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Summary

The cover of this thesis shows some humorous illustrations representing partial points of view
of several discipline/domain experts contributing to the design of a spacecraft. These differ-
ent conceptualizations of the spacecraft are purposely exaggerated. Nevertheless, they clearly
show that there is a need for balancing requirements and technical solutions for the final sys-
tem to be the best compromise between often conflicting design forces. We believe that col-
laboration between the stakeholders of the design cycle is the key to successfully designing
new systems. The purpose of this thesis is to propose and describe design methods capable
of supporting the stakeholders during the design cycle, facilitating their decision process as
to reach balanced design solutions in a more consistent and structured manner. The research
can be framed as work performed in the field of Operational Research, a field of research that
encompasses approaches for facilitating decision making and promote design efficiency.

The initial phase of the design cycle of a space system, also called conceptual design phase,
is crucial for the success of the system and the mission it will complete. Up to 70% of the costs
are locked-in during this phase, and most of the decisions (technical and managerial) taken
at this stage will heavily affect the entire life of the system. Though so important, a very lim-
ited amount of resources is allocated for the completion of the conceptual design phase (when
compared to the resources used for the entire life of the system, including detailed design,
manufacturing, and operations). The tendency of space agencies and industries has been to
request (paradoxically) faster, better, and cheaper conceptual design baselines. This paradox
has been faced by adopting concurrent design during conceptual phases in place of the more
common sequential approach. A concurrent approach to the design of a system means that dis-
cipline/domain experts together with the customer all work in parallel (as opposed to working
one after each other, sequentially), at the same time; maintaining a high level of collaboration
and communication between each other. This facilitates the exchange of technical information
and promotes discussion and confrontation. This approach finally leads to early discovery
and resolution of potential design show-stoppers and/or inconsistencies. Real-time exchange
of technical data and information between engineering team members has been demonstrated
to have a large potential. In the European Space Agency, for instance, more than fifteen years
of experience in implementing concurrent design for conceptual phases has led to an effec-
tive reduction of the costs (by a factor of 2) and development time (by a factor of 4). This
was made possible by the utilization of a concurrent design infrastructure (the Concurrent
Design Facility, CDF), a state-of-the-art facility that allows a team of experts from several dis-
ciplines/domains to apply the concurrent engineering approach. The CDF is not unique in
the world; other concurrent design infrastructures, developed by space agencies and private
organizations, exist.

Concurrent design infrastructures are reaching maturity level, therefore we believe that
time is mature enough for integrated applications to be used on top of them. We believe that
conceptual design in general could benefit from the utilization of more structured analysis
methods, specifically developed or adapted for this important design phase. The main objec-
tive of the thesis is therefore to provide several design approaches to support the engineering
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vi Summary

team during the conceptual design activities. The goal is to promote efficient exploitation of
the models during concurrent design, enhancing the exchange of information and promoting
discussions even more.

One of the assumptions that drives this research is that the conceptual design of a new,
complex space system is performed by using mathematical models of the system, its elements
and its operating environment. This is the case for all engineering fields, where mathematical
models are used to predict the performance of the system given the settings of the design
parameters influencing it. The design parameters represent the degrees of freedom of the
engineering team whose main objective during the technical design is to set these parameters
such that the system performs as required, possibly at the minimum cost.

At first we introduce the concept of sampling. Sampling the design space (i.e., the math-
ematical space having the design parameters as dimensions) means selecting the points in
the design space that will be used to simulate mathematical models to compute the perfor-
mance. This is the most practical way to quantitatively assess the effect of the design param-
eters on the performance of the system. The most common approach to sampling is certainly
a (pseudo)random one. In this thesis we propose alternative methods for more efficient sam-
pling in the presence of a mix of continuous and discrete design factors. Sampling represents
the foundation on which all the analysis methods presented here are based. Performing an
efficient sampling of the design space allows saving computational resources and thus time
during the analysis. Enabling fast and accurate analyses is the key requirement for analysis
methods to be used at a conceptual level.

The first analysis method that we describe is the Regression Based Sensitivity Analysis,
RBSA. Sensitivity analysis is a tool that allows the engineering team to evaluate the importance
of the design parameters in determining the performance of the system and resultantly to
set priorities amongst them. With sensitivity analysis, cause-effect relationships can easily be
discovered, thus models can be checked (by model developers) and better exploited (by users
of the models that have not developed them). RBSA was developed by us to bring the benefits
of sensitivity analysis at a significantly reduced computational cost when compared to other
methods for sensitivity analysis.

Optimization is often regarded as a method to be used for detailed analyses, possibly later
in the design cycle. In this thesis we demonstrate that (multi-objective) optimization may bring
advantages also to conceptual design. This technique is able to present only the best solution(s)
to the engineering team, preventing it from investing time in non-promising areas of the design
space, thus saving time during the analysis. Further, the optimization techniques considered
in this thesis may guarantee a thorough exploration of the design space, with mechanisms
preventing local optima thus focusing on the global ones.

There might be cases in which solutions are judged equally optimal from a mathematical
point of view. However, from an engineering perspective they may differ substantially. Ro-
bustness is a concept that is important in engineering, besides optimality, to assess the suitabil-
ity of a certain solution. This is especially true at a conceptual stage where more sources of un-
certainty are present, when compared to advanced phases of the design cycle. Uncertainty and
robustness analysis techniques, alone and in conjunction with optimization methods, are con-
sidered in this thesis. Indeed, we present the Pareto-Robust Optimization Algorithm, PROA,
and the Double-Repository Archive Maintenance Scheme as two approaches for dealing with
uncertainties during optimization, providing robustness (together with optimality) informa-
tion to the engineering team.

Several test cases are used in the discussion to demonstrate the working principles of the
proposed methods. These test cases are introduced step-by-step, and the details of the mathe-
matical models are provided in the appendix of this thesis.

The research that is the subject of this thesis culminated with the utilization of some of the
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analysis methods presented here in two concurrent design infrastructures from two different
organizations: the Concurrent Design Facility at the European Space Agency, and JAQAR-
Concurrent Design Services. These organizations gave us the opportunity to experiment using
their concurrent design infrastructure. The results were very positive, demonstrating that
the methods proposed in this thesis bring benefits both technically and process-wise. These
experiences are described in detail in Chapter 6.

Concluding the summary of the main activities and objectives of this thesis, we would
like to emphasize the fact that the proposed methods are valid in general and that they are
independent from the mathematical models that one is using for the analysis. We mostly
deal with space systems in this thesis, but we always treat the models from the input/output
interface. It is for this reason that we can conclude that the outcome of this thesis can be
applicable also to other engineering fields using mathematical models for design purposes.

A mathematical model of the system under study is a means that shall help the engineering
team in taking decisions. The methods presented here are only a way of better supporting
their activity. These methods are not meant to substitute the people responsible for the design
process. There are many aspects of conceptual design that go beyond an efficient utilization of
the available mathematical models, where the contribution of the human factor is fundamental
for obtaining a final product with a high effectiveness/cost value. An interesting opportunity
for further investigation of the research presented here is exploring the possibility of coupling
it with methods for supporting the project managers and team leaders in directing people of
various skills and social attitudes during the decision-making process. The Delphi method, for
instance, could be one of them. We are also of the opinion that tools for gathering, keeping,
and properly reusing the knowledge would bring extra benefits to the team. The final goal of
such tools should be that of shifting the importance of the individual from knowledge holder
to innovation pusher and knowledge aggregator.

Innovation and creative thinking is what differentiates us as people from computers. Meth-
ods and tools of the future should free the engineering team from the repetitive tasks of the
design, leaving room to the creative and more fascinating aspects of the process.





Riassunto

Per la creazione della copertina della tesi sono state utilizzate alcune illustrazioni umoris-
tiche che rappresentano un satellite (un sistema spaziale) immaginato da punti di vista dif-
ferenti. Queste diverse visioni del sistema appartengono ai vari esperti che contribuiscono
al suo sviluppo. É chiaro il tono ironico di tali illustrazioni. Esse sono state utilizzate per la
potenza con la quale esprimono il messaggio della necessità di bilanciare requisiti e soluzioni
tecniche affinché il sistema risulti essere il miglior compromesso possibile tra forze progettuali
spesso in conflitto tra loro.

Siamo dell’idea che per ottenere una buona progettazione di nuovi sistemi sia necessario
che tutti gli attori del ciclo di progettazione collaborino in maniera efficace. A tal proposito, lo
scopo di questa tesi è di proporre e descrivere in dettaglio metodi di progettazione e analisi che
mirino a creare strumenti di progettazione che possano essere di supporto al team di ingegneri
impegnati nella definizione concettuale del sistema e della missione che esso dovrà compiere.
Il lavoro presentato è riconducibile alle metodologie in supporto alla Ricerca Operativa.

La fase iniziale del ciclo di vita di un sistema spaziale, chiamata anche progetto preliminare
o concettuale (conceptual design in inglese), è fondamentale affinché il sistema svolga propria-
mente la sua missione. Durante il progetto preliminare vengono impegnati i costi dell’intero
programma fino al 70%, e la maggior parte delle decisioni prese sia a livello tecnico sia a
livello manageriale influenzeranno notevolmente tutte le fasi successive della progettazione
e utilizzo del sistema. Nonostante il progetto preliminare sia una fase cosı̀ importante, le
risorse rese disponibili per il suo svolgimento sono molto limitate rispetto a quelle impiegate
per tutto il ciclo di vita del sistema. La tendenza generalizzata delle agenzie spaziali mondi-
ali e dell’industria del settore è stata quella di richiedere che il progetto preliminare venisse
svolto, paradossalmente, in più breve tempo, in maniera migliore, e inoltre ad un costo ri-
dotto rispetto al passato. Una soluzione a questo dilemma è stata trovata grazie all’utilizzo di
metodi di progettazione collaborativa (concurrent/collaborative engineering in inglese) in sosti-
tuzione dei precedenti metodi cosiddetti sequenziali. Un approccio collaborativo alla proget-
tazione prevede che i vari esperti delle varie discipline lavorino parallelamente invece che in
modo sequenziale. Questo consente di mantenere alto il livello di comunicazione, facilita lo
scambio di informazioni tecniche e allo stesso tempo permette di prevenire di incomprensioni
tra esperti e inconsistenze di progetto.

Il notevole potenziale della progettazione collaborativa è stato capitalizzato dall’industria
spaziale negli ultimi vent’anni. Si pensi solo che, ad esempio, l’agenzia spaziale europea (ESA
- European Space Agency) è stata in grado di ridurre della metà i costi legati al progetto prelim-
inare e del 75% i suoi tempi di sviluppo. Nello specifico, questo è stato possibile utilizzando
un’infrastruttura adibita alla progettazione collaborativa per le fasi preliminari del ciclo di vita
di nuovi sistemi spaziali: la cosiddetta Concurrent Design Facility, CDF. La CDF è una struttura
dotata di sistemi informatici allo stato dell’arte che consentono a un team di ingegneri di svol-
gere la loro attività seguendo tutti i principi della progettazione collaborativa. Dati i vantaggi
dimostrati negli anni, anche altre organizzazioni governative e private hanno deciso di unifor-
marsi dotandosi di tali infrastrutture.
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Siamo convinti che le attività di progettazione preliminare di nuovi sistemi possano trarre
beneficio dall’utilizzo di metodi di analisi strutturati, sviluppati ad hoc oppure adeguatamente
adattati per questa fase importante del ciclo di vita. É per questo che lo scopo principale della
tesi è di proporre approcci per il supporto al team di ingegneria durante le fasi di progettazione
preliminare. Crediamo inoltre che tali metodi, messi a disposizione del team di ingegneria,
possano garantire un valore aggiunto alle infrastrutture per la progettazione collaborativa.

Uno dei presupposti su cui si basa il lavoro presentato in questa tesi è che il progetto
preliminare di un nuovo sistema spaziale venga svolto utilizzando modelli matematici che
rappresentano il sistema, i suoi elementi e l’ambiente operativo. Generalmente questa è
un’ipotesi ragionevole, considerando che in tutti gli ambiti dell’ingegneria vengono usati
modelli matematici per stimare il comportamento del sistema prima che esso sia realmente
costruito. Lo scopo, infatti, è quello di aiutare nella progettazione correlando le variabili di
progetto (i gradi di libertà dei progettisti) con le performance del sistema. Uno dei compiti
del team di ingegneria è proprio quello di selezionare la combinazione più appropriata delle
variabili di progetto in modo che il sistema si comporti come richiesto, possibilmente ad un
costo minimo.

Tra i metodi proposti per supportare il team di ingegneria in questa attività c’è il campi-
onamento. Campionare lo spazio di progetto (lo spazio matematico che ha come dimensioni
i parametri di progetto) significa selezionare i punti in tale spazio (combinazioni dei livelli
dei parametri di progetto) che saranno successivamente utilizzati con lo scopo di simulare il
comportamento del sistema. L’approccio più comune per il campionamento, in questi casi,
è il campionamento pseudo-casuale. In questa tesi vengono proposti metodi alternativi per
processi di campionamento più efficienti, quando sono presenti nella stessa analisi parametri
continui e parametri discreti. Il campionamento è alla base di tutti gli altri metodi presentati
in questa tesi. Campionare in maniera efficiente lo spazio di progetto consente di risparmiare
in termini di risorse informatiche dunque di risparmiare in termini di tempo necessario per le
analisi dei dati.

Successivamente, vengono passati in rassegna metodi per l’analisi di sensitività, descriven-
done uno in particolare sviluppato ad hoc per le fasi di progettazione preliminare: Regression-
Based Sensitivity Analysis, RBSA. L’analisi di sensitività è un metodo che consente di deter-
minare l’importanza dei parametri di progetto in relazione alla loro influenza sulle perfor-
mance del sistema. É dunque uno strumento in grado di svelare relazioni di causa-effetto in
modo tale da consentire un controllo accurato dei modelli matematici da parte dei loro svilup-
patori, e di consentirne un migliore utilizzo da parte di chi lavora con essi pur non avendoli
personalmente sviluppati. Il metodo da noi sviluppato mira all’ottenimento di una maggiore
efficienza e velocità nell’analisi della sensitività, rispetto ad altri metodi qui discussi. Questo
è in linea con l’esigenza di ridurre tempi e costi del progetto preliminare pur mantenendo gli
standard di qualità richiesti.

L’ottimizzazione è spesso considerata solo in fasi di progettazione dettagliata, quindi a
valle rispetto al progetto preliminare. Nel lavoro presentato in questa tesi viene dimostrato
come metodi di ottimizzazione, anche multi-obiettivo, possano portare notevoli vantaggi in
fase di progettazione preliminare oltre che in fasi più avanzate. Infatti, essi permettono di cal-
colare le soluzioni migliori nello spazio di progetto consentendo di mostrare soltanto quelle al
team di ingegneria. Questo consente di evitare agli esperti partecipanti al progetto di soffer-
marsi su soluzioni sub ottime, velocizzando il processo di progettazione.

Soluzioni considerate ugualmente buone dal punto di vista delle performance calcolate
con modelli matematici potrebbero risultare notevolmente differenti da un punto di vista
ingegneristico. La robustezza è un concetto importante che contribuisce alla definizione
dell’adeguatezza di una soluzione progettuale rispetto ai requisiti. Questo è particolarmente
vero in fase di progettazione preliminare dove è presente un maggior numero di fattori di in-



Riassunto xi

certezza rispetto a fasi più avanzate. In questa tesi vengono presi in considerazione metodi
per l’analisi di incertezza e l’analisi di robustezza delle soluzioni progettuali, sia come metodi
a sé stanti sia in combinazione con metodi di ottimizzazione. Infatti, vengono presentati due
metodi sviluppati ad hoc in grado di fornire informazioni di robustezza oltre che di ottimalità:
Pareto-Robust Optimization Algorithm, PROA, e Double-Repository Archive Maintenance Scheme.

Per dimostrare i concetti e i metodi esposti vengono utilizzati alcuni casi applicativi de-
scritti progressivamente nella tesi insieme ai dettagli dei modelli matematici utilizzati riassunti
nei capitoli in appendice.

L’attività svolta in questi quattro anni è culminata con un’esperienza molto formativa
presso due organizzazioni che hanno voluto sperimentare nelle loro infrastrutture alcuni
dei metodi da noi presentati in questa tesi. Il riferimento è alla Concurrent Design Facility
dell’agenzia spaziale europea, e all’azienda JAQAR-Concurrent Design Services. Entrambe
queste esperienze hanno prodotto risultati positivi sia in termini di interesse generato sia in
termini di vantaggi tecnici effettivamente riscontrati. I dettagli vengono riportati nel sesto
capitolo.

I metodi descritti nella tesi sono di validità generale. Essi sono indipendenti dai modelli
matematici utilizzati, sebbene in questa tesi ci si sia soffermati maggiormente su casi applica-
tivi riguardanti i sistemi spaziali. Per questo motivo tali metodi possono essere utilizzati anche
in altri campi dell’ingegneria, rendendo la ricerca presentata di interesse in settori differenti
da quello aerospaziale.

Il modello matematico di un sistema è solo uno strumento necessario a prendere decisioni
da parte del team di ingegneria e i metodi presentati in questa tesi sono solo un modo per
supportare meglio tale processo. Modelli matematici e metodi di analisi non devono in alcun
modo essere considerati sostituivi dell’essere umano nel processo di progettazione. Ci sono
infatti molti aspetti del progetto (non solo preliminare) che esulano dall’utilizzo di modelli
matematici, dove il contributo del fattore umano è fondamentale per ottenere sistemi di alto
valore e costo ridotto. Un aspetto su cui la ricerca svolta nell’ambito di questa tesi potrebbe
focalizzarsi, come obiettivo successivo, sarebbe quello di esplorare la possibilità di utilizzare
dei metodi di supporto alla decisione per aspetti qualitativi del progetto in combinazione con
i metodi quantitativi presentati qui.

Siamo dell’opinione che il fine ultimo dovrebbe essere quello di spostare l’equilibrio
dei membri del team di ingegneria dall’essere proprietari della conoscenza a innovatori
e aggregatori di conoscenza. La conoscenza dovrebbe essere sempre più a disposizione
dell’organizzazione vista come collettività di individui che lavorano con un obiettivo comune:
progettare sistemi migliori. Innovazione e creatività sono due aspetti che ci contraddistin-
guono nettamente dai computer (per ora). Metodi di progettazione del futuro dovrebbero
permettere al team di ingegneria di essere sollevato dai compiti più ripetitivi lasciando spazio
agli aspetti creativi del progetto e dell’intero processo.
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Chapter 1
Introduction

The research presented in this thesis can be framed as work performed in the field of opera-
tional research. It is a field of research that encompasses approaches for facilitating decision
making and design efficiency. We propose design methods and techniques to support the
engineering team during the conceptual design of complex space systems.

In the last decades man-made systems have gained in overall complexity. From a technical
point of view, a complex system may be defined as one in which there are complex relation-
ships between functions and hardware, and multiple interactions between many different el-
ements and many different disciplines concurring to its definition. Speaking in more general
terms, complexity does not only regard the system per se, but it is also related to the whole life-
cycle management of the system. This encompasses all the activities needed to support the
program development from the requirements definition to the verification, validation, opera-
tion, and end-of-life of the system in the presence of a large number of different stakeholders
(internal and/or external). These views of complexity from different perspectives converge
to a general definition of a system as a construct formed by a set of interdependent functions and
elements (e.g., hardware, software, policies, documents, people) that complete one or more functions
defined by requirements and specifications.

The Systems Engineering (SE) process has been increasingly adopted and implemented by
enterprise environments to face this increased complexity, especially in the space industry. The
purpose is to ensure that the customer needs are satisfied with the required quality, promoting
a reduction of costs and development time.

Systems Engineering can be defined as a discipline executing an interdisciplinary and it-
erative process of technical management, acquisition and supply, system design, realization,
verification and validation, and technical evaluation at each level of the system, beginning at
the top (i.e., the system level) and propagating throughout all the elements of the system (i.e.,
sub-system, elements, and components level). This process takes place in the form of nested
iterations of analysis/synthesis through its entire life cycle.

The life cycle of a system is the set of phases into which the life of the system can be
divided. It comprehends the phases that go from the conceptual design of the system to its
end of operational life. The phases of the life cycle are marked by milestones, i.e., typically
formal meetings in which the main contractor, the sub-contractors, and the customer discuss
the achieved goals and agree upon the next design phase. The Systems Engineering process,
implemented at different levels of aggregation of the system and through the entire life cycle,
is schematically shown in Figure 1.1.

The phases identified by the European Cooperation for Space Standardization (ECSS, 1996)
are:

• Pre-Phase A/Phase 0, conceptual design

• Phase A, preliminary analysis and feasibility

1
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Figure 1.1 The Systems Engineering process implemented through the entire life-cycle of a space
system (ECSS, 1996).

• Phase B, definition

• Phase C, detailed design

• Phase D, development and qualification

• Phase E, operations phase

• Phase F, disposal/end of life

The level of detail of the design increases enormously during the life cycle, from the con-
ceptual phase to the production drawings. In the advanced design phases, the engineering
team-members are called to perform a detailed design using their specific knowledge and
sets of dedicated software. Those phases may take months to years to be fully completed,
depending on the complexity of the system and the available resources. The conceptual
design, instead, is usually completed on a much shorter time-scale. Weeks to months are
needed/allowed for its completion. The main objective of conceptual design is the definition
of the mission to perform to satisfy the customer’s requirements. This is obtained by establish-
ing multiple system-design concepts and, after their evaluation, defining the system baseline
with technology, programmatic, and cost assessment. A large number of design options eval-
uated at this stage, will increase the chances of propagating a successful concept to subsequent
design phases. Successful system concepts are those that will allow meeting all the customer’s
requirements, with minimum overall cost (i.e., development, production, launch, and opera-
tions costs).

Conceptual design is characterized by having hard constraints in terms of costs and re-
sources, and it is easy to understand the reason. The European Space Agency (ESA) alone,
for instance, performs 10 to 20 conceptual-design studies per year, of which only 10% on av-
erage gets to subsequent phases, while the remaining are not further developed. This means
that 90% of the resources invested in conceptual design end up at an impasse. The limited
time available, and a potentially large number of design options to evaluate, usually limit the
engineering team to a certain preliminary level of the analysis. However, experience in space-
systems design demonstrated that despite the fact that most of the costs are expended in the
advanced phases of the life cycle (i.e., production and operations) the great majority of them is
determined by the choices taken during the conceptual design, Figure 1.2.
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Therefore, a poor conceptual design will lead to an even worse and expensive system at
the end of the process. This is very clear in the space community, and a possible solution
to prevent poor, or non-successful, conceptual designs of space missions was found in the
implementation of Concurrent Design (CD). With the CD approach all the aspects related to
the spacecraft and the mission it will perform are taken into account at the same time (con-
currently) from the very beginning of the life cycle. All the technical discipline-experts, with
risk-, cost- and programmatics engineers, together with the customer are in constant commu-
nication between each other, enabling the possibility to efficiently keep track of the system
requirements and their evolution. In 1998, ESA made its first step towards a systematic im-
plementation of CD during the conceptual phases of space missions and systems by creating
the Concurrent Design Facility, CDF. The CDF is a design meeting room that makes use of
state-of-the-art information technology to create an Integrated Design Environment where the
communication between the experts is made possible and efficient. In the CDF communica-
tion happens at all the levels, also at the level of the mathematical models that the experts use
for the preliminary analyses. This is done because a modification in one single discipline or
subsystem immediately reflects on all the other disciplines and subsystems, creating a much
higher level of awareness of the evolution of the design amongst the members of the engineer-
ing team. The experience of the CDF has radically modified the classical sequential design
approach, allowing to capture more knowledge at the beginning of the process and preserve
design freedom for later phases to give the possibility to fully benefit from additional knowl-
edge gained by analysis, experimentation, and human reasoning, Figure 1.3.

The approach adopted in the ESA CDF is being replicated at industrial level in the space
sector, because it demonstrated that to respond to the increasing request of complete con-
ceptual solutions in a short period of time, and with limited resources, an Integrated Design
Environment is an efficient approach.

The focus of the technical activities during conceptual design of space systems has histor-
ically been on the development and utilization of (preliminary) mathematical models able to
describe the behavior of the system and its parts. Mathematical models are important to help
explaining the system and performing trade-off studies before the system is actually built. This
is true for conceptual design phases carried out with or without concurrent design and with
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Figure 1.3 Comparison between the classical design process (continuous lines) and the target for
a more efficient one (dashed lines).

or without integrated design environments. We are of the opinion that preliminary does not
necessarily mean easy-to-solve, limited, poor quality, or fast-to-execute. The complete pre-
liminary mathematical model of a space system and the mission it will perform, for instance,
considering 15 to 20 different disciplines linked to each other, can become already very hard to
manage. Further, when considering a mathematical model developed for an integrated design
environment, thus distributed in nature, the complexity increases even more.

Despite the profuse effort on model development, we detect a lack of specific and stan-
dardized design-analysis techniques to be used by engineers, and designers in general, during
conceptual design. The mathematical models need to be properly used in order to find well
balanced solutions, to spot relevant phenomena in the model, driving factors, interactions
amongst elements and disciplines and eventually exploiting them to improve the system per-
formance as a whole. One-factor-at-the-time technique (trial and error) is very intuitive and
largely used, but it is clearly not able to support the design activities under such increased de-
mand for quality, and reduction of cost and development time, as discussed later in this thesis.
We believe that there is a need for more advanced design and analysis techniques to be devel-
oped or specifically adapted for conceptual design. These techniques should be specific in the
sense that they should allow quantitative analyses to be performed quickly, because time and
resources are limited for conceptual design. We refer to design techniques such as quantitative
sensitivity analysis or optimization that are usually only used for more advanced phases of
the design life-cycle. Analysis methods for conceptual design should also be standardized be-
cause the output of engineering analyses of different disciplines should be comparable in the
form and level of detail, to promote discussions and confrontation between discipline experts.

Currently, the mathematical models used for conceptual design (also in the collaborative
environments) provide exceptional engineering-data exchange between experts, but often lack
in providing structured and common design methods involving all the disciplines at the same
time, leaving the type of analysis to be performed and type of results to be produced to the
judgment of the team members with no integration and no standardization. This may result
in the risk of incurring in misunderstandings from one side, and the risk of eventually under-
exploiting the available concurrent design infrastructure models from the other.

We believe that the enormous effort made to conceive, implement, and operate concurrent
engineering for conceptual design can be consolidated and brought to a more fundamental
level, if also specific and standardized analytical design methods and tools could be concur-
rently exploited during conceptual design.
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For all these reasons, the principal problem definition of this thesis work can be expressed
as follows:

How and to what extent can design techniques, usually implemented for advanced design phases,
assist the engineering team during the conceptual design of complex systems? And in what way can

these techniques contribute to obtain better, faster, and eventually cheaper design processes?

To be able to answer these questions, several design techniques and methods to efficiently
use mathematical models of multi-element systems are encompassed in this thesis. The com-
mon denominator is to limit the computational effort required to obtain meaningful results to
support the engineering team and the decision makers in their activities. This is required for
allowing a more efficient utilization of potentially long-running models already at conceptual
design level. Further, the methodological approaches described in this thesis are presented in
a form that is general enough to be in principle applicable to any type of (integrated) complex
system, not only space-related, using models of any level of detail, thus potentially also for
more advanced phases of the design process.

1.1 Analysis methods for engineering-team support

The activity of designing a system is related to the possibility of predicting its performance and
characteristics before the system is actually produced and operated. This means that a (mathe-
matical) model of the system shall allow to simulate its behavior, given the values of the design
factors as inputs. The design factors represent the degrees of freedom of the engineering team,
that adjusts them in such a way as to obtain the desired performance. During the design ac-
tivity, at any level of detail, thus also during conceptual design, typical design questions arise.
It is answering these questions that the design actually takes place and the system is shaped
and refined. To answer the main research questions presented in the previous section, we will
try to give an answer to these typical design questions that will help the engineering team to
obtain a faster, better and possibly cheaper design, specifically at conceptual-design level.

Amongst all the design factors of the system model, what are those actually influencing the
performance of interest? To what extent do these factors influence the performance?

The determination of the most influential factors is obtained performing sensitivity anal-
ysis. The sensitivity analysis is usually implemented for screening the input factors and de-
termine those that influence the variability of a certain phenomenon of interest most (Saltelli
et al., 2004). This is accomplished in most of the cases by using a Monte-Carlo based approach.
In this thesis an alternative, and possibly more efficient, method to compute the sensitivity
analysis is proposed and discussed. The method is based on a particular implementation of
factorial design for sampling the design space and computing the sensitivity indices, using
a variance-based parametric approach. A great advantage of using this approach is that the
number of model evaluations is radically reduced when compared to the computational ef-
fort required by the Monte-Carlo based techniques, thus enabling the sensitivity analysis to be
used even when the models require a long time to execute for each single evaluation. Sensi-
tivity analysis is also a powerful tool to be used to check and validate the mathematical model
by comparing the output to the designers expectations.

In case of uncertainties in the factors influencing the performance of the system, how do they propagate
through the model? And what are the factors that are mostly responsible for performance uncertainty?
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When designing a complex system, there can be at least two types of uncertainty. Epis-
temic uncertainty (i.e., systematic uncertainty arising when there is not enough information
to determine a certain quantity, not even to estimate a probability distribution) is one type of
uncertainty that the engineers need to deal with. Stochastic uncertainty (i.e., intrinsic uncer-
tainty of the system design due to a non-controllable factor, e.g., environmental) shall also be
taken into account. Epistemic uncertainty is related to gaps of knowledge, e.g., the utiliza-
tion of a new technology never used before may lead to epistemic uncertainty in its behavior.
Stochastic uncertainty, instead, can be associated with phenomena like flipping a coin. In per-
forming subsequent coin-flipping, one is uncertain about every single outcome, but there are
mathematical ways for estimating the long term confidence in obtaining one specific side of
the coin.

In this thesis the parametric-design method used for sensitivity analysis in case of control-
lable design variables is extended to be able to deal with stochastic uncertainty as well. The
uncertainty from input to output is efficiently propagated to determine the Probability Density
Function (PDF) of the performance, given the PDFs of the factors of interest. One of the appli-
cations on which we use uncertainty propagation in this thesis is to determine design margins
and system budgets.

What is the shape of the design space? And what are the best parameter settings to optimize the
objectives and meeting the constraints?

The information gathered during the sensitivity/uncertainty analysis can be interpreted as
a roadmap for the engineering team to efficiently direct the design effort. The non-influential
design factors can be fixed to a pre-determined level, because they will not affect the per-
formance much, de facto reducing the dimensions of the design search-space. However, the
influential design variables and the behavior of the system under the effects caused by their
variation and their interactions shall be investigated in more detail. The results of the simula-
tions used for sensitivity and uncertainty analysis are also used to compute response surfaces
linking the most influential design factors to the performance. This provides the engineering
team with a clear insight in the shape of the design regions of interest. The response surfaces
are presented in the form of contour plots, in which also constraint violation regions are su-
perimposed. This compact visualization of the design space represents an easy and direct way
to understand the effect of a change of the values of the design variables.

How robust is (are) the baseline(s)?

Robustness can have different meanings, depending on the context to which it is applied.
One may think of robustness as that characteristic of the system for which its behavior does
not change much given off-design settings of the environmental factors, that are not directly
controllable at design level. However, robustness of a system may be also assessed from the
SE process perspective. The design obtained at the end of the conceptual design phase (i.e.,
what is typically called the baseline) may still be modified, partially at least, in subsequent
phases of the design process. In this case one is interested in understanding the robustness of
the design baseline, in terms of performance, given the modification of the controllable design
factors. The sampling methods and the uncertainty propagation techniques presented in this
thesis, will be used to demonstrate that they are flexible enough to support decision makers in
both types of robustness analysis.

What are the settings of the variables for which the performance(s) is (are) optimized?

Optimization techniques are generally used during detailed design, at discipline level, to
determine the maxima and/or minima of the problem of interest. The problem of designing
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and optimizing a space system, considering its operative environment and the mission it will
accomplish, is highly constrained and characterized by having multiple objectives, with con-
tinuous and discrete (e.g., architectural) variables. Many techniques have been developed that
could in principle be used to solve such problems, providing solutions in the form of Pareto
fronts. In this thesis we discuss on the applicability of some known techniques for multi-
objective optimization to the optimization of system models during conceptual design. The
Pareto front demonstrates to be very effective in narrowing down the options to show to the
engineering team. Indeed, only those solutions that are considered optimal are present on the
Pareto front.

What are the settings of the variables for which we obtain performance(s) that is (are) both optimal and
robust?

It is empirically proven that excellent results can be obtained using optimization tech-
niques on relatively complex mathematical models. However, optimal solutions are not all
equal to each other, especially from an engineering perspective. Some optima could be not
robust. This means that they could be the result of a particular combination of design vari-
ables that will exhibit a steep drop in performance when the values of these variables are only
slightly modified. Especially during conceptual design of space systems, the design variables
are only frozen after several design iterations. Thus, there is a risk that the selected design
baseline may suffer from performance degradation in subsequent phases of the design cy-
cle. In this sense, a more robust solution can be considered a less risky one. In this thesis
we demonstrate that by integrating the methods developed for studying sensitivity analysis
with any optimization algorithm it is possible to support the engineering team by generating
robust-optimal solutions.

1.2 Thesis layout

The design methodologies presented in this thesis are developed to support the engineering
team and the decision-makers during the conceptual design of complex systems with poten-
tially long-running and distributed mathematical models. In this thesis we describe the ad-
vantages and limitations of using them, providing several design test cases that demonstrate
their feasibility and potential.

1.2.1 Chapter 2

In Chapter 2 we provide some basic definitions, terminology, and design settings of the class
of problems of interest that are used in the thesis. The different approaches that may be used
to model a system made of multiple elements is also discussed. Modeling is not the main
focus of the thesis, but mathematical models of space and non-space systems will be used to
demonstrate the design techniques that are presented. At the end of Chapter 2 we provide
some preliminary information on the problems used as test cases. The choice of the mathe-
matical models for the problems presented here, and the level of detail considered, is related
to the possibility of demonstrating the working principle of the analysis methods, but also to
be representative of a hypothetical conceptual design phase. All the assumptions are provided
in the appendix sections of this thesis.

1.2.2 Chapter 3

Sampling the design space is the first design activity discussed in Chapter 3. Sampling is the
cornerstone for a successful, accurate, and computationally cheap analysis using mathematical
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models. All the sampling techniques presented in this thesis are based on innovative combi-
nations of existing techniques that will be discussed case by case. In Chapter 3 we also show
the advantages of having sensitivity analysis as a tool to predict the importance of the design
factors in the determination of the performance of interest. This is a fundamental analysis
technique for a decision maker and it will be tackled using the Regression-Based global Sensi-
tivity Analysis method (RBSA). RBSA is an innovative approach that we developed to obtain
quantitative, variance-based, sensitivity indices of the design factors of a mathematical model.
It provides very accurate results with a significant reduction of the number of required model
evaluations, compared to other methods.

Uncertainty is always an ingredient of the design of engineering systems, especially at a
conceptual level. In this chapter we also show that specific sampling techniques can promote
uncertainty and robustness analysis, meant as propagation of input uncertainty into the model
or also as methods to assess the effect of modeling uncertainties on the performance. The
uncertainties considered in this thesis work are all assumed to be uncorrelated. We do not
take input correlation structures into account, however we provide some references to link this
work with methods for sampling considering correlation of the inputs. On the other hand, we
do not impose any constraints in terms of correlation to the output of the mathematical models.
The output is solely determined by the mathematical relationships between inputs.

1.2.3 Chapter 4

In Chapter 4 we focus our attention on methods that allow the engineering team to efficiently
and systematically explore many design options, rather than studying only few of them in de-
tail, as it is possible with the analysis methods presented in Chapter 3. In particular, here we
focus on global multi-objective constrained optimization that provides at the end a set of opti-
mal solutions known as the Pareto front. The main objective is to use optimization techniques
to facilitate the design process, we are not interested in developing them. However, coupling
of global methods and local ones will be deeply explored. In this chapter, indeed, we intro-
duce the Pareto-Robust Optimization Approach (PROA), a concept that was developed in the
scope of this thesis. It is based on some of the local analysis techniques described in Chapter 3
to be implemented in the design region in the neighborhood of the Pareto-optimal solutions.
PROA allows for estimating a metric for the Pareto-Robustness, to allow the engineering team
to strive for optimal-robust solutions, and contributes to improve the quality of the final set of
Pareto solutions.

1.2.4 Chapter 5

In Chapter 5 we couple the local and global approaches described in Chapters 3 and 4 right
from the beginning of the optimization process. The proposed approach is called robust op-
timization or reliability optimization, depending on the meaning that one gives to the uncer-
tain design variables that are involved. In robust multi-objective optimization it is common
practice to optimize the average performance instead of the nominal objective functions. To
compute the average performance, and to determine the compliance of the solutions to the
constraints, sampling is needed in a neighborhood of each individual, and the performance
of each sample point must be evaluated. This drives the computational cost of robust opti-
mization up. In this chapter, we present a repository-based approach that limits the number of
evaluations needed during robust optimization, instead. Sampling methods only will be used
for the propagation of uncertainty through the mathematical models, and the rationale will be
clear on a case-by-case basis.
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Figure 1.4 Key elements of the thesis study.

1.2.5 Chapter 6

In Chapter 6 we present the implementation of some of the methods discussed in this the-
sis in real integrated design environments. In particular, uncertainty analysis was used in
the ESA CDF to study the effect of the uncertainties on the mass budget of the first cubesat
mission ever designed in the CDF. Further, we also provided support to the concurrent de-
sign process implemented by JAQAR-Concurrent Design Services (J-CDS) for both space and
non-space industry. We used sensitivity analysis, regression analysis, sampling techniques for
continuous and discrete design spaces, and uncertainty analysis to support several design ac-
tivities. We supported system-level decisions for the reduction of the price of a new product
to be produced by a non-space organization. Further, these design methods were also used
at discipline-domain level to support design activities in the absence of input data from other
disciplines and to negotiate on requirements.

1.2.6 Key elements and limitations

In Figure 1.4 the key elements of the thesis and their interactions have been identified. The
construction with which they are linked together was briefly introduced before. Some limita-
tions apply to each of the elements shown in Figure 1.4. These limitations are listed hereafter.

Sampling

• No random sampling (Monte-Carlo). Despite the fact that all the analysis methods dis-
cussed in this thesis can be coupled with random sampling, we use alternative (possibly
more efficient) sampling techniques, either from literature or developed by us.

• Correlation between input factors is not taken into account. All the input factors are con-
sidered uncorrelated.

Sensitivity analysis

• A limited number of sensitivity analysis methods is considered for comparison with Re-
gression Based Sensitivity Analysis, developed by us. We take only the most representative
of the sensitivity analysis methods that provide variance-based results into account.
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Robustness and uncertainty analysis

• Only sampling-based approaches have been considered for the propagation of the uncer-
tainty (no analytical methods).

Optimization

• Local optimization methods are not considered.

• Only heuristic methods for global optimization are taken into account.

Mathematical models

• Use of available models from the literature.



Chapter 2
Design of Complex Systems

One very important aspect for the successful conceptual design of a system is the availability
of a mathematical model that represents the main phenomena of interest. The system under
analysis may be formed by many subsystems, and many disciplines concur to the determi-
nation of its performance and its engineering characteristics. Many approaches may be used
to actually implement such a mathematical model, but some of them are more suitable than
others for using the model concurrently, for conceptual design. In this chapter some of the
most common modeling techniques are described, highlighting pros and cons in Section 2.2.
But first, in Section 2.1 we describe the basic terminology regarding the design of a system
using its mathematical representation. This chapter is concluded with Section 2.3 where we
describe the test cases used in subsequent chapters to demonstrate the working principles and
the applicability of the design methods proposed in this thesis.

2.1 Definitions

The discussion and the methodologies presented in this thesis are based on the assumption
that the activity of designing a complex system is performed by a team of designers (the en-
gineering team), using mathematical models to determine the physical and functional char-
acteristics of the system itself. A mathematical model is a set of relationships, i.e., equations,
providing figures-of-merit on the performance(s) of the system as output to the engineering
team when certain inputs are provided. The inputs are represented by the design variables,
i.e., factors that are responsible for influencing the performance(s) of the system. For this mo-
tivation, the design variables will also be called design factors, or more generally inputs, or
simply variables. The domain of existence of the design variables forms the design space,
where they can assume certain values, or levels, between a minimum and a maximum. The
design variables are also called controllable factors, since their value can be set at design time
by the engineering team. The design-variable range determined by the minimum and the
maximum can, of course, only be as large as the domain of existence of the variable. Mim-
ima and maxima for the design variables are usually set by the engineering team to limit the
analysis to a specific region of the design space or to avoid infeasible conditions. For instance,
the design range of the eccentricity e of a closed orbit about the Earth should not exceed the
interval 0 ≤ e < 1. In the upper-left diagram of Figure 2.1 a hypothetical design space formed
by two variables, i.e., eccentricity and semi-major axis, is shown. The limits of the individual
variable ranges are represented by the dash-dotted lines. The subspace of the design space
determined by all the design-variable ranges is addressed as the design region of interest,
and it is represented in Figure 2.1 as the area between the two vertical and the two horizontal
dash-dotted lines in the top-left diagram. These dash-dotted lines also represent the boundary
conditions Design variables can be continuous or discrete. A continuous variable can assume
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Figure 2.1 Schematic representation of the design space and the objective space of the
mathematical model of a system. The gray area is infeasible.

all the values between a minimum and a maximum. A discrete variable, instead, can assume
only a few specific values in the design-variable range. Discrete variables can be further distin-
guished into two classes, namely ordinal or categorical. The length of a solar array on a satellite
system, for instance, is a continuous variable. It can assume, in principle, any value between a
minimum and a maximum set to limit the mass or to provide a minimum performance under
certain conditions. The number of cells used to build the array is an ordinal variable. It can only
assume the levels represented by the natural numbers, and certain characteristics increase (de-
crease) when the number of cells increases (decreases), e.g., the total mass. The type of solar cell,
instead, is a categorical variable. This means that it can only assume certain levels (e.g., type#1,
type#2, and so on), but in this case the order is not important. It is not always the case that, for
instance, the efficiency of the solar cells increases going from the first type to the second type
and so on. It depends on the order in which they appear in a database, for instance, that may
be an arbitrary choice of the engineering team. The model of the system may also be subject to
other sources of variability representing the non-deterministically known parameters typical
of the operating environment of the system. The residual atmospheric density in orbit, the
solar radiation, and the orbit injection errors, just to mention a few, are factors that may not
be directly controlled, therefore they must be taken into account in a statistical sense. These
factors are called uncontrollable.

One of the main tasks of the engineering team during the design process of the system
is to set the values and/or the levels of the design variables in such a way that the perfor-
mance(s) of the system assume(s) a certain optimal level under certain conditions (optimal de-
sign), and/or such that the final system is insensitive (within a certain extent) to variations of
the (un)controllable factors (robust design). The performance(s) of interest is (are) called ob-
jective(s) of the analysis. The space in which the objectives can be represented, i.e., the domain
of the images of the mathematical equations of the model, is called objective space. Thus,
the model is responsible for relating points in the design space with points in the objective
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space. The term certain conditions is used to indicate the constraints and boundary conditions
of the analysis. As already mentioned, the boundary conditions are represented by the design-
variable ranges, the dash-dotted lines of Figure 2.1. The constraints, instead, are determined
by an infeasible condition in the objective space, e.g., the mass of the satellite is exceeding the
mass that the launcher is able to deliver in a given orbit. Further, the constraints can also be de-
termined by infeasible conditions in the design space, when certain combinations of the values
or levels of the design variables are not allowed. This may happen, for instance, with the ec-
centricity and the semimajor-axis of an Earth-orbiting satellite: their combination must ensure
that the perigee radius of the orbit is at least larger than the radius of the Earth. Constraints
may be linear or non-linear, continuous or discrete. The dashed lines in Figure 2.1 represent
the constraints in the design space (non-linear in this case), and in the objective space (linear
in this case). The thick dots A,B,C in Figure 2.1 represent design points. In the design space,
they are a representation of the values of the design variables, while in the objective space dots
D and E represent the corresponding set of output values. Considering a deterministic model,
there is a one-to-one correspondence between one point in the design space and one point in
the objective space. However, the engineering team must make sure to provide design points
that do not violate constraints in the design space. For instance, an orbit with a semi-major axis
of 7000 km and an eccentricity of 0.7 would lead to a negative value of the satellite altitude at
perigee (i.e., non-existing orbit) thus with the impossibility of computing relevant parameters
such as, for instance, time-in-view at perigee passage over a specific region on Earth. Therefore,
in Figure 2.1 the design point C does not have a corresponding image on the objective space.

The methodologies presented in this thesis, are designed to help the engineering team and
the decision makers in the activity of exploring the design space of complex-system models.
Design-space exploration is the fundamental activity with which the model of the system
is sampled to understand the effect of the design choices on the performance(s) and to set
the values of the variables in such a way that the final product will perform as required by the
customer. This activity often involves many stakeholders, with many objectives to be balanced,
many constraints and many design variables, thus posing the problem to be extremely difficult
to solve by hand. Thus the scope of the thesis is to provide a guideline for exploring the design
space of models of different complexity in an automated and efficient way.

2.2 Characteristics and modeling peculiarities of a complex system

Dr. Sobieszczanski-Sobieski, in one of his lectures at the Massachusetts Institute of Technology
(MIT) once said:

. . . if you cannot model it, you cannot optimize it . . .

This expression could not be more agreeable. Indeed, a mathematical model (being very pre-
liminary or quite detailed, depending on the type of analysis to be performed) is fundamental
to understand in advance, before the system is built and operated, the behavior of the sys-
tem, i.e., the result of the decisions taken during the design on its performance (cause → ef-
fect). The problem of obtaining the mathematical model of a complex system may be treated
considering two main sub-problems, namely problem decomposition and problem formulation,
(Sobieszczanski-Sobieski, 1989b; Cramer et al., 1993; Tedford and Martins, 2006).

The decision whether to decompose the mathematical model or treat the problem using a
monolithic mathematical model and what kind of formulation to adopt depends on the com-
plexity of the problem and models involved and the number of people working with them.
Before entering into the details of the most-widely adopted approaches to manage the model
of a complex system, a comparison between the Multi-Disciplinary Optimization (MDO) and
the Complex System Design (CSD) problems will be made. The reason is that in literature
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MDO Problem CSD Problem

Multiple Disciplines
Multiple disciplines are

applied to the design of a
single element/system.

Every element of the complex
system may or may not

require more than one single
discipline to be designed.

Multiple Elements Usually not more than one.

It is the core of the CSD
problem. Several elements

have to be designed
concurrently.

Mathematical Models Level of detail depends on the objectives of the analysis.

Continuous Variables Most of the MDO problems
involve continuous variables.

In use mostly for
elements/components

analysis.

Gradient-based sensitivity-analysis not applicable with discontinuities.

Discrete Variables Usually very few, ad-hoc
optimization algorithms.

Used for system analysis.
Especially when different

architectures have to be judged
(ordinal and/or categorical

variables).

Design and Optimization

Usually numerical techniques
are applied, gradient-based or
stochastic. The objective is to

obtain the best possible
solution: push-and-go

techniques. Human intellect
can be out-of-the-loop.

Push-and-go not applicable.
The objective is to enable

trade-offs: the human intellect
is in-the-loop.

Table 2.1 Comparison of the characteristics of the MDO and the CSD problem.

many applications and design techniques have been developed to deal with MDO (almost
nothing is available for CSD), and even if CSD and MDO are conceptually different problems,
many common aspects exist that allow for the re-utilization of part of the knowledge devel-
oped for the MDO problem also in the CSD one.

2.2.1 Complex system design vs. multi-disciplinary optimization

The field of MDO encompasses the activities of efficiently analyzing and optimizing a design
problem governed by multiple coupled disciplines (Ridolfi et al., 2010). A classical example of
an MDO problem is the aero-elastic problem encountered when dealing with flexible wing de-
sign, where mainly structural and aerodynamics calculations are executed to obtain solutions
that optimize the overall design of a wing (De Baets et al., 2004). Several disciplines, in this
case only two, are applied concurrently to a single system/element, in this case the wing of a
non-conventional aircraft. The CSD problem is conceptually different, by definition. The main
concern is to concurrently design different elements of a system, whose design procedures can,
as it happens in most of the cases, or cannot involve several disciplines. The main differences
and common aspects of the two problems can be found in Table 2.1.

The distinction between the MDO and the CSD problems given in Table 2.1 is the result of
two different definitions. Some readers may consider it not strong enough to actually make a
distinction between them, some may agree, some other readers, instead, may consider MDO
as encompassing both problems considered above. However, in this thesis the aspect of sup-
porting the human in the loop during the design of systems made of multiple elements, that may
require more than one discipline to be designed, is the fulcrum of the discussion. Therefore,
the rationale behind Table 2.1 shall be considered as a preliminary definition of the problem of
interest. The identification of some commonalities between the problems also serves as a jus-
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Figure 2.2 Schematic of the No-Decomposition approach for complex system models.

tification for inheriting the terminology and common practices in terms of modeling techniques
from MDO to CSD. These are discussed in the following subsections.

2.2.2 Problem decomposition

No-decomposition approach, ND

One of the first and probably most straightforward ideas to decompose the model of a com-
plex system has been not to decompose it at all. A single design model is implemented, which
takes inputs and constraints providing outputs to the user(s). All the governing equations of
the elements and disciplines involved are kept together in this monolithic model, see Figure
2.2. The ND approach has the advantage of potential direct linkages of the monolithic model
with an optimization algorithm, which may use the model as if it were an (a set of) objective
function(s) to obtain the feasibility/optimality of the design. Of course, this kind of approach
becomes harder to manage and to execute as the number of design variables, disciplines and
couplings between them, increase. Further, the resulting methodology would not be so flexi-
ble, since the concept of modularity is not used at all.

Hierarchical decomposition approach, HD

For complex systems, the decomposition of the mathematical model into smaller sets is highly
advised. It allows to efficiently manage the complexity, providing ease of maintainability
of the code, modularity and scalability. In the literature, authors propose several model-
decomposition techniques. However, two main classes may be identified, namely Hierar-
chical Decomposition and Non-Hierarchical Decomposition methods (Sobieszczanski-Sobieski and
Haftka, 1995; Alexandrov and Hussaini, 1995). The Hierarchical Decomposition methods (HD)
treat the system model by dividing it into several independent sub-models. Each one of those
sub-models has its own local variables while the global parameters are specified at the system
level. The element models in which the system model is divided are independent from the
local parameters of other element models. There may also be a weak dependency between
governing equations of one element and local variables of another. In those cases, the cou-
pling is neglected and the elements/disciplines are considered uncoupled. The schematic in
Figure 2.3 better explains this approach. The HD method is certainly more flexible than an
ND method since it fully exploits the concept of modularity, giving the user the possibility to
separately treat the models of the several elements/disciplines involved. The disadvantage
of using HD methods is that the coupling between the blocks, or the elements, only involves
global parameters.
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Figure 2.4 Schematic of the Non-Hierarchical Decomposition approach for complex systems
models.

Non-Hierarchical decomposition approach, NHD

Non-Hierarchical Decomposition methods (NHD) shall be used when there is no clear sepa-
ration between two or more elements/disciplines, i.e., when the coupling between them is not
negligible a priori. In those cases the information flow is much more complex when compared
to the HD method, since it has to go in vertical directions (from element level to system level
and vice versa), but also in lateral directions (from one element to another), see Figure 2.4. This
causes an increase of the number of variables since with the NHD approach also the so-called
coupling variables between elements, and the consequent coupling equality constraints, must
be taken into account. For instance, the variable Solar Array Area, for the design of an Earth-
oriented satellite system, is used to compute the available power input, but also the drag ex-
erted on the satellite by the residual atmosphere. The power subsystem model and the drag
model of the satellite system share this variable. Its value must be equal in both mathematical
models at the end of the design iterations. The propellant mass of the AOCS (Attitude and Orbit
Control System) is used to compute the structural mass of the subsystem and the volume to
be stored in the tanks. The propulsion subsystem and the structure must work with the same
value of this variable. In these two examples the Solar Array Area and the propellant mass are
coupling variables. In other words, coupling variables are virtual duplications of existing vari-
ables (and coupling equality constraints are virtual constraints) that are used to maintain a net
separation of the system mathematical model into element mathematical models, and yet not
eliminating the coupling between them.
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Problem decomposition, conclusions

The choice between an ND method and one of HD or NHD certainly depends on the com-
plexity of the problem, but also on some other relevant issues. An ND method will not allow
efficient code re-utilization, modularity, maintainability, and scalability. An enterprise envi-
ronment, paying in complexity of the overall architecture, may most likely require those char-
acteristics. On the other hand, an ND method is much easier to implement and to use for
designing, because it can be used as a black box on individual machines. The choice between
HD and NHD methods strongly depends on the particular class of problems the designers
have to deal with. It depends, for instance, on the amount of coupling that exists between
the involved elements. In general, the mathematical models of the elements of a complex
system are developed by different individuals and subsequently linked together through an
input/output software architecture. Therefore independence between the elements cannot be
assessed a priori (actually one of the main goals of designing using all the element models
concurrently is to understand and exploit the interactions), thus leaving the natural choice of
steering for an NHD method. The NHD approach is flexible enough to allow for a plug-&-
play management of the mathematical models of the elements (it enables scalability and code
re-utilization), and it naturally behaves as a hierarchically decomposed model in the case of
completely uncoupled elements. As discussed later in this chapter, the mathematical mod-
els of a collaborative environment are usually developed using an NHD approach. For these
motivations, the discussion from this point is meant to be applicable for non-hierarchically
decomposed systems.

2.2.3 Problem formulation

The formulation of the CSD problem is related to the allocation of the resources to the various
elements of the architecture. The nature of the design process of a complex system is iterative,
at least partially. The formulation of the CSD problem influences the convergence level reached
after each design iteration. The goal is to obtain a model that provides a consistent output,
possibly a feasible solution, when an input is provided. In the following subsections three
main typologies of problem formulation will be discussed, namely Multi-Disciplinary Feasible
(MDF), Individual Disciplinary Feasible (IDF), and All-at-once (AAO) (Cramer et al., 1993;
Balling and Sobieszczanski-Sobieski, 1996; Tedford and Martins, 2006).

Multi-Disciplinary Feasible, MDF

The Multi-Disciplinary Feasible problem formulation foresees that for each input a converged
solution must be obtained for the design of all the elements of the system and of the com-
plete system. Convergence is obtained by iterating the element analyses until all the coupling
variables between the elements converge, i.e., do not change significantly over successive it-
erations. This also means that the coupling equality constraints are satisfied. The advantage
of using this method is that for every design-variable set provided as input a consistent out-
put is obtained. One of the drawbacks is that design iterations (that are resource-consuming)
must be performed even when the final solution is far from being the optimal or the desired
one. With this approach, the analysis is managed at a system level only, see Figure 2.5, working
with the design variables and leaving the determination of the values of the coupling variables
to the models themselves, during the iterations to convergence. The relationship between the
mathematical models in the MDF formulation and the designer(s) is better explained in Figure
2.5. The dashed circles of Figure 2.5 represent the iterations to be executed on the coupling
variables (the largest circle) and on the design variables (the smaller circles) for every input
provided by the user(s) to obtain a consistent (converged) solution.
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Figure 2.5 Schematic of the Multi-Disciplinary Feasible formulation for complex systems models.

Individual Disciplinary Feasible, IDF

In a problem stated in terms of an Individual Disciplinary Feasible formulation, only the in-
dividual elements convergence is enforced for every design variable set provided as input.
This means that every element will iterate on the design variables according to the underlying
equations and to the inputs provided (Tedford and Martins, 2006). In this way, the overall
convergence of the system, i.e., the convergence of the coupling-variable values, needs to be
guaranteed in a subsequent phase. This can be done either manually by the user(s) or by using
an optimizer. Compared to the MDF formulation, the IDF is considered to be more efficient
from the computational point of view (Hulme and Bloebaum, 2000), and more flexible due to
the possibility of executing the mathematical models of each element separately, eventually in
parallel, because they are virtually decoupled. The most evident drawback is that for a given
input, a consistent solution at system level is not guaranteed. The IDF approach is explained
in Figure 2.6. The feedback arrow that goes from the elements to the user(s) represents the
additional analysis effort that is needed to solve the coupling equality constraints. As in Fig-
ure 2.5, the dashed circles represent the iterations to be executed on the design variables (the
smaller circles) for every input provided by the user(s).

All-At-Once, AAO

In the All-At-Once problem formulation, also the individual elements convergence is not en-
forced at each design iteration, as in the IDF approach. All the design and coupling variables
are managed at system level either manually by the user(s) or by an optimizer, see Figure 2.7.
Therefore, the actual number of variables used at system level is much larger than in the previ-
ous two approaches, with more constraints to be satisfied. This implies that the solution of the
problem posed in these terms is more complex and harder to achieve. Further, convergence is
not guaranteed until the termination of the design/optimization process. Cramer et al. (1993)
and Tedford and Martins (2006) demonstrate that the AAO problem formulation is the most
effective in terms of computational effort. This can be explained considering the fact that the
convergence is guaranteed only at the end of the process, thus avoiding many iterations for
every input from the user(s). However, one drawback of such formulation approach is that the
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Figure 2.6 Schematic of the Individual Disciplinary Feasible formulation for complex systems
models.
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Figure 2.7 Schematic of the All At Once formulation for complex systems models.

analysis becomes much more complex. This increased complexity is also represented in Fig-
ure 2.7 where the double feedback line indicates the additional analysis effort that is needed to
solve the coupling equality constraints and the convergence of the variables of all the elements
of the system.

Multi-level formulations

The formulation methods presented up to this point can be classified as single-level methods.
This means that in all cases the architecture is conceived so that the analysis, or the optimiza-
tion, of the system has to be performed in one single location, i.e., at the model/analyzer or
model/optimizer interface. This usually happens at the top of the architecture, where the team
icon is located in Figures 2.5 to 2.7, considering the underlying model as a black box. Single-
level architectures can be executed in one single location by a complete engineering team, or
eventually by a single designer, having full authority on the entire model. This can be useful
when fast and preliminary/preparatory analyses have to be performed on the model. How-
ever, collaborative environments have the characteristics of being distributed environments.
This means that the team experts can participate to the design of the system from different
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Figure 2.8 Schematic of the Collaborative Bi-Level (COBiL) formulation for complex systems
models.

locations. Multiple-level formulations can be found in the literature. Yi, Shin, and Park (2008)
provide an extensive bibliography on single and multiple level MDO-problem formulations
and a comparison of their performances with mathematical examples. The multiple-level for-
mulations taken into account are the following:

• CSSO, Concurrent Sub Space Optimization, proposed by Sobieszczanski-Sobieski (1989a).

• BLISS, Bi-Level Integrated System Synthesis, proposed by Sobieszczanski-Sobieski et al.
(2002).

• CO, Collaborative Optimization, proposed by Braun and Moore (1996).

A thorough description of these formulation approaches is beyond the scope of this dis-
cussion. The interested reader is referred to the original works of the authors. It suffices to say
that all the multiple-level formulations tend to modify the relationship of a non-hierarchical
structure into a hierarchical one, in such a way to be able to use an analyzer/optimizer for
every single element and one at system level. The multi-level architecture of the CSD problem
considered in this thesis is similar to the CO proposed by Braun and Moore but with an under-
lying MDF formulation and the presence of human in the loop, see Figure 2.8. It is a Bi-Level
architecture; indeed there are team members responsible for element analysis and others re-
sponsible for system analysis. The thick lines represent input/output interfaces. The experts
have full authority on the element of interest and can allow flow of data from/to the other
element models and from/to the system level model.

Problem formulation, conclusions

The choice between the various formulation approaches mainly depends on the objectives of
the analysis, on the complexity of the problem and on the design environment in which they
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will be adopted. From a practical point of view, the MDF approach can be considered the
easiest and most straightforward. It inherits its working principle from the classical engineer-
ing design approach: multiple iterations until convergence, for every given design variable
set. On the other hand the IDF and AAO seem promising, in terms of parallelization of the
analyses and reduced computational effort (Cramer et al., 1993; Tedford and Martins, 2006).
In Figures 2.5 through 2.7 the choice of using a team on top of the various architectures is not
casual. Indeed, the discussion presented in this thesis is intended to provide a general design
approach in support of a team working in a collaborative environment. This means that the
analysis should be tuned based on the type of models implemented in this kind of environ-
ments. Thus, since in a collaborative environment the human is still the fulcrum of the design
process, the mathematical models can only be implemented in such a way that a converged
solution is presented for every input provided, ergo using an MDF formulation. Non-feasible
solutions would be discarded by the domain experts before sharing the results with the team.
An additional consideration is that de-facto time and resource limits are often the termination
criteria for the analysis, thus requiring meaningful results to be obtained as soon as possible
during the design process. Considering the team as the final recipient does not mean that
automated techniques, optimization for instance, will not be taken into account. A thorough
discussion on the design techniques used on top of the mathematical models is provided in
the following chapters.

This concludes the brief digression on the modelization peculiarities of a complex system.
Single, see Figure 2.5, and multiple, see Figure 2.8, level architectures, both with MDF formu-
lation and Non-Hierarchical Decomposition, are the two types of modelization architectures
of complex systems that are taken into account throughout this thesis. All the models used as
test case, which are described in the following section, are developed and implemented with a
single-level MDF formulation. However, the methods described in this thesis have also been
tested on models that present a COBiL formulation, see Chapter 6.

2.3 Test cases

The test cases used in this thesis serve the purpose of demonstrating the working principle of
the analysis methods that we propose. These methods are developed and discussed following
a bottom-up approach. This means that we present local methods first, describing the global
ones later. Local methods are mainly developed to support design activities performed to bet-
ter evaluate a design baseline, therefore with limited dimensions of the design space. Global
methods, on the other hand, are used to support the engineering activities in the exploration
of design spaces of large dimensions. The concept of local and global analysis shall not be
confused with the levels of the system decomposition. Indeed, both local and global analysis
methods will be used at both subsystem and system level, depending on the objective of the
analysis.

2.3.1 The communication and power subsystems design

The design of the communication subsystem and the power subsystem of a spacecraft is not
a complex activity per se, if the analysis is tuned to estimating their design characteristics at a
preliminary stage. However, their performance is affected by, and affects, many other aspects
of the design of the entire mission and satellite system. The orbit, the payload, the attitude
control and the supporting structure of the spacecraft, the ground segment (just to mention
a few) all have a relevant influence on the fundamental parameters responsible for the de-
termination of the link with a (several) receiver(s) on Earth and the estimation of the power
required on board together with the subsystems mass. For instance, some of these parameters
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are the communication path length, the data-rate of the link, the pointing accuracy, and the
antenna characteristics of the ground segment(s). The design of the coupled communication
and power subsystem is performed with the objective of providing the spacecraft with enough
capabilities of sending (receiving) to (from) Earth the required amount of data, to (from) the
required location(s), in the required time, and making sure that the quality of the communica-
tion is sufficient enough for a correct reconstruction of the data. This shall be obtained with a
minimum mass and with a minimum (programmatic) risk. The coupled Communication and
Power subsystem mathematical models are used to demonstrate the working principle of the
Regression-Based Sensitivity Analysis presented in Chapter 3, and to show that uncertainty
analysis, already performed at conceptual level, may bring benefits to the design lifecycle of
the system. Detailed information on the mathematical models and the design settings is pro-
vided in Appendix A.

2.3.2 Satellite system for Earth-observation

The model of the satellite system for Earth Observation is used to study two different missions.
We increment the complexity when compared to the previous case, going from subsystem-
level to system-level analysis. The first mission has the objective of obtaining world-wide
coverage, providing disaster-management capabilities. In Chapter 3 we use sensitivity and
regression analysis for the design of the system baseline. Further, uncertainty analysis is im-
plemented for a quantitative determination of the mission cost, mass, and power-consumption
margins. The second mission is again an Earth-observation mission, but in this case we focus
on a specific area around the Bay of Bengal. We use this mission in Chapter 4 to demonstrate
the implementation of the Pareto Robust Optimization Algorithm. Further, we show that lo-
cal analysis techniques coupled with global methods can provide the engineering team with
quantitative information on the system that allows to speed-up the decision-making process
maintaining high-quality standards. Detailed information on the mathematical models and
the design settings is provided in Appendix B.

2.3.3 Lunar space-station mission design

The design of the Lunar space-station mission foresees the utilization of multiple systems
whose characteristics have to be balanced. The main mission objective is to deliver a manned
space station in low orbit around the Moon. The mathematical model developed for this anal-
ysis is characterized by having a discrete configuration of the mission architecture. Indeed,
several building blocks and delivery strategies are considered for the analysis, see Appendix C
for more details. The actual transfer to the Moon is not part of the study presented here, there-
fore we consider standard values for the velocity changes of each required maneuver. When
it comes to conceptual design of new missions and systems, models with mixed continuous-
discrete variables are very common. This test case is a good example to demonstrate that
global multiobjective techniques can be used by the engineering team to choose amongst the
different mission architectures and at the same time selecting the best combination of design
variables that optimize them.

2.3.4 Atmospheric entry vehicles design

The design of unmanned entry capsules, considering continuous shape-variation models,
aerothermodynamics, flight mechanics, and thermal protection system models at the same
time, is considered to be a valuable test-bed for the robust-optimization methods presented in
this thesis. The model has been adapted from the previous work of Dirkx (2011); Dirkx and
Mooij (2011), adding a one-dimensional lumped-parameters thermal model for the thermal
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protection system (TPS). All the details regarding the shape, aerothermodynamics, and flight
mechanics can be found in the original literature by the authors. The types of TPS, the mate-
rial properties used for the analyis, and the validation of the model are presented in Appendix
D, instead. In Chapter 5 we discuss the results of minimizing the mass of the capsules while
maximizing the internal volume and the re-usability.

2.3.5 Ops-Sat, a cubesat mission in the ESA Concurrent Design Facility

Ops-Sat was a recent study in the Concurrent Design Facility (CDF) at ESA aimed at the de-
sign of an in-orbit demonstrator to test innovative mission-control and operations concepts by
using a 3U cubesat. A 3U cubesat is a satellite with the dimensions of approximately 10x10x30
cm. It is called 3U, because its volume is three times larger than the 1U cubesat which mea-
sures 10x10x10 cm. Due to the limited complexity of the mission, in the Ops-Sat study the
design was far more detailed than a classical conceptual study. The convenience of using a
system margin of 20%, as is typically the case in CDF studies, would maybe not represent the
optimal choice. Further, it was the first time that a satellite of such a small scale was designed
in the CDF, thus it was clear from the beginning that the mass-margin philosophy commonly
accepted (and corroborated by experience) for larger-scale satellites would be hardly appli-
cable in this case. For these reasons, it was decided to adopt a statistical approach to the
mass-budget management in parallel to the classical one. This analysis was performed using
some of the analysis methods presented in this thesis. In particular, we used the Augmented
Mixed Hypercube sampling approach and the uncertainty analysis described in Chapter 3 to
propagate the uncertainty distribution of the mass of the elements of Ops-Sat from subsystem
level to system level. The utilization of these methods in the CDF proved to be very effec-
tive in capturing the knowledge of the team members and synthesizing it for supporting the
activity of the systems engineer in determining the mass budget. Indeed, using detailed infor-
mation from the subsystem experts as input data, it was possible to determine a baseline-mass
of Ops-Sat that was 4.75% lower than the initial estimate.

2.3.6 Support of the Concurrent Design PlatformTM at JAQAR-Concurrent
Design Services B.V.

The purpose of this cooperation with JAQAR-Concurrent Design Services B.V. (J-CDS) is to
demonstrate that the design methods described in this thesis can be effectively used as an
application layer on top of the concurrent engineering infrastructures to boost the concurrent
design process by supporting the activities of the engineering team members. In particular,
we cooperated with J-CDS implementing some design methods described in Chapter 3 in the
Concurrent Design Platform (CDPTM ). As a first test case, we supported the design process of
J-CDS for the business analysis of a new non-space product to be commercialized (a medical
devise). The results highlight the best policy in terms of make-buy of the various elements of
the product and identify cost-reducing trends in the design parameters. The design within the
scope of a training session for a fictional scientific space mission was considered as a second
test case. The purpose of the mission is to place an instrument on the Moon’s surface. We
supported the activity of the subsystems engineers in dealing with flexible requirements and
enhancing the functionality of the CDPTM in allowing the design also when data from other
disciplines are missing.
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2.4 Summary

This ends the analysis on the most relevant aspects related to the design of a complex system,
that will be considered in this thesis. Under the main assumptions that:

• the design of a complex system is performed based on the utilization of a mathematical
model describing it;

• the analysis of the model is performed considering multiple objectives, that can be linear
or non-linear, and continuous or not. It may also present multiple constraints, which can
be expressed as linear or non-linear, and continuous or discontinuous quantities;

• the design variables that characterize the model can be continuous or discontinuous. The
last class can be further distinguished in ordinal and categorical;

• the model can include uncertain parameters;

• the model is developed and implemented according to a single or multiple-level architec-
ture with an MDF formulation and an NHD decomposition approach;

then, the main objective of the thesis is to provide a structured approach to support the en-
gineering team in the conceptual-design activities, eventually performed in a collaborative
environment. The design activities of interest are factor screening and sensitivity analysis, de-
termination of the design-space shape, robustness analysis, uncertainty analysis, optimization
and robust optimization. They can be performed at a local level on a small subset of the design
space, and/or at a global level on the entire design space, on a single element only, and/or on
the complete system.



Chapter 3
Local Design Approach

This chapter presents a thorough analysis of the problems encountered when designing a com-
plex system and the methods proposed to solve them, at a local level. By local we mean design
techniques that are useful to support the engineering team when a limited portion of the de-
sign space has to be analyzed. This is valid, for instance, when a certain design option has to
be studied in detail to compare it to other design options. The digression on design techniques
for local analysis begins with sampling, in Section 3.1. Then, sensitivity analysis is discussed
in Section 3.2, and response surfaces and graphical support to the engineering team in Sec-
tion 3.3. In Section 3.4 we discuss uncertainty analysis and robust design. In this chapter we
use two of the mathematical models briefly introduced in the previous chapter. In particu-
lar we demonstrate the application of the analysis methods discussed in this chapter to the
communication and power subsystems model (Sections 3.2.4 and 3.4.4) and the satellite mission for
Earth-observation model (Sections 3.2.6, 3.3.3 and 3.4.2).

3.1 Sampling the design space

Sampling the design space is the first step necessary when the mathematical model of a system
needs to be studied. A sample is a set of points in the design space (a k-dimensional hyper-
space) whose coordinates are the values of the design variables taken from their variability
ranges, (x1, x2, · · · , xk). In Figure 2.1, in the previous chapter, the black dots represented sam-
ple points in the design space and their image in the objective space. The model is executed
using each sample point as input. The corresponding output, i.e., the performance, can then
be studied in detail to make conclusions on the correlation between input and output, and
set the design factors such that the system model behaves as required. The purpose of this
section is to discuss the advantages and disadvantages of sampling techniques for continuous
and discrete variables. This discussion will bring us, at the end of this section, to propose the
mixed-hypercube approach. It is a mixed sampling method that will allow us to take both
continuous and discrete design variables into account, at the same time.

3.1.1 Pseudo-random sampling

A random sample is obtained from the design region of interest using numbers which are
casually generated, usually by a computer. Therefore, random sampling is sometimes referred
to as pseudo-random. Indeed, the apparently casual numbers generated by a computer are the
result of a deterministic process. Many algorithms for producing pseudo-random numbers are
provided in Press et al. (2007). When one refers to Monte-Carlo techniques, very often pseudo-
random sampling is behind it. In this chapter we will highlight advantages and disadvantages
of using Monte-Carlo techniques, that are considered only one of the many options available
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Figure 3.1 Latin Hypercube sampling with 2 variables (k = 2) and (a) N = 5 (b) N = 10.

for sampling the design space of a mathematical model. All the design methods presented
in this thesis may be implemented simply using the Mote-Carlo approach for sampling. One
of the main intents, is actually to define what the best sampling technique is (i.e., that allows
computationally cheaper analyses) given specific problem settings.

3.1.2 Stratified sampling

In statistical jargon, it is said that stratified sampling allows to improve the representativeness
of the sample (Press et al., 2007). In practice, this means that stratified sampling allows to ob-
tain a more uniform coverage of the design region of interest, compared to a random-sampling
method. The idea is to partition the design region of interest into disjoint k-dimensional sub-
sets, called strata, in such a way to obtain a multidimensional grid partitioning the design
region of interest. Then, random sampling is used to collect sample points from each stratum.

Latin hypercube sampling

Latin hypercube sampling (LHS) is a subclass of the stratified sampling technique. According
to the original implementation of the LHS method proposed by McKay et al. (1979), the design
space is divided into kN disjoint subsets (strata). This means that the variability range of each
variable is divided into N intervals. The N sample points are taken in such a way that a point
is taken once from each stratum, see Figure 3.1. Due to its nature, the LHS provides in gen-
eral an increased coverage of the design space if compared to the stratified sampling and the
random sampling. However, the fact that a sample is taken from each stratum randomly, does
not always guarantee to obtain a sample with good space-filling qualities, as demonstrated by
Viana et al. (2010). As a consequence, since its first implementation LHS has been the object
of the application of many optimization methods to obtain samples at the maximum relative
distance between each other (Morris and Mitchell, 1995; Ye et al., 2000; Jin et al., 2005; Grosso
et al., 2009). Viana et al. (2010) propose an algorithm for near-optimal Latin hypercube designs
without using formal optimization. This method provides results with a negligible computa-
tional effort if the number of design variables k is not so large. According to our experience
using the algorithm proposed by Viana et al. (2010), it requires the generation of matrices with
at least 2k elements, irrespectively of the number of sample points actually required. The num-
ber of matrix entries to be stored to compute the near-optimal LH-design can already become
cumbersome for 20 variables.
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Figure 3.2 Scatter plots of 100 sample points in a 2-dimensional design space based on (a)
pseudo-random sampling, (b) Latin hypercube sampling, (c) sub-optimized Latin
hypercube sampling, (Viana et al., 2010), (d) Modified Sobol’ LPτ sequence.

3.1.3 Quasi-random sampling

The class of quasi-random sampling techniques is developed with the main objective of obtain-
ing a set of points that are well spaced in the hyperspace determined by the design-variable
ranges (the design region of interest). It is usually said that these algorithms provide low-
discrepancy sample points, with the discrepancy indicating a measure of non-uniformity of the
sample (Bratley and Fox, 1988). Three alternate approaches are proposed by Faure (1982), Hal-
ton (1960), and Sobol’ (1979) respectively. Bratley and Fox (1988) provide a good review and
references of all of them. However, the most widely used approach is the one proposed by
Sobol’. Bratley and Fox (1988) and Press et al. (2007) give useful indications on how a Sobol’
LPτ sequence, or its variant proposed by Antonov and Saleev (1979), can be computed.

The modified LPτ algorithm is extensively used in this thesis as basis for all the sampling
methods described hereafter. The modified Sobol’ LPτ sequence was selected for its particular
characteristic of providing a sequence of sampling points for which successive points at any
stage know how to fill in the gaps in the previously generated distribution (Press et al., 2007).
This aspect is particularly useful for limiting the computational load in performing a sensitiv-
ity analysis as described in Section 3.2.3. A comparison of the methodologies in sampling a
2-dimensional design region is presented in Figure 3.2, while the gap-filling properties of the
same methodologies are presented in Figure 3.3. The modified Sobol’ LPτ sequence demon-
strates that the additional sample points, the circles in Figure 3.3, are placed in such a way to
fill the gaps following a sort of pre-defined pattern, allowing the re-utilization of the samples
previously generated, because they are placed in the design space in a low-discrepancy sense.

3.1.4 Design of experiments

An experiment is a test executed to evaluate the outcome of a process given certain settings of
the factors believed to influence it. The experiments considered here are all computer experiments
performed on the mathematical model in correspondence of the sample points. However, the
Design of Experiment (DoE) practice has older origins than the computer era, indeed it was
first introduced by Fisher in 1935, (Fisher, 1971). The sampling methods belonging to the cat-
egory of DoE can be distinguished in Factorial Designs (full or fractional), Orthogonal Arrays
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Figure 3.3 Scatter plots of sample points in a 2-dimensional design space based on (a) random
sampling, (b) Latin hypercube sampling, (c) sub-optimized Latin hypercube sampling,
(Viana et al., 2010), (d) Modified Sobol’ LPτ sequence. • Initial set of sample points. ◦
Additional set of sample points.
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Figure 3.4 Full factorial design with (a) 2 variable-levels and (b) 3 variable-levels in a
3-dimensional design space.

and other methods, amongst which, for instance, Central Composite Design (CCD). The com-
mon characteristic of these sampling methods is that they are all deterministic: the samples
are placed in the design space according to a certain pre-defined geometry. This allows also
ordinal and categorical variables to be used in the analysis. Random or quasi-random sampling
methods do not directly provide this feature. In the case of DoE, the values of the variables are
more appropriately called levels.

Factorial design

Full factorial design is a sampling method that foresees one experiment for each possible com-
bination of the factor levels. If factor A has a levels, factor B has b levels and factor C has
c levels, the total number of experiments is N = a · b · c. There are special cases of factorial
design where for all the factors only 2 or 3 levels are considered. They are usually called 2k-
and 3k- factorial designs, respectively, where k indicates the number of factors. The experi-
mental structure obtained for 2k- and 3k- factorial designs is shown in Figure 3.4, where the
dots indicate the sample points.
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Figure 3.5 Fractional Factorial design in 3-dimensional design space.

Factors
Experiment A B C

1 1 1 1
2 1 1 2
3 1 2 1
4 1 2 2
5 2 1 1
6 2 1 2
7 2 2 1
8 2 2 2

Table 3.1 Full factorial design, 3 variables at 2 levels.

In general, full-factorial design may also be called grid search: all the sample points are
placed in the design space in such a way to form a grid, see Figure 3.4 for instance. Full-
factorial design requires a number of experiments that increases with the power of the number
of factors. Thus, already in the case of 2k or 3k factorial designs, the experimentation (i.e., the
simulation of the model) can become cumbersome very soon. Therefore, fractional-factorial
designs were introduced as an attempt to reduce the computational effort for the analysis.
As the name suggests, fractional-factorial designs only foresee a fraction of the number of
experiments required by a full-factorial design with the same number of factors and the same
number of levels. For instance a one-half fractional factorial design, or 2k−1 design, requires
half of the experiments of the original 2k design, see Figure 3.5.

All the designs belonging to the category of DoE are also called matrix designs. Indeed
their visualization, and their construction, is better understood if represented in the form of
a matrix with the factors in the columns and the experiments to do in the rows. A graphical
structure for more than 3 variables becomes hard to visualize. In Table 3.1 we show, for in-
stance, the matrix visualization of a 2k design, with k = 3. The level 1 indicates the low level,
while 2 indicates the high level of the design factors. A 2k−1 design is also called Resolution 5 de-
sign (for k > 4). It requires half of the simulations required by a full-factorial design, with the
same number of parameters, with two levels. It is also possible to generate fractional-factorial
designs that require less experiments than Resolution 5. However, the smaller the number of
experiments, the lesser the information that can be obtained. In Section 3.2.2 we will demon-
strate that the information that is available after performing a matrix design strongly depends
on the type of chosen design, i.e., on the number of performed experiments.

Orthogonal arrays

Orthogonal Arrays (OAs) are special matrix designs originally developed by Taguchi (1987). In
Table 3.2, we present an L8 orthogonal array, i.e., 8 experiments with a maximum of 7 factors at
2 levels. To represent the orthogonal array of Table 3.2 in a graphical form, as shown in Figure
3.5, a hypercube of 7 dimensions (because 7 factors are taken into account) would be required.
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Factors
Experiment A B C D E F G

1 1 1 1 1 1 1 1
2 1 1 1 2 2 2 2
3 1 2 2 1 1 2 2
4 1 2 2 2 2 1 1
5 2 1 2 1 2 1 2
6 2 1 2 2 1 2 1
7 2 2 1 1 2 2 1
8 2 2 1 2 1 1 2

Table 3.2 L8 orthogonal array.

Factors
Experiment A B C D

1 1 1 1 1
2 1 2 2 2
3 1 3 3 3
4 2 1 2 3
5 2 2 3 1
6 2 3 1 2
7 3 1 3 2
8 3 2 1 3
9 3 3 2 1

Table 3.3 L9 orthogonal array.

An orthogonal array has the advantage of reducing the computational effort in exploring the
design space. Indeed, with a full factorial design the number of required experiments would
have been 27, 128.

The term orthogonal is related to the balancing property, which means that for any pair of
columns, all combinations of factor levels are present an equal number of times. For instance,
in Table 3.2, in the first two columns all the factor combinations (i.e., 1 1, 1 2, 2 1, and 2 2)
are present two times. The same happens for any other pair of columns. This property as-
sures that once all the simulations are completed, for any couple of factors all the factor-level
combinations are evenly tested. The utilization of matrix designs for experiment planning is
straightforward. Referring to the OA presented in Table 3.2, for instance, in each column we
read the level that has to be assigned to the design variables for each experiment. In each row,
we read the variable sets for every single experiment to be performed. Therefore, the num-
ber of rows represents the total number of experiments. The L8 orthogonal array of Table 3.2
is only one amongst the many OAs discussed by Taguchi (1987). It is also possible to build
three-, four-, and five-level OAs, and also mixed-levels OAs for factors having a heteroge-
neous number of levels (Phadke, 1989). An L9 OA is presented in Table 3.3, where four factors
are considered at three possible levels. As will be shown in Section 3.2.2, three-level arrays
will allow to study also quadratic effects of the factors on the performance of interest. An effi-
cient algorithm to generate three-level OAs is discussed by Mistree et al. (1994) while standard
tables for other types of orthogonal arrays can be found in (Taguchi, 1987) and (Phadke, 1989).

Other experimental designs

The major distinction amongst the experimental designs is usually made between first- and
second-order designs, as already hinted before. In the first case the design variables can as-
sume only two levels, while in the second case at least three levels per design variable are
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Figure 3.6 Mixed-hypercube sampling with 3 discrete and 2 continuous variables.

considered. The development of second-order designs is mainly related to the need of obtain-
ing information on the curvature of the design space for fitting second-order response surfaces.
Box et al. (1979) present a method to compute fractional 3k factorial designs, the Box-Bhenken
designs, obtained by combining two-level factorial designs with balanced incomplete block
designs. The Central Composite Design (CCD) introduced by Box and Wilson (1951), is built
using a 2k-factorial design, plus n0 central points (in the geometric center of the design hy-
perspace), plus 2k points on the axis of every design variable at a distance α from the center.
In a hyperspace normalized in the interval [−1, 1], a CCD with α 6= 1 will present 5 levels for
each variables, while with α = 1 it will only require the variables to assume 3 different levels.
The value of α can be chosen by the designer to fulfill certain characteristics. With α = 2

k
4 , for

instance, one can obtain a rotable design, the preferred class of CCD (Montgomery, 2001). In
a rotable design, the variance of the predicted performance is not biased in any direction, it is
only a function of the distance from the center. For computer experiments n0 = 1 is a logical
choice, since there is no variability associated with executing the model with the same settings
of the design variables for more than one simulation. The interested reader is referred to Box
et al. (1979) and Montgomery (2001) for a good overview and discussion on the many types of
available experimental designs.

3.1.5 The mixed-hypercube approach

The mixed-hypercube approach is a mixed sampling method that we developed to be able to
take both continuous and discrete variables into account (????). In particular, with the mixed-
hypercube approach we use both sampling for continuous variables and DoE. The main idea
is to separate the continuous and discrete variables in two groups. A matrix design is then
created for the discrete variables while for every row of the matrix design (i.e., for every design
point of the factorial design), a Sobol’ sequence is generated for the continuous variables. An
example with three discrete and two continuous variables is presented in Figure 3.6.

The advantage of using a matrix design instead of a space-filling technique for the dis-
crete variables is that it allows to deterministically select the levels of the factors. When only
few factor levels can be selected (e.g., in a database there is a certain number of batteries, or
only a limited number of thrusters is considered in the analysis of a satellite system) the max-
imum number of simulations is determined by a full-factorial design. Then, depending of
the type of analysis, and the available resources, one could choose for a fractional-factorial
design. This will allow to reduce the computational effort while avoiding to disrupt the bal-
ance characteristics of the sampling matrix. The modification of a random or pseudo-random
technique for sampling only at certain levels does not immediately provide such a balance,
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especially when the number of samples is kept low. On the other hand, in case of continu-
ous variables matrix designs alone are less flexible in filling the design region and less suitable
for the re-sampling process than the Sobol’ technique. The proposed mixed-hypercube sam-
pling approach allows for covering the design region more uniformly when compared to all
the other techniques mentioned in this section, already with a low number of samples. The
sensitivity-analysis technique described in Section 3.2.3, will directly benefit from these char-
acteristics, since convergence of the variance is obtained with a reduced computational effort,
for instance. A more detailed description of the implications of using specific implementa-
tions of the mixed-hypercube sampling method in combination with the design approaches
discussed in this chapter is presented in the following sections.

3.2 Sensitivity analysis

Sensitivity analysis (SA) is a technique used in many scientific and technical environments
with different purposes, such as the determination of the quality of a certain model, validation
of assumptions, or as a method to identify important factors. From an engineering perspective,
the team is usually interested in understanding the consequences of certain settings of the de-
sign parameters on the performance of the system. In this context, sensitivity analysis can be
described as the study of the effect of a certain model input Xi (or group of inputs) on a given
model output Yj . It allows to identify design drivers, i.e., those factors or group of factors that
shall be carefully assessed by the designer, because they will be the principal responsible for
determining the performance of the system. The extent of the influence identified, may be use-
ful for checking the adequacy of the model being used for the analysis and for corroborating
the underlying analysis assumptions. In other words, sensitivity analysis performed already
at an early stage of the design process will speed up the process itself, while at the same time
it will provide the engineering team with an X-ray machine that allows to understand the effect
of their design choices on the system.

In this section we introduce the Regression-Based Sensitivity Analysis method (RBSA). It
is developed to provide global, quantitative measures of sensitivity with a computationally
cheap approach. The objective of this section is to discuss the basis for global sensitivity anal-
ysis, to introduce RBSA, and to compare its performance with other known global sensitivity
analysis methods.

3.2.1 Global sensitivity analysis

The effect mentioned before can be the result of a local measure, e.g., the measure of a deriva-
tive, e.g., (∂Y/∂X)X=x∗ , which requires an infinitesimal variation of the input X around a spe-
cific value x∗. Local sensitivity analysis is usually considered when studying operating-point
stability of dynamic systems, for instance. It requires, amongst others, the determination of
the stability properties in the presence of small variations of the factors that influence the dy-
namics of the system. Consider, for instance, the scheme in Figure 3.7(a). A local measure
of sensitivity is intended as the determination of the variation of the performance Y , locally,
when X = x∗. This measure, however, does not represent the behavior of the performance Y
in the entire interval of interest ∆X .

The measure of sensitivity can also be obtained when the input varies over a specified
finite interval ∆X . In this case, sensitivity analysis is valid over the entire interval of variation
spanned by the input factor (i.e., the design region of interest) rather than only directly around
a single (operating) point. Therefore, this type of sensitivity analysis is often called global.

The settings of the problem of designing a system by selecting the most appropriate combi-
nation of input-factor levels is particularly suitable for the implementation of global sensitivity
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Figure 3.7 Sensitivity Analysis. (a) Local approach to sensitivity analysis, (b) global approach to
sensitivity analysis.

analysis. Indeed, in this context sensitivity analysis is aimed at finding the set of relevant fac-
tors in the determination of the output, and the global implementation provides an answer
that is valid over the entire design region, even if it represents only a (small) subset of the
design space. Global sensitivity analysis is locally implemented, in the discussion presented
in this chapter. This means that the design region of interest is small, thus the analysis is local
with respect to the entire design search space. However, within the design region of interest,
the analysis is global, according to the definition given before.

The importance of a factor can be determined on the basis of the reduction of the (uncondi-
tional) variance of the output Y , V (Y ), by fixing that factor to a certain (yet unknown) value.
This also means how much of the total output variance is determined by the variation of that
specific factor. In a local sense the focus would be on computing the conditional variance
V (Y |Xi = x∗i ). Since the value of x∗i is unknown, it is reasonable to compute the average over
all possible values ofXi within the design region of interest, thus obtainingE (V (Y |Xi = x∗i )).
The conditional expectation E(·) is computed over Xj , j 6= i with Xi = x∗i . The variance, in-
stead, is computed considering all the possible values of x∗i (Saltelli et al., 2004, 2008). In Figure
3.7(b), we show that to obtain a global measure of sensitivity, many points X = x∗i must be
taken into account.

The smaller E (V (Y |Xi = x∗i )), the larger the factor influence on the output is. The term
V (Y |Xi = x∗i ) is related to the variance computed with a fixed value for the variable of in-
terest, with all the other variables varying in their intervals. Therefore, if the expected value
of the variance computed in this way is low (in percentage with respect to the total variance
V (Y )), then it means that the variability caused by the variable of interest must be high.

The computation of global sensitivity based on the variance of the response is a growing
(and also logical) practice. It allows for taking the dimensions of the design region of interest
into account to provide multi-dimensional averaged information on the effect of the factors
on the output. The knowledge of the importance of the factors in their contribution to the
output variance, is used to identify and fix the non-influential factors (or those with a limited
influence) on the determination of the output of the model. The most important ones may be
ranked and their effect may be studied in more detail.

Global, variance-based, sensitivity indices can be estimated using qualitative or quantita-
tive methods; it depends on the purpose of the analysis, on the complexity of the problem and
on the available computational resources.

A qualitative approach, like the method of Morris (1991), allows to determine the impor-
tance of the factors with a relatively limited computational effort. As we will demonstrate
later, this comes with a limitation. The method of Morris, and other qualitative methods, can
only rank input factors in order of importance. The method is unable to determine a quantita-
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tive measure of the contribution of the factors to the variability of the performance. Therefore,
these methods are usually used as a preliminary analysis to detect and fix the unimportant
factors. Therefore, qualitative methods are also called screening methods. On the other hand,
quantitative techniques like the method of Sobol’, Sobol (1993) and Saltelli et al. (2004), or
the FAST (Fourier Amplitude Sensitivity Test), Cukier et al. (1978), require a large number of
model evaluations to provide sensitivity indices of the design factors, especially the terms like
Vij , or Vij···k (Helton and Davis, 2003). This may be a limitation when a large number of input
factors are taken into account, or when the model is computationally time consuming.

Regression analysis has been, and still is nowadays, extensively used to assess the effects
of the input factors on the output. The RBSA introduced in this section, is a method for global
sensitivity analysis based on the regression of a general polynomial model. The sensitivity
indices, for each design factor, are computed by decomposing the global variance detected by
the model, apportioning it to the various factors and combinations of them, rather than simply
relying on the regression coefficients (that are a local measure of sensitivity, for more-than-
linear effects). This allows for obtaining global sensitivity indices, and providing information
on the first-order as well as on higher-order factor effects on the model’s output.

3.2.2 Methods for sensitivity analysis

Sobol’ method

The sensitivity indices introduced by Sobol’ can be used as possible indicators of the rela-
tive importance of the factors in the determination of the variance. The method of Sobol’ for
computing the sensitivity indices is based on the decomposition of the total (unconditional)
variance in the contribution of each single factor. Consider, for instance, Y = f(X) as the
model of interest. Y is the output vector while X = (x1, x2, · · · , xk) is the vector of the k
independent input factors. The method of Sobol’ discussed here and the regression-based sen-
sitivity analysis described later are in general valid for independent (i.e., non-correlated) input
factors. The case with correlated inputs implies that the correlation structure must be taken
into account during the sampling of the design space, leading to higher computational cost
on one hand and to a non-direct applicability of the method on the other hand (Saltelli et al.,
2004). An effective technique for imposing the correlation between input variables has been
proposed by Iman and Conover (1982).

To compute the sensitivity, a sample of N points is taken from Y = f(X) by evaluating
the model N times. The unconditional variance V (Y ) can be decomposed as follows (Sobol,
1993):

V (Y ) =
∑
i

Vi +
∑
i

∑
j>i

Vij + · · ·+ V12···k (3.1)

where Vi is the variance of Y due to factor i, Vij is the variance of Y due to the interaction
between factor i and factor j. All the terms of this relationship are conditional variances of
the factors indicated by the subscripts. For factor i, for instance, Vi = V (E (Y |xi )). For the
interaction factor Vij , instead, Vij = V (E (Y |xi, xj ))− Vi− Vj , which is the combined effect of
the factors xi and xj minus their individual conditional variances Vi and Vj .

Since the following relationship holds, V (Y ) = V (E (Y |xi )) + E (V (Y |xi )), and since
the unconditional variance V (Y ) is constant, an important factor will lead to a small value of
E (V (Y |xi )), as anticipated before, or equivalently to a large value of V (E (Y |xi )) (Saltelli
et al., 2004). Therefore, each term in Eq. (3.1) can be used as a measure of global sensitivity.
Indeed, Sobol’ sensitivity indices are defined as follows (Sobol, 1993):

Si =
V (E (Y |xi ))

V (Y )
(3.2)
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Si is sometimes called the first-order sensitivity index to distinguish it from higher-order sen-
sitivity indices Sij , Sijw, or Sii, which represent the effects of the interactions between factors or
the effect of higher-order terms on the unconditional variance.

Another measure of sensitivity is represented by the so-called total-order sensitivity in-
dices, ST i. A total-order sensitivity index takes the contribution to the unconditional variance
of a certain variable i into account, considering the first-order and all higher-order effects that
involves it. A total sensitivity index provides an indication of the overall effect of a certain
variable on the response of the model. The total-order sensitivity indices can be computed as
follows (Saltelli et al., 2004):

ST i = 1− V (E (Y |X−i ))
V (Y )

(3.3)

where V (E (Y |X−i )) indicates the contribution to the variance due to all factors with the
exception of xi. The vector X = [x1, x2, . . . , xi, . . . , xk] contains all the design factors. The
vector X−i = [x1, x2, . . . , xi−1, xi+1, . . . , xk] contains all the factors except xi.

To provide a quantitative example of the results that can be obtained using sensitivity anal-
ysis, let us consider the following simple problems. Y1 is a linear additive model, in Y2 a non-
linear (fourth-order) term is added, and Y3 introduces an interaction term between x1 and x2,
see Eq. 3.4 to Eq. 3.6.

Y1 = x1 + x2 + x3 (3.4)

Y2 = x1 + x2 + x3 + x43 (3.5)

Y3 = x1 + x2 + x3 + x1x2 (3.6)

where x1 ∈ [−9, 9];x2 ∈ [−5, 5];x3 ∈ [−3, 3]. The first-order sensitivity indices computed with
Eq. (3.2) are presented in Table 3.4. In Table 3.5 the total sensitivity indices computed with
Eq. (3.3) are reported instead. As shall be demonstrated in Section 3.2.5, the sensitivity indices
are sensitive to the number of samples used to compute them. For these examples, the results
have been obtained using a sample size of 5000, which provides a good approximation of the
sensitivity indices, that does not significantly change for larger sample sizes.

In Tables 3.4 and 3.5 one would expect the sensitivity indices of the factors to be the same in
the case of Y1, since x1, x2, and x3 have the same multiplicative coefficient (i.e., 1). Sensitivity
indices also take the range of variation into account, and in this case x1, x2, and x3 are allowed
to vary over different ranges, and this is reflected in the sensitivity indices.

The discrepancy between first-order and total-order sensitivity indices depends on the type
of model and type of factor under analysis. When interactions are present, as in the case of Y3
for the factors x1 and x2, the sum of the total-order sensitivity indices is larger than one. This is
an expected result since the effect of the interaction x1x2 is considered both when determining
the effect of x1 and the effect of x2. In fact, in this case, the vector X−1 = [x2, x3], so we
study the sensitivity of Y3 with respect to x1 and x1x2. The vector X−2 = [x1, x3], so we study
the sensitivity of Y3 with respect to x2 and x1x2. The sensitivity of Y3 with respect to x1x2 is
considered twice.

The Fourier Amplitude Sensitivity Test

The Fourier Amplitude Sensitivity Test (FAST) introduced by Cukier et al. (1978), is an alterna-
tive method that allows to compute the sensitivity indices of Eq. (3.2). In an analytical sense,
the expected outcome of Eq. (3.2) should be computed by solving a k-dimensional integral,
where k is the number of design factors. Suppose the model we consider is y = f(X), with
X = [x1, x2, . . . , xk]. Suppose now that X is a random vector with a certain Probability Den-
sity Function (PDF), P (X) = P (x1, x2, . . . , xk). The xi are not necessarily random variables. If
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Si Sum
x1 x2 x3

Y1 0.709 0.214 0.0793 1.0025

Y2 0.0560 0.0156 0.924 0.996

Y3 0.0728 −0.0043 0.0116 0.0801

Table 3.4 First-order sensitivity indices computed using the method of Sobol’. Results obtained
with a sample size of 5000.

STi Sum
x1 x2 x3

Y1 0.716 0.2198 0.0791 1.0149

Y2 0.0540 0.0166 0.9235 0.994

Y3 0.9675 0.886 0.0114 1.865

Table 3.5 Total-order sensitivity indices computed using the method of Sobol’. Results obtained
with a sample size of 5000.

the PDFs are considered uniform, P (X) can be considered the hypercube with samples drawn
from a Sobol’ sequence, for instance. The rth moment needed to compute the indices of Eq.
(3.2) is then found analytically by solving the following multidimensional integral (Saltelli
et al., 1999):

〈yr〉 =

∫
f r (x1, x2, . . . , xk)P (x1, x2, . . . , xk) dx (3.7)

In the FAST algorithm the k-dimensional integral is converted into a single integral, that
can be approximated using a random Monte-Carlo technique. Each factor xi is associated
with a certain frequency ωi, using the relationship xi(s) = Gi(sin(ωis)). The function Gi is
a parametric equation that matches the variation of s to the variation of the parameter xi in
its proper range. Saltelli et al. (1999) proposed the Extended-FAST as an improved version of
FAST. The limitation of FAST is that it allows for computing the first-order sensitivity indices
only (Cukier et al., 1978). With EFAST the total-order sensitivity indices of Eq. (3.3) can be
estimated as well (Saltelli et al., 1999).

The method of Morris

The method of Morris (1991) is a qualitative method for sensitivity analysis. It is based on the
so-called elementary effect, which is a measure of the sensitivity in the form of incremental
ratios, i.e., an approximation of a local gradient within a finite interval of variation of the
variable. As such, the elementary effect is a local measure of sensitivity:

di (X) =
[y (x1, . . . , xi−1, xi + ∆, xi+1, . . . , xk)− y (x)]

∆
(3.8)

Each di (X) is the result of a one-factor-at-a-time experiment. However, in the method
of Morris, the final value attributed to the sensitivity of each design variable is obtained by
averaging several elementary effects computed at different points of the input space (Morris,
1991). In Eq. (3.8), ∆ is the width of the step in the ith dimension of the design region needed
to compute the incremental ratio. To compute the sensitivity measures for all the factors, the
design region is fractioned into a grid of dimensions k × P , where k is the number of factors
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and P is the number of levels in which every dimension is subdivided. The influence of a fac-
tor is determined by computing several elementary effects (the number of elementary effects
is indicated by R) at points that are randomly selected from the grid. The method of Morris
provides two qualitative measures of sensitivity, namely the mean, µ, and the standard devi-
ation, σ, of the elementary effects. Large values of µ indicate that a factor has a prominent
overall influence on the output. Large values of σ, instead, are the result of interactions of the
factors with other factors or non-linear effects on the output. To compute µ and σ the method
of Morris requires a sampling matrix made of k+1 sample points, for each elementary effectR
to be computed. Therefore, the computational cost of the method of Morris is linear with the
number of factors, i.e., equal to R × (k + 1). It was recognised that the method of Morris may
present some limitations with non-monotonic problems. Some elementary effects may cancel
each other out in these cases, thus providing low values of µ even when the factor is impor-
tant. Campolongo et al. (2007) propose an alternative measure of the parameter µ, namely µ∗

to avoid misleading results with non-monotonic models. For more information on the method
of Morris we refer the reader to the original literature.

Analysis of Variance

The Design of Experiments presented in the previous section, is very often used in conjunc-
tion with the analysis technique called Analysis of Variance. Some authors refer to the DoE as
to statistical design of experiments (Montgomery, 2001). In fact, they correctly indicate that the
planning of the experiments with the DoE shall be done properly so that the data can be anal-
ysed using statistical methods, providing valid conclusions at the end. DoE and the type of
analysis and results that can be obtained are closely related. Analysis of variance (ANOVA) is
a technique that can be used to compute sensitivity analysis in the presence of discrete factors,
i.e., in the presence of samples coming from a DoE. Its main purpose is to partition the total
variability detected during the simulations into the contribution of the various factors. This is
a definition that is very much in line with the definition of global sensitivity analysis provided
at the beginning of this section. For this reason, ANOVA can be considered a global sensitivity
analysis method.

Given a set of observations of a mathematical model, the variance of the data can be com-
puted with the well-known formula:

V̂ =

∑N
i=1 (Yi − E(Y))2

N − 1
(3.9)

where E(Y) is the expected value, or mean value, of the model output. The numerator of this
equation can also be called sum of squares. It is the sum of the deviations of all the observations
from the mean, squared. In the following example we show how to compute the sensitivity
analysis from a matrix design using ANOVA. Suppose having a model, with two factors that
can assume three levels each. Suppose to simulate the model according to a full-factorial de-
sign, as shown in Table 3.6. There, the term Yi. indicates the sum of the outputs computed with
factor A at constant levels. The term Y.j , instead, indicates the sum of the outputs computed
with factor B at constant levels. Y.. is the sum of all the n outputs computed from the matrix
experiment.

The total sum-of-squares can be computed as follows:

SST =

3∑
i=1

3∑
j=1

Y 2
ij −

Y 2
..

n
= (0)2 + (2)2 + (4)2 + . . .− (54)2

9
= 282 (3.10)

The sum-of-squares due to factor A only, can be computed as follows:
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Levels of Factor B
1 2 3 Yi.

Levels of
Factor A

1 0 1 2 3
2 2 6 10 18
3 4 11 18 33

Y.j 6 18 30 54

Table 3.6 Matrix design, 2 factors at 3 levels. Performance of the model.

SSA =
1

3

3∑
i=1

Y 2
i. −

Y 2
..

n
= (3)2 + (9)2 + (15)2 + . . .− (54)2

9
= 150 (3.11)

The sum-of-squares due to factor B only, can be computed as follows:

SSB =
1

3

3∑
j=1

Y 2
.j −

Y 2
..

n
= (6)2 + (18)2 + (30)2 + . . .− (54)2

9
= 96 (3.12)

The sum-of-squares of the interaction AB, can be easily computed as the difference between
the total sum-of-squares and the sum-of-squares of A and B. Therefore SSAB = 282−150−96 =
36. A similar procedure for computing the sum-of-squares of the factors is discussed in Mont-
gomery (2001). The difference here is that we deal with deterministic computer experiments,
therefore we do not experience any sum-of-squares due to errors. We do not experience errors
in the measurements of the performance.

The sensitivity indices are computed as the ratio between the sum-of-squares of the factors
and the total sum-of-square:

SA =
SSA
SST

= 0.532 SB =
SSB
SST

= 0.340 SAB =
SSAB
SST

= 0.127 (3.13)

As anticipated earlier, the amount of information that is available using ANOVA is directly
related to the number of experiments performed with DoE. Full-factorial designs allows for
determining main effects and factor interactions with no confounding, at the expenses of a
large number of simulations required for increasing number of factors. Resolution 5 factorial
design allows for experimentation with no main effect or two-factor interaction confounded
with any other main effect or two-factor interaction, although two-factor interactions can be
confounded with higher-order interactions, e.g., three-factor interactions (A × B × C). The
subclass of fractional-factorial designs called Resolution 4 requires half of the design points
required by Resolution 5. It has no main effects confounded with any other main effect or with
any two-factor interaction, but two-factor interactions can be confounded with each other and
with higher-order interactions.

The confounding effect is typical of matrix designs, and can be explained as follows. Sup-
pose we want to study the effect of the interaction of two of the parameters assigned to the
columns of Table 3.2 on a performance parameter Y . For each experiment we obtain a certain
value of the performance, so that at the end of all the experiments we will obtain a performance
vector Ŷ = [y1, y2, . . . , yn], with n equal to the number of experiments.

Looking at Table 3.2, we see that when factor C is at level 1 the combinations of A and B
areA1B2 andA2B1, while when the factor C is at level 2 the combinations of A and B areA1B1

and A2B2. Thus, it is not possible to distinguish the effect of factor C from the interactions
of factor A and factor B. The effect of factor C is confounded with the effect of the interaction
A× B. This also means that the third column of the OA of Table 3.2 does not represent factor
C, it represents A×B, instead.
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One of the limitations of ANOVA is that it provides proper sensitivity indices only when a
balanced matrix design is used for the simulations. The sensitivity indices will not be valid in
general anymore if different sampling techniques, e.g., random, would be used (Montgomery,
2001).

Alternative approaches

Some alternative approaches have been developed in the past years for the computation of
sensitivity indices for computer models. A thorough discussion of all of them is beyond the
scope of the present thesis. Helton and Davis (2002) present an analysis of the methods that
are most widely used. The study provides results on the comparison of the performances of
the following sampling-based procedures and measures of sensitivity: correlation coefficients,
rank correlation coefficients, common means, common locations, common medians, statisti-
cal independence, standardized regression coefficients, partial correlation coefficients, stan-
dardized rank regression coefficients, partial rank correlation coefficients, stepwise regression
analysis and scatter plots. Despite the limited computational effort required by most of the
mentioned procedures, many of them provide local measures of sensitivity while many other
only provide a qualitative indication on the ranking of the importance of the design variables
in the determination of the output.

As stated previously, regression analysis is a popular method to assess the effects of input
factors on performances. In particular, least-squares procedures are used to construct linear
regression models in the following form

Ŷ = β̂0 +
k∑
i=1

β̂ixi (3.14)

where
[
β̂0, β̂1, . . . , β̂k

]
are the estimated regression coefficients. The validity of the results ob-

tained with regression analysis is related to the fraction of the variation of Y that is accounted
for by the regression model, Ŷ . When the variability detected using Ŷ is lower than the variabil-
ity of the data obtained with the simulations, lack-of-fit is present. More on the consequences
of lack-of-fit for regression and sensitivity analysis will be discussed later, in Section 3.2.3. For
now, it suffices to say that a linear regression model like Eq. (3.14), very often results to be
poor in approximating the behavior of the model Y , thus the regression coefficients undergo
the risk of being quantitatively meaningless and sometimes also qualitatively misleading. The
same happens when the regression coefficients are expressed as Standardized Regression Co-
efficients (SRCs), i.e., normalized coefficients, to eliminate the effect of the units in which Y
and xi are expressed, and the effect of the range of variation of the variables.

A general polynomial regression model, obtained by adding higher-order terms (including
interactions) to the model of Eq. (3.14), will bring benefits in terms of a reduction of lack-of-fit,
as will be demonstrated later in Section 3.2.3. In the following section the proposed global
Regression-Based Sensitivity Analysis (RBSA) method is described. The main advantage of
RBSA is that it is a computationally cheap method able to provide quantitative measures of the
relative and absolute importance of the factors in the determination of the performance of an
engineering system described by a mathematical model. It extends the concept of regression
analysis, usually used for computing SRCs, coupling it with the idea of computing sensitivity
based on the contribution of the factors to the variability of the model output.

3.2.3 Regression-Based Sensitivity Analysis method

If the design region of interest is not stretched out so much, a polynomial regression model is
often sufficient to accurately describe the behavior of the engineering model under analysis.
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This is true for typical models of engineering systems, even complex ones, especially when the
source of complexity is represented by a large number of elements and their interrelated be-
havior rather than the mathematical models of every single component. However, also when
the complexity is related to the highly non-linear and non-smooth behavior of the mathemati-
cal equations linking the design variables, considering a relatively small portion of the design
space a polynomial regression model is still able to describe the system and explain most of
the variability of the data.

The Regression-Based Sensitivity Analysis (RBSA) method proposed here, is general
enough to be applicable to regression models of any order. However, the choice of the re-
gression order depends on several aspects that will be discussed throughout this section. For
ease of discussion the method will be explained using a second-order model as a reference:

Ŷ = β̂0 +
k∑
i=1

β̂ixi +
k∑
i=1

β̂iix
2
i +

k−1∑
i=1

k∑
j=i+1

β̂ijxixj (3.15)

Here, β̂i, β̂ii and β̂ij are the estimated regression coefficients that are calculated by fitting a
response surface through the points sampled from the model.

The purpose of RBSA is to provide variance-based sensitivity information by decomposing
the variance into the contributions of the individual design factors. The process is conceptually
similar to what has been described already for the ANOVA and the method of Sobol’. How-
ever, we propose a faster approach if compared to the computation of the Sobol’ sensitivity
indices, without the limitation of ANOVA of being used only in the presence of DoE. Fur-
ther, with RBSA we are also able to distinctively explain the interaction effect on the variance,
unlike the other global sensitivity analysis methods presented in this thesis.

A review of the least-squares method

Let us consider a general mathematical model using a more compact notation:

Y = β0 +

l∑
j=1

βjxj (3.16)

where xj represents any functional involving any of the design variables, for instance xj =
x22 or xj = x1x2. In this case the coefficients βj are the true (unknown) ones, which will be
estimated by the coefficients β̂j .

Using a least-squares method to estimate the l regression coefficients of the model, at least
N ≥ l samples are needed. The least-squares method computes an estimation of the regression
coefficients minimizing the sum of squares of the errors εi:

Yi = β0 +
∑l

j=1 βjxj + εi, i = 1, 2, . . . , N (3.17)

In Eq. (3.17), Yi represents the observed response for the ith design-variable set Xi. If the
model in Eq. (3.17) is rewritten in matrix form, i.e., Y = Xβ + ε the least-squares method is
easier to present and to implement. Here we have used the following definitions:

Y =


Y1
Y2
...
YN

 , X =


1 x11 x12 · · · x1l
1 x21 x22 · · · x2l
...

...
...

. . .
...

1 xN1 xN2 · · · xNl

 , β =


β0
β1
...
βl

 , ε =


ε0
ε1
...
εN


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Figure 3.8 Regression error for mathematical models.

The least-squares estimate of the regression coefficients is computed as follows:

β̂ =
(
XTX

)−1
XTY (3.18)

The utilization of a decomposition method, such as QR factorization or singular value de-
composition (SVD), to work with the matrix XTX in Eq. (3.18) is highly recommended. That
matrix may be close to be singular in some cases, also said ill-conditioned, and these factor-
ization or decomposition methods are considered numerically stable also with ill-conditioned
matrices.

The least-squares model is therefore represented by the following relationship:

Ŷ = Xβ̂ (3.19)

As stated already, the least-squares method provides an estimate of the regression coeffi-
cients that minimizes the error between the regression model and the observations. In gen-
eral, this error may have two main sources. The first source of error is the lack-of-fit of the
regression model, when the model for which the regression has been computed does not have
enough parameters to explain the real model. This happens, for instance, when a linear model
is used to fit a nonlinear one (Figure 3.8). The difference between each sample point and the
output computed using the regression model is called residual. The second source of error is
the measurement performed to collect the sample; in this case it is called pure error, or mea-
surement error. Since in this case regression analysis is applied to deterministic mathematical
models, the pure error is zero. Indeed, given a certain combination of design variables values,
the response will always be the same.

Decomposition of the variance

As shown already in Eq. (3.9), the total sum of squares of a set of observations of a mathemat-
ical model can be expressed as follows:

SST =
N∑
i=1

(Yi − E(Y))2 (3.20)

The sum of squares of the regression only, instead, can be computed as follows:

SSR =
N∑
i=1

(
Ŷi − E(Y)

)2
(3.21)

SSR represents the portion of the total variability that can be explained by the regression
model. For instance, a linear regression model cannot explain all the variability of a nonlinear
one, as schematically shown in Figure 3.8. In case the regression model perfectly fits the data,
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which does not always mean that the regression model perfectly matches the real one as will be
explained later, then SST = SSR. When residuals are present the portion of the total variability
not explained by the regression model can be computed in the form of the error sum of squares,
SSE :

SSE =
N∑
i=1

(
Yi − Ŷi

)2
(3.22)

To obtain the sensitivity indices of all the factors that contribute to the total variability of the
regression model, the regression sum of squares SSR should be partitioned in its components.
The main idea is to associate a sensitivity index to the additional variability calculated when a
factor is added to the regression model. To do so, a matrix notation for the sum of squares is
now introduced. Combining Eqs. (3.18) and (3.19), the regression model can be expressed as
follows:

Ŷ = X
(
XTX

)−1
XTY = HY (3.23)

The matrix H = X
(
XTX

)−1
XT is called the hat matrix. It transforms the vector of the

observed responses Y into the vector of the fitted values Ŷ. Using the hat matrix, the total,
regression and error sums of squares can be expressed with the following relationships (Kuri
and Cornell, 1996):

SST = YT

[
I− 1

N
J

]
Y SSR = YT

[
H− 1

N
J

]
Y SSE = YT [I−H]Y (3.24)

where I is an N ×N identity matrix, and J is an N ×N matrix of ones.
In literature there are three methods that are most widely used to obtain the variance de-

composition of Eq. (3.15), namely the sequential sum-of-squares, the classical sum-of-squares
and the partial sum-of-squares decomposition (Draper and Smith, 1998). As one of the possi-
ble models that Eq. (3.15) can describe, let us consider the following, with 3 factors:

Ŷ =β̂0 + β̂1x1 + β̂2x2 + β̂3x3 + β̂11x
2
1 + β̂22x

2
2 + β̂33x

2
3+

+ β̂12x1x2 + β̂13x1x3 + β̂23x2x3
(3.25)

In the following discussion, SS(Yx1) represents the sum of squares associated with the
model computed with only the factor x1 (i.e., Ŷ = β̂0 + β̂1x1). SS(x2|Yx1) represents the sum
of squares associated with a regression model where x2 is added to the model given that x1
is already present, it will also be indicated as SS(x2) since it is the sum of squares associated
with x2 only. This indicates the additional variability explained by adding x2 to the model.

The sequential sum-of-squares decomposition, or Type-I sum of squares, is used for the
stepwise regression analysis for computing sensitivity indices, see for instance (Helton and
Davis, 2002). The Type-I sum of squares decomposition is influenced by the order in which
the parameters are added to the model, thus it does not provide a unique sensitivity index for
each factor. The Type-II sum-of-squares decomposition, or classical sum of squares, indicates
the change in the variability explained by the regression model due to adding an extra term
to the model, given that all other terms have been added except for the terms that contain the
effect under test. For instance, the sum of squares of factor x3, with x1 and x2 in the model,
with all interactions (two and three factor-interactions) can be computed as follows:

SS(x3) = SS(x3|Yx1x2x12) = SS(Yx1x2x3x12x13x23)− SS(Yx1x2x12) (3.26)
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The third method computes the contribution to the variability explained by the regression
model due to adding an extra term, given that all other terms are already in the model, includ-
ing the interactions and higher-order factors involving the term under investigation. The sum
of squares of Type-III for the factor x3 of the model in Eq. (3.25) would be as follows:

SS(x3) = SS(x3|Yx1x2x12) = SS(Yx1x2x3x12x13x23)− SS(Yx1x2x12x13x23) (3.27)

In Eqs. (3.26) and (3.27) the term Y(·) represents the regression model with all the factors
and interactions indicated by the subscripts. Given the sum of squares associated with every
factor of the regression model, the sensitivity indices can be computed with a relationship that
is similar to that presented in Eqs. (3.2) and (3.3):

Sxi =
SS(xi)

SSR + SSE
(3.28)

Indeed, the sensitivity measures computed using Eq. (3.28) can be interpreted in terms of
the first- and total-order sensitivity indices. When SS(xi) is computed with the Type-II de-
composition (Eq. (3.26)), it describes the contribution of a factor considering, simultaneously,
all the interactions and higher-order effects involving it. Thus it provides information on the
total effect of that factor. Using the Type-III decomposition to compute SS(xi) (Eq. (3.27)),
instead, we obtain the contribution of each term of the polynomial regression model (e.g., x1,
x21, or x1x2) to the total variability computed with the regression model. This allows to com-
pute the contribution to the variance of individual effects in a way that is not allowed with
other approaches discussed in the previous section. And this is possible with no additional
simulations.

In the case of RBSA we inherit the terminology from ANOVA calling the effects of the
individual factors (computed with Eqs. (3.28) and (3.27)) first-order effects. In these cases it
would be more appropriate calling them individual-order effects since they refer to individual
terms in the regression model, therefore also the quadratic (e.g., x21) or interaction (e.g., x1x2)
terms. This is an added advantage of RBSA. With Sobol’ method, or FAST, it is only possible
to compute the actual first-order sensitivity indices (e.g., sensitivity indices of x1, x2, etc. ). The
presence of interactions or higher-order terms may only be detected by comparing the first-
and total-order sensitivity indices. The quantitative knowledge of the actual contribution of
an interaction between factors, or of an higher-order term, computed with RBSA is certainly
more insightful than the understanding of the fact that such effects may most likely be present
in the model.

The algorithm for RBSA

The RBSA algorithm begins with an educated hypothesis on the behavior of the model in
the design region of interest. Eq. (3.15) could be used, for instance, as an initial assumption.
However, if later in the process inacceptable lack-of-fit is detected, this assumption could be
reviewed by modifying the regression model adding cubic (e.g, x3i ) or higher-order interaction
terms (e.g, xixjxk), for instance. For the moment, let us use the model presented in Eq. (3.15).

The second step consists in the creation of an input sample matrix M, made of k columns
(the number of design variables taken into account) and N rows. Each row represents a design
vector with a value for each design variable; each row represents a sample point. The sample
size N shall be larger than the number of regression coefficients to estimate. For instance,
N > 2k+ k(k− 1)/2 samples are needed for the regression analysis on the model of Eq. (3.15).



44 Local Design Approach

M =


x11 x12 · · · x1k
x21 x22 · · · x2k

...
...

. . .
...

xN1 xN2 · · · xNk

 (3.29)

The output vector Y is obtained by executing the mathematical model with the rows of M
as inputs.

The next step is to build the matrix X that will be used to compute the sum of squares
and the sensitivity indices. The construction of X, and the methodology to compute the sen-
sitivity indices, will only be presented specifically for the model in Eq. (3.15). The derivation
for regression models of different orders is similar. First, the two matrices R1 and R2 with
dimensions N × k(k − 1)/2 shall be obtained by a re-arrangement of the columns of M.

M(1,1) . . . M(1,1) M(1,2) . . . M(1,2) . . . M(1,k-1)

M(2,1) . . . M(2,1) M(2,2) . . . M(2,2) . . . M(2,k-1)

...
. . .

...
...

. . .
...

. . .
...

M(N,1) . . . M(N,1) M(N,2) . . . M(N,2) . . . M(N,k-1)







R1 =

k-1 k-2 1

M(1,2) . . . M(1,k) M(1,3) . . . M(1,k) . . . M(1,k)

M(2,2) . . . M(2,k) M(2,3) . . . M(2,k) . . . M(2,k)

...
. . .

...
...

. . .
...

. . .
...

M(N,2) . . . M(N,k) M(N,3) . . . M(N,k) . . . M(N,k)







R2 =

k-1 k-2 1

The matrices R1 and R2 can be visualized in blocks. The first k − 1 columns of R1 are k −
1 replications of the first column of M. The second block of k − 2 columns is made of the
replication of the second column of M, and so on until the last-but-one column of M, which
appears only once. R2 is built with a different approach, but the visualization by blocks is
still possible. The first k − 1 columns of R2 are replications of the second to last column of M.
The second block of k − 2 columns consists of the third to last column of M, and so on until
the last column of M, which appears only once. Therefore, the elements of R1 and R2 can be
interpreted as follows: M(1,1) = x11, M(1,k) = x1k, and M(N,k) = xNk.

The coefficient-wise (i.e., Hadamart, indicated by ◦) product of R1 and R2 gives the matrix
R:

R = R1 ◦R2

Each element of R is obtained by multiplying the corresponding elements of R1 and R2,
i.e., Rij = R1(ij) ×R2(ij). R will be used to compute the interaction effects for the sensitivity
indices. The matrix X to be used for the regression analysis is obtained by re-arranging the
columns of M and R:

1 M(1,1) . . . M(1,k)

(
M(1,1)

)2 . . .
(
M(1,k)

)2 R(1,1) . . . R(1,k(k-1)/2)

1 M(2,1) . . . M(2,k)

(
M(2,1)

)2 . . .
(
M(2,k)

)2 R(2,1) . . . R(2,k(k-1)/2)

...
...

. . .
...

...
. . .

...
...

. . .
...

1 M(N,1) . . . M(N,k)

(
M(N,1)

)2 . . .
(
M(N,k)

)2 R(N,1) . . . R(N,k(k-1)/2)







X =
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Once X is available, SST , SSR, and SSE can be computed using the hat matrix H and the
relationships presented in Eq. (3.24).

Total-order sensitivity indices are computed for every design variable in the model. For
each of the k design variables a reduced version of X, namely Xred, needs to be build. Xred

is obtained by removing the columns of X that are related to all terms involving the related
design variable for which the total sensitivity index is computed. For instance, consider the
model of Eq. (3.15) with 3 design variables. The construction of Xred

x3 for the variable x3 would
be as shown below, by removing the white columns:

1 X(1,1) X(1,2) X(1,3) X(1,4) X(1,5) X(1,6) X(1,7) X(1,8) X(1,9)

1 X(2,1) X(2,2) X(2,3) X(2,4) X(2,5) X(2,6) X(2,7) X(2,8) X(2,9)

...
...

...
...

...
...

...
...

...
...

1 X(N,1) X(N,2) X(N,3) X(N,4) X(N,5) X(N,6) X(N,7) X(N,8) X(N,9)







x1 x2 x3 x2
1 x2

2 x2
3 x1x2 x1x3 x2x3

1 Xred
(1,1) Xred

(1,2) Xred
(1,4) Xred

(1,5) Xred
(1,7)

1 Xred
(2,1) Xred

(2,2) Xred
(2,4) Xred

(2,5) Xred
(2,7)

...
...

...
...

...
...

1 Xred
(N,1) Xred

(N,2) Xred
(N,4) Xred

(N,5) Xred
(N,7)







Xr ed
x3

=

Using Xred the regression sum of squares, SSredR , can be computed using Equations (3.23)
and (3.24):

Hred = Xred
(
XTredXred

)−1
XT,red (3.30)

SSredR = YT

[
Hred − 1

N
J

]
Y (3.31)

SSredR of a certain design variable xi indicates the variability that the model without the
contribution of the terms that involve xi is able to explain. The difference between the re-
gression sum of squares computed with Equations (3.23) and (3.24) using X and the reduced
regression sum of squares indicates the overall contribution of the design variable xi to the
variability detected by the full model (i.e., Type-II sum of square). Thus, a total-order sensitiv-
ity index may be computed as follows:

ST i =
SSR − SSredR

SSR + SSE
(3.32)

First-order sensitivity indices can be obtained in a very similar fashion for each term of the
model, including interactions and higher-order terms. For each term of the model Xred needs
to be build, as in the previous case. Xred is again a reduced version of the matrix X, but in this
case it is obtained by removing only the column of X that is related to the term of interest. For
instance, the construction of Xred

x1x2 for the interaction term x1x2 would be as follows:
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1 X(1,1) X(1,2) X(1,3) X(1,4) X(1,5) X(1,6) X(1,7) X(1,8) X(1,9)

1 X(2,1) X(2,2) X(2,3) X(2,4) X(2,5) X(2,6) X(2,7) X(2,8) X(2,9)

...
...

...
...

...
...

...
...

...
...

1 X(N,1) X(N,2) X(N,3) X(N,4) X(N,5) X(N,6) X(N,7) X(N,8) X(N,9)







x1 x2 x3 x2
1 x2

2 x2
3 x1x2 x1x3 x2x3

1 Xred
(1,1) Xred

(1,2) Xred
(1,3) Xred

(1,4) Xred
(1,5) Xred

(1,6) Xred
(1,8) Xred

(1,9)

1 Xred
(2,1) Xred

(2,2) Xred
(2,3) Xred

(2,4) Xred
(2,5) Xred

(2,6) Xred
(2,8) Xred

(2,9)

...
...

...
...

...
...

...
...

...

1 Xred
(N,1) Xred

(N,2) Xred
(N,3) Xred

(N,4) Xred
(N,5) Xred

(N,6) Xred
(N,8) Xred

(N,9)







Xr ed
x1x2

=

Using Xred the regression sum of squares SSredR is again obtained with Equations (3.30)
and (3.31). The first-order sensitivity index for each term of the model may be computed as
presented before:

Si =
SSR − SSredR

SSR + SSE
(3.33)

In this case the difference between the regression sum of squares computed with Equations
(3.23) and (3.24) using X and the reduced regression sum of squares indicates the Type-III sum
of squares indicated in Eq. (3.27).

This approach to compute the sensitivity indices, based on regression analysis, is probably
less intuitive than those presented in the previous sections, but it provides some advantages.
First of all, the number of model evaluations, that is usually the most resource-consuming part
of the analysis, is reduced (a numerical comparison is provided in Section 3.2.5). Second, the
RBSA provides quantitative information (rather than qualitative as most of the screening or
sample-based SA methods) also on the effects of interactions and higher-order terms on the
performance of interest (rather than only first-order and total sensitivity indices as the method
of Sobol’ or FAST). The fact that higher-order models are implemented, rather than linear
models only, allows to explain a larger part of variability when compared to the SRCs method,
for instance. One possible drawback of RBSA is that the validity of the results depends on the
lack-of-fit of the regression model with respect to the sample data. Indeed, special attention
must be paid to the ratio between the regression and the total sum of squares. If SSR is close to
SST , then the regression model is able to account for a large part of the output variance, and as
a consequence the sensitivity indices are meaningful measures. If this is not the case, lack-of-
fit is present meaning that important terms are missing from the initially assumed regression
model. Lack-of-fit is important to decide whether to proceed with sensitivity analysis anyway
or to modify the initial assumption and increase the order of the regression model by adding
extra terms, e.g., higher-order terms like cubic or higher-order interactions.

Testing for model adequacy

The quality of the regression model, used to fit the sample data is fundamental for the RBSA.
As mentioned already, the sensitivity indices computed using RBSA indicate the contribution
of the factors to the variance of the response. This is based on the decomposition of the regres-
sion sum of squares only, not taking into account the possible error sum of squares, arising
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Figure 3.9 Effect of the number of samples on the quality of the model.

when lack-of-fit is present. The presence of lack-of-fit could be related to the fact that impor-
tant terms have been neglected, or simply that a polynomial regression model is not entirely
adequate to reproduce the relationships between the design variables, e.g., in case of exponen-
tial or sinusoidal effects. Testing for model adequacy is a fundamental step since it is a means
to validate the results of the sensitivity analysis, allowing to mitigate the effect of the lack-of-fit
on the sensitivity indices by an iterative approach (see also Section 3.2.3).

The coefficient of determination, R2, allows to detect the fraction of the model output vari-
ance accounted for by the regression model:

R2 =

∑N
i=1

(
Ŷi − Ȳ

)2
∑N

i=1

(
Yi − Ȳ

)2 =
SSR
SST

0 ≤ R2 ≤ 1 (3.34)

Very often the adjusted coefficient of determination, R2
adj , is used instead of R2:

R2
adj = 1−

(
N − 1

N − (l + 1)

)(
1−R2

)
0 ≤ R2

adj ≤ 1 (3.35)

where l indicates the total number of regressors in the polynomial model (without the constant
term β0).

The motivation for introducing R2
adj is that R2 increases when terms are added to the

model, even if those terms do not provide a relevant contribution to the variance (Kuri and
Cornell, 1996). Thus, it cannot be used as a meaningful comparison of regression models
with a different numbers of terms. R2

adj does not suffer from this phenomenon. It only in-
creases if relevant terms are added to the model, and when non-relevant terms are considered
it decreases, thus providing more precise information on the general validity of the regression
model (Kuri and Cornell, 1996).

Values of R2
adj larger than 0.9 usually suggest a good fit of the data. The extreme case

in which R2
adj is equal to one, indicates that the regression model is able to account for all

the variability of the model output, but this does not always mean that the regression model
perfectly matches the true one in all points of the design region, as shown in the example of
Figure 3.9.

A fourth order model Y = x4 is used as the true model (i.e., the model from which the sam-
ples are collected) in the design region spanned by x ∈ [−5, 5]. The trends of the true model
are represented by the thick lines of Figure 3.9, while the dashed lines represent the behavior
of a second-order regression model fitted using 3, 5, 20, and 100 sample points, indicated by
the circles. Three sample points are sufficient to estimate the three coefficients needed for a
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Figure 3.10 Effect of the order of the regression model on the quality of the regression.

second-order model of only one variable, but no degrees of freedom are left for the error, thus
producing the result of the upper-left graph of Figure 3.9. In that case, both coefficients of de-
termination indicate that the regression model perfectly fits the data. Indeed, the dashed line
passes through all the sample points. However, the second-order regression model does not
properly match the true one. With an increasing sample size, the estimation of the regression
error becomes more and more reliable, while the quality of the regression model improves, but
not significantly already after five sample points.

Increasing the sample size, is in general only partially beneficial to the reduction of the
lack-of-fit. Increasing the order of the regression model could substantially help, instead, for
a better reconstruction of the underlying relationships between the design variables. For in-
stance, in case of the previous example, a fourth-order model with only 6 samples could al-
ready eliminate the lack-of-fit, instead of using up to 100 samples with a quadratic model.
However, the solution may not always be so straightforward. In Figure 3.10 the results from
the regression analysis of the model Y = sin(x) + 7 sin(x)2 + 0.1x3 sin(x), with x ∈ [−π, π], is
presented. The order of the regression models is increased from 2, top-left, to 9, bottom-right,
with a constant number of samples, i.e., 20. As in the previous example, the true model is
represented by the thick lines, the dashed lines represent the behavior of the model regressed
on the sample data, indicated by the circles. The results in Figure 3.10 demonstrate that there
may be cases in which the quality of the analysis can be improved by increasing the order of
the regression model, rather than adding samples.

Concluding, there is not a general and guaranteed approach to identify lack-of-fit. It is
advised, though, to build the regression models with a number of samples that exceeds the
actual number of terms needed to build the model. In this way, more degrees of freedom
for the estimation of the error are provided, avoiding to obtain misleading values for R2 or
R2
adj , as shown in Figure 3.9. The discussion on the model adequacy provided in this section

is limited to the implementation needed for the proposed RBSA methodology. For a more
complete analysis the interested readers may consider the books of Draper and Smith (1998)
and Kuri and Cornell (1996).

The iterative approach to RBSA

In Table 3.7 a list of suggested regression models of increasing order, with the minimum num-
ber of samples required to compute all the coefficients, is presented. This particular choice
is merely indicative, it shall be considered as an example to explain the iterative approach to
RBSA. The minimum number of samples for every regression model is equal to the number of
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Model order Regression model Minimum number of samples
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Table 3.7 Suggested regression models for the iterative procedure. k is the number of design

variables.

factors present in the model plus extra sample points equal to the number of variables of the
model. The addition of at least k extra sample points is suggested to prevent the phenomenon
described in Figure 3.9. The decision to modify the initial assumptions on the regression model
depends on the adequacy of the current one, determined by R2

adj .
At the beginning of the process, the minimum number of samples for fitting a linear model

is collected. IfR2
adj is lower than a certain threshold value, e.g., 0.9, the sample size is increased

(by a multiple of k, for instance), and R2
adj is computed again. During the iterations, each time

that the number of samples is sufficient to evaluate the next higher-order regression model,
see Table 3.7, also R2

adj of that model is tested. This procedure is repeated until at least one
regression model provides satisfactory results, or if for increasing regression-model order and
increasing sample size the value of R2

adj does not significantly improve. RBSA is then com-
puted with the regression model having the best performance in terms of R2

adj .
At first sight, this iterative approach may seem inefficient, due to the re-sampling of the

design region. However, with particular care on the sampling technique, the samples taken in
one iteration can be re-used also for the subsequent one, as discussed already in Section 3.1,
and as demonstrated in the following example.

3.2.4 Test case: the communication and power subsystems, sensitivity analysis

The mathematical models used for this example and all the assumptions needed to limit the
analysis are described in Appendix A. The main purpose of the discussion in this subsection is
to better explain the utilization of the iterative RBSA method and to show, step-by-step, its im-
plementation starting from sampling the design space with the Mixed-Hypercube approach to
the computation of the sensitivity indices. As described in Appendix A, we set up an analysis
of the communication and power subsystems using five design variables, see Table 3.8, two
performance indicators (namely, the down-link margin and the total mass of the two subsys-
tems) and one constraint represented by the down-link margin itself demanded to be larger
than 4 dB.

The three discrete variables give rise to a three-dimensional factorial design with 12 pos-
sible factor-levels combinations in total. For each combination of discrete-variable levels the
RBSA routine initially generates 7 (2+5, see Table 3.7) sample points using a Sobol’ sequence.
With 7 sample points, a linear regression model is computed for both performances. In Figure
3.11 we present the results of the linear regression on the continuous variables, with the dis-
crete variables at the lowest level, i.e., a Horn antenna, a Silicon-cell solar array, and a TWTA
transmitter.

The coefficients of determination indicate that the subsystems mass is well represented by
a linear relationship. The down-link margin, instead, could be better approximated using a
higher-order model. The decision whether to re-sample or continue with the RBSA shall be
based on the value of R2

adj . In this case a threshold of R2
adj = 0.95 is used, which induces the
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Intervals
Design Vari-
ables

Code Min Max Levels

Output RF power [W] A 1 50 −
Antenna diame-
ter

[m] B 0.05 1 −

Type of Antenna [-] C 1 2 2
Type of Solar Ar-
ray

[-] D 1 3 3

Type of Transmit-
ter

[-] E 1 2 2

Table 3.8 Settings of the design variables for the design of the communication and power
subsystems.
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Figure 3.11 Linear regression of the performances using 7 sample points. On top, we show the
side views of the surfaces.

iterative RBSA to add sample points to the analysis. A linear regression model with interaction
terms is not sufficient to reach the threshold, which can be met only with a quadratic regression
model. In this case we increment the number of sample points from 7 to 22 (2+10+10, see Table
3.7). The indications of Table 3.7 are only for the minimum number of sample points. The
actual number of sample points to use, for each model order, is up to the user of RBSA. It
depends on many aspects, including the type of model that one is using. In Figure 3.12, the
results of the quadratic regression on the performances are shown. The white circles represent
the previous 7 sample points while the gray diamonds are the additional samples produced
for the subsequent two iterations of the RBSA, i.e., the linear model with interaction effects
and the quadratic model. As stated in the previous section, and confirmed by the results
presented in Figure 3.12, the Sobol’ sequence provides additional samples that do not overlap
with the previously generated ones placing them at a large distance between each other. This
characteristic is very relevant for an efficient re-utilization of the previous model simulations,
that is the time-consuming part of the method. The coefficients of determination, in this case,
confirm that a quadratic regression model is suitable for representing the variability of the
performances in the design region of interest, even in the case of the down-link margin.

In Figure 3.13 we show the difference between the linear and quadratic regression model
for the Down-link margin.

With the same process described for the first combination of discrete design variables, the
mathematical models of the communication and power subsystems are executed on the sam-
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Figure 3.12 Quadratic regression of the performances. ◦ Previous sample points. ♦ Additional
sample points.
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Figure 3.13 Comparison between the linear and quadratic regression model for the down-link
margin performance [dB].

ple points for the other discrete-variable combinations. Then, with the RBSA the sensitivity
indices can be estimated, using the relationship of Eqs. (3.32) and (3.33). In Figures 3.14 and
3.15 the total order and the first order sensitivity indices for the subsystems mass and the down-
link margin performances, respectively, are shown. The bars represent the sensitivity indices,
i.e., the contribution of the factors indicated on the horizontal axis of the graphs, their inter-
actions (when the product of two factors is indicated), and their quadratic effects (when the
product of the factor by itself is indicated) to the variability of the performances. A sensitivity
index equal to 0.2, for instance, indicates a contribution of that factor to the variance of the
performance of interest equal to 20%. The contribution of all other effects that are not explic-
itly shown in the bar plots, including the regression error, are encapsulated in the bars named
Other.

The influence of the Antenna Diameter (B) and the Output RF Power (A) on both the per-
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Figure 3.14 Sensitivity indices obtained with the Regression Based Sensitivity Analysis.
Sub-systems mass.


