0.0197
x18 0.0367 0.0390 5 49 0 0.186 0.0371
x19 0.0619 0.0520 4 64 0 0.243 0.0627
x20 0.0980 0.116 3 81 0 0.307 0.100
x21 0.149 0.174 2 100 0 0.380 0.153
x22 0.218 0.232 1 121 0 0.460 0.224
aStandardized Regression Coefficients. Data adapted from Helton and Davis (2002)
bLinear regression model. R2

adj = 1.00

Table 3.10 Comparison of sensitivity analysis methods. Problem 2 (see Eq. (3.37)).

verge to a stable value for the sensitivity indices only after 10, 000 and 24, 000 model evalua-
tions, respectively. However, a clear distinction between the factors is already in place after
5, 000 samples in the case of the method of Sobol’, see Figure 3.17(a). In Figure 3.17(b) instead,
the apparently chaotic behavior of FAST indicates that this method particularly suffers with
low sample size when the number of variables is large, even with a linear model like Prob-
lem 2. The method of Morris provides excellent results in ranking the factors with a very low
number of simulations. This is due to the fact that Problem 2 is linear, and a precise estimation
of the variability of the data using the elementary effect is already possible with two sample
points per variable. The RBSA method requires more model evaluations than the method of
Morris (regression model with linear terms) and still much less with respect to the method
of Sobol’ and FAST. The RBSA provides very precise (compared to the method of Sobol’, for
instance) quantitative sensitivity indices, see Table 3.2.5, already after 600 model evaluations.

In the case of linear functions the method of Morris provides results that remain constant
if the number of levels P or the number of samples-per-level R increases. This is the natural
consequence of the fact that the elementary effects, i.e., the incremental ratios, of a linear func-
tion are constant in the entire interval of variation of the variables. This is not valid in general,
for instance when curvature is present, as will be demonstrated later in this section. In both
Problem 1 and 2 the method of Morris is able to correctly rank the factors and to correctly
indicate the absence of interactions or non-linear effects (since the value of σ is zero for all
factors). Also the SRCs provide a correct indication on the relative importance of the factors
but they do not provide any information on the presence (or not) of higher-order effects. The
method of Sobol’ and FAST provide quantitative sensitivity indices at the expenses of a large
computational effort. The RBSA method provides very precise quantitative sensitivity indices,
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Figure 3.17 Total-order sensitivity indices as a function of the sample size. Problem 2 (see Eq.
(3.37)).

Sobol’ FAST Morris method SRCa RBSAb RBSAc

N = 1, 500 N = 2, 000 N = 330 N = 100 N = 200 N = 250

Variable name STi STi Rank µ∗ σ Value STi STi

x1 0.543 0.539 1 1 0 0.740 0.537 0.539
x2 0.461 0.475 2 0.79 0.055 0.587 0.452 0.460
a Standardized Regression Coefficients. Data adapted from Helton and Davis (2002)
b Quadratic regression model. R2

adj = 0.989
c Fourth-order regression model. R2

adj = 1.00

Table 3.11 Comparison of sensitivity analysis methods. Problem 3a (see Eq. (3.38)).

even in problems with a large number of variables, as Problem 2, at a computational cost that
is much lower when compared to the method of Sobol’ and FAST.

The third test problem is monotonic, non-linear, with 2 uniformly distributed variables
(Problem 3, Helton and Davis (2002)):

f(x) = x1 + x42, x = [x1, x2] (3.38)

with xi : U(0, 1) for i = 1, 2 (Problem 3a), xi : U(0, 3) for i = 1, 2 (Problem 3b), or xi : U(0, 5)
for i = 1, 2 (Problem 3c).

This test problem is executed with increasing dimensions of the ranges of variability, giving
rise to three sub-problems to analyze. The results are presented in Tables 3.11 to 3.13. The
RBSA method is implemented with the regression models from linear- to fourth-order. As
expected, the second-order model presents some lack-of-fit that increases as the variability
range gets larger. This indicates that higher-order effects of the variables are present in the
model. However the sensitivity indices are very close to those computed with the method
of Sobol’ and FAST, and to those computed with the fourth-order model. The fourth-order
regression model, with the same number of model evaluations of the second-order one, allows
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Sobol’ FAST Morris method SRCa RBSAb RBSAc

N = 1, 000 N = 1, 000 N = 330 N = 100 N = 200 N = 250

Variable name STi STi Rank µ∗ σ Value STi STi

x1 0.001 0.0021 2 3 0 N/A 0.0018 0.0015
x2 0.999 0.996 1 64 4.613 N/A 0.976 0.9985
a Standardized Regression Coefficients. Data adapted from Helton and Davis (2002)
b Quadratic regression model. R2

adj = 0.978
c Fourth-order regression model. R2

adj = 1.00

Table 3.12 Comparison of sensitivity analysis methods. Problem 3b (see Eq. (3.38)).

Sobol’ FAST Morris method SRCa RBSAb RBSAc

N = 1, 000 N = 1, 000 N = 330 N = 100 N = 200 N = 250

Variable name STi STi Rank µ∗ σ Value STi STi

x1 0 0.0013 2 5 0 N/A 0.0004 0.0001
x2 1 0.999 1 501.9 34.83 N/A 0.9756 0.999
a Standardized Regression Coefficients. Data adapted from Helton and Davis (2002)
b Quadratic regression model. R2

adj = 0.976
c Fourth-order regression model. R2

adj = 1.00

Table 3.13 Comparison of sensitivity analysis methods. Problem 3c (see Eq. (3.38)).

to account for all the variability of the samples providing more precise values of the sensitivity
indices. In case of Problem 3a the SRCs provide only an insight in the factors importance, and
in case of Problem 3b and Problem 3c the values were not available in Helton and Davis (2002).

The method of Sobol’ and FAST provide a clear distinction between the factors based on
their importance, already with a low number of function evaluations. However, stable values
of the sensitivity indices are only obtained after 1, 500 and 2, 000 model evaluation respectively
for Problem 3a, and with 1, 000 samples for Problem 3b and 3c. The RBSA provides accurate
sensitivity indices already with a sample size of 250, as shown by the trends in Figure 3.18.

In the case of Problem 3, and in all other non-linear problems, the method of Morris pro-
vides results that are not constant as the number of levels (P) and the number of sample-points
per level (R) changes. This is due to the fact that the non-linear behavior is better approximated
with a large number of intervals (levels) in which linear elementary effects are computed and
averaged out. However, due to the nature of this method, increasing the number of levels
(P) alone is not sufficient for improving the results of the sensitivity analysis. The number of
model evaluations should also be increased to have higher chances of obtaining at least a few
points for every level.

The three graphs in Figure 3.19 present the trends of the values of µ∗ and σ for increasing P
(going from Figure 3.19(a) to Figure 3.19(c)) and for increasing R. In each graph of Figure 3.19
the ♦ symbols indicate the effects of factor x1, while the ◦ symbols indicate the effects factor
x2. The numbers from 1 to 15 indicate an increasing value of the parameter R. For ease of
visualization, only the results obtained with six different values ofR are reported (1⇒ R = 10,
2 ⇒ R = 110, 3 ⇒ R = 210, 4 ⇒ R = 310, 5 ⇒ R = 410, 15 ⇒ R = 10, 000). Already with a
value of R = 110, µ∗ and σ do not change significantly for increasing R. In particular, R affects
σ the most. Remember that the method of Morris is qualitative, usually used as a screening
method, and with R = 110 the relative importance of the parameters is already well defined
(at least with this test problem having only 2 variables). The number of levels (P) mostly affects
the value of µ∗ that shows a decreasing trend for increasing P .

In Figure 3.20 the results obtained using the method of Morris on Problem 3b and 3c are
presented. The approach is the same followed for Problem 3a, but in this case only the results
for P = 6 are reported. In all cases regarding Problem 3, the method of Morris is able to
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Figure 3.18 Total-order sensitivity indices as a function of the sample size. Problem 3(a) (see Eq.
(3.38)).

correctly rank the factors and to correctly indicate a higher-order effect for the factor x2. As
expected, in all cases the values of µ∗ and σ of the factor x1, ♦ symbol, do not change for
increasing R, since x1 is only responsible for a linear effect.

The fourth problem is monotonic, non-linear, with 6 uniformly distributed variables (Prob-
lem 4, Helton and Davis (2002)):

f(x) = exp

(
6∑
i=1

bixi

)
−

6∏
i=1

(ebi − 1)

bi
, x = [x1, x2, . . . , x6] , (3.39)

with xi : U(0, 1) for i = 1, 2, . . . , 6 and b1 = 1.5, b2 = b3 = · · · = b6 = 0.9.
The results of the comparison are shown in Table 3.14. The method of Sobol’ and FAST

converge to stable values for the sensitivity indices after 7, 500 model evaluations, as shown
in Figure 3.21. The RBSA is able to account for almost all the variability of Problem 4 with a
cubic regression model (R2

adj = 0.99), and already with 500 sample points the estimation of the
sensitivity indices is very precise, see Table 3.14.

As anticipated in the previous discussion, the method of Morris does not provide a stable
ranking of the factors as the number of levels (P) and the number of sample points per level
(R) changes. In this case, however, the factor x1 is identified as the most relevant one already
with R = 10, thus with a sample size of 70, as shown in Figure 3.22(a), where the numbering
has the same interpretation as discussed before. The relative ranking of the factors x2 to x6
keeps changing with increasing R. For this reason it was decided to report only the results for
R = 410 in Table 3.14. As shown in Figure 3.22(b) the relative ranking of the factors x2 to x6
still changes from R = 410 (the black symbols) to R = 10, 000 (the group of symbols with the
value of σ lower than 0.5), but the absolute value of σ and µ∗ does not change significantly.

In the case of non-linear monotonic problems the method of Sobol’ and FAST provide as
accurate results as in the linear case, even if they show poor performance when the sample
size is relatively low. The method of Morris has shown one potential weakness that arises
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Figure 3.19 Effect of the number of levels on the sensitivity analysis computed with the method of
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Figure 3.20 Sensitivity Analysis using the method of Morris. ♦ factor x1, ◦ factor x2. 1⇒ R = 10,
2⇒ R = 110, 3⇒ R = 210, 4⇒ R = 310, 5⇒ R = 410, 15⇒ R = 10, 000.

when non-linear problems are taken into account: the results are very sensitive to the number
of levels P and the number of sample points per level R. The SRCs perform well, even with
non-linear monotonic problems. Linear approximations of the non-linear monotonic models
provide a good indication of the general trends of the output, but this cannot be considered
true in general. The RBSA demonstrates excellent performance also with this class of prob-
lems. Indeed, in both cases of Problem 3 and Problem 4 it provided very precise quantitative
sensitivity indices at a relatively low computational cost.

The fifth problem is non-monotonic with 8 uniformly distributed variables (Problem 5,
Helton and Davis (2002)):

f(x) =

8∏
i=1

|4xi − 2|+ ai
1 + ai

x = [x1, x2, . . . , x8] , (3.40)



60 Local Design Approach

Sobol’ FAST Morris method SRCa RBSAb

N = 7500 N = 7500 N = 2870 N = 100 N = 500

Variable name STi STi Rank µ∗ σ Value STi

x1 0.399 0.391 1 36.97 1.22 0.522 0.392
x2 0.166 0.161 6 22.37 0.82 0.295 0.153
x3 0.153 0.165 4 22.61 0.84 0.297 0.157
x4 0.164 0.156 3 22.70 0.90 0.344 0.159
x5 0.158 0.173 5 22.46 0.81 0.351 0.157
x6 0.155 0.170 2 23.41 0.92 0.284 0.156
a Standardized Regression Coefficients. Data adapted from Helton and Davis (2002)
b Cubic regression model. R2

adj = 0.99

Table 3.14 Comparison of sensitivity analysis methods. Problem 4 (see Eq. (3.39)).
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Figure 3.21 Total-order sensitivity indices as a function of the sample size. Problem 4 (see Eq.
(3.39)).

with xi : U(0, 1) for i = 1, 2, . . . , 8 and a1 = 0, a2 = 1, a3 = 4.5, a4 = 9, a5 = a6 = a7 = a8 = 99.
The results of the comparison are presented in Table 3.15. The first aspect worth mention-

ing is that the SRCs are not able to distinguish any of the variables effects. This is probably
an expected result since the model of Problem 5 presents an absolute value, which causes the
linear model to be deceived. The method of Sobol’ and FAST provide stable results after 3, 000
and 5, 000 model evaluations, respectively. As already anticipated in the brief description of
the methods, and as demonstrated in this test case, they do not suffer the highly non-linear
behavior of the problem under investigation in the design region of interest. The polynomial
regression models of the RBSA cannot perfectly cope with a functional like the absolute value,
by definition. However, with a fifth-order model and 1, 000 sample points, see Figure 3.23,
the RBSA can already account for almost 94% of the variability of the data, providing a good
quantitative distinction between the effects of the factors, and quantitative sensitivity indices
that are close to the actual ones.
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Figure 3.22 Sensitivity Analysis using the method of Morris, with P = 6. Problem 4 (see Eq. (3.39)).
1⇒ R = 10, 2⇒ R = 110, 3⇒ R = 210, 4⇒ R = 310, 5⇒ R = 410, 15⇒ R = 10, 000

Sobol’ FAST Morris method SRCa RBSAb

N = 3, 000 N = 5, 000 N = 90, 000 N = 100 N = 1, 000

Variable name STi STi Rank µ∗ σ Value STi

x1 0.792 0.794 1 0.0060 0.0260 ∼ 0 0.704
x2 0.244 0.239 2 0.0048 0.0151 ∼ 0 0.175
x3 0.0338 0.0355 4 0.0014 0.0059 ∼ 0 0.0214
x4 0.0104 0.0114 3 0.0028 0.0033 ∼ 0 0.0120
x5 0.0001 0.0006 7 0.0003 0.0003 ∼ 0 0.0075
x6 0.0001 0.0006 6 0.0004 0.0003 ∼ 0 0.0110
x7 0.0001 0.0006 5 0.0007 0.0003 ∼ 0 0.0118
x8 0.0001 0.0006 8 0.0000 0.0003 ∼ 0 0.0075
a Standardized Regression Coefficients. Data adapted from Helton and Davis (2002)
b Fifth-order regression model. R2

adj = 0.938

Table 3.15 Comparison of sensitivity analysis methods. Problem 5 (see Eq. (3.40)).

As reported in Table 3.15, the method of Morris presents the same type of problem en-
countered with the SRCs. However, a certain qualitative distinction between the factors’ im-
portance may still be identified. This is mainly due to the asymmetry of the absolute value
of Eq. (3.40) in the variability interval determined by the variable ranges. The results are ob-
tained with R = 10, 000, thus a sample size of 90, 000. In Figure 3.24 the trends for increasing
sample size are shown. It is very evident that for increasing value ofR, the measures identified
by the method of Morris converge towards zero.
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Figure 3.23 Total-order sensitivity indices as a function of the sample size. Problem 5 (see Eq.
(3.40)).
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Figure 3.24 Sensitivity Analysis using the method of Morris. Problem 5 (see Eq. (3.40)).
1⇒ R = 10, 2⇒ R = 110, 3⇒ R = 210, 4⇒ R = 310, 5⇒ R = 410, 15⇒ R = 10, 000

The last problem is non-monotonic with 3 uniformly distributed variables (Problem 6, Hel-
ton and Davis (2002)):

f(x) = sinx1 +A sin2 x2 +Bx43 sinx1 x = [x1, x2, x3] , (3.41)

with xi : U(−π, π) for i = 1, 2, 3 and A = 7, B = 0.1.
Also in this case, the SRCs and the method of Morris are not able to detect the correct

contribution of the factors to the variability of the performance, see Table 3.16. The method of
Sobol’ and FAST confirm the fact that the results they provide are not sensitive to the nature
of the underlying model. Indeed in Table 3.16 and in Figure 3.25 it is shown that they provide
a stable estimate of the sensitivity indices for 3, 000 and 5, 000 model evaluations respectively.
The RBSA, using a seventh-order model provided a coefficient of determination of 0.75. In
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Sobol’ FAST Morris method SRCa RBSAb

N = 3, 000 N = 5, 000 N = 40, 000 N = 100 N = 1, 000

Variable name STi STi Rank µ∗ σ Value STi

x1 0.556 0.536 1 7.99 0.0988 ∼ 0 0.417
x2 0.445 0.487 3 0.0055 0.0284 ∼ 0 0.330
x3 0.237 0.242 2 0.1157 0.0781 ∼ 0 0.0054
a Standardized Regression Coefficients. Data adapted from Helton and Davis (2002)
b Seventh-order regression model. R2

adj = 0.75

Table 3.16 Comparison of sensitivity analysis methods. Problem 6 (see Eq. (3.41)).
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Figure 3.25 Total-order sensitivity indices as a function of the sample size. Problem 6 (see Eq.
(3.41)).

this case this result is not as good as the previous examples, leading to a misleading value
for the absolute sensitivity index of the variable x3. However, at least a correct ranking of the
importance of the factors can be identified.

Concluding, the Regression-Based Sensitivity Analysis method has shown good perfor-
mance with different types of models. The sensitivity indices for linear and non-linear mono-
tonic models can be precisely computed with a very reduced number of model evaluations,
when compared to other methods. In the case of non-monotonic problems, the polynomial
representation shows its limitations. RBSA provides less accurate quantitative results in these
cases but still it provides insight in the ranking the factors according to their importance, also
when other qualitative methods fail. A polynomial function does not cope well with terms
like sinx, cosx, ex, and 1

x , for instance. Therefore it is hard to obtain a value for the coefficient
of determination that is close enough to one. These non-polynomial terms could be included
in the representation of the model of Eq. (3.15), but then the sensitivity indices would indicate
the effect of the terms sinx, cosx, ex, and 1

x rather than the effect of the factor x, which is what
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Intervals
Design Variables Code Min Max Levels

Number of days (rep. ground
track)

[-] A 1 3 3

Number of orbits (rep. ground
track)a

[-] B 1 3 3

Instrument aperture diameter [m] C 0.3 1 −
Min. ε [deg] D 5 50 −
Max. slewing angle [deg] E 0 50 −
Min. maneuver time [s] F 60 180 −
Number of slew maneuvers [-] G 10k 30k −
Transmitting output RF power [W] H 5 30 −
Antenna diameter [m] I 0.1 1 −
Type of solar array [-] J 1 2 2
Type of thrusters [-] K 1 2 2
Payload heritage [-] L 1 2 2

Table 3.17 Settings of the design variables.a When A = 1, B = 13, 14 or 15. When A = 2,
B = 28, 29 or 30. When A = 3, B = 43, 44 or 45.

we are interested in. In the next section, we provide an example of the utilization of the RBSA
method on the complete mathematical model of the satellite system for Earth observation.

3.2.6 Test case: satellite system for Earth-observation, sensitivity analysis

Earth-observation satellites can observe areas over a wide range quickly. It is expected that
their observation data combined with information obtained by aircraft and helicopters will
be useful for a regular disaster condition assessment. This would make rescue operations
more effective, it would allow for extracting topographical information reflecting latest land-
usage changes, and identifying disaster risks. In this section we use the mathematical model
of a satellite to show the performance of RBSA with a relatively complex model, and to show
the benefits of having important factors identified already in the preliminary phases of the
design process. The mathematical model used for the analysis is discussed in Appendix B.
The settings and the results are discussed by the author also in ?.

The main purpose is to achieve a compromise between the design variables in such a way
to obtain the best possible image resolution, at minimum cost. These are the two objectives:
the satellite shall revisit the same area on the Earth surface within 24 hours, and shall be able
to send the acquired data back to any equipped ground station (the reference ground station
is considered with 1 m aperture antenna diameter) with a link margin of at least 4 dB. The
selected launcher is of the class of the Delta II 6920/25, with a maximum payload for polar
orbit of 2950 kg. These are the constraints of the analysis: a highly inclined, circular orbit has
been selected, with i = 98◦.

In Table 3.17 the design variables taken into account in the analysis, their type and intervals
or levels (in case of discrete variables) are summarized.

In Figure 3.26 the first-order sensitivity indices are visualized for the constraints (top three
graphs) and for the objectives (lower two graphs). The results are obtained using a second-
order model, see Eq. (3.15), and re-sampled for additional cubic terms of the factors. Two
full-factorial designs (3-level and 2-level) have been used for the discrete factors A and B, and
J, K, and L, respectively (Table 3.17). Regarding the continuous variables, instead, the Sobol’
sequence required 60 samples. Therefore the total number of model evaluations is 4320. The
results shall be discussed in a similar manner as these in Figures 3.14 and 3.15.

The first conclusion is that the factors E, F, G, J, and K have a limited effect on the objectives
and constraints, probably less than one would expect since some of them are related to the
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Figure 3.26 Bar plots indicating the first-order sensitivity indices computed with the RBSA method.

propellant utilization on-board, which is usually a mass driver, thus with an effect on the cost.
They can eventually be fixed to a certain level/value and this will have a limited impact on
the mission, regarding the objectives and constraints that we are analyzing. The other design
variables, instead, present contrasting behaviors. The instrument aperture diameter (factor
C), for instance, affects the mass of the satellite and the satellite cost (the larger the diameter
the larger the mass and the cost, reasonably) but also the down-link margin. The minimum
elevation angle for the observation (factor D) has an effect on coverage (the smaller D is, the
better) and on the resolution at the edge of the swath (the larger D is, the better). However, factor
D also has some influence on the down-link margin constraint (for this analysis we imposed
that communication takes place with a ground station at the edge of the instrument swath
width). The effect of factors C and D on the down-link margin constraint, rather than the more
obvious impact of the antenna diameter (factor I) and the transmitter RF power output (factor
H), can be explained as follows. After these results were obtained, a close investigation on the
model lead us to the relationship between the instrument aperture diameter and the angular
resolution, that is related to the pixel angular resolution, thus to the number of pixels and finally
to the real-time data rate, which causes the influence on the link margin. The elevation angle,
instead, is related to the atmospheric attenuation that increases as the path to the receiver
increases (so as the minimum elevation angle decreases). The presence of non-linear terms,
such as BB, CC, and DD means that the behavior of the launcher-mass availability constraint is
not linear with the instrument aperture diameter. The mass of the satellite does not scale linearly
with the aperture diameter of the instrument, therefore it is somehow expected that also a
constraint related to the mass would not scale linearly. The non-linearities will be clear in a
follow-up study in Section 3.3.3.

3.3 Graphical support to the engineering team

Sensitivity analysis marks out the road map for the engineering team to efficiently direct the
design effort. The non-influential design factors can be fixed to a pre-determined level, be-
cause they will not affect the performance much, de facto reducing the dimensions of the de-
sign search-space. The influential design variables and the behavior of the system under the
effects caused by their variation and their interactions shall be investigated in more detail. In
this subsection we present some visualization techniques that allow to extract additional in-
formation from the simulations performed to do sensitivity analysis with RBSA. Indeed, the
results from those simulations are used again to compute and present the response surfaces
and the variable-trends linking the most influential design factors to the performance. For dis-
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Levels of Factor B
1 2 3 Yi.

Levels of
Factor A

1 0 1 2 3
2 2 6 10 18
3 4 11 18 33

Y.j 6 18 30 54

Table 3.18 Matrix design, 2 factors at 3 levels. Performance of the model.

crete variables, instead, we introduce the concept of linear and interaction graphs and show
their utilization in combination with contour plots and variable trends.

3.3.1 Response surfaces for continuous variables

The subject of Response Surface Methods (RSMs) includes the procedures of sampling the de-
sign space, doing a regression analysis, testing for model adequacy, optimizing the response,
and then validating (Kuri and Cornell, 1996). At this stage of the design process the first three
steps of the RSM are already in place, as previously discussed. The iterative approach of RBSA,
besides giving quantitative information on the sensitivity indices, also provides the regres-
sion coefficients, computed with Eq. (3.18), related to the best-found sample-fitting regression
model. Thus, at this stage of the methodology, a surrogate model that links the design vari-
ables to the performance is already available, see Eq. (3.19). Therefore, it is possible to visualize
the trends of the objectives and the constraints as a function of the continuous design variables
for each combination of discrete-variable levels. Response surfaces, and their bi-dimensional
representation called contour plots, can effectively represent the shape of the subspace formed
by two continuous variables. When only one continuous variable is of interest, single-variable
trends are a valid alternative to contour plots.

Contour plots and single-variable trends could in principle also be computed for discrete
variables, since the regression coefficients are available from the RBSA. However, the regres-
sion of a continuous function for intermediate discrete-variable levels would not be realistic.
To visualize the average effect of the discrete variables on the objectives and the constraints,
linear and interaction graphs can be computed instead with the method shown in the follow-
ing subsection.

3.3.2 Linear and interaction graphs for discrete variables

The main purpose of the linear and interaction graphs is to show the engineering team the
behavior of the system when the levels of the discrete variables are changing. Studying the
effect of a factor on the response, and showing it to the engineering team, means studying the
variation in the response caused by a change in the level of the factor itself. Let us consider the
example presented in the previous section, when discussing ANOVA.

Suppose now that these results are coming from a simulation with discrete variables only,
or from a simulation with a mixed hypercube approach as shown in Figure 3.6. In the last case,
the performance in Table 3.18 can be considered average performance values, each computed
from the sample points coming from the Sobol’ sampling method for each combination of
discrete-variable levels.

The effect of factor A when it is at low level is computed as the average of the performance
when factor B varies over its full range. In this case it can be computed as follows:

A1 =
1

3
(0 + 1 + 2) = 1 (3.42)



3.3 Graphical support to the engineering team 67

1 2 30

2

4
6

8

10
12

A
ve

ra
ge

 P
er

fo
rm

an
ce

Factor Effect

Levels of factor A
1 2 32

4

6

8

10

12

A
ve

ra
ge

 P
er

fo
rm

an
ce

Levels of factor B

Factor Effect

1 2 30

5

10

15

20

Levels of factor A

A
ve

ra
ge

 P
er

fo
rm

an
ce

Interaction Effect

B2

B3

B1

(a) (b) (c)

Figure 3.27 Linear graphs for visualizing the effect of the discrete variables on the performance. (a)
Linear graph factor A. (b) Linear graph factor B. (c) Interaction graph representing the
interaction between factor A and factor B.

In the same way we can compute the effect of factor A at level 2 and level 3:

A2 =
1

3
(2 + 6 + 10) = 6 (3.43)

A3 =
1

3
(4 + 11 + 18) = 11 (3.44)

These results can be presented in the form of a graph as shown in Figure 3.27(a). This will
give the engineering team a clear picture of the system behavior under the effect of factor A,
on average. Similarly, we can compute the effect of Factor B. The results are presented in Fig-
ure 3.27(b). The variation of Factor A has a (slightly) larger influence on the performance if
compared to the variation of Factor B. The line is steeper in the case of Factor A. The sensitiv-
ity analysis computed in the previous section, with the same example proposed here, gave us
already the same information. Further, we discovered that there is interaction between these
two factors. The interaction between Factor A and Factor B can be presented to the engineering
team as shown in Figure 3.27(c). In this case, the circles in Figure 3.27(c) represent the perfor-
mance as presented in Table 3.18. The fact that the lines are diverging is a clear indication that
the two variables are interacting. This means that the variation of Factor B (e.g., from level 1 to
level 3) is enhanced when Factor A is at 3.

A general approach to compute linear and interaction graphs is presented hereafter. Con-
sider the analysis of a system with M discrete factors [A,B, · · · ,M ], each with a different
number of levels [a, b, · · · ,m], and L continuous ones. Thus, there are M + L = K design
variables that form a k-dimensional design space. Referring to Figure 3.6, the matrix-design
for the discrete variables would be an a× b× · · · ×m hypercube (considering a full-factorial).
Concerning the continuous variables, let us assume that l sample points are required for each
combination of discrete design-variable levels. Once the design space has been sampled and
the simulations executed, the responses of the system’s model can be analyzed.

Let Y··· represent the sum of all the responses obtained during the simulations, Y··· =
∑
y =∑a

i=1

∑b
j=1 . . .

∑m
w=1

∑l
s=1 yij...ws. Let Yi... represent, the sum of all the responses with the

factor A at level i, Yi... =
∑b

j=1 . . .
∑m

w=1

∑l
s=1 yij...ws.

Considering the values of Yi··· normalized with the number of experiments, n = b × · · · ×
m× l, for which the variable A is at level i, we compute the average value of the performance
for A at level i:

CAi =
Yi···
n

(3.45)

The values of CAi plotted for all the i levels of Factor A against the objective values provide
the linear graphs.


