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Design Variables Code Selected baseline

Eccentricity [-] A 0.02
Semi major Axis [km] B 9400
Inclination [deg] C 19.7
Payload Aperture Diameter [m] D 0.817
Satellite Transmitters Output Power
(RF power)

[W] E 1

Satellite Aperture-Antenna Diameter [m] F 0.1
Telemetry Data Rate [Mbps] G 1.25
Type of Solar Cells [-] H 8
Type of Batteries [-] I 9
Payload TRL [-] J 3
Launcher [-] K 2

Table 4.8 Design-variable settings for the selected design baseline.

4.3 Summary

In this chapter we presented global methods for supporting the engineering team during the
design of complex space systems. Global MOO was used to support the design of complex
space-mission architectures, starting from the mission objective and the major top-level re-
quirements, by automatically generating and evaluating different scenarios.

As an example, a study on a hypothetical future space station to be implemented as a safe
heaven for lunar missions and as a re-usable spaceship for deep-space missions is presented.
The method generates different architectures with the definition of the systems and the phases
in which they will be used. The systems taken into account comprehend modules for human
support in space and propulsion modules. The mission architectures are then quantitatively
and qualitatively evaluated. A comparative scenario cost-analysis is performed taking into
account mission architecture, masses, technical complexity and system design. Finally, a mis-
sion success qualitative figure is estimated through mission duration, complexity and systems
technology readiness level. The results demonstrated that a Skylab-like space station, thus
with a single module, performs better than a multi-module space station in most of the cases.
A dual-volume space station would allow for an increased level of the performance, albeit at
a much higher cost.

Previous studies demonstrated that not all the mathematically-optimal solutions are also
optimal from an engineering point of view. Robustness should also be taken into account.
Therefore, in the second part of this chapter we presented a methodology for post-optimality
studies to assess the robustness of the Pareto-optimal solutions, computed with an MOO al-
gorithm. The proposed Pareto-Robust Optimization Approach (PROA) is based on AMH for
sampling the design region in the neighborhood of the Pareto-optimal solutions. It allows for
estimating a metric for the Pareto-Robustness and contributes to improving convergence of
the known Pareto-front towards the true Pareto-front. The results demonstrated that PROA is
able to compute the Pareto-robustness of the mathematically-optimal solutions correctly, steer-
ing the attention of the design team to the most Pareto-robust regions of the design space. The
Pareto-Robustness metric discussed in this chapter is independent from the specific method
used to compute the Pareto front, since it is solely based on the Pareto-dominance principle
and it is applied after the computation of the Pareto front itself. The analysis of the test case of
an Earth-observation mission has shown that the combination of a global MOO method with
PROA effectively steered the design process, limiting the effort of the engineering team in the
search for a single optimal and robust (Pareto-robust) design region. Indeed, the design region
selected by PROA provided solutions far from three of the constraints, while still remaining
close to the initially known Pareto front. The graphical information on sensitivity analysis and
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contour plots can be considered a valuable aid for the engineering team, providing much more
insight in the problem than any other single-point design methodology. In this case, the solu-
tion identified as the most Pareto-robust one can be considered quite uncommon, but still very
reasonable due to the assumptions, presenting a satellite in a non sun-synchronous Medium
Earth Orbit.



Chapter 5
Robust Optimization

As shown in the previous chapter, the Pareto Robust Optimization Algorithm is able to pro-
vide robustness information to variables dispersion of the system configurations (the solution
to the optimization problem) that are considered Pareto-optimal. This approach only focusses
on the solutions that are on the PFknown. PROA is fast, relatively easy to implement and
computationally cheap, but there is the risk of missing out solutions that may be much more
robust than these on the Pareto front: there may be robust solutions in regions of the objective
space that are slightly away from PFknown. In this chapter we propose a robust optimization
approach that takes robustness into account already from the beginning of the optimization
process. We use the robustness concept to determine the effect of uncertainties on the design
of the system.

Uncertainties in design variables and environmental factors are common in many engi-
neering problems, and they must be taken into account when searching for robust optimal
solutions. In robust MOO it is common practice to optimize the average performance instead
of the nominal objective functions. To compute average performance, and to determine the
compliance of the solutions to the constraints, sampling is needed in a neighborhood around
each individual and the performance of each sample point must be evaluated. This increases
the computational cost of robust optimization. In this chapter we present a repository-based
approach that reduces the number of evaluations needed during robust optimization. Unlike
most of the approaches available to date, we introduce methods to keep the joint probability
density function of the input variables intact, when pre-existing points from the repository
shall be used. This allows for computationally cheaper robust optimization also in the pres-
ence of non-uniform uncertain-variable distributions. The robust optimization of unmanned
entry capsules, considering continuous shape-variation models, aerothermodynamics, flight
mechanics, and thermal-protection system models at the same time is a valuable test-bed for
the method presented here. In this chapter we discuss the results of minimizing the mass of
the capsule(s) while maximizing the internal volume as well as the re-usability. In Section
5.1 we introduce the robust-optimization problem and relate it to the atmospheric entry vehicle
test-case that is described in Appendix D. In Section 5.2 we refer to work in literature that
is related to our original contribution to the field of robust-optimization. In Section 5.3 the
proposed Double-Repository Archive Maintenance Scheme is presented, while in Section 5.4
we briefly describe the atmospheric entry vehicle problem that we consider. In Section 5.5 we
provide the results of the analysis and in Section 5.6, finally, conclusions are drawn.

5.1 Introduction

The conceptual design of entry vehicles is commonly done in a number of sequential steps.
One usually begins with a generic shape to get a first estimate of the aerodynamic properties
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and uses a mass-point model for the initial trajectory design. Gradually, more detail is added
and the outer shape is changed to accommodate specific mission and/or trajectory require-
ments.

This shape will largely define the aerothermodynamic characteristics of the vehicle. Since
aerothermodynamic challenges, such as vehicle heating, remain one of the most difficult prob-
lems in atmospheric re-entry, an exploration of the possible shapes for a vehicle early in the
design is advisable. It is advantageous to use a continuous model for the analysis, so that
one is not limited to the analysis and comparison of a limited number of shapes, but is in-
stead free to analyze any shape in the design space (Sudmeijer and Mooij, 2002). With only
5 geometric parameters it is possible to already model the geometry of Apollo-like shapes, as
demonstrated later in Section 5.4.

The internal layout of the subsystems is usually only addressed at a later stage and the
designers have to make sure that the mass properties (total mass, location of the center of mass
and inertia tensor) meet the requirements. Deviations from these requirements can jeopardize
the entire mission, because the loads on the vehicle may change, or the stability and control
properties cannot be handled by the Guidance, Navigation, and Control (GNC) system any
more. Further, uncertainties related to the entry conditions, environment, the characteristics
of the thermal-protection system, and the design and allocation of the equipment on board,
pose the multidisciplinary problem to be particularly cumbersome.

In this chapter we propose a multidisciplinary, robust optimization approach. This ap-
proach is then used for the design of unmanned entry capsules in support of the activities of
the International Space Station (ISS). The problem is handled by minimizing the total mass of
the capsules, while maximizing the internal available volume for carrying payload. As a third
objective, we propose the maximization of the re-usability of the capsules, which can be seen
as an attempt to push towards cheaper and more efficient solutions.

The shape, aerothermodynamic, and dynamic mathematical models are adapted from the
work of Dirkx and Mooij (2011). It was demonstrated that the proposed simplified aerody-
namic model can predict the aerodynamic forces and moments for ballistic shapes sufficiently
well for use at a conceptual design stage. The multidisciplinary design framework is now en-
riched with a Thermal-Protection System (TPS) model, encompassing re-usable and ablative
materials, as well as active cooling mechanisms. This allows for a complete conceptual design
of an entry capsule.

Uncertainties in the design variables and environmental factors are integrated into the op-
timization process to handle probabilistic constraints. A probabilistic constraint is a constraint
in the design or objective space that shall be satisfied with a pre-defined confidence level. The
optimizer thus drives the search of optimal capsules towards those solutions that have the
best expected performance under uncertain conditions, and that also meet the constraints with
a given confidence level, pre-selected by the designer/decision-maker. A sampling-based ap-
proach is used to estimate the expected performance of the capsules and to determine the
compliance with the probabilistic constraints. For each design point to be evaluated by the
optimizer, a set of additional design points is generated around it, according to the joint Prob-
ability Density Function (PDF) of the uncertain variables and uncertain environmental factors,
and evaluated. To limit the computational effort of the robust optimization, we adopt a double-
repository archive maintenance scheme to save all the design-variable combinations computed
during the process such that previous design points can be reused at future steps. The double-
repository scheme allows to preserve the joint PDF of the uncertain input variables, therefore
it is generally applicable with any type of multivariate distribution as input.
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5.2 Related work

Although literature on robust (multi-objective) optimization is available, it seems to be still
at a pioneering stage. In this section we summarize the main ideas and concepts regarding
robust optimization that literature provides, and briefly discuss the main contribution of the
proposed approach.

5.2.1 A survey on robust optimization

Jin and Branke (2005a) recognize that explicit averaging is the most common approach to ro-
bust optimization. This means that the expected value of the performance is taken into account
instead of the value computed with a single point in the design space. The expected value is
usually computed with Monte-Carlo integration (Branke, 1998):

fexp (X) =
n∑
i=1

1

n
f (Xi) (5.1)

The model is indicated by f , whileX represents a given point in the design space. In a problem
with k design factors, X = [x1, x2, . . . , xk]. In this case Xi = X + δi, where the vector Xi is
a set of n sample points in the proximity of X generated by the uncertainties in (some of) the
design variables distributed according to the joint PDF (δi is a realization from the joint PDF,
δi = [δ1, δ2, . . . , δk]).

The expression in Eq. (5.1) is also called multi-objective robust solution of type I (Deb and
Gupta, 2005). Deb and Gupta (2005) propose also an alternative way of approaching a multi-
objective robust optimization problem introducing the so-called solutions of type II. In this
case, the problem is to optimize the nominal objectives f (X) given the following constraint:

‖fexp (X)− f (X)‖
f (X)

< η (5.2)

The optimizer tends towards these solutions that are optimal, given a normalized change
in the perturbed objective vector with respect to the nominal objective vector, restricted to a
specified limit η.

It is also common that multi-objective algorithms are developed for robust design, where
one of the objectives is the expected value and the other is the variance of the performance
(Hassan and Crossley, 2008; Luo and Zheng, 2008b). In these cases the underlying problem is
not multi-objective, and the interest of the designers is to capture the trade-off between robust-
ness and optimality. With true multi-objective problems the approach of optimizing for both
the expected value and the variance of each objective will become computationally expensive
even with only few objectives, and the final Pareto front would be difficult to interpret.

Constraints in MOO engineering problems cannot be neglected, as, for instance, designing
re-entry vehicles, as presented here. With robust-optimization problems the constraints be-
come probabilistic. The reason is that they have to be verified considering a certain envelope
of the joint PDF of the design variables and uncertain factors in the design space, and a certain
envelope of the joint PDF of the performance on the objective space. Robust multi-objective
optimization, with constraints, is even less explored in literature.

The robust solutions of type II could be considered suitable for dealing with probabilistic
constraints. This is due to the fact that η gives rise to an envelope around the nominal objective
vector. The constraints are then checked considering the envelope, not only the nominal objec-
tive vector. The drawback is that η is not necessarily linked to the probability distribution of
the design variables, nor to the probability distribution of the objectives. Deb et al. (2009b) pro-
pose an integration of reliability-based concepts into evolutionary multi-objective algorithms
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Figure 5.1 Schematic example of the effect of the probabilistic constraints in the design space
(left) and objective space (right). The shaded areas represent the constraints. The
dashed lines are the m× σ envelopes of the joint PDF around each specific design
point in both the design and objective space.

to deal with this challenging problem. They consider the utilization of analytical methods to
compute the envelope of the joint PDF in the design space that provides a pre-defined con-
fidence level. Then, the constraints are checked given that particular envelope rather than a
single point in the design space.

This means that the constraints have to be satisfied with that specific pre-defined confi-
dence level, m × σ. The parameter σ is the standard deviation of the joint PDF, while m is a
factor specified by the designers. The analytical approach is feasible when the constraints are
in the design space only. When the constraints are also defined in the objective space it is not
generally valid anymore. The joint PDF of the performance given the joint PDF of the input
may not be trivial to compute analytically, especially in the case of complex non-linear prob-
lems, see Figure 5.1, for instance. Sampling-based approaches may be useful: given a sample
in the design space computed with the input joint PDF, the joint PDF of the performance can be
estimated using mixture models, for instance, and thus the m× σ envelopes can be estimated
as well (McLachlan and Peel, 2000; Marin et al., 2005).

Sampling-based approaches can provide a way of checking probabilistic constraints in the
objective space, but it is often argued that this option may come at the expense of a larger com-
putational cost. This comment is true in general, also for unconstrained robust-optimization
only. Indeed, Eq. (5.1) needs multiple sample points to be computed, and its accuracy in-
creases proportionally to the sample size. Possible solutions proposed to reduce the com-
putational cost of robust optimization include the use of variance-reduction techniques for
sampling (Loughlin and Ranjithan, 1999), for instance, or also using neighborhood solutions
previously computed during the optimizations process (Branke, 1998). Some other authors
also propose repository-based approaches to save these neighborhood solutions in such a way
to maintain a well-spread distribution in the repository (Kruisselbrink et al., 2010). Paenke
et al. (2006) propose, instead, to use metamodels computed with neighborhood solutions and
to perform the uncertainty analysis using the metamodel instead of the real model, to save
computational time.

The main drawback that we see in the direct utilization of neighborhood solutions from a
repository, is that this approach cannot be used in the presence of specific joint PDF of the input
variables. It will work only when the input variables are uniformly distributed (and that is not
necessarily always the case) and when there is already a sufficient number of sample points
in the design space. Without a mechanism for keeping the joint PDF of the uncertain input
variables, repository-based robust-optimization cannot be used in general and the advantage
obtained by re-using old solutions cannot be exploited.
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5.2.2 Main contributions

In this chapter we propose a double-repository archive maintenance scheme, to allow for re-
utilization of old solutions in the design space and at the same time to preserve the joint PDF
of the input factors (?). The scheme allows for the storage of two separate repositories. One
repository contains the values of the design variables distributed according to the joint PDF in
the design space, this is the real repository. The other repository contains the values of the same
design variables in a non-dimensional, uniformly-distributed space, this is the fictitious reposi-
tory. Specific rules for transforming the design points from the real to the fictitious repository,
and vice versa, are discussed later in this paper. Whether a certain design point in the real
repository is suitable to be reused or not, is determined on the basis of its Euclidean distance
from the actual design point. The threshold Euclidean distance that allows to determine if two
design points are close enough is dependent on the joint PDF. A large value of the joint PDF
means a large value for the threshold Euclidean distance, and vice versa.

5.3 Double-repository archive maintenance scheme

The approach we propose to efficiently incorporate robustness into an optimization process is
based on the Unified Sampling Method (USM) presented in Chapter 3 of this thesis. The main
purpose of the USM is to allow for taking all types of uncertainty distributions into account,
also epistemic (i.e., , where the designer only estimates the probability intervals), exploiting the
properties of a low-discrepancy sampling technique like the one developed by Sobol’ (Sobol’,
1979; Antonov and Saleev, 1979). The basic idea is to uniformly sample in the probability
space (between 0 and 1) and then to transform the sample to the actual design space using the
Cumulative Distribution Function (CDF). In Figure 5.2 we show an example of this procedure
considering two independent, uncertain design variables that are distributed according to a
Gaussian distribution.

First, the real design space (horizontal axis of Figure 5.2(a)) is subdivided into uniform in-
tervals that are transformed to the probability space using the inverse Gaussian CDF (vertical
axis of Figure 5.2(a)), see the dashed lines of Figure 5.2(a). This procedure allows us to sub-
divide the probability space into bins with a width proportional to the value of the PDF. We
call these bins Basic Probability Assignments (BPAs). Then, a uniform sampling is performed
on the probability space, as shown in Figure 5.2(b), obtained with 300 sample points from a
Sobol’ sequence. The choice of using a Sobol’ sequence is due to its characteristic of being a
space-filling sampling method that creates a well-distributed set of points. Any other sampling
method can be used for this step.

At this point, the CDF is used to transform the design points in the actual design space, as
shown in Figure 5.2(c), see also the solid lines of Figure 5.2(a). As can be seen from Figure 5.2(c)
the sample points are distributed according to a bi-variate Gaussian distribution, as expected.
The number of BPAs considered in the double transformation will affect the quality of the final
distribution, the more the better. A trade-off exists, however, with the speed of computation of
the final joint PDF: using many BPAs will require a higher computational time, in proportion
to the computational cost of each single simulation. According to our experience 30 to 50 BPAs,
for each variable, provide already a good balance between the two.

The double-repository archive maintenance scheme is based on the implementation of the
principle explained in Figure 5.2 during the whole optimization process. To obtain a robust
estimation of performance and constraints, by preserving the input joint PDF, a sample as
shown in Figure 5.2(c) needs to be generated and evaluated for every single design point that
the optimizer analyzes. Doing so, Eq. (5.1) can be evaluated and the probabilistic constraints
can be checked as previously discussed. Suppose to begin an optimization process evaluating
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Figure 5.2 Unified Sampling Method. (a)Cumulative Density Function of a Gaussian distribution of
one single variable. (b)Uniform sampling in the probability space of two independent
variables. (c)Resulting sampling in the design space.

the first design point. A sample is generated from the joint PDF, then Eq. (5.1) is computed,
constraints are checked for the desired confidence level, and all these points are saved in the
repositories, that were empty prior to the beginning of the optimization. The sample points
are saved in two distinct repositories. The real repository contains the true values of the design
points, the points computed as shown in Figure 5.2(c). The second repository, the fictitious
repository, contains the design points in a non-dimensional space instead. They are the points
computed as shown in Figure 5.2(b).

When the next design point needs to be evaluated, another sample is generated. At this
stage, there are already design points in both repositories. To determine whether some of these
pre-existing points can be re-used or not we use the approach schematically shown in Figure
5.3. Using the non-dimensional version of the new sample, the crowding distances for each
point are computed. The crowding distance is a measure used to understand if a pre-existing
sample point is close enough to the sample point, which has yet to be evaluated. If so, the
new sample point is substituted with the pre-existing one, thus saving computational time.
In Figure 5.3(a), the black dots represent the sample points in the non-dimensional space, the
radius of each black circle represents the crowding distance of that specific point instead. The
crowding distance depends on the BPA to which the sample point belongs. The smaller the
BPA, the smaller the crowding distance. In particular, for each BPA the crowding distance is
determined as half the minimum distance between two sample points belonging to the same
BPA. If there is only one sample point in one BPA, instead the crowding distance is determined
as half of the smallest dimension of the BPA itself. This is done because, for events with smaller
probability (i.e., towards the edges of Figure 5.3(a)) the value of the PDF gets more sensitive to
small offsets. Once the crowding distance is computed, the sample is transformed and checked
against the points in the real repository.
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Figure 5.3 Double Repository Archive Maintenance Scheme, example. (a) The black dots are the
sample points in the non-dimensional space, the radius of each black circle represent
the crowding distance of that specific point. (b) The gray points are these belonging to
the real repository already, coming from previous evaluations, the black dots are the
point belonging to the new sample.

In Figure 5.3(b), the gray points are those belonging to the real repository already, coming
from previous evaluations, and the black dots are the points belonging to the new sample
instead. To preserve the joint PDF, the sample points are checked for each single BPA of the
new sample. It is therefore guaranteed that, also in case of replacement of the design points
with points already in the repository, in each BPA the number of sample points remains equal
to that of the original sample. For instance, in Figure 5.3(b) Zoom 1, the design point A is
substituted by the pre-existing design point 1, because they are in the same BPA and because
the distance A-1 is less than the crowding distance of A. In Figure 5.3(b) Zoom 2, the design point
D cannot be substituted by the pre-existing design point 2. Even though they are in the same
BPA, their relative distance is larger than the crowding distance of D. Further, even though
there are more pre-existing points in that BPA, they are not taken into account because the
original BPA only presents one design point, namely point D.

With the same reasoning one can conclude that point E is substituted by point 3 and that no
more points are added to that specific BPA. This is a clear example of the fact that a joint-PDF
preservation mechanism is necessary. Considering all the sample points in this BPA will dis-
rupt the distribution, leading to inaccurate estimation of the average performance and prob-
abilistic constraints. The final result of the substitution is presented in Figure 5.4. This repre-
sents the true repository with both the samples from the first (gray dots) and the second (black
dots) iteration of the optimization process. We would like to mention again that the gray dots
have already been evaluated while the black dots have not. The squares in Figure 5.4 are the
pre-existing points that substitute some of the points in the new sample, indicated by the cross
symbols. In this case it means that 11 simulations are not executed and that Eq. (5.1) and
the constraints are evaluated with the values from the simulations coming from the remaining
black dots plus the values from the old simulations (the squares). This approach for sampling
the design space using the double-repository is called recursive sampling.
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Figure 5.4 Double Repository Archive Maintenance Scheme, final sample. • Sample points
already in the real repository. • New sample points. 6 points from the new sample that
are not simulated. � points from the repository that are re-used.

5.3.1 Validation of the double-repository archive maintenance scheme

The double-repository archive maintenance scheme is validated with some test problems
found in literature. The first set of problems is derived from the work of Deb and Gupta
(2005), see Eqs. (5.3) to (5.5).

The test problem 1 can be expressed as follows:

Minimize (f1 (X) , f2 (X)) = (x1, h (x1) + g (X)S (x1))
Subject to 0 ≤ x1 ≤ 1 , −1 ≤ xi ≤ 1 ∀i = 2, 3, . . . , k ,
where h (x1) = 1− x21 ,

g (X) =
∑k

i=2

(
10 + x2i − 10 cos (4πxi)

)
,

S (x1) = α
0.2+x1

+ βx21

(5.3)

Here, α = 1 and β = 1 are used. The test problem 2 is identical to test problem 1, except
that here α = 1 and β = 10. The test problem 3 can be expressed as follows:

Minimize (f1 (X) , f2 (X)) = (x1, h (x2) + g (X)S (x1))
Subject to 0 ≤ x1, x2 ≤ 1 , −1 ≤ xi ≤ 1 ∀i = 3, 4, . . . , k ,
where h (x2) = 2− 0.8 exp

(
−
(
x2−0.35
0.25

)2)− exp
(
−
(
x2−0.85
0.03

)2) ,

g (X) =
∑k

i=3 50x2i ,
S (x1) = 1−√x1

(5.4)

The test problem 4, finally, can be expressed as follows:

Minimize (f1 (X) , f2 (X)) = (x1, h (x1, x2) + g (X)S (x1))
Subject to 0 ≤ x1 ≤ 1 , −0.15 ≤ x2 ≤ 1 , −1 ≤ xi ≤ 1

∀i = 3, 4, . . . , k ,
where h (x1, x2) = 2 − x1 − 0.8 exp

(
−
(
x1+x2−0.35

0.25

)2) −
exp

(
−
(
x1+x2−0.85

0.03

)2) ,

g (X) =
∑k

i=3 50x2i ,
S(x1) =1-

√
x1

(5.5)

The results of the validation are shown in Figures 5.5 and 5.6. In particular, in Figure 5.5
we present the solutions to the test problems 1 to 4, according to the definition of robust-
ness in Eq. (5.1), i.e., multi-objective robust solutions of type I. The results are presented with



5.3 Double-repository archive maintenance scheme 127

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

(a) (b)

(c) (d)

δ = 0.01
δ = 0.009

δ = 0.008

δ = 0.007

Nominal Pareto Front
Nominal Pareto Front

δ = 0.01

δ = 0.009 δ = 0.008

δ = 0.007

Nominal Global 
Pareto Front

Nominal Local 
Pareto Front

Robust Pareto Front
(mean local front) Robust Pareto Front

Nominal Global 
Pareto Front

Nominal Local 
Pareto Front

Mean global front Mean global front
Mean local front

Figure 5.5 Robust Pareto-front (type I robustness) of the test problems 1 to 4 with uniform
distribution of the uncertain design variables. On the axis there are the objectives f1

and f2. The symbol δ indicates the width of the uncertain boundaries for the design
variables. Graphs (a) and (b) were obtained with the values of δ indicated in the figure.
Graphs (c) and (d) were obtained with δ = 0.03.

an increasing value of δ, that represents the extent of the uncertain boundaries of the design
variables. Therefore, δ = 0.001 corresponds to an uncertainty of ±0.1% around the design
variables, for instance. With increasing values of δ the robust solutions gets more and more
distant from the nominal optimal Pareto front, see Figure 5.5(a) and (b). The mean effective
fronts are generated as a consequence. This effect is typical when considering robust solu-
tions of type I. All solutions that lie on the mean effective fronts are identical to those lying
on the nominal Pareto-optimal front in terms of design-variable settings, in the case of Figure
5.5(a). The shape, instead, is quite different and presents an interesting stimulus for discus-
sion. The mean effective fronts are non-convex, compared to the nominal Pareto front that is
convex, instead. This characteristic can potentially induce a robust-optimization problem to
be more complex to be solved by an optimizer. Non-convex problems are harder to solve by
an optimizer. In Figure 5.5(b) not all the solutions corresponding to the nominal Pareto front
are then also considered robust solutions. The introduction of robustness, makes part of the
Pareto front being dominated in the robust Pareto front (see dashed lines). This means that for
δ > 0.007 there are original solutions that are so sensitive to variables perturbation that they do
not lie on the robust Pareto-front. In Figure 5.5(c) and (d) the robust Pareto front was obtained
with δ = 0.03. These two problems present a global and local nominal Pareto front each. The
solid lines represent the mean effective local and global fronts. In Figure 5.5(c), we can observe
that the local and global Pareto fronts switch role when robustness is considered. The mean
effective local Pareto front is the robust Pareto front. This means that the nominal global Pareto
front presents solutions that are less robust, i.e., more sensitive to variable perturbations, than
the solutions on the local Pareto front. In case of Figure 5.5(d), the robust Pareto front is a mix
between the mean effective global Pareto front and the mean effective local Pareto front.
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Figure 5.6 Robust Pareto-front (type II robustness) of the test problems 1 to 4 with uniform
distribution of the uncertain design variables. On the axis there are the objectives f1

and f2. The symbol δ indicates the width of the uncertain boundaries for the design
variables. Graph (a) was obtained with δ = 0.007, graph (b) with δ = 0.006, and graphs
(c) and (d) were obtained with δ = 0.03.

In Figure 5.6 we show the results of the robust multi-objective type II solutions of Problems
1 to 4. The same problems defined earlier are now solved using MOO using the constraints
indicated in Eq. (5.2), using different values of η, with δ = 0.007 for Problem 1, δ = 0.006
for Problem 2, and δ = 0.03 for Problems 3 and 4. The results demonstrate that the definition
of robustness affects the robust Pareto front that is obtained. Indeed, the differences between
Figures 5.5 and 5.6 are only due to the different definition of robustness, that is type II for the
results in Figure 5.6.

In Figure 5.7 it is demonstrated how the recursive sampling allows for a substantial reduc-
tion of the number of model evaluations for obtaining the robust Pareto front, if compared
to an approach that does not make use of a repository. The lines in Figure 5.7 represent the
number of model evaluations as a function of the number of generations of the optimization
algorithm, used for the problem in Figure 5.5(a). For an approach without repository, as the ap-
proach used by Deb and Gupta (2005), the trend is linear, as shown by the single-dashed line.
In this case, the number of model evaluations to obtain the results is equal to 7.5 million. The
continuous lines, instead, represent the trend of the number of model evaluations for varying
values of δ, using the double repository archive maintenance scheme, i.e., recursive sampling.
A smaller δ makes the intersection of the design-point sets generated for each single evalua-
tion less likely to happen, thus requiring in general more evaluations (less substitutions) than
the cases when δ is larger. In general, there is a significant reduction of the number of model
evaluations, reducing them to 2 million, circa.

To reduce the computational load even more, also an adaptive selection of the sample
points could be implemented, following the advice of Luo and Zheng (2008a). Adaptive selec-
tion means that the sample points are considered one-by-one, and that Eq. (5.1) is computed
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Figure 5.7 Evolution of the number of model evaluations in the optimization process of the test
problem shown in Figure 5.5(a). The symbol δ indicates the width of the uncertain
boundaries.

progressively with one sample point at the time. When the value of Eq. (5.1) does not change
for subsequent executions of the model, the simulations are stopped for the current sample.
Suppose that one decides that the sample for computing the average performance should con-
tain 100 sample points. If, after evaluating 60 sample points the average performance does not
change substantially, then the remaining 40 sample points are not simulated, saving computa-
tional time. The effect of a combined utilization of the recursive sampling and the adaptive
selection is also shown in Figure 5.7. Referring to the results presented in Figure 5.7, the recur-
sive sampling allows to save approximately 70% in terms of number of model evaluations. For
moderately computationally expensive models, this difference can turn an infeasible analysis
into a feasible one. The Sobol’ sampling technique allows to exploit the adaptive selection at
its best, reducing a further 10 % the computational cost of the analysis.

As discussed in the previous section, the type of robustness considered in this thesis, for
robust MOO, is close to the type II robustness introduced by Deb and Gupta (2005). However,
we consider the envelope around each design point in the design space, and the corresponding
objective points in the objective space, determined by a certain probability level of the joint-
PDF, selected by the engineering team.

To demonstrate the principle, we test it on a modified version of a test problem proposed
by Deb et al. (2005), namely DTLZ9. The original problem is modified by adding a linear con-
straint in the design space, see the gray area in Figure 5.8 (right), and an additional constraint
in the objective space. The problem is thus formulated as follows:

Minimize fj =

j∑
i=j−1

x0.25i , j = 1, 2

Subject to g1(x) = f22 (x) + f21 (x)− 1 ≥ 0

g2(x) = f1 − 0.1 ≥ 0

g3(x) = x1 + x2 − 0.7 ≥ 0

0 ≤ xi ≤ 1, for i = 1, 2

(5.6)

The original problem does not include the constraints g2 and g3, and the nominal Pareto
front is shown as the continuous line in Figures 5.8, 5.9, and 5.10 (right). The corresponding
variable sets are represented by the continuous line in Figures 5.8, 5.9, and 5.10 (left). When
adding the constraints g2 and g3 the design and objective space are modified, and the resulting
Pareto front and relative variable settings change as well. The diamond symbols in Figures
5.8, 5.9, and 5.10 represent the new Pareto front (right), and the relative variable settings (left)
when the constraints g2 and g3 are added to the original problem.
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Figure 5.9 Robust optimization results, problem Eq. (5.6). The gray areas represent the
constraints. Robust solutions with confidence level equal to 0.97725.

At this point we add uncertainty to the design variables. In particular, we use two normal
distributions for the two variables with σ = 0.03. In Figures 5.8, 5.9, and 5.10 we show the ef-
fect of the confidence level on the robust Pareto front. In these figures the large circles/ellipses
represent the envelopes of the joint PDF on the input variables (left) and on the objectives
(right) that yield a probability level of 0.9, 0.97725, i.e., 2σ, and 0.99875, i.e., 3σ. The robust-
optimization process pushes the Pareto front away from the non-robust Pareto front in such
a way to meet the constraints with a confidence level of 90%. The same phenomenon is also
visible in the design space.

The approach to robust optimization, using reliability concepts, was also explored by Deb
et al. (2009b) using a double-loop optimization approach. The first loop is used to drive the feff
towards the Pareto front, and the second loop is used to check for the probabilistic constraints.
As a last test case for our approach we use a test problem proposed by Deb et al. (2009b) in the
framework of reliability optimization:

Minimize f1 = x1, f2 =
1 + x2
x1

Subject to x2 + 9x1 − 6 ≥ 0,
− x2 + 9x1 − 1 ≥ 0,

0.1 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 5

(5.7)

The problem has 2 uncertain variables with σ = 0.03, normally distributed. The results are
presented in Figure 5.11 for increasing value of required confidence level. As in the previous
cases we use values for the confidence level that are equal to 0.9, 0.97725, and 0.99875. Further,
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Figure 5.11 Robust optimization results, problem Eq. (5.7).

as in the previous cases, the resulting Pareto fronts are pushed back towards the feasibility
region of the design and objective space.

5.4 Atmospheric entry vehicle model

In this section we provide a brief overview of the mathematical model used for the analysis
presented in this paper. In particular we describe the parametrization of the capsule and the
Thermal Protection System. Capsule-shape generation, aerothermodynamics, flight mechan-
ics and guidance algorithms are adapted from earlier work of Dirkx and Mooij (2011), and
Dirkx (2011). For a detailed discussion on these aspects we refer the reader to the original
literature.

5.4.1 Capsule parametrization

The capsules that will be studied here belong to the family of the Apollo-like capsules. These
are axial-symmetric capsules that can be defined by 5 parameters: nose radius RN , side radius
RS , rear part half angle θC , mid radius Rm, and rear part length LC , see Figure 5.12. The
parametrization consists of four matched analytical geometries, namely a sphere segment, a
torus segment, a conical frustum and again a spherical segment at the back. Since the shape is
axial-symmetric, the entire surface geometry is defined by the cross-section shown in Figure
5.12. In the discussion regarding the TPS, we will refer to nose and rear part (or conical part)
for the capsule. The gray area of Figure 5.12 represents the nose of the capsule, the white area,
instead, represents the real part (or conical part).
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Figure 5.12 Schematic representation of the geometrical parameters of the capsules. The gray
area is the nose of the capsule, the white area is the rear part. Adapted from Hirschel
and Weiland (2009).

The shift of the center of mass in the vertical and longitudinal direction are additional
variables that may be taken into account in the optimization process. However, the shift in the
longitudinal direction does not have a significant effect on the static-stability properties and
the dynamic behavior of the capsules (Dirkx, 2011). Therefore ∆Xcom will not be used as a
design parameter. The following two constraints must hold for the capsule to have a feasible
shape:

Rm < RN

Lc <
Rm −Rs (1− cos θC)

tan θC

(5.8)

5.4.2 Flight mechanics and capsule GNC

The aerodynamic and gravitational forces are the only external forces acting on the vehicle.
The effect of wind is neglected, resulting in an atmosphere that is rotating with the Earth. The
atmospheric properties are determined from the 1976 Standard Atmosphere (NOAA/NASA,
1976). There is no thrust force to take into account since the re-entry is considered to be un-
powered. Other perturbing forces are neglected, like solar radiation and third-body attraction,
since the errors induced by neglecting them are small if compared to errors due to inaccuracies
in the aerodynamic coefficients (Dirkx and Mooij, 2011). The gravity field model includes the
central gravity and the J2 term. The equations of motion used to propagate the trajectory of
the vehicle are expressed in spherical coordinates. Their derivation is presented in detail in
separate literature by Mooij (1994) and Dirkx (2011). The state variables that are taken into
account are the following:

• Radial position r. This variable denotes the scalar distance from the center of the reference
frame, in this case the distance from the center of the Earth.

• Longitude τ . This angle is measured from the Greenwich meridian, positive in East direc-
tion.

• Latitude δ. This angle is measured from the equator, positive in North direction.

• Speed V . The scalar velocity is measured with respect to the ground, which in this case
equals the airspeed.
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• Flight path angle γ. The flight path angle is the angle between the ground velocity vector
and the local horizontal plane.

• Heading angle χ. The heading angle is the angle between the North direction in the local
horizontal plane and the ground velocity vector projected onto this plane. It is measured
positive clockwise.

The capsules that will be generated during the optimization process will not be targeted
to a landing site or a Terminal Area Energy Management (TAEM) interface. Instead, entry
conditions will be specified, while the end conditions will be kept free. It was decided to focus
the attention on the effect of including the TPS in the robust optimization process rather than
obtaining a set of optimal capsules with optimal guidance algorithms. Therefore the guidance
algorithms considered here are very simple and leave room for a follow-up research. The pitch
guidance consists in imposing a certain angle of attack to have trimmed conditions during re-
entry. The control system, which is not modeled, will be assumed to be capable of steering the
capsule to the desired attitude. The trimmed angle of attack follows from:

αtr = α |Cm=0 (5.9)

The angle of attack is therefore chosen such that the pitch moment coefficient equals zero.
This will of course influence the aerodynamic forces on the vehicles, but the resultant forse is
not taken into account when determining the trim angle of attack. If such an angle of attack
cannot be found within certain bounds, the vehicle will be labeled as untrimmable. Since
the trajectory propagation is 3DOF, the time-dependent process by which the capsule changes
attitude is not analyzed, but is assumed to be instantaneous. Attitude stability of the vehicle is
important since instability will make it unlikely for the vehicle to retain its trimmed conditions
throughout the flight. For this reason, the following condition will be imposed on the capsule:

Cmα |α=αtr < 0 (5.10)

For the definition of the lateral guidance profile, simplified equations for the time deriva-
tive of the velocity and flight path angle are used. A spherical Earth with only a central gravity
term is assumed. The centrifugal term due to the Earth’s rotation is neglected, but the Coriolis
term is included, as it has an appreciable influence in the hypersonic phase. Although its mag-
nitude becomes lower than that of the centrifugal term for low velocities, such velocities will
not be encountered for the trajectories generated here, since the Mach number used as lower
limit is equal to 3. The bank angle of the capsule is determined by imposing γ̇ < 0. This condi-
tion, together with the assumptions just mentioned, will lead to the following relationship for
the bank angle, (Dirkx and Mooij, 2011):

cosσ =
m

L

(
g

(
1− V 2

V 2
c

)
cos γ − 2ωPV cos δ sinχ

)
(5.11)

The bank angle is modulated according to Eq. (5.11), until cosσ > 0, at which point the
vehicle no longer has sufficient lift to be able to fly at constant flight path angle. When this
occurs, the bank angle is set at 0 degrees. This guidance approach will force the vehicle to
fly with the maximum possible flight path angle in the central part of the re-entry trajectory,
where most of the constraints (e.g., g-load constraint) are more stringent due to large values
of the dynamic pressure. The bank angle modulated according to Eq. (5.11) will allow the
capsules to fly at a quasi-equilibrium glide condition. This condition will allow, in most cases,
to obtain trajectories that do not violate the load constraints (Shen and Lu, 2003).
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5.4.3 Aerothermodynamics

The velocity of the capsule with respect to the atmosphere during the entry phase generates
aerodynamic forces and moments. In addition to that, the capsule needs to release energy
while re-entering to be able to land with accelerations that the structure can withstand. Due
to the presence of the atmosphere, this energy is converted in heat, and part of this heat is
transferred to the capsule.

The role of the aerothermodynamic analysis is to compute the aerodynamic coefficients
of the forces and moments (pressure coefficients) and to compute the heat flux impinging on
the capsule. In the model used for the analyses presented in this thesis, these coefficients are
computed using local inclination methods. The capsule 3D geometry, generated according
to the capsule parametrization previously described, is discretized using a paneled surface
mesh. Then, the angle θ of each panel with respect to the free stream flow is the only parame-
ter that determines the pressure coefficient on that panel. Panel methods are simplified when
compared, for instance, to Computational Fluid Dynamics (CFD) tools. However, reasonable
results can be obtained by using them. In fact, these methods are widely used for conceptual
design and optimization, see for instance the publications from Maughmer et al. (1990), The-
isinger and Braun (2009), Kinney (2004), and Cruz and White (1989). Recently Dirkx and Mooij
(2011) demonstrated that an accuracy of better than 15% can be obtained when comparing the
results with wind-tunnel data for the Space Shuttle orbiter and Apollo capsule.

In the study presented here, several methods are taken into account to describe the pressure
distribution on each of the panels: Newtonian method, Modified Newtonian method, and
Tangent Wedge and Tangent Cone methods. For each panel in which the capsule is discretized,
a method for estimating the pressure coefficient is automatically selected, depending on the
angle of incidence of the impinging flow. The selection method is extensively discussed and
tested by Dirkx (2011).

5.4.4 Thermal Protection System

The Thermal Protection System (TPS) of a re-entry vehicle is usually very hard to model. CFD
software allows to approach the problem considering a three-dimensional discretization of the
vehicle and the surrounding fluid along the trajectory. In general the temperature profiles
obtained using this approach are reliable but usually require a heavy computational load for
each single vehicle, each single trajectory, and each single attitude. When also non-steady-
state thermo-chemical reactions are taken into account, with material decomposition, charring,
pyrolysis, and mass injection effects, the problem becomes even more complex.

In literature, examples can be found to reduce the complexity of modeling re-entry prob-
lems to two-dimensional and one-dimensional cases. Chen and Milos (2001), for instance,
present a two-dimensional approach to the thermal transfer problem. They conclude that such
a simplification with respect to the three-dimensional settings could be beneficial for speeding-
up the design process of entry vehicles in general, maintaining a certain quality of the solu-
tions. One-dimensional approaches have been investigated more often, especially during the
early stages of the Apollo programme. For instance, a complete one-dimensional finite dif-
ference model of a charring ablative thermal protection system is provided by Swann (Swann
and Pittmann, 1962; Swann et al., 1965).

More recently, general approximated one-dimensional formulations of the heat transfer
problem were proposed, demonstrating that at a preliminary design stage these methods can
be used for fast analysis while still providing satisfactory results (Martinelli and Braun, 2011;
Ferraiuolo and Manca, 2011). The materials’ thermo-physical properties are of crucial impor-
tance for the determination of the correct temperatures of the TPS layers, and material con-
sumption in the case of ablation or evaporation/sublimation phenomena. These properties
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Figure 5.13 Nodes description of a general finite difference model, adapted from Liu and Zhang
(2011).

are determined by means of wind-tunnel experiments, but most of the time they are kept clas-
sified. Only some data on TPS materials thermo-physical properties can be found (Williams
and Curry, 1992). If the thermo-physical properties of the materials are not known, or known
with large uncertainties, the analyses could have a limited validity, even in the case of a de-
tailed three-dimensional model of the heat-transfer problem.

The main purpose of the TPS model presented in this study is to combine the transient
thermal analysis in a large optimization problem with mission, trajectory, and shape optimiza-
tion of an entry vehicle. This is done in such a way to substitute the classical heat-flux limits
with temperature limits, therefore directly linking the trajectory to the design choices related to
the TPS. Due to their reduced execution time, considering that a robust-optimization analysis
usually requires a larger number of model evaluations when compared to traditional optimiza-
tion, a general one-dimensional finite-difference formulation that simulates the stagnation-
point conditions and determines the in-depth temperature state along the thickness of the TPS
was considered for this analysis. The stagnation point will experience the largest heat-flux
and heat-load during the atmospheric entry, thus providing a conservative estimate of the
performance of the designed TPS. The material properties and the specific issues related to
each material and each solution considered here are described in Appendix D. In general,
one-dimensional models provide less accurate results than three-dimensional CFD models.
However, this is beneficial for the computational load of the analysis. Robust optimization, as
will be shown later in this chapter, may be used also to make conclusions on the assumptions
made when choosing a certain simplified model or a more detailed one, and when uncertainty
is present also with respect to the material properties. The one-dimensional finite-difference
model used in this paper is schematically shown in Figure 5.13. It is adapted from the formu-
lation presented by Liu and Zhang (2011). The TPS is divided into different layers along its
axial dimension. Each layer is discretized in isothermal nodes, the distance of which may vary
from layer to layer. The thermo-physical properties of the layers are assumed to be isotropic.

The nodes are classified in external, material, interface, and internal nodes. The thermal
behavior of the external node can be described as follows:

ρcpA
∂T

∂t
∂y =

∂

∂y

(
kA

∂T

∂y

)
+ q̇in − q̇out (5.12)

where ρ indicates the density of the material, cp the specific heat, A the area, and k the thermal
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conductivity. The term q̇in is the incoming heat flux, while the term q̇out represents in general
the radiated heat plus the heat absorbed by transpiration gases in case of ablative material. A
finite-difference formulation of Eq. (5.12) is the following:

T t+1
1 = [q̇in − q̇out]

2∆t

ρ1cp,1∆y1
+ T t1

(
1− 2k1∆t

ρ1cp,1∆y21

)
+ T t2

2k1∆t

ρ1cp,1∆y21
(5.13)

where the symbol t represents the time, and the subscripts 1 and 2 represent the nodes num-
bers. The symbols ∆t and ∆y are the temporal and spatial step-size respectively. In the mate-
rial nodes only conduction and storage of heat are modeled:

ρcpA
∂T

∂t
∂y =

∂

∂y

(
kA

∂T

∂y

)
(5.14)

Its finite-difference formulation can be expressed as follows:

T t+1
i =

(
1− 2kj∆t

ρjcp,j∆y2j

)
T tj +

kj∆t

ρjcp,j∆yj

(
T ti+1 + T ti−1

)
(5.15)

Here, j indicates the layer to which the nodes belong. The model of the interface node takes
into account an extra flux, qc, that is present in the case of pyrolysis phenomena for ablative
materials or heat absorption due to water evaporation, for instance:

∂

∂y

(
−kjA

∂T

∂yj

)
= qc −

∂

∂y

(
kj+1A

∂T

∂yj+1

)
(5.16)

The assumption is that the pyrolysis manifests itself on a line rather than on a finite thickness
region of the material. For interfaces where no additional heat flux is present the flux qc is zero.
Its finite-difference formulation can be expressed as follows:

T t+1
i =

2∆t

ρjcp,j∆yj + ρj+1cp,j+1∆yj+1

(
kj+1

∆yj+1
T ti+1 +

kj
∆yj

T ti−1

)
+

+

[
1− 2∆t

ρjcp,j∆yj + ρj+1cp,j+1∆yj+1

(
kj+1

∆yj+1
+

kj
∆yj

)]
T ti−

− q̇c
A

2∆t

ρjcp,j∆yj + ρj+1cp,j+1∆yj+1

(5.17)

At the inner structure nodes, similarly to the material nodes only the heat conduction and
heat storage is modeled. A finite-difference formulation can be expressed as follows:

T t+1
i =

(
1− 2ki∆t

ρicp,i∆y2i

)
T ti +

2ki∆t

ρicp,i∆y2i
T ti−1 (5.18)

The finite-difference formulation presented here allows for solving the problem with a
number of nodes that may vary case by case, and with an explicit forward integration tech-
nique. To obtain a faster execution of the thermal transient analysis, the results presented in
this chapter were obtained with an implicit formulation of the problem. It was decided to
describe here the explicit formulation, because it is more direct and it allows for linking it di-
rectly to the involved physical phenomena. Having an implicit formulation means that the
state at time t depends on previous states but also on the current one. In that way even when
the time step is large, the integration error can be kept relatively low. There are references in
literature for solving this type of problems with an implicit formulation (Press et al., 2007).For
the analyses presented here, an implicit formulation was used.
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For the analysis presented in this thesis six TPS concepts were developed and imple-
mented. A detailed description of the TPS concepts is provided in Appendix D. As a metallic
TPS solution we consider PM2000, a highly oxidation resistant alloy. It presents an elevated
content of Aluminium and Chromium. Therefore, PM2000 is able to form anAl2O3 layer when
used at high temperatures under oxidizing atmospheres, protecting it from oxidation (Plansee,
2012). The metallic TPS solutions may also present water as cooling mechanism. In case of a
direct water cooling TPS solution, when the temperature of the water reaches the boiling limit,
the heat from the skin is absorbed by the water for its evaporation leaving the temperature
of the skin at a constant value. The assumption is that the water is cooling through nucleate
boiling. Therefore we consider the temperature of the innermost skin, which is in contact with
the water, being at the same temperature as the water itself. Enhanced-radiation cooling is an-
other TPS configuration that can be selected for the analysis. It is a concept developed at Delft
University of Technology (Buursink, 2005). When enhanced-radiation cooling is adopted, the
cooling principle is still based on evaporation but the engineering solution is substantially dif-
ferent. Water is contained in a porous material, ZAL-15 for instance (a mixture of Alumina 85
% and Silica 15%) that is detached from the external skin. At the interface the heat is tranferred
through radiation, therefore, the equilibrium between the innermost layer of the skin and the
ZAL-15 shall be taken into acount in the transient model. Ceramic materials were also con-
sidered as TPS engineering solution. In particular, Ultra High Temperature Ceramics (UHTC)
were taken into account, using ZrB2-SiC as one possible representative. The last category of
TPS solutions considered for the analysis presented foresees the utilization of ablative materi-
als. In particular, phenolyc nylon, carbon phenolic, and phenolic-impregnated carbon ablator
(PICA) are considered.

These TPS concepts have been classified in fully re-usable (re-usability index equal to 3),
when the nose and rear part of the capsule are made of re-usable materials. Partially re-usable
(re-usability index is equal to 2) indicates the situation where only the nose or the rear part
of the capsule are made of re-usable materials and the other is made of ablative material.
The capsule is considered to be non-reusable (re-usability index is equal to 1) when both the
nose and the rear part present ablative solutions. The fully re-usable engineering solutions
are metallic uncooled and ZrB2-SiC, for either the nose or rear part, or both. Further, active
cooling mechanisms can be selected by the optimizer for nose and cone. In particular, for the
nose direct water-cooling is considered, while enhanced-radiation cooling can be applied to
the rear part. The assumptions, and the specific challenges related to each of these solutions,
and a validation of the mathematical models are discussed in Appendix D.

The re-usability index is also related to the maximum temperature reached during the re-
entry of the capsule. After a certain temperature threshold the capsule is considered to be less
reusable if the external temperature gets closer to the limit temperature of the material, see
Appendix D for the temperature limits of each material.

5.4.5 Initial conditions and trajectory simulation

In this section we present the results obtained using an Apollo-like capsule with Carbon Phe-
nolic TPS for the nose and Phenolic Nylon TPS for the rear part. This is done to show the type
of results that will be analysed during the optimization process. Figure 5.14 shows the entry
trajectory of the capsule, and the evolution in time of other important parameters using the
following initial conditions:

h = 120km, τ = 225.5◦, δ = −23.75◦, V = 10.668km/s, γ = −6.68◦, χ = 49.6◦

In Figure 5.14(a) we show the trend of the altitude and the velocity of the capsule in time.
The capsule dives into the atmosphere until t = 100 seconds where it experiences an inversion
of the trend, presenting a small skip. This means that the capsule at that point has a large
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lift, due to a combination of angle-of-attack, lift coefficient, velocity, and air density. To force
the capsule to continue the re-entry into the Earth’s atmosphere, the control system acts on
the angle of attack (decreasing it) and on the bank angle (increasing it). This combined effect
makes sure that the vertical component of the lift-force is reduced, so that the capsule can
continue its descent towards the Earth’s surface. The same effect happens on a reduced scale
around t = 350 seconds. There is again a small tendency of the capsule to skip but the variation
of the bank angle performed by the control system, and the fact that the capsule has less energy
than before, do not allow the skip to happen. The G-load follows the altitude profile. In
correspondence to the two points in the trajectory where the skip is initiated, the G-load has
its peaks. The heat-flux profile is reflected on the temperature profile: the nose temperature
goes up following the heat-flux. Each line in Figure 5.14(e) represents the temperature trend
of one layer of the TPS, for the nose and for the rear part. At a certain epoch of the simulation,
around t = 60 seconds, the pyrolysis of the Carbon Phenolic material begins. This is evident
from the temperature plateau experienced by the third layer of the material, that keeps the
temperature constant by changing phase from solid to gas. Finally, in Figure 5.14(f) we present
the three-dimensional geometry of the capsule used for the simulation.
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Figure 5.14 Example of the simulated entry of an Apollo-like capsule.

5.5 Unmanned entry capsules servicing the ISS

The main focus of this section is to describe the results obtained from the robust-optimization
of unmanned entry capsules used as cargo service to the ISS. The analysis is carried out
using the model described in the previous section and relevant literature, with the robust-
optimization method introduced in Section 5.3. The objective is to find trade-offs between
minimum mass and maximum volume of the capsules, while maximizing their re-usability at
the same time.

The analysis is performed by introducing 9 constraints. The external-skin temperature
of nose and rear part shall not exceed the limits indicated in Appendix D for each type of
material. The TPS innermost-layer temperature shall not exceed 600 K. The capsules shall not
exceed a longitudinal load factor of 8 g during the entry phase. The capsules shall be stable
and controllable within certain ranges of the angle of attack (Dirkx and Mooij, 2011). Finally, in
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Intervals
Design Variables Min Max

Nose radius [m] 1 5
Corner radius [m] 0.001 0.4
Rear part anglea [deg] −60 30
Capsule radiusa [m] 0.5 5
Capsule length [m] 0.2 3
Z-position com [m] 0 0.1

Type of TPS noseb [-] 1 6
Thickness Nose [m] 0.0015 0.1
Type of TPS rear
partc

[-] 1 6

Thickness rear part [m] 0.0015 0.1
Initial water-mass
nose

[kg] 5 1000

Initial water-mass
cone

[kg] 5 1000

Initial flight-path an-
gle

[deg] −6 −2

Initial bank angle [deg] 0 90

Table 5.1 Reusable capsules design parameters settings.aConstraints of equation 5.8 must be
considered. b1-ZiB2-SiC, 2-Metallic uncooled (heat sink), 3-Phenolic Nylon, 4-Carbon
Phenolic, 5-Metallic direct water cooling, 6-PICA. c1-ZiB2-SiC, 2-Metallic uncooled
(heat sink), 3-Phenolic Nylon, 4-Carbon Phenolic, 5-Metallic enhanced radiation
cooling, 6-PICA.

the presence of ablative material or water as a cooling mechanism, consumed material should
be less than what is actually available, and this applies for TPS of both the nose and rear part
of the capsule.

The design parameters and the ranges used for the optimization are presented in Table 5.1.
The analysis is performed in two steps. First, in Section 5.5.1 the results of the optimization

are discussed. Then, the robust-optimization is done in Section 5.5.2 and results are compared.

5.5.1 Optimization

In Figure 5.15 the Pareto front obtained as a result of the non-robust optimization process is
presented. Three branches can be clearly distinguished. These branches correspond to fully-
reusable capsules, partially reusable capsules, and non-reusable capsules. The optimizer is
pushing the solutions towards minimum mass, maximum re-usability and maximum volume,
as expected.

The projections of the Pareto-optima solutions on the mass-volume plane show that the
performance of the various capsules with different materials are comparable. This means that
from the mass-volume trade-off point of view, entry conditions and design parameter settings
exist for which, for instance, a capsule with the nose made of ZrB2-SiC and the rear part with
metallic enhanced-cooling behaves as a capsule with fully ablative nose and rear part. The
capsules in the Pareto front range from very small and light to heavy and large. Some of the
large capsules may simply not be delivered into LEO orbit with current launchers. However,
it was decided to set wide limits to the geometric variables to see the evolution of the shapes
and the engineering solutions on the efficient and robust-efficient Pareto fronts.

In Figure 5.16 the Pareto front is presented with a focus on the fully-reusable capsules
branch of Figure 5.15.

Almost half of the re-usable capsules have both nose and rear part made of ZrB2-SiC ma-
terial. However, in the same front there are also capsules with a nose made of ZrB2-SiC and
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Figure 5.15 Complete Pareto front, robotic capsules servicing the ISS.

the rear part made of metallic material. Amongst these capsules, the metallic-uncooled and
the metallic enhanced-cooling concepts are present. Metallic water cooling for the nose is not
so common amongst the optimal solutions in the Pareto front. This may be explained from
the fact that the tendency is to converge towards large values of nose radius, to maximize the
available volume of the capsule. This makes the nose surface very large, thus eventually a
larger amount of water is needed for a given heat-load to keep the skin cool. A large nose-
radius has two effects. First, it reduces the peak heat-flux on the capsule. At the same time,
the total heat load on the nose increases, with the consequent increase of the amount of water
required to cool the metallic nose. The increased required water (increased volume and mass)
makes the nose metallic-cooled solution less efficient in terms of mass and volume. In some
cases, however, there are conditions for which the peak heat flux and the heat load are such
that a thin metallic external surface cooled by water is more efficient than a thicker metallic
skin protecting the capsule with the heat-sink principle, therefore without water cooling from
the inside.

As explained earlier, the re-usability index is determined such that it gets worse as the
maximum temperature reached by the material gets closer to the limit temperature. Amongst
the solutions on the Pareto front of Figure 5.16, an improvement in the re-usability index causes
the capsules to be less efficient in terms of mass and volume. This is what is indicated by the
arrow Increasing Re-usability on top of the projection of the Pareto-optima solutions on the
mass-volume plane. This effect is more evident as the capsules get larger and heavier. Indeed,
a large thickness of nose and rear-part skin, and a large amount of water when applicable,
cause the maximum temperature reached at the surface to decrease (so getting farther apart
from the limit) but also the mass to increase and the available volume to decrease.

In Figure 5.16 some of the capsules obtained during the optimization process are illus-
trated. An expert eye would already recognize the fact that these capsules get worse in terms
of aerodynamics and flight-mechanics characteristics as their size increases. However, more
quantitative results are summarized in Tables 5.2 and 5.3. The most relevant trends of the five
capsules are also shown in Figures 5.17 and 5.18.

The maximum L/D ratio shows a general decreasing trend going from small to larger
capsules. This means that the behavior of the capsules gets closer to that of a ballistic entry as
their size increases. The larger capsules look much like the Russian Foton capsules. For the few
capsules with metallic nose, in general the g-load is taken to the limit by the optimizer. This is
obtained by having steep trajectories that in turn cause the peak heat flux to increase and heat
load to decrease. The main driver for the amount of water needed to cool the capsule nose is
the heat load. Therefore a low heat load will also have an effect on reducing the amount of
water to be stored on board and thus reducing the mass of the capsule.
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Figure 5.16 Pareto front with fully re-usable capsules, robotic capsules servicing the ISS.

A1 A2 A3 A4 A5

Nose radius [m] 3.64 4.99 4.89 5 5
Corner radius [m] 0.34 0.25 0.33 0.4 0.3
Rear part angle [rad] −0.34 −1.05 −0.79 −0.06 −0.47
Capsule radius [m] 2.27 3.07 3.88 4.35 4.95
Capsule length [m] 0.6 0.2 0.97 1.95 3
Z-position CoM [m] 0.1 0.065 0.07 0.09 0.08

Type of TPS nose [-] ZrB2-SiC Water
cooled ZrB2-SiC ZrB2-SiC ZrB2-SiC

Thickness Nose [m] 0.0015 0.0045 0.0015 0.002 0.011

Type of TPS rear
part

[-]
Metallic

Uncooled

Enhanced
radiation
cooling

Enhanced
radiation
cooling

Enhanced
radiation
cooling

ZrB2-SiC

Thickness rear part [m] 0.0087 0.0015 0.0025 0.0015 0.0015
Initial mass water
nose

[kg] - 730 - - -

Initial mass water
cone

[kg] - 19.5 175 200 -

Initial flight-path
angle

[deg] −2.75 −3.95 −2.89 −2 −2.2

Initial bank angle [deg] 84.9 60.73 32.14 20 40

Table 5.2 Reusable capsules design parameters settings.

The range that the capsules fly in the atmosphere, from the initial 120 km altitude until
Mach 3 is reached, is proportional to the L/D ratio and the flight-path angle. The value of
Mach 3 is selected because below this Mach number, the aerodynamic coefficients which are
calculated can no longer be assumed to be valid (Dirkx and Mooij, 2011).

As expected, the capsules show an increased flight range as the trajectory gets shallower
(flight-path angle closer to zero) and the L/D ratio increases. The range also gives an indica-
tion for the heat load that the capsules experience. The larger the range, the larger the time the
capsules fly in the atmosphere. This results, in most of the cases, in a larger heat load on the
TPS, see for instance Figure 5.17(c).

In the case of capsule A2, even if the heat load is the lowest (the heat load is determined as
the total area under the heat-flux curve) the amount of water needed to keep the nose relatively


