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Joint delay and power control
in single-server queueing systems

Andrea Bianco, Mario R. Casu, Paolo Giaccone, Marco Ricca
Dipartimento di Elettronica e Telecomunicazioni, Politecnico di Torino, Italy

Abstract—Many power-aware resource allocation problems
in packet networks can be modeled as single-server queueing
systems, in which the power consumption depends on the actual
service rate. We consider the scenario in which the queue service
rate is controlled to minimize server power consumption. We
show that power control methods that tune the service rate by
using the queue length or the arrival rate exhibit a non-monotonic
curve of delay vs. load. This may lead to malfunctioning in end-
to-end flow/congestion control protocols, which are based on the
assumption that delays increase with increasing load. We propose
a new policy, in which the service rate is changed while keeping
almost flat the delay curve, which permits to achieve a close-to-
optimal trade-off between power and delay.

I. INTRODUCTION

Reducing the power consumption of telecommunication
networks and devices is crucial for a number of reasons: i)
the need to increase the battery life in mobile devices, ii)
to reduce the energy bill of telecommunication operators and
service providers, and iii) to design eco-sustainable products.
Furthermore, minimizing power is a key solution to increase
hardware performance. Indeed, the higher the processing and
switching rates, the higher the power dissipated in chips and
their temperature. Thus, reducing power per operation leads to
higher switching and processing rates given a finite, and often
tight, power and thermal budget.

In packet networks (in a broad sense, including the case of
on-chip networks), in which shared resources are modeled as
servers accessed via a queueing system that models resource
interplay, the speed at which packets are served can be
controlled to obtain a target power-performance trade-off. The
various techniques proposed to reach this goal, as discussed
in Sec. II, share the simple idea of tuning the server speed
according to the load: When the load is low, the server slows
down its service speed to reduce power consumption at the
price of longer delays, and, possibly, lower throughput. When
the load is high, the service rate is increased to maximize
throughput, thus requiring higher power consumption.

In this paper we focus on the power control of a single-
server system, in which arriving packets are enqueued and
served in First-In-First-Out (FIFO) order. Albeit simple, this
toy system permits to derive general observations that hold
also in complex, more realistic scenarios.

We classify the power control methods in two categories,
queue-length-based and arrival-rate-based. In the former, when
the packets waiting to be served are less/more than a pre-
defined queue occupancy threshold, the server rate is re-
duced/increased to save power/to reduce delays. Similarly,

in the arrival-rate-based method, when the packet arrival
rate is smaller/larger than the actual service rate, the server
reduces/increases its service rate.

To estimate power consumption we fix our attention on the
cubic power-load relation typical of hardware systems that use
Dynamic Voltage and Frequency Scaling (DVFS), in which
the supply voltage scales jointly with the clock frequency [1],
[2]. However, the adopted methodology is general and can be
applied to a large family of convex power models.

To the best of our knowledge, for the first time we show
that tuning the service rate according to the input traffic
load leads to an anomalous behavior in the delay-load curve,
which becomes non-monotonic for both queue-length and
arrival-rate based methods. This fact may negatively affect
the performance of end-to-end flow/congestion control proto-
cols, which often assume that delays increase with increasing
network congestion. For example, the congestion avoidance
algorithm of some versions of TCP (as TCP Westwood [3])
is based on the estimated instantaneous rate achieved by the
flow, which is usually obtained by the number of received
packets/ACKs over the Round Trip Time (RTT). Clearly,
increasing delays imply a larger RTT; this fact is “seen”
by the control algorithm as a congestion indicator and the
transmission window will be likely decreased. In the case
of non-monotonic delay-load curve, increasing delays could
be also due to a smaller load/congestion, which must instead
lead to a larger transmission window. As a consequence, the
sender might decrease its rate when the congestion decreases,
leading to a vicious circle which may stop the sender, at least
theoretically.

To remove the non monotonic behavior, we propose a new
control method that keeps the delay constant over a large load
range, with a minor power penalty with respect to policies that
minimize power consumption at the cost of unbounded delays.

II. RELATED WORK

The power control problem in systems modeled as single
server queues and with control policies based on the queue
length and/or the arrival rate was previously investigated, but
very rarely with focus on the delay behavior.

A queue-length-based control for DVFS applied to a mul-
ticore processor is proposed in [1], in which single-server
queues model each core’s task queues. An emptying queue
means that the core is running fast and is able to absorb its
workload; a filling queue indicates that the core is not able
to keep up with its assigned workload. The power control



is based on a standard Proportional-Integral (PI) feedback
controller, which compensates the error between current queue
size and target value by accelerating/decelerating the server.
This scheme requires careful design and tuning of the control
parameters and of the estimation procedures to achieve stabil-
ity. In the field of Networks-on-Chip, a similar DVFS scheme
has been used to control i) the power chip-wide, by using the
size of the queues between various voltage domains [4], and
ii) to control the power dissipated in on-chip routers using the
size of input buffer queues [5]. The model that we present
in Sec. IV refers to a version of the PI control, in which the
average queue size is exactly equal to the target queue size.

For the power management of electronic systems, the au-
thors of [6] propose a randomized policy for service-rate
control based on the knowledge of the Markovian model
describing the source behavior (i.e. the workload). As a
consequence, the control is arrival-rate-based. The proposed
policy achieves a good power-delay trade-off but it requires to
solve a large size, nontrivial LP problem.

In a general context of communications between hardware
components, the work in [7] focuses on DVFS applied to
the interconnections modeled as a network of single-server
queues. The authors compare different approaches to estimate
the congestion information that feeds the rate algorithm. They
also propose an alternative policy that combines arrival-rate-
based and queue-length-based schemes and examines queueing
delays. By comparing the state of the system with four target
values (min/max queue occupancy/arrival rate), the service
rate is adapted to minimize power consumption while keeping
buffers occupancy small enough. The benefits of such scheme
are evaluated through detailed hardware-level simulations, but
the authors do not focus on the non-monotonicity of the delay
with respect to the arrival rate.

Another example of an hybrid scheme, combining queue-
length-based and arrival-rate-based approaches, was studied
in [8] for the power management of generic data networks. The
scheme takes into account also a setup penalty when changing
the rate and a packet deadline (i.e. a maximum delay). Based
on [9], which shows that keeping the service rate constant
while satisfying a given time deadline is the minimum energy
policy when arrival times are known offline, the proposed
policy also tries to keep the service rate as constant as possible
while meeting a given deadline, which can be violated only
with small probability in case of unknown arrival times. The
input of the power control are queue size and estimated arrival
rate. The main idea is to increase the rate whenever the actual
rate does not meet the deadline for the actual backlog, whereas
the rate is decreased whenever the queue becomes empty.

A multi-class M/G/1 scenario is considered in [10] in a
more theoretical perspective. The power is minimized while
satisfying a maximum average delay. The proposed optimal
policies are based on the knowledge of the arrival rate and the
queueing delay for the packets in the queue.

As a final comment, note that similar approaches have been
studied for M/G/1-PS (Processor Sharing) queueing systems,
modeling the sharing of server resources. This is a very

relevant model for many applications, for which the rate
control has been deeply investigated in the past [11].

III. POWER AND RATE CONTROL OF A SINGLE QUEUE

We consider a single server system in which the packet
service time S computed by the power controller is defined as

S = αTpkt (1)

where Tpkt is the minimum service time (obtained for maxi-
mum service speed) and α ∈ [1, αmax] is the time expansion
factor, computed by the power control. Intuitively, α is the
level of slow-down with respect to the maximum service rate
and can be seen as the “laziness” to serve the packets. For
α = 1 the server is running at the fastest speed.

We can easily map this model in the DVFS scenario for
a single server processor whose clock frequency is inversely
proportional to the applied voltage V . Thus, α is the voltage
reduction factor with respect to the maximum available voltage
Vmax: V = Vmax/α. αmax depends on the adopted technology
and it usually assumes values in the range 2-3 [12].

We assume that packets arrive according to a stationary
Poisson process at rate λ̂pkt. To be admissible, λ̂pkt < 1/Tpkt.
The normalized arrival rate λ ∈ [0, 1) is λ = λ̂pktTpkt.

We consider the case of static policies, in which S is fixed
for a given λ. This choice permits to simply build policy
models. Static policies provide a bound to the performance of
the corresponding dynamic policies that react to instantaneous
changes in the arrival rate and/or the queue size by dynami-
cally changing S. Indeed, it can be shown that under stationary
traffic assumption, keeping S constant is better than changing
it while keeping the same average value, both in terms of
average delay and power. More precisely, the power for a static
policy is lower than the corresponding dynamic policy power
due the convexity of the power vs server rate function. This
can be formally proved exploiting Jensen inequality (following
the same reasoning of the proof of Lemma 1 in [9]). Following
standard arguments in queueing theory, it can be also proved
that the average delay for a static policy is lower, thanks to
the lower (i.e. null) variance in the service rate.

Since the power policy is static, we can consider a fixed
S and exploit the Pollaczek–Khinchine formula of M/G/1 for
fixed service time (i.e., the corresponding queueing system be-
comes an M/D/1) to evaluate the average delay W , normalized
with respect to Tpkt, as:

W =
λα2

2(1− λα)
+ α (2)

To achieve bounded delays and maximize throughput, the
power controller cannot reduce the service rate below the
arrival rate: λ < 1/α. If we define the utilization factor of
the queue as ρ = λα, this condition is equivalent to impose
ρ < 1. This results in the following final constraint:

1 ≤ α ≤ min

(
1

λ
, αmax

)
(3)



We assume that power consumption can be modeled as

P =
λ

α2
(4)

This well-known model is motivated by a DVFS scenario since
it captures the dynamic power of CMOS gates powered at
voltage V = Vmax/α, as shown for example in [2]. We omit
in (4) all the constant factors so as to normalize P ∈ [0, 1], as
they do not affect the relative behavior of the control policies.

In the following, we discuss three control policies to choose
α: (i) one that achieves the minimum power but with large de-
lays/queue length, (ii) one that fixes a given queue utilization,
and (iii) one that sets a given queue length. For the sake of
comparison, we also define the No-power-Control (NC) policy
as the one that always sets αNC = 1, for any λ ∈ [0, 1).

A. Minimum Power (MP) policy

The minimum power in (4) is obtained by the maximum
value of α subject to (3). This implies that the optimal
Minimum Power (MP) policy is

αMP =

{
1/λ for λ ∈ [1/αmax, 1)

αmax for λ ∈ [0, ρv/αmax)
(5)

This policy corresponds to force the queue to run, for any
λ ≥ 1/αmax, at an operating point corresponding to ρ = 1,
for which the average delay and queue size are infinite. By
also exploiting (2), it is easy to observe:

Property 1: The average delay is

W =

∞ for λ ∈ [1/αmax, 1)
λα2

max

2(1− λαmax)
+ αmax for λ ∈ [0, 1/αmax)

(6)

The corresponding power is:

P =

λ
3 for λ ∈ [1/αmax, 1)
λ

α2
max

for λ ∈ [0, 1/αmax)
(7)

B. Fixed Utilization (FU) policy

To avoid infinite delays in (6), we propose to modify the MP
policy. Since we must enforce ρ < 1 to obtain finite delays,
we introduce the parameter ρv ∈ (0, 1), defined as “virtual
utilization factor”, defining a Fixed Utilization policy, denoted
as FU-ρv . The policy expansion factor is:

αFU =


1 for λ ∈ [ρv, 1]

ρv/λ for λ ∈ [ρv/αmax, ρv)

αmax for λ ∈ [0, ρv/αmax)

(8)

When ρv → 1, FU corresponds to the optimal minimum power
policy, whereas when ρv → 0 FU behaves as NC.

From (8) it is possible to highlight three regimes:
• high load (when λ > ρv) in which the service rate is

maximum and the power control is not effective;
• low load (when λ < 1/αmax) in which the service rate

is the minimum allowed;
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Fig. 1: Performance of FU-ρv policy when αmax = 3

• medium load, in which the service rate is controlled based
on the arrival rate λ.

By again exploiting (2), it is easy to show:
Property 2: The FU policy defined via (8) obtains the

maximum throughput for any admissible λ ∈ [0, 1), given the
finiteness of its average delay:

W =



λ

2(1− λ)
+ 1 for λ ∈ [ρv, 1) (9a)

ρ2v
2λ(1− ρv)

+
ρv
λ

for λ ∈ [ ρv
αmax

, ρv)(9b)

λα2
max

2(1− λαmax)
+ αmax for λ ∈ [0, ρv

αmax
) (9c)

The corresponding power is:

P =


λ for λ ∈ [ρv, 1]
λ3

ρ2v
for λ ∈ [ρv/αmax, ρv)

λ

α2
max

for λ ∈ [0, ρv/αmax)

Fig. 1 shows1 average delay (measured as multiple of
Tpkt) and normalized power as a function of arrival rate λ,
for different values of control parameter ρv . For comparison
purposes, we also report the results obtained by MP and NC.

As expected, MP delays are unbounded when λ > 1/αmax,
whereas the power is minimum and corresponds to the cubic

1All the curves in the following graphs (except the last two ones in the
paper) are continuous, points simply help distinguish more easily the curves.
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Fig. 2: Performance of FU-ρv policy when αmax = 2
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Fig. 3: Delay for FU-0.90 and different values of αmax.

function in (7). Conversely, NC delays correspond to those of
a standard M/D/1 queue and power grows linearly with λ.

More interestingly, under the FU policy the delays show
a non-monotonic behavior as a function of the load, with a
local maximum for λ = 1/αmax. This behavior is due to the
fact that, in the medium-load regime, when λ decreases, the
service time must increase to keep the same utilization factor
ρv , since λα = ρv . Similar results are reported in Fig 2, which
refers to the case of αmax = 2. Delays start decreasing for a
different load value, but the curve shows the same trend.

Fig. 3 shows the effect on delays of different values of
αmax for the FU policy. The non-monotonic behavior is more
evident for larger values of αmax. Note that if α could increase
without any bound (i.e., αmax →∞), then the corresponding
delay would tend to infinity for λ→ 0.

C. Fixed Queue (FQ) policy

Another approach to cope with infinite queue lengths in MP
is a power control based on the queue size. For this policy,
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Fig. 4: Performance of FQ-L policies when αmax = 3.

FQ, α is chosen so that the average queue size equals a target
value L. By using Little’s law to express the average queue
size, we can set W (λ)λ = L and, thanks to (2), we have

λ2α2

2(1− λα)
+ αλ = L

Solving the above equation and considering the constraints
in (3), we can define the FQ policy as follows:

αFQ =


1 for λ ∈ [L̂, 1)

L̂/λ for λ ∈ [L̂/αmax, L̂)

αmax for λ ∈ [0, L̂/αmax)

(10)

where the new control parameter L̂ = L+ 1−
√
L2 + 1, and

L̂ ∈ (0, 1). Even though this policy targets a fixed queue size
L, is still arrival-rate based because it requires to know λ.

In Fig. 4 we show the average delay, power and average
queue length for different target queue L and αmax = 3.
We also report the power achieved by MP and NC, as a
reference for the minimum and maximum possible power
value, respectively. As expected, the FQ policy is able to
guarantee a fixed average queue length under medium load.
Furthermore, to achieve small L, the server rate must be



large enough: this translates to small delays but high power
consumption. For large L, the server rate can be further
lowered. Similar results are observed for other values of αmax.

Note that FQ can be seen as the static version of a dynamic
policy that varies the service rate using a formal control
technique [1]. As noted at the beginning of Sec. III, the static
policy outperforms the dynamic one under our assumptions.

It is easy to note a similarity between the (8) and (10), from
which stems the equivalence between FU and FQ policies:

Property 3: A FQ-L policy with target queue size L is
equivalent to a PM-ρv policy with virtual utilization factor
ρv if any of the following conditions hold:

ρv = L+ 1−
√
L2 + 1 ⇔ L =

ρ2v
2(1− ρv)

+ ρv (11)

Indeed, (9b) shows that for the FU policy the average queue
size (computed as λW ) is also constant for medium load.
As a consequence of this equivalence, the same power-delay
tradeoff is achieved by the two policies.

IV. POLICY WITH CONTROLLED DELAYS

It is possible to avoid the non-monotonic delays behavior
by a careful choice of the expansion factor. We propose a new
policy, denoted as Fixed Delay (FD), in which we impose that
the delay for medium load is fixed. For a fair comparison with
the previous policies, we set such fixed value equal to the delay
W ′(ρv) obtained for FU-ρv at the specific load λ = ρv:

W (λ) = W ′(ρv) for λ ≤ ρv

We can now leverage (2) and the fact that it must be α = 1
for λ = ρv , to impose:

λα2
FD

2(1− λαFD)
+ αFD =

ρv
2(1− ρv)

+ 1

By solving the equation, we obtain the expansion factor αFD
for medium load. Hence, FD policy is defined as follows:

αFD =


1 for λ ∈ [ρv, 1]

−b+
√
b2 − 4ac

2a
for λ ∈ [ρ∗, ρv)

αmax for λ ∈ [0, ρ∗)

(12)

where a = −λ(1−ρv), b = 2(1+λ)(1−ρv)+λρv , c = ρv−2
and ρ∗ can be computed by imposing αFD = αmax. Observe
that the FD policy is arrival-rate based, as the previous ones.

Fig. 5 shows the performance of the FD policy, for different
values of ρv . As expected, the average delay is constant for
medium load, whereas the power shows the same qualitative
behavior of FU (and also FQ). To better highlight the differ-
ences, Fig. 6 compares the performance of FU and FD for the
same value of ρv . By construction, the delay of FD for medium
load is the same of FU at load λ = ρv . In the bottom graph,
we plot the power ratio between FD and NC, which helps
understanding the power reduction with respect to the case
without power control. Since αmax = 3, the maximum power
gain is α2

max = 9 for low load, corresponding to 11% relative
power. For larger loads, the relative power tends to 100% as
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Fig. 5: Performance of FD-ρv policy when αmax = 3
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the power control becomes less and less effective. For medium
load, the difference between the two policies for ρv = 0.95 is
small (the power of FD is 15% larger than FD for λ = 0.5),
but FD experiences smaller and monotonic delays (the delay



of FU is 65% larger than FD for λ = 0.5). Furthermore, for
smaller values of ρv , the difference becomes larger: e.g., for
λ = 0.5 and ρv = 0.8, the power of FD is 35% larger than
FU, whereas the delay of FU is 60% larger than FD.

A. FD policy for a generic queue

The FD policy requires the knowledge of the analytic
formula (2) relating the average delay to the load in the
corresponding queueing system. In practical cases, this for-
mula is not available, but this lack can be compensated by
the empirical knowledge of W (λ, α) that can be obtained by
profiling the delay for a large enough set of values of (λ, α).

As an example, we consider a finite M/G/1/K queue, for
which W (λ, α) can only be numerically computed. To profile
queueing delays, we evaluate the average delay Ŵ (λ, α) of
the queue with steps ∆λ = 0.05 and ∆α = 0.01. Then we set
Ŵ (λ) = Ŵ (ρv) as in the original FD policy, and compute the
required value of α. To show the feasibility of the approach,
we use an ad-hoc C++ queue simulator to simulate the packet
arrival process in an M/D/1/K queue and to evaluate delay and
power. Graphs2 in Fig. 7 exhibit the same qualitative behavior
of the FD policy adopted for the M/D/1 queue, proving that
our approach is feasible also without analytic formulas.

According to the M/D/1/K model, which implies queue
finiteness and Poisson arrival process, λ = 1 is not enough
to saturate the queue, and the corresponding average queue
size and delay tend to 5, i.e., half the maximum queue size.

V. CONCLUSIONS

We considered a single server queueing system in which the
server rate is controlled to minimize the power consumption.
We showed that the minimum power consumption is obtained
only at the cost of unbounded average delays, and that two
possible policies that exhibits finite delays while targeting
either a fixed utilization (FU) or a fixed length of the queue
(FQ) show a non monotonic delay/load curve. To overcome
the possible drawbacks of such non-monotonic behavior, we
proposed the Fixed-Delay (FD) policy, based on the arrival
rate estimation, which achieves a fixed delay for a wide load
range, with a slight power penalty if compared to FU and FQ.

As future work, we plan to investigate the interaction
between these policies and end-to-end congestion/flow con-
trol schemes, in which non-monotonic delays may negatively
affect performance. We will also consider the practical case
in which arrival rates must be estimated in real time. This
study will permit evaluating the performance degradation of
dynamic policies with respect to the static policies considered
in this work.
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2In these figures only the points shown in the graphs have been simulated.
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