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Abstract

The analysis of medical data is a challenging task for health care systems
since a huge amount of interesting knowledge can be automatically mined
to effectively support both physicians and health care organizations. This
paper proposes a data analysis framework based on a multiple-level cluster-
ing technique to identify the examination pathways commonly followed by
patients with a given disease. This knowledge can support health care or-
ganizations in evaluating the medical treatments usually adopted, and thus
the incurred costs. The proposed multiple-level strategy allows clustering
patient examination datasets with a variable distribution. To measure the
relevance of specific examinations for a given disease complication, patient
examination data has been represented in the Vector Space Model using the
TF-IDF method. As a case study, the proposed approach has been applied
to the diabetic care scenario. The experimental validation, performed on a
real collection of diabetic patients, demonstrates the effectiveness of the ap-
proach in identifying groups of patients with a similar examination history
and increasing severity in diabetes complications.
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1. Introduction

Nowadays, large amount of medical data, storing the medical patient his-
tory, is collected by health care organizations. Data mining, which focuses
on studying effective and efficient algorithms to transform large amounts of
data into useful knowledge (Pang-Ning T. and Steinbach M. and Kumar V.,
2006), may provide valuable insight into these huge data collections. For
example, data mining techniques can be used to extract a variety of infor-
mation on the patient history such as the medical protocols usually adopted
for patients with a given disease. Healthcare organizations can exploit this
knowledge to improve their current processes, assess new medical guidelines,
or enrich the existing ones. Medical guidelines represent standard medical
pathways specifying the actions necessary to treat, with optimal effectiveness
and efficiency, patients with a given disease.

This study addresses the problem of analysing patients’ examination data
to identify the examination pathways commonly followed by patients. This
issue is crucial for health care organizations, because it can significantly
impact on the effectiveness of the medical treatments as well as on the costs
incurred by the organizations.

The data analysis framework proposed in this paper exploits a multiple-
level clustering approach to discover, in a data collection with a variable
distribution, cohesive and well-separated groups of patients with a similar ex-
amination history. Cluster analysis is an exploratory data mining technique
that partitions a data object collection into groups based on object proper-
ties, without the support of additional a priori knowledge (in contrast with
classification algorithms using class label information) (Pang-Ning T. and
Steinbach M. and Kumar V., 2006). To cluster data collections with a vari-
able distribution, the proposed multiple-level clustering strategy iteratively
focuses on disjoint dataset portions and locally identifies clusters. Among
the state-of-the-art clustering techniques, the density-based DBSCAN algo-
rithm (Ester et al., 1996) has been adopted due to its properties. DBSCAN
allows the identification of arbitrarily shaped clusters, is less susceptible to
noise and outliers, and does not require the specification of the number of
expected clusters in the data. To highlight the relevance of specific exam-
inations for a given clinical condition, in the proposed framework patient
examination data has been represented in the Vector Space Model (VSM)
(Salton G., 1971) using the TF-IDF method (Pang-Ning T. and Steinbach
M. and Kumar V., 2006).
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As a reference case study, the proposed framework has been applied to
a real dataset of diabetic patients provided by the National Health Center
(NHC) of the Asti province (Italy). The results showed that, starting from
a large collection of raw examination data, the framework allows the iden-
tification of clusters containing patients with a similar examination history.
More specifically, clusters contain patients with increasing disease severity,
as patients are tested with more and more specific examinations to diagnose
diabetes complications. The results were discussed with the support of clini-
cal domain experts, showing a fairly good correlation among the examination
pathways suggested by the clusters and the guidelines for diabetes disease
(ICD-9-CM, 2011).

The paper is organized as follows. Section 2 describes the state-of-the-
art clustering methods and explains the selection of the DBSCAN algorithm
for this study. Section 3 analyses previous related work. Section 4 presents
the proposed framework and describes its building blocks, while the results
obtained for the real diabetic patient dataset are discussed in Section 5.
Finally, Section 6 draws conclusions and future work.

2. Selection of the clustering algorithm

Cluster analysis partitions objects into groups (clusters) so that objects
within the same group are more similar to each other than those objects
assigned to different groups (Pang-Ning T. and Steinbach M. and Kumar V.,
2006). Clustering algorithms require the definition of a metric to evaluate
the similarity (or distance) between objects based on the features describing
objects.

Clustering algorithms can be classified into the following four categories
(Pang-Ning T. and Steinbach M. and Kumar V., 2006): (i) center, (ii) density,
(iii) model, and (iv) hierarchical-based methods.

In center-based methods (e.g., K-means (Juang & Rabiner, 1990)), a clus-
ter is a set of data objects in which each object is closer (more similar) to the
prototype that defines the cluster than to the prototype of any other cluster.
The prototype is the most representative point in the cluster. These meth-
ods find spherical-shaped clusters, unless clusters are well separated, and are
sensitive to outliers.

In density-based methods (e.g., DBSCAN (Ester et al., 1996)), a cluster
is a dense area of data objects surrounded by an area of low density. These

3



approaches are less sensitive to the presence of outliers than center-based
techniques and can identify non-spherical shaped clusters.

Model-based methods (e.g. EM (G. McLachlan and T. Krishnan, 1997),
COBWEB (Fisher, 1987a,b)) hypothesize a mathematical model for each
cluster, and then determine the best fit between the model and the object
collection. These methods can deal with outliers and noise. However, sim-
ilarly to K-means, EM requires the specification of the number of expected
clusters.

Hierarchical-based methods exploit an agglomerative or divisive approach
to generate a hierarchical collection of clusters. The (most common) agglom-
erative approach (Pang-Ning T. and Steinbach M. and Kumar V., 2006) ini-
tially assigns each data object to a singleton cluster. The two closest clusters
are then iteratively merged using a cluster proximity measure (e.g., single-
link, complete-link, or group average average) (Pang-Ning T. and Steinbach
M. and Kumar V., 2006). These methods are often used when the underlying
application requires the creation of a taxonomy, which is not the case for our
application scenario.

Density-based methods showed remarkable properties for clustering pa-
tients based on their examination history. More specifically, the very effective
density-based algorithm DBSCAN (Ester et al., 1996) has been selected in
this study. Differently from other algorithms (e.g., K-means), DBSCAN is
less sensitive to outliers and can find arbitrarily shaped clusters. Outliers,
when not identified and isolated as in DBSCAN, are clustered together with
the other data objects, thus decreasing cluster cohesion. In addition, DB-
SCAN does not require an a priori specification of the number of clusters in
the data, as opposed to K-means and EM.

Medical datasets can include outliers as specific examination pathways for
some disease conditions and clusters can be non-spherical shaped. Besides,
since our aim is discovering the examination pathways usually adopted for
a given disease through an explorative data analysis, the expected number
of clusters can be hardly guessed a priori. For these reasons, the DBSCAN
algorithm has been adopted for the cluster analysis in this study. The main
characteristics of DBSCAN are reported in the following Section 2.1.

To discover clusters in datasets with a variable distribution, state-of-the-
art clustering algorithms can be applied in a multiple-level fashion to focus
on different dataset portions and locally identify cluster (e.g., the bisecting
K-means algorithm (Pang-Ning T. and Steinbach M. and Kumar V., 2006)).
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The multiple-level strategy adopted in this study exploits the DBSCAN algo-
rithm to select the dataset part analyzed at each iteration and locally cluster
it.

2.1. The DBSCAN algorithm

The DBSCAN algorithm (Ester et al., 1996) relies on two input parame-
ters, named Eps andMinPts, to define a density threshold in the data space.
A dense region in the data space is a n-dimensional sphere with radius Eps
and containing at least MinPts objects.

The DBSCAN algorithm iterates over the data objects in the collection by
analyzing their neighborhood. It classifies objects as being (i) in the interior
of a dense region (a core point), (ii) on the edge of a dense region (a border
point), or (iii) in a sparsly occupied region (a noise or outlier point). Any
two core points that are close enough (within a distance Eps of one another)
are put in the same cluster. Any border point close enough to a core point
is put in the same cluster as the core point. Outlier points (i.e., points far
from any core point) are isolated.

DBSCAN can discover arbitrarily shaped clusters and identify outliers as
objects in a low density area in the data space. The effectiveness of DBSCAN
is affected by the selection of the Eps and MinPts values. Section 4.2
discusses how this issue has been addressed in this study.

3. Related work

Several works exploited data mining techniques to analyze medical data
by addressing different pathologies and facets of various diseases.

Clustering algorithms have been widely exploited to analyze medical data
for patients affected by different diseases (Ahmed & Funk, 2011; Buczak et al.,
2009; Choong et al., 2000; Mulroy et al., 2003; Van Rooden et al., 2010;
Santamaria et al., 2003). (Van Rooden et al., 2010) reviewed the cluster
methods used to identify Parkinson’s disease subtypes. It showed that the
K-means algorithm (Juang & Rabiner, 1990) was mostly adopted, but also
highlited its two major limitations, i.e., the sensitiveness to outliers and the
need of defining the expected number of clusters. To overcome these issues,
the DBSCAN algorithm has been used in this study, being able to internally
evaluate the optimal number of clusters and automatically identify outliers.

In (Buczak et al., 2009), patients were represented by tracking the number
of occurrences for each clinical event (e.g., hospital visit, lab order). Patients
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were then grouped using a hierarchical agglomerative clustering method with
Ward’s linkage as proximity measure (Pang-Ning T. and Steinbach M. and
Kumar V., 2006). Differently from (Buczak et al., 2009), in this study we ex-
ploit the TF-IDF scheme to weight the relevance of specific examinations for
each diabetes condition. In addition, a multiple-level cluster approach is used
to identify groups of patients in datasets with a variable data distribution.

Concerning the analysis of medical data for diabetic patients, several
works, mainly exploiting classification techniques, have been proposed (Kare-
gowda et al., 2012; Meng et al., 2012; Mohamudally & Khan, 2011; Zhong
et al., 2012). Classification is a supervised data mining approach that assigns
new unlabeled data to a class label by means of a model built from data with
known class label (Pang-Ning T. and Steinbach M. and Kumar V., 2006).

In (Karegowda et al., 2012), diabetic patients were categorized with a
K-nearest neighbor (KNN) classifier (Pang-Ning T. and Steinbach M. and
Kumar V., 2006). To ehnance classification accuracy, in a pre-processing
step a genetic algorithm and a feature selection technique (i.e., the correlation
method (Pang-Ning T. and Steinbach M. and Kumar V., 2006)) are used to
identify the relevant features for classification. In (Meng et al., 2012) the
authors compared three prediction models (i.e., logistic regression, decision
tree, and artificial neural networks) for diabetic patients classification. The
comparison was based on common risk factors collected from both diabetic
and pre-diabetic patients with a standard questionnaire. This work showed
that the decision tree model (C5.0 (Pang-Ning T. and Steinbach M. and
Kumar V., 2006)) yielded the best accuracy, followed by logistic regression,
and artificial neural networks. The work in (Zhong et al., 2012) proposed a
multi-level support vector machine approach to classify and predict clinical
charge profiles as well as the length of hospital stay for patients affected
by heart, diabetes, and cancer diseases. In (Mohamudally & Khan, 2011),
different data mining algorithms (the K-means algorithm, C4.5 decision tree
classifier, artificial neural networks, and 2D graphs for data visualization)
are integrated to predict, classify, and visualize a medical diabetic dataset.

A parallel effort has been devoted to exploit clustering techniques for
diabetic patients by addressing different issues as food analysis (Phanich
et al., 2010), gait patterns (Sawacha et al., 2010), and relationships among
diabetes and risk factors (Chaturvedi, 2003). Food clustering analysis for
diabetic patients has been proposed in (Phanich et al., 2010). Using Self-
Organizing Map (SOM) and the K-means algorithm, this work provided a
Food Recommendation System suggesting proper substituted foods. The
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work in (Sawacha et al., 2010) proposed a cluster analysis of biomechanical
data to group patients with similar diabetic gait patterns. In (Chaturvedi,
2003) the spatial clusters of diabetes prevalence in Texas has been analyzed.
The relationship of risk factors (i.e., age and obesity) associated with diabetes
have also been analyzed. Differently from these works, this study exploits
clustering techniques to identify groups of patients with similar examinations
history.

4. Methodology

The proposed framework to analyse the patient examination history con-
tains four main steps: (i) data collection, (ii) data transformation, (iii) cluster
analysis, and (iv) cluster evaluation. The building blocks of the framework
are shown in Figure 4 and detailed in the following subsections.

The patient examination log data is first collected and then transformed
using the Vector Space Model (VSM) representation (Salton G., 1971). Ex-
amination frequencies are weighted through the Term Frequency (TF) - In-
verse Document Frequency (IDF) scheme (Pang-Ning T. and Steinbach M.
and Kumar V., 2006).

The multiple-level clustering approach is applied to identify, in a dataset
with a variable distribution, groups of patients with a similar examination
history. The DBSCAN algorithm has been exploited for the cluster analysis.

Finally, clustering results are evaluated through a quality index balanc-
ing both intra-cluster homogeneity and inter-cluster separation. Silhouette
(Rousseeuw, 1987) has been considered as reference index. Cluster sets are
also analysed together with a domain expert to assess their significance. To
analyse the examination pathways represented by the cluster set, each cluster
has been characterized with the examinations appearing in it.

4.1. Representation of the patient examination history

The data recording the patient examination history is represented using
the Vector Space Model (VSM) (Salton G., 1971). Each patient is a vector in
the examination space. Each vector element corresponds to a different exam-
ination and is associated with a weight describing the examination relevance
for the patient. More specifically, it reports the weighted number of times
the examination was repeated by the patient. The Term Frequency (TF)
- Inverse Document Frequency (IDF) scheme (Pang-Ning T. and Steinbach
M. and Kumar V., 2006) has been adopted to weight examination frequency.
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Figure 1: The proposed framework for the cluster analysis of patient examination data

Both the VSM representation and the TF-IDF scheme have been applied in
previous works to represent text documents.

The adopted data representation allows highlighting the relevance of spe-
cific examinations for a given patient condition. The TF-IDF value increases
proportionally to the number of times an examination appears in the pa-
tient history, but is offset by the frequency of the examination in the patient
collection, which helps to control the fact that some examinations are gen-
erally more common than others. Unweighted examination frequencies do
not properly characterize the patient condition, since standard routine tests
usually appear with high frequency, while more specific tests may appear
with lower frequency.

More formally, letD be a collection of patient records and Σ = {e1, . . . , ek}
the set of examinations done by at least one patient in D. Each patient pi
in D is represented by a weighted examination frequency vector vpi of |Σ|
cells. Each element vpi[j] of vector vpi reports the weighted frequency wpi,ej

of examination ej for patient pi, i.e.,
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vpi = [wpi,e1, . . . , wpi,e|Σ|
]. (1)

The TF-IDF weight wpi,ej for the pair (pi, ej) is computed as the prod-
uct of two terms, called Term Frequency (TFpi,ej) and Inverse Document
Frequency (IDFej),

wpi,ej = TFpi,ej ∗ IDFej . (2)

The Term Frequency TFpi,ej for the pair (pi, ej) represents the relative
frequency of examination ej for patient pi. It is given by

TFpi,ej = fpi,ej/
∑

1≤k≤|Σ|

fpi,ek , (3)

where fpi,ej is the number of times patient pi underwent examination ej and
∑

1≤k≤|Σ| fpi,ek is the total number of examinations done by patient pi.
The Inverse Document Frequency IDFej for examination ej represents

the frequency of ej in the patient collection. It is computed as

IDFej = Log[|D|/|pk ∈ D : fpk,ej 6= 0|], (4)

where |D| is the number of patients in the collection D and |pk ∈ D : fpk,ej 6=
0| is the number of patients in D who underwent (at least once) examina-
tion ej . Mathematically, the base of the log function does not matter and
constitutes a constant multiplicative factor towards the overall result.

The TF-IDF weight wpi,ej for the pair (pi, ej) is high when examination
ej appears with high frequency in patient pi and low frequency in patients in
the collection D. When examination ej appears in more patients, the ratio
inside the IDF’s log function approaches 1, and the IDFej value and TF-
IDF weight wpi,ej become close to 0. Hence, the approach tends to filter out
common examinations.

4.2. The multiple-level DBSCAN approach for cluster analysis

Density-based algorithms can effectively discover clusters of arbitary shape
and filter out outliers, thus increasing cluster homogeneity. Clusters are iden-
tified as dense areas of data objects surrounded by an area of low density.

In the DBSCAN algorithm, density is evaluated based on the user-specified
parameters Eps and MinPts. One single execution of DBSCAN discovers
dense groups of patients according to one specific setting for these parame-
ters. Patients in lower density areas are labeled as outliers and not assigned
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to any cluster. Hence, different parameter settings are needed to discover
clusters in datasets with a variable data distribution as the one considered
in this study. Groups of patients with close examination histories may have
both different cardinalities and densities, i.e., groups may contain examina-
tion histories with different degrees of similarity.

The proposedmultiple-level clustering approach allows clustering datasets
with a variable distribution by iteratively applying the DBSCAN algorithm
on different (disjoint) dataset portions. The whole original dataset is clus-
tered at the first level. Then, at each subsequent level, patients labeled as
outliers in the previous level are re-clustered. The DBSCAN parameters Eps
and MinPts are properly set at each level.

In the following, Section 4.2.1 presents the measure used to evaluate
the similarity between patient examination histories, while Section 4.2.2 de-
scribes how the DBSCAN parameters and the number of clustering levels
have been selected.

4.2.1. Similarity between patient examination histories

The cosine similarity measure has been adopted to evaluate the simi-
larity between the weighted examination frequency vectors representing the
patient examination histories. This measure has been often used to compare
documents in text mining (Steinbach et al., 2000).

Let pi and pj be two arbitrary patients in the collection D. Let vi and vj
be the corresponding weighted examination frequency vectors as in Equation
1. The cosine similarity between vi and vj is computed as

cos(vi, vj) =
vi • vj

‖vi‖ ‖vj‖
=

∑

1≤k≤|Σ| vi[k]vj [k]
√

∑

1≤k≤|Σ| vi[k]
2

√

∑

1≤k≤|Σ| vj[k]
2

, (5)

where cos(vi, vj) is in the range [0,1]. cos(vi, vj) equal to 1 describes the exact
similarity of examination histories for patients pi and pj, while cos(vi, vj)
equal to 0 points out that patients have complementary histories (i.e., the
sets of their examinations are disjoint).

4.2.2. Number of clustering levels and DBSCAN parameters

The dataset density is preliminarly analysed using the k-dist graph (Pang-
Ning T. and Steinbach M. and Kumar V., 2006) to select both the number of
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iterations for the multiple-level clustering approach and the Eps andMinPts
values for each iteration.

For each patient in the collection, the k-dist graph plots the distance to
its kth nearest neighbor according to their examination history. On the x-
axis patients are sorted by the distance to the kth nearest neighbor, while on
the y-axis distances to the kth nearest neighbor are reported. The k value
corresponds to the MinPts parameter. The y-axis represents possible values
of the Eps parameter. By cutting the graph at a given value on the y-axis,
the corresponding px value on the x-axis partitions the patient collection
into the following two subsets. Patients placed on the left hand side of px
are labeled by DBSCAN as core points, and those on the rigth side of px as
outlier or border points.

Sharp changes in the k-dist graph identify dataset portions with a dif-
ferent density (Pang-Ning T. and Steinbach M. and Kumar V., 2006). The
multiple-level strategy analyzes these dataset portions in different iterations.
The Eps value to cluster each dataset part is selected in correspondence with
the sharp change appearing in the graph. Section 5.2 discusses the selection of
DBSCAN parameters and number of iteration levels for the diabetes dataset
considered in this study.

4.3. Cluster evaluation

The discovered cluster set is evaluated using the Silhouette index (Rousseeuw,
1987). Silhouette allows evaluating the appropriateness of the assignment of
a data object to a cluster rather than to another by measuring both intra-
cluster cohesion and inter-cluster separation.

The silhouette value for a given patient pi in a cluster C is computed as

s(pi) =
b(pi)− a(pi)

max{a(pi), b(pi)}
, s(pi) ∈ [−1, 1], (6)

where a(pi) is the average distance of patient pi from all other patients in the
cluster C, and b(pi) is the smallest of average distances from its neighbour
clusters. The silhouette value for a cluster C is the average silhouette value
on all its patients. Negative silhouette values represent wrong patient place-
ments, while positive silhouette values a better patient assignments. Clusters
with silhouette values in the range [0.51,0.70] and [0.71,1] respectively show
that a reasonable and a strong structure have been found (Kaufman, L. and
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Rousseeuw, P. J., 1990). The cosine similarity metric has been used for sil-
houette evaluation, since this measure was used to evaluate patient similarity
in the cluster analysis (see Section 4.2.1).

4.4. Data mining tool

The DBSCAN algorithm available in the RapidMiner system has been
used for the cluster analysis within the proposed framework. The RapidMiner
toolkit (Rapid Miner Project, 2013) is an open-source system consisting of
a number of data mining algorithms to automatically analyze a large data
collection and extract useful knowledge.

The procedures for data transformation and cluster evaluation have been
developed in the Phyton programming language (Python Software Founda-
tion, 2013). These procedures transform the patient examination log data
into the VSM representation using the TF-IDF scheme and compute the
silhouette values for the cluster set provided by the cluster analysis.

5. Results and discussion

This section presents and discusses the results obtained when analysing a
real collection of examination log data for diabetic patients with the proposed
framework. In the following, Section 5.1 describes the dataset considered in
this study, while Section 5.2 specifies the framework configuration for the
cluster analysis. The cluster results are presented and discussed in Section
5.3. Finally, Section 5.4 evaluates the performance of the multiple-level clus-
tering approach in terms of execution time.

5.1. Diabetic patient dataset

The dataset considered in this study was collected by the Local Health
Center (LHC) of the Asti province in Italy. The LHC database stores all
the accesses to the health care system in the Asti province in the year 2007.
From this database the examination log data of all patients with overt di-
abetes were extracted. Raw data contain 95,788 records with examinations
performed by 6,380 patients. They contain both (i) routine and (ii) more
specific examinations to analyze diabetes complications on various degrees
of severity. The dataset includes both male and female patients in a wide age
range (between 4 and 95 years). The diagnostic and therapeutic procedures
are defined using the ICD 9-CM (International Classification of Diseases, 9th
revision, Clinical Modification) (ICD-9-CM, 2011).
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5.2. Selection of parameters for clustering diabetic patients

To select the number of iterations for the multiple-level clustering strategy
and the DBSCAN parameter for each level, we relied on the k-dist graph as
discussed in Section 4.2.2. In selecting these parameters, we addressed the
following issues. To discover representative examination pathways for the
diabetes, we aim at avoiding clusters including few patients. In addition, to
consider all different patient examination histories, we aim at limiting the
number of patients labeled as outliers and thus unclustered.

We plotted the k-dist graph, and analysed the cluster results, by varying
the MinPts (i.e., k) value. Low MinPts values were not suitable for our
purpose, because DBSCAN identifies small groups of patients. At the same
time, largeMinPts values may increase the number of outlier points included
in the clusters. The experimental results showed that MinPts in the range
[25,35] provided similar results, that were compliant with the above issues.
We selected MinPts=30. From the k-dist graph for k=30, we observed three
main dataset portions with a different density for Eps in the range [0.2-0.3],
[0.4-0.5], and [0.6-0.7], respectively. Consequently, we adopted a three-level
clustering approach, with each level focusing on one among the three dataset
parts. The selected Eps values were 0.3, 0.4, and 0.6 for the first, second,
and third clustering level, respectively.

5.3. Analysis of the clustering results

Starting from a large collection of raw examination data, the proposed
framework allows the discovery of a set of clusters containing patients with a
similar examination history. The multiple-level DBSCAN approach, iterated
for three levels, computed clusters that progressively contain patients with
increasing severity in diabetes, because patients are tested using more and
more specialized examinations. More specifically, first-level clusters contain
patients mainly undergoing routine tests to monitor diabetes conditions, or
some basic tests to diagnose disease complications. Second-level clusters col-
lect patients that are tested using an increasing number of examinations to
diagnose some diabetes complications. Examinations become progressively
more numerous and specific in third-level clusters, indicating patients that
can have diabetes complications of increasing severity. Since at each level
clusters contain more specific examinations, a lower number of patients is
contained in each cluster and the cluster size tends to reduce progressively.
Clusters show good cohesion and separation as they are characterized by high
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silhouette values. The results, discussed with the support of a clinical do-
main expert, show a fairly good correlation among the examination pathways
suggested by the clusters and the guidelines for diabetes disease (ICD-9-CM,
2011).

Cluster properties are discussed in detail in the following subsections.
Tables 1, 2, and 3 report, for each first- and second-level cluster, the ex-
amination frequencies computed as the percentage of patients in the cluster
tested by each examination. Clusters are named as Cij in the tables, where
j denotes the level of the multiple-level DBSCAN approach providing the
cluster and i locally identifies the cluster at each level j.

5.3.1. First-level cluster set

First-level clusters are reported in Tables 1 and 2. Clusters can be par-
titioned into the following two main groups: clusters containing patients (i)
with standard examinations to monitor diabetes conditions (clusters C11-
C51 , in Table 1), (ii) coupled with basic examinations to diagnose disease
complications (clusters C61-C111 in Table 2).

The two largest clusters (C11 and C21) contain patients who mostly per-
formed standard routine tests. Besides routine examinations, all patients in
cluster C31 had a specialistic visit and were tested with usual basic exam-
inations to diagnose the most frequent diabetes complications, as risks for
cardiovascular disease and eye problems. All patients in clusters C41 and C51

only had a checkup visit, together with the glucose level test in cluster C51 .
These two clusters may include patients usually tested in private structures
and periodically reporting test results to NHC.

Patients in clusters C61-C111 were additionally tested to diagnose diabetes
complications in the (a) eye (C61), (b) cardiovascular system (C71), (c) both
eye and cardiovascular system (C81), (d) carotid (C91), and (e) limb (C101).
Finally, (f) cluster C111 includes tests for the liver, kidneys, and in particular
cardiovascular system. Differently from second- and third-level clusters, di-
abetes complications were monitored in clusters C61-C111 using a few (quite
standard) tests which showed a limited degree of severity. Only the cardio-
vascular system has been thoroughly tested in cluster C111 . Standard routine
examinations still appear in clusters C61-C111 even though (usually) with a
lower frequency than in clusters C11-C51.

Patients with an examination history significantly dissimilar from all the
others are labeled as outliers and not included in any cluster. The DBSCAN
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Table 1: Examination frequencies (%) in first-level clusters containing patients undergoing
routine tests (Eps=0.3, MinPts=30)

Category Examination C11 C21 C31 C41 C51

Routine Checkup visit 78 96 58 100 100
Glucose level 78 98 63 - 100
Urine test 72 97 58 - -
Venous blood 96 75 35 - -
Capillary blood 72 97 58 - -
Haemoglobin 100 - - - -
Specialistic visit - 13 100 - -

Cardiovascular Electrocardiogram - - 100 - -
Eye Fundus Oculi - - 28 - -

Number of patients 223 1,764 43 110 41
Silhouette 0.67 0.55 0.85 0.99 1.0

algorithm was re-applied on these patients only (3,509 patients), with differ-
ent parameter values. The results are discussed in Section 5.3.2.

5.3.2. Second-level cluster set

Second-level clusters contain patients with more diversified examination
histories. More specifically, the following two main categories of clusters can
be identified: (i) clusters containing patients tested with specific examina-
tions to diagnose a given diabetes complication (clusters C12-C22); (ii) clus-
ters with patients who underwent various examinations to diagnose different
diabetes complications (clusters C32-C52). These two categories respectively
indicate patients that can be seriously affected by a particular disease com-
plication or by more than one disease complication at the same time. Second-
level clusters are reported in Table 3.

Clusters C12 and C22 include specific examination to diagnose eye compli-
cations. More specifically, all patients in cluster C12 underwent a battery of
tests to assess vision and ability to focus on objects (called ”Eye examination”
in Table 3). Instead, all patients in cluster C22 had Retinal photocoagula-
tion, a laser operation done in cases of long-term eye complications, such as
proliferative retinopathy.

All patients in clusters C32-C52 may suffer complications on the cardio-
vascular, liver, and kidneys systems, but with different degrees of severity.
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Table 2: Examination frequencies (%) in first-level clusters including basic tests to diagnose
diabetes complications (Eps=0.3, MinPts=30)

Category Examination C61 C71 C81 C91 C101 C111

Routine Checkup visit 77 78 66 62 68 97
Glucose level 74 74 64 62 59 97
Urine test 74 74 64 57 56 92
Venous blood 57 60 53 48 44 97
Capillary blood 74 73 63 55 56 92
Haemoglobin - - - 14 12 100
Specialistic visit - - - - - -
Complete blood count - - - - 3 3

Cardiovascular Electrocardiogram - 100 100 - - 42
Cholesterol - - - - - 100
HDL Cholesterol - - - - - 100
Triglycerides - - - - - 100

Eye Fundus Oculi 100 - 100 - - 39
Liver ALT - - - - - 100

AST - - - - - 100
Kidney Creatinine - - - - - 3

Creatinine clearance - - - - - 100
Culture urine - - - - - 100
Microscopic urine analysis - - - - - 100
Uric Acid - - - - - 100

Carotid ECO doppler carotid - - - 100 - -
Limb ECO doppler limb - - - - 100 -

Number of patients 294 144 140 42 34 36

Silhouette 0.65 0.74 0.79 0.95 0.97 0.90
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Patients in cluster C52 are at risk of more severe liver complications than
those in clusters C32 and C42 , since their examination history includes more
tests in this category. Analogously, cluster C32 is characterized by more
severe renal complications than clusters C42 and C52 . Cardiovascular com-
plications have similar severity in clusters C32-C52 , because examinations in
this category appear with similar frequency.

At this stage, 2,939 patients are classified as outliers and not assigned
to any cluster. We further applied the DBSCAN algorithm on them by
modifying the parameter setting. The results are analyzed in Section 5.3.3.

5.3.3. Third-level cluster set

The results collected at this stage (with DBSCAN parameter Eps=0.6
and MinPts=30) show a similar trend to second-level clusters. Third-level
clusters contain patients that may suffer more complications at the same
time (e.g., complications on carotid, liver, and cardiovascular systems) and
are tested with more specific examinations (e.g., transcutaneous oxygen and
carbon dioxide monitor or upper abdominal ultrasound). By stopping the
multiple-level DBSCAN approach at this level, only 1,239 patients labeled
as outliers remain unclustered, with respect to the initial collection of 6,380
patients considered at the first level (i.e., about 19% of patients). By further
applying the DBSCAN algorithm on this outlier set, fragmented groups of
patients can be identified. These clusters can represent patients affected by
more rare diabetes complications, and thus with examinations different from
those done by most patients.

5.4. Execution time

The run time of DBSCAN at the first, second, and third level is 9 min 10
sec, 2 min 25 sec, and 1 min 45 sec, respectively. The run time progressively
reduces because less patients are considered at each subsequent level.

6. Conclusion

To get the most out of large and complex medical databases, innovative
data analysis techniques are needed to extract useful knowledge in a timely
fashion. In this paper a data analysis framework based on a multiple-level
clustering approach has been proposed to identify groups of patients with a
similar examination history in a dataset with a variable data distribution.
The TF-IDF method has been exploited to represent patient examination
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Table 3: Examination frequencies (%) in second-level clusters, including examinations to
diagnose more severe diabetes complications (Eps=0.4, MinPts=30)

Category Examination C12 C22 C32 C42 C52

Routine Checkup visit 65 90 22 98 71
Glucose level 52 92 22 100 95
Urine test 37 90 19 98 68
Venous blood 35 84 100 100 98
Capillary blood 37 85 17 98 63
Haemoglobin 13 34 100 98 83
Specialistic visit - 13 - - -
Complete blood count 3 15 45 7 93

Cardiovascular Electrocardiogram 17 21 70 47 20
Cholesterol 7 25 100 97 93
HDL Cholesterol 4 26 100 99 92
Triglycerides 7 26 100 97 90

Eye Fundus Oculi 50 38 53 49 27
Angioscopy - 30 - - -
Eye examination 100 5 - - -
Renital photocoagulation - 100 - - -

Liver ALT - 21 10 98 98
AST - 21 8 97 98
Bilirubin - 2 - - 100
Gamma GT - - 100 - 95

Kidney Creatinine 4 20 99 11 78
Creatinine clearance 2 10 - 99 -
Culture urine 2 11 67 97 44
Microscopic urine analysis 4 16 2 82 73
Uric acid - 13 3 97 68
Microalbuminuria - 7 100 60 37

Carotid ECO doppler carotid - 5 - - 2
Limb ECO doppler limb - - - - -

Number of patients 46 61 139 283 41

Silhouette 0.92 0.88 0.72 0.69 0.87
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data, thus highlighting the relevance of the different examinations. The pro-
posed methodology has been validated in the diabetic care scenario on a
real dataset of diabetic patients. The analysis identified cohesive and well-
separated groups of patients with standard or more specific examinations
for diabetes, showing a good correlation with medical guidelines for dia-
betes (ICD-9-CM, 2011). Future developments of the proposed approach
will explore the correlation between patient examination data and additional
aspects of the medical treatments such as pharmaceutical drug therapies.
Furthermore, we plan to apply the proposed approach to different medical
contexts (e.g., cardiac patients).
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