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Figure 3.28 Interaction graphs with 2 discrete variables at 3 levels. Adapted from (Phadke, 1989).

The interaction between two factors, e.g., Factor A and Factor B, is computed using a matrix
with dimensions equal to a× b which is filled with the following coefficients:

CAiBj =
Yij···
r

(3.46)

In the simple example presented before, this matrix was represented by all 9 performances
computed, because there were only 2 factors, but this is not valid in general of course. In this
case Yij... indicates the sum of the r = c× · · · ×m× l responses with the Factor A at level i and
Factor B at level j. For each level of A, for instance, b average performances can be plotted
against the objectives values, providing the so-called interaction graphs, see Figure 3.28. When
the lines of an interaction graph are not parallel it indicates the presence of synergistic (as in the
previous example) or anti-synergistic effects, i.e., interactions. A synergistic effect is present
when the improvement of a performance given the variation of a factor is enhanced by the
variation of another one. An anti-synergistic effect is the exact opposite (Phadke, 1989). In
Figure 3.28, the higher-order behavior of the objective to the variation of the variable levels is
indicated by the fact that the lines are not perfectly straight over the three levels of variable A,
for instance.

The interactions between continuous and discrete variables, eventually detected by sensi-
tivity analysis, can be graphically presented using a mix of contour plots, or single-variable
trends, and linear graphs, as will be shown in the following subsection.

One last remark about the physical interpretation of linear graphs. There is a logical differ-
ence between the results obtained in case of ordinal and categorical discrete variables. In case
of ordinal discrete variables, e.g., the number of batteries in a satellite, the factor effect may
indicate a certain increasing or decreasing trend of the performance given the variation of the
factor. For instance, the mass of the power subsystem increases as the number of batteries
increase. In case of categorical variables instead, e.g., the type of batteries to be implemented,
the effect identified with ANOVA and with the linear graphs may not be realistic anymore.
The variation of the mass of the satellite, in this case, depends on the order in which the type
of batteries are considered in the experimentation.

This aspect has an implication on the type of matrix design selected for sampling the sub-
space formed by the discrete variables only. In principle all the combinations of categorical
design factors shall be experimented. Each one of these combinations represents a different
system architecture that needs to be explicitly assessed. For the ordinal design factors instead,
fractional-factorial designs may suffice to compute their effect on the output. However, this
does not always have to be the case, thus accurate matrix-design selection has to be made by
the engineering team depending on the type of problem at hand.
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3.3.3 Test case: satellite system for Earth-observation, visualization of the design
region

In Section 3.2.6 we analysed the model of the satellite system for Earth-observation using
RBSA. The results demonstrated that there are few parameters, among these selected for the
analysis, that influence the performance more than others. In this subsection we demonstrate
that with no additional computational effort, we can elaborate the results in a graphical way
to better support the engineering team in selecting a suitable baseline design. The purpose of
this subsection is to use the results of RBSA to show the performance trends under the effect
of the most influential factors.

In the interaction graph of Figure 3.29(a) the two discrete variables related to the orbit of the
satellite are considered. For each level of A and B the average value of the equatorial coverage
is plotted. The number of days for a repeating ground-track and the total number of orbits
in that time period have a synergistic effect on the coverage. In particular, as expected with
a higher orbit (e.g., 13 orbits in 1 day and H = 1258.6 km) the average equatorial coverage is
larger compared to a case with a lower orbit (e.g., 29 orbits in 2 days and H = 725.2 km). The
combinations of factors levels A1-B3 (i.e., 15 orbits in 1 day), A2-B3 (i.e., 30 orbits in 2 days),
and A3-B3 (i.e., 45 orbits in 3 days) lead to the same configuration since the altitude of the orbit
is the same, H = 567.5 km.

In Figure 3.29(b) we present the coverage and the resolution performances as a function of
the minimum elevation angle (factor D) and the instrument aperture diameter (factor C). The solid
lines represent the mission configuration A3-B2, while the dashed lines represent the mission
configuration A1-B1. The light-gray area represents the revisit time constraint for the A3-B2
configuration, set as 100% of equatorial coverage in 24 h. The dark-gray area represents the
same constraint for the A1-B1 configuration. A higher orbit (dashed lines in Figure 3.29(b))
allows to meet the re-visit constraint with a larger minimum elevation angle thus also improv-
ing the resolution performance at the edge of the swath. For the A3-B2 configuration, with
ε = 30◦ and the instrument aperture diameter equal to 0.7 m the resolution at the edge of the
swath is 12.7 m/pixel, and 1.26 m/pixel at subsatellite point. For the A1-B1 configuration,
instead, the resolution at subsatellite point is slightly worse, i.e., 2.2 m/pixel, but at the edge
of the swath a resolution of 7 m/pixel can be obtained. Further, for an A1-B1 configuration,
the fact that the minimum elevation angle can be up to 30◦ gives the satellite the possibility to
actually observe over the entire geometrical swath width with the maximum possible slewing
angle, i.e., (E) = 50◦, and at a higher resolution than an A3-B2 configuration.

The aperture diameter of the instrument, paradoxically, plays a more relevant role in the
determination of the data rate, thus on the down-link margin than on the actual resolution, as
demonstrated by the sensitivity analysis. Indeed, in Figure 3.29(d) the down-link margin con-
straint is plotted as a function of the instrument aperture diameter and the minimum elevation
angle, for the configuration A1-B1 and with (H) = 30 W and (I) = 1 m. An A3-B2 configu-
ration would push the coverage constraint down, with the result of allowing less flexibility in
selecting the instrument aperture diameter. The effect on the cost is plotted in Figure 3.29(c).
The assumption is that a higher orbit would require less maneuvers for pointing the instru-
ment of the satellite in one particular direction and the effect is in a reduced cost (difference
between the solid and the dashed lines). The constraint on the launcher-mass availability is
mainly driven by the instrument aperture diameter. Indeed the mass and power consumption
of the payload is scaled with the diameter, and so does the mass of the satellite and its cost.
The Delta II class of launchers allows for enough flexibility until the payload aperture diameter
of about 0.9 m.

The triangles in Figure 3.29 represent a tentative selection of the baseline. In particular, an
A1-B1 architecture has been selected, with (C) = 0.7 m, (D) = 30◦, (E) = 50◦, (F ) = 120
s, (G) = 10000, (H) = 30 W, (I) = 1 m, (J) = 2, (K) = 2, (L) = 1. With these settings of
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Figure 3.29 Analysis main results. ∆ is a tentatively selected baseline. The light-gray area of (b)
represents the revisit time constraint for the A3-B2 configuration, set as 100% of
equatorial coverage in 24 h. The dark-gray area of (b) represents the same constraint
for the A1-B1 configuration.

the design variables a confirmation experiment was performed on the model. The simulation
yields to a cost of the satellite of 188 M$(FY 2010), a mass of 1330 kg and an overall power
consumption of 1 kW. The resolution at the edge of the swath is 7.3 m/pixel and 2.2 m/pixel
at sub-satellite point. The equatorial coverage after 24 h is 100% and the down-link margin is
4.1 dB. In principle, selecting a design point from the graph obtained using regression analysis
does not necessarily provide a precise result: a regression error may be present. For this reason,
we advice to always use a confirmation experiment once a certain baseline is selected. In
this case the results from the verification experiment are very close to the values that can
be read from the graphs in Figure 3.29. This indicates that the sampling technique and the
regression analysis provided reliable results. Sensitivity analysis and graphical support in the
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form of contour plots, variable trends and interaction graphs enabled a thorough reasoning
on the phenomena involved. This allows us to quickly select a system baseline that meets the
constraints balancing the objectives under analysis.

With the information on the behavior of the system, made available thanks to the sampling
of the design space, and given the availability of surrogate models obtained with regression
analysis, it would be possible to run an optimization process to find the best possible baseline
option. At this stage, and with local design settings, optimization would not be the most
efficient way of selecting a baseline. Computational effort would be spent on a limited portion
of the design space. This would be beneficial only if the designer would be confident that the
best possible solution is within the selected design region. The current baseline solution is
selected on the basis of the graphs that have been shown in this section.

3.4 Uncertainty analysis and robust design

The sampling techniques and analysis and visualization methods presented so far demon-
strated to be helpful in determining the settings of the design variables that provide the per-
formance of the system as required and that allow the system to meet the constraints. The
variables considered in the previous sections are all deterministic in nature. This means that
they are controllable factors whose level can be selected by the designer and can be obtained
during the manufacturing and/or operations of the system. As mentioned in the introduc-
tion of this thesis, very often during conceptual design it can be the case that some factors
are only known in a probabilistic sense: they are uncertain. The purpose of the design is to
obtain combinations of controllable design-factor levels that provide good performance also in
the presence of these uncertain factors. Uncertainty analysis and robust design are often con-
sidered complementary design activities implemented for determining the performance of the
system under uncertain operating conditions. In particular, uncertainty analysis is the study
of the uncertain distribution characteristics of the model output under the influence of the
uncertainty distributions of the model inputs. With these settings, the purpose of uncertainty
analysis is to simply propagate the uncertainty through the model. When the analysis presents
both controllable and uncontrollable factors, the latter being intrinsically uncertain parameters
(e.g., operating environmental conditions), the purpose of the uncertainty analysis is to obtain
settings of the controllable design variables that optimize the performances while at the same
time minimize the impact of the uncertainties on the system. In this case we talk about robust
design.

In general, uncertainty can be classified in two types: stochastic and epistemic. The
stochastic, or aleatory, uncertainty describes the inherent variability associated with a certain
phenomenon. It is usually modeled by stochastic processes when there is enough information
to determine the probability distributions of the variables. For instance, the life-time of a cer-
tain component of the system is provided with a certain probability distribution (i.e., failure
rate) by the manufacturer. This failure rate is determined on a statistical basis by testing many
components. In these cases one has detailed information about the uncertainty related to the
life-time of that component. The epistemic uncertainty is characterized, instead, by the lack of
knowledge about a specific characteristic of the system. In these cases usually uniform distri-
bution is used to describe the uncertainty, but this procedure has been largely criticized. The
main reason is that a phenomenon for which there is lack of knowledge cannot be represented
by any specific probability distribution (Helton et al., 2006).

For the design of a complex system, in case of both epistemic and stochastic uncertainty,
probability theory alone is considered to be insufficient for a complete representation of the im-
plications of the uncertainties on the performances. Therefore, in the following subsections we
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introduce sampling methods and analysis techniques for propagating the uncertainty through
the model, in the presence of both stochastic and epistemic uncertain factors.

3.4.1 The unified sampling method

In this subsection we introduce a modified implementation of the Sobol’ sampling technique.
A Sobol’ sequence only allows to uniformly sample in the design space. Uniform distributions
are the only necessary distributions to use in the presence of deterministic design variables,
as discussed in the previous sections. The unified sampling technique, instead, allows to cope
with any type of epistemic and stochastic distributions of the uncertain factors, typical when
the focus of the analysis is that of propagating the uncertainty throughout the model.

The problem of determining the probability distribution of the output, given the probabil-
ity distributions of the inputs of a model, is related to the computation of a multi-dimensional
integral, similar in the form to the expression of Eq. (3.7). A direct numerical integration or
the analytical solution of the integral can become practically infeasible with already few un-
certain variables. Therefore, the direct Monte-Carlo simulation is amongst the most widely
adopted methods for uncertainty analysis, since it does not require any type of manipulation of
the model. When it comes to long-running (i.e., computationally expensive) models, as is usu-
ally the case for complex space systems in a collaborative environment, the method of Monte
Carlo, using random-sampling techniques, has the recognized disadvantage of being compu-
tationally expensive, since it generally requires a large number of simulations to compute the
mean, the variance and a precise distribution of the response (Rubinstein, 1981). Helton and
Davis (2003) compare Latin Hypercube Sampling with a random sampling technique for the
propagation of uncertainty into mathematical models. Their analysis corroborates the original
results obtained by McKay et al. (1979), and demonstrates that stratified sampling (i.e., LHS)
provides more stable Cumulative Distribution Functions (CDFs) of the output than random
sampling, with the result that less samples are required for a given accuracy in the determina-
tion of the CDFs.

As discussed previously, also epistemic uncertainty must be considered for the design of
a complex system. Thus, for the development of the unified sampling technique presented
in this section we inherit some ideas and some nomenclature from the evidence theory derived
from the initial work of Dempster (1967, 1968) and Shafer (1976). When lack of knowledge
about a certain system behavior is present, and when the available historical and statistical
sources are sparse, the engineering team is forced to evaluate and combine different data
sources not perfectly tailored to the purpose at hand based on judgmental elements. Struc-
tured expert judgment is increasingly accepted as scientific input in quantitative models, and
it is dealt with in a number of publications, see, for instance Cooke (1991) and O’Hagan and
Oakley (2004). The result of the combination of expert judgments on the uncertainty of a
specific phenomenon leads to the creation, for every single uncertain factor, of so-called Basic
Probability Assignments (BPAs). The BPAs represent the level of confidence that the engineering
team has in the fact that the value of the factor of interest lies in a certain interval of possible
values. The uncertainty interval is divided into n subsets and for each of them a certain belief,
or probability, that the actual value of the uncertain parameter will lie within that subset is
assigned. The set of the n beliefs form the BPA for the factor under analysis. Consider for
instance the epistemic uncertain factor A in Figure 3.30(a). The uncertainty interval of factor A
(given on the x-axis) is equal to [0, 1], divided into 3 subsets [0, 0.2]∪ [0.2, 0.5]∪ [0.5, 1]. Suppose
that the judgment of the engineering team-members on the uncertainty structure of factor A
leads to the conclusion that the actual value of A will lie in the subset [0, 0.2] with a probabil-
ity equal to 0.4, in the subset [0.2, 0.5] with a probability equal to 0.3 and in the subset [0.5, 1]
with a probability of 0.3. Thus the BPA of factor A is equal to [0.4, 0.3, 0.3] and its cumulative
function is given on the y-axis of Figure 3.30(a).
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Figure 3.30 Representation of the cumulative distributions of (a) the epistemic uncertain variable,
and (b) the stochastic (normal) uncertain variable. The dashed lines connect the BPAs
to the relative uncertainty intervals. The arrows represent the projection of the sample
points from the BPSs domain to the uncertainty-intervals domain.

To be able to do sampling in the presence of epistemic and stochastic variables at the same
time, we shall unify the sampling procedure. The idea is to extend the concept of the BPA
also to the stochastic variables in such a way to obtain a unique representation of the un-
certainty structure of the inputs. For a stochastic variable the cumulative distribution func-
tion is continuous. The procedure we implemented foresees the discretization of the cumu-
lative distribution of the stochastic factors. If the uncertainty interval of the stochastic fac-
tor is discretized into m subsets, then the discretized CDF can be expressed in the form of
BPAs as in the case of the epistemic uncertain factors. Consider, for instance, the normally
distributed uncertain factor B of Figure 3.30(b). Its uncertainty interval is equal to [0, 10], di-
vided into 7 subsets, for instance, as shows on the x-axis of Figure 3.30(b). The subsets are
[0, 1.43] ∪ [1.43, 2.86] ∪ [2.86, 4.29] ∪ [4.29, 5.71] ∪ [5.71, 7.14] ∪ [7.14, 8.57] ∪ [8.57, 10]. Using
the inverse CDF of the normal distribution we map these intervals to the associated BPAs:
[0.0480, 0.1110, 0.2106, 0.2608, 0.2106, 0.1110, 0.0480]. The cumulative BPAs are given on the
y-axis of Figure 3.30(b).

In the case of stochastic uncertainty, there is the possibility of having infinite tails of the
distributions, as in the case of the normal one. To be able to do sampling between a minimum
and a maximum value of the design factor, we shall truncate the tails of the distribution. Con-
sider, for instance, a normal distribution. If the tails are truncated at 3σ, for instance, 0.27 %
of the values expected for distribution are neglected. Therefore an error is introduced in the
sampling procedure. However, if the minimum and the maximum values of the uncertainty
intervals represent a high percentile, e.g., 0.95 and 0.05, or 0.99 and 0.01 (as in the case of factor
A), the error is acceptably small in most of the cases. In Figure 3.30(b) the gray areas represent
the error that arises when considering a truncated normal distribution. The probabilities of
the first and the last intervals are overestimated by a quantity equal to the smallest truncation
percentile (0.01 in this case).
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Figure 3.31 Unified sampling method. Representation of (a) the uniform sampling in the BPAs
domain, and (b) the corresponding sample points in the uncertainty-intervals domain.

The unified sampling method, in the presence of both stochastic and epistemic factors, is
executed in two steps. First, a uniform sampling on the space formed by the cumulative values
of the BPAs is executed, Figure 3.31(a). In Figure 3.31(a) the x-axis and the y-axis represent the
cumulative BPA structure of Factor A and B as given on the x-axis of Figure 3.30(b) and (a)
respectively. Then, each sample point of Figure 3.31(a) is mapped to the corresponding point
in the uncertainty-interval domain, Figure 3.31(b). This passage from the BPA domain to the
uncertainty-intervals domain is also represented by the arrows in Figure 3.30. The CDF of each
factor is used for this transformation. Adopting this 2-steps procedure, the final sample (i.e.,
Figure 3.31(b)) is collected according to the mixed aleatory/epistemic probability distribution
of the factors.

Experience and common sense tell that the more BPA intervals, the better the approxima-
tion of the output probability-distribution. However, in the case of epistemic-factor uncer-
tainty the number of BPA intervals depends on the degree of knowledge of the engineering
team on the behavior of the factors themselves. If the initial uniform sampling is performed
according to a stratified technique (e.g., LHS), the resulting response CDF will be more stable
than what could be obtained by using a random technique, as demonstrated by Helton and
Davis (2003) and McKay et al. (1979). Further, if a Sobol’ sequence is implemented, all the
advantages already discussed in the previous chapters would still hold. This is particularly
true if seen from the perspective of computing the sensitivity analysis using the RBSA, which
is directly applicable if the unified sampling method is used. The computation of sensitivity
analysis under uncertainty settings allows to identify the contribution of the inputs to the un-
certainty in the analysis output, so to drive the effort in better describing the uncertainty of
only the most relevant factors.

Verification of the unified sampling method

The unified sampling method has been verified with the test functions provided by Helton
and Davis (2003):

f1(U, V ) = U + V + UV + U2 + V 2 + U ·min (exp (3V ) , 10)

U ∈ [1.0, 1.5]; V ∈ [0, 1];
(3.47)

f2(U, V ) = U + V + UV + U2 + V 2 + U · g(V )

U ∈ [1.0, 1.5]; V ∈ [0, 1];
(3.48)
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with

h(V ) = (V − 11/43)−1 + (V − 22/43)−1 + (V − 33/43)−1

g(V ) = h(V ) if |h(V )| < 10

g(V ) = 10 if |h(V )| ≥ 10

g(V ) = −10 if |h(V )| ≤ −10

The expression in Eq. (3.47) is monotonic for positive values of U and V , while the expres-
sion in Eq. (3.48) is monotonic for positive values of U and non-monotonic for positive values
of V . In the following figures, from Figure 3.32 to 3.35, we compare the performance obtained
in estimating the output uncertainty of the models in Eqs. (3.47) and (3.48) when using the
unified sampling method, random sampling, and Latin hypercube sampling. In each one of
these figures we show six graphs. On the left-hand side of the figures the comparison between
LHS and unified sampling is shown. On the right-hand side we present the results of the com-
parison between the performance obtained with random sampling and unified sampling. In
each sub-figure we calculate the estimated output CDF of the two equations, using 30 repli-
cated samples (i.e., 30 replicated set of simulations) of size 25, 50, and 100, going from top to
bottom.

In Figure 3.32 the arguments U and V are assumed uncorrelated and uniformly distributed
over the intervals. Already with 25 sample points the estimated CDF computed using the
results obtained from the unified sampling technique, the black lines, is very close to the one
computed with 100 sample points. This is not the case for LHS and random sampling. The
CDFs computed using the unified sampling method are always within and in the center of the
estimates obtained with the 30 replicates of the other two sampling methods. In particular,
one can observe that for an increasing sample size the CDF estimates obtained with LHS and
Random Sampling tend toward the estimate obtained using the unified sampling method.
This means that it is possible to estimate a precise output cumulative distribution function
with much less sample points if the unified sampling technique is used, instead of LHS or
random sampling.

The results in Figure 3.33 are also obtained assuming arguments U and V to be uncor-
related and uniformly distributed over the intervals. In Figures 3.34 and 3.35, instead, the
arguments U and V are assumed normally distributed, with the intervals representing the
0.01 and 0.99 percentiles.

In general the same conclusions can be drawn also for the other figures of the verification
presented in this section. The main purpose of uncertainty propagation is establishing the
uncertain distribution of the output of a model, given the uncertainty distribution of its input
factors. The unified sampling methods demonstrates that this can be done with a reduced
computational effort is compared to commonly used LHS or random sampling techniques.
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Figure 3.32 Comparison of estimated CDFs for Eq. 3.47 with uniform distribution of the parameters
obtained with 30 replicated samples of size 25,50, and 100 using Latin Hypercube,
Random, and unified sampling.
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Figure 3.33 Comparison of estimated CDFs for Eq. 3.47 with normal distribution of the parameters
obtained with 30 replicated samples of size 25,50, and 100 using Latin Hypercube,
Random, and unified sampling.
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Figure 3.34 Comparison of estimated CDFs for Eq. 3.48 with uniform distribution of the parameters
obtained with 30 replicated samples of size 25,50, and 100 using Latin Hypercube,
Random, and unified sampling.
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Figure 3.35 Comparison of estimated CDFs for Eq. 3.48 with normal distribution of the parameters
obtained with 30 replicated samples of size 25,50, and 100 using Latin Hypercube,
Random, and unified sampling.
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3.4.2 Test case: satellite system for Earth-observation, uncertainty analysis

In the traditional systems engineering process, design margins are used to account for techni-
cal budget uncertainties, e.g., typically for cost, mass and power. A certain percentage of the
baseline’s performance is added to account for both uncertainties in the model and uncertain-
ties about eventual assumptions made at a preliminary phase that will likely be modified in
advanced phases, due to an increased level of detail and knowledge. For instance, the results
presented in section 3.3.3 were obtained with a 15% margin on the total satellite mass, total
power consumption and propellant stored on board. The results without margins would be
different. In particular, the satellite mass would be equal to 1048 kg, the power consumption
equal to 830 W and with a cost saving of 15 M$(FY 2010). The unified sampling method al-
lows the engineering team to obtain more insight in the uncertainty structure of the solution
by focussing on every single source of uncertainty. This will enable a more informed decision-
making process on the allocation of the budgets to each subsystem and each element.

In the case of the Earth-observation mission we considered the uncertain parameters and
the uncertainty structure presented in Table 3.19. A mix of normal, log-normal and epistemic
distributions has been considered. The normal and the log-normal uncertain variables are
centered around the values needed to obtain the results presented before. The epistemic un-
certain intervals and BPAs are determined in such a way that the value of the factors needed
to obtain the previous results is at the center of the first epistemic interval. Using the unified
sampling method, with 200 sample points (i.e., 200 model evaluations) we obtained the results
shown in Figure 3.36. In Figure 3.36(a,b,c) the probability density estimates of the satellite
cost, mass, and power consumption respectively, are presented. The histograms are plotted
with an adjusted scale, so to obtain a total area of the bars equal to 1. The probability density
function estimates are obtained using Maximum Likelihood Estimation (MLE). It is a standard
approach in statistics to do parameter estimation and inference. In this case we use MLE to
estimate the parameters of a probability density function that best fits the data obtained from
the 200 simulations.

In Figure 3.36 the black and gray arrows are positioned in correspondence to the values of
the performance computed for the analysis in Section 3.3.3 with and without margins, respec-
tively.

The margins approach is largely used in conceptual design for several reasons. It provides

Intervals
Uncertain Variables Min Max Distribution

Margin δV [%] 0 0.25 Epistemica

Specific Impulse [s] 280 320 Normald

Thrusters inert mass fraction [%] 0.2 0.4 Epistemicb

ADCS sens. mass [kg] 58 70 Log-normale

ADCS sens. power [W] 33 45 Log-normale

Antenna mass density [kg/m2] 9 11.5 Normald

Solar cells η [%] 0.17 0.23 Normald

Solar array power dens. [W/kg] 90 110 Normald

Batteries energy dens. [W-h/kg] 25 75 Normald

PCU mass [kg] 27 50 Log-normale

Regulators mass [kg] 33 55 Log-normale

Thermal subs. mass [kg] 20 50 Log-normale

Struct. mass margin [%] 0 1 Epistemicc

Table 3.19 Settings of the design variables.aIntervals [0, 0.04, 0.1, 0.17, 0.25], BPA [0.4, 0.3, 0.2, 0.1].
bIntervals [0.2, 0.25, 0.3, 0.4], BPA [0.4, 0.35, 0.25]. cIntervals [0, 0.25, 0.5, 0.75, 1], BPA
[0.4, 0.3, 0.2, 0.1].dµ = 0 σ = 1, Min and Max are the 0.01 and 0.99 percentile
respectively.eσ = 1, Max is the 0.99 percentile, Min corresponds to X = 0.
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Figure 3.36 Uncertainty-analysis results of the Satellite system for Earth observation test case.

a means to provide precautionary estimates on the performance due to unknowns at the mo-
ment of designing and due to performance changes (e.g., mass increase) during manufacturing
of the system. Most of the times these margins are based on past experience of design and
production of systems of similar nature. Having margins on the performance of the system
means that the designers provide an overall estimation of the worst case scenario without re-
lating it to the actual probability of the performance reaching that specific level. The margins
approach does not give the same insight provided by the PDFs and the histograms on the
performances of the system under uncertain input factors. When the uncertainty of the input
factors can be estimated (with stochastic or epistemic distributions) with the PDF trends as
shown, for instance, in Figure 3.36 allows the engineering team to better understand the be-
havior of the system under the effect of these uncertainties. Propagating the uncertainty into
the model brings two main advantages. First, the uncertainty can be allocated to single sub-
systems and single elements more effectively. Second, the final performance can be precisely
assessed according to the desired confidence level. Further, having a precise distribution of the
performances allows for more effective budget-allocation management for subsequent phases
of the design process. In Figure 3.36(d,e,f) the empirical cumulative distribution functions of
the performances are presented. The CDF estimate, computed with 2000 sample points using
a random sampling method, is also represented. In this figure we read, for instance, that given
the uncertainties in Table 3.19 the mass of the satellite will not exceed 1270 kg with 80% prob-
ability, and that it will not exceed 1350 kg with 95% probability. The fact that the empirical
CDF (computed with the 200 sample points from the unified sampling method) and the CDF
estimate are very close to each other demonstrates that the unified sampling method is able to
provide accurate results with a limited computational effort, also in the presence of uncertain
factors.

Uncertainty is an ingredient of conceptual design. Design margins are a typical example
of how uncertainty for unknowns at the design stage are taken into account. In this section we
have demonstrated that when uncertainties can be determined with a stochastic distribution,
the resulting PDFs and CDFs are much more informative to the engineering team. Further,
also when uncertainties are not known, epistemic estimated distributions can better capture the
knowledge of the engineering team. This concept is further analysed in Chapter 6, where we
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Figure 3.37 Augmented Mixed Hypercube sampling procedure for robust design.

use uncertainty analysis for the mass-budget management of a cubesat mission designed in
the ESA Concurrent Design Facility.

3.4.3 Robust design and the Augmented Mixed Hypercube approach

Robustness is a concept that can be seen from two different perspectives, at least according to
the discussion so far. One can define robustness of the system with respect to the effect of un-
controllable factors (aleatory and/or epistemic) and, if interested in obtaining a robust design,
one can select that combination of controllable design-factor values that minimizes the vari-
ance while optimizing the performance. This concept was already expressed in the previous
section, and it is the most common way of thinking of robust design. However, robustness
can also be defined as the insensitivity of a certain design baseline to modification of the de-
sign variables in subsequent phases of the design process, thus providing an intrinsic design-
baseline robustness figure. The modification of the levels of the design variables is likely to
happen, especially when the baseline is at an early stage of the design process (phase 0/A).
In this sense, robustness can be linked to the programmatic risk encountered when modifying
a set of design parameters at later stages of the design process (?). In the first case, instead,
robustness is more related to the operational-life risk of the system (if the uncertainties derive
from the operational environment, for instance).

In this section we introduce the Augmented Mixed Hypercube (AMH) as a mixed sam-
pling techniques that takes into account continuous and discrete variables, where continuous
variables can be deterministic (i.e., controllable) or probabilistic (i.e., uncontrollable). Discrete
design factors are always considered deterministic in this thesis. For system design, discrete
variables describe architectures of the system. Systems architectures are fully controllable dur-
ing design.

The AMH is presented in Figure 3.37 as an extension of the mixed hypercube shown at
the beginning of this chapter, in Figure 3.6. In the AMH we take into account all types of
design factors mentioned in this chapter. When the purpose of the analysis is to study the
settings of controllable factors that are able to cope with the uncertainties introduced by the
uncontrollable factors (stochastic and epistemic) then the AMH of Figure 3.37(a) shall be used.
There, for each combination of the levels of the controllable design variables, an uncertainty
analysis can be executed using the unified sampling method to obtain the performance of
the system, and the relative statistics, due to uncertain factors. When the purpose is only to
propagate uncertainty into the model, then the AMH in the form presented in Figure 3.37(b)
shall be used, instead. The AMH in Figure 3.37(b) was used for the analysis presented in
Section 3.4.2.



3.4 Uncertainty analysis and robust design 83

(d)

(a) (b)

(c)

1 2
154

156

158

160

162

164
Average Factor Effect

Su
bs

ys
te

m
s 

M
as

s 
[k

g]

D
ow

n-
lin

k 
M

ar
gi

n 
[d

B]

−4

−3.5

−3

−2.5

−2

−1.5
SS Mass
D-L Margin

1 2154

156

158

160

162

Type of Antenna

Average Factor Effect

Su
bs

ys
te

m
s 

M
as

s 
[k

g]

D
ow

n-
lin

k 
M

ar
gi

n 
[d

B]

−2.8

−2.75

−2.7

−2.65

−2.6

−2.55

1 10.8 20.6 30.4 40.2 50
0.05

0.24

0.43

0.62

0.81

1
134.7
138 141.3

141.3
144.6

144.6

148

148

151.3

151.3

154.6

154.6

157.9
161.2

Output RF Power [W]
A

nt
en

na
 D

ia
m

et
er

 [m
] Subsystems Mass [kg]

Down-link 
margin

constraint

1 2 3156

157

158

159

160

161

Su
bs

ys
te

m
s 

M
as

s 
[k

g]

Type of Solar Array

Average Factor Effect

−4

−3.5

−3

−2.5

−2

−1.5
SS Mass
D-L Margin

D
ow

n-
lin

k 
M

ar
gi

n 
[d

B]

SS Mass
D-L Margin

Type of Transmitter

Figure 3.38 Main results of the Communication and Power subsystems analysis. ∆ is a tentative
selected baseline. The light-gray area of (d) represents the down-link margin
constraint-violation conditions.

In the following subsection we present the utilization of the AMH for robust design, ap-
plied to the communication and power subsystems mathematical model.

3.4.4 Test case: the communication and power subsystems, robust design

In this subsection the robust design of the communication and power subsystems, using the
Augmented Mixed Hypercube approach, is discussed. The results obtained with the RBSA in
Section 3.2.4 suggest that the linear graphs and contour plots that retain most of the variability
of the performances are those presented in Figure 3.38. As shown in Figure 3.38, the trends
corroborates the initial insight in the problem gained with the sensitivity analysis.

With these settings of the design variables, a confirmation experiment was performed on
the model. The simulation provided a mass of the coupled subsystems of 160.2 kg and a down-
link margin of 4.96 dB. The reason for performing a confirmation experiment is that the design
point selected from the contour plot may not be very precise eventually due to the presence of
lack-of-fit in the regression model. To get the results without the bias caused by the lack-of-fit,
a confirmation experiment is needed.

The purpose of the analysis presented in this subsection is to make some conclusions on
the robustness to controllable and uncontrollable factors variations of the various architec-
tures, using the AMH approach. A tabular representation of the AMH used for the analysis
is presented in Table 3.20. The two continuous design variables are considered with a certain
degree of uncertainty with respect to their baseline value. The other uncontrollable factors in
Table 3.20 encompass many aspects related to the design and the operative life of the satellite
for which there is uncertainty on one side, and the impossibility of controlling them directly
on the other side. The results of the robust design on the Communication and Power subsys-
tems, presented in Figure 3.39, are computed using the AMH sampling procedure as shown
in Figure 3.37(b).

In Figure 3.39(a,b) the most robust and least robust configurations of the architectural vari-
ables are presented. In this case, the optimal configuration selected as a tentative baseline is
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Intervals
Uncertain Variables Code Min Max Distribution

Output RF power [W] A 35 45 Uniform
Antenna diameter [m] B 0.75 0.85 Uniform
Satellite pointing error [deg] C 1 4 Normald

Implementation loss [dB] D 1 4 Epistemica

Satellite antenna efficiency [-] E 0.45 0.55 Normald

Antenna mass density [Kg/m2] F 9 11.5 Log-Normale

Ground antenna efficiency [-] G 0.45 0.55 Normald

Ground antenna pointing er-
ror

[deg] H 0.1 1 Log-Normale

Transmission efficiency -
Sunlight

[-] I 0.6 0.8 Epistemicb

Transmission efficiency -
Eclipse

[-] J 0.6 0.8 Epistemicc

Solar cells η [%] K Nominalf - 10% Nominalf +
10%

Log-Normale

Solar array power dens. [W/kg] L Nominalf - 10% Nominalf +
10%

Log-Normale

Batteries energy dens. [W-h/kg] M 25 75 Log-Normale

Circular orbit altitude [km] N 990 1100 Normald

Type of Antenna [-] 1 2 2 levels
Type of Solar Array [-] 1 3 3 levels
Type of Transmitter [-] 1 2 2 levels

Table 3.20 Settings of the design variables. aIntervals [1, 1.75, 2.5, 3.25, 4], BPA [0.4, 0.25, 0.2, 0.15].
bIntervals [0.6, 0.667, 0.773, 0.8], BPA [0.25, 0.4, 0.35]. cIntervals [0.6, 0.667, 0.773, 0.8],
BPA [0.25, 0.4, 0.35]. dµ = 0 σ = 1, Min and Max are the 0.01 and 0.99 percentile
respectively. eσ = 1, Max is the 0.99 percentile, Min corresponds to X = 0. f See
nominal values in Table A.3.

also the most robust one (see the black PDF). The least robust configuration, the one with the
largest variance, is instead represented by the one having the horn antenna, the triple junc-
tion type of solar cell, and the SSPA type of transmitter. The sensitivity analysis presented
in Figure 3.39(c,d) reports the uncertain-factors contribution to these results. The transmitter
output-power and the transmission efficiencies are the factors that influence most the sensitivity
of the subsystem mass to the uncertainties (design and environmental). This means that the
transmitter output power shall be carefully controlled in subsequent phases of the design pro-
cess to maintain the as-designed performances. This also means that the margin that shall be
applied to the subsystem mass is strongly dependent on the uncertainties that the engineer-
ing team has on the efficiencies with which the power is transmitted on board. Further, other
sources of uncertainty will not affect the design much from the mass point of view. In Fig-
ure 3.39(a), the black vertical arrow represents the 20% margin applied to the mean (nominal)
value of the subsystems mass. A classical margins approach just providing the margin with
respect to the mean value, will not convey any other kind of knowledge on the uncertainty
structure and on the sensitivity with respect to the uncertain factors.
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Figure 3.39 Communication and power subsystems robust design and uncertainty analysis.
Probability density function of the most robust (black lines) and least robust (gray lines)
configuration on the a) Subsystems mass, b) Down-link margin. c) Sensitivity analysis
of the subsystems mass to the uncertain factors. d) Sensitivity analysis of the
down-link margin to the uncertain factors.

3.5 Summary

Design-space exploration is the fundamental activity with which the model of a complex sys-
tem is analyzed to understand the effect of the design choices on the performance(s) and to set
the values of the variables in such a way that the final product will perform as required by the
customer(s). This activity often involves many stakeholders, with many objectives to be bal-
anced, many constraints and many design variables, thus posing the problem to be extremely
difficult to solve with a non-structured approach. The purpose of this chapter was to discuss
subsequent analysis steps and synthesis methodologies that could serve as a guideline for ex-
ploring the design space of complex models in a standardized and possibly more efficient way.
The following common design questions can be answered by using the methods presented in
this chapter:

Amongst all the design factors of the system model, what are those actually influencing the
performance of interest? To what extent do these factors influence the performance?

In case of uncertainties in the factors influencing the performance of the system, how do they propagate
through the model? And what are the factors that are mostly responsible for performance uncertainty?

What is the shape of the design-space? And what are the best parameter settings to optimize the
objectives and meeting the constraints?

How robust is(are) the baseline(s)?
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The AMH is slightly more elaborated than other conventional sampling techniques but it
allows the engineering team to gain a great deal of insight in the problem at hand with contin-
uous and discrete, controllable and uncontrollable design variables with one unified method.
The final baseline of the Earth-observing satellite, for instance, was selected according to a
non-conventional mission architecture for an observation satellite, i.e., quite a high orbit al-
titude. This choice was mostly driven by the need to balance the coverage requirement and
the resolution performance, while keeping the cost down. The risk of obtaining conventional
design baselines is concrete when non-structured, expert-judgment driven approaches are im-
plemented. However, very often, especially in preliminary design phases, expert judgment
is a fundamental ingredient to a good system baseline. In fact, the AMH also allows to take
expert-judgment into account with a unified epistemic-stochastic sampling approach.

The RBSA presented in this chapter, coupled with the AMH, demonstrated the charac-
teristics of providing very precise quantitative information on the importance of the factors
at a reduced computational effort in the case of linear and non-linear problems, even with a
large number of variables. Further, it also demonstrates the possibility of obtaining quanti-
tative indices also of the single effects involving the design variables, information that is not
available with other sensitivity analysis methods. In case of highly non-linear and highly non-
monotonic problems, the RBSA is able to provide at least a qualitative indication on the impor-
tance of the factors and their ranking, even when other qualitative screening methods fail. In
the case of the design of a complex system, composed of many interacting elements and sub-
elements with many variables to be taken into account, the RBSA can help in supporting the
engineering team by lowering the computational cost and time to obtain quantitative results.

One last remark regards the possibility to use the AMH for a wider search. The analysis
performed with the AMH, as presented in this chapter, is restricted to the portion of the design
space delimited by the variability ranges of the design variables. Sometimes a single hyper-
cube is sufficient to entirely cover the design space, sometimes instead a narrower hypercube
might be needed to avoid major lack-of-fit conditions. In this case more than one hypercube
may be implemented to study different regions of the design space as different alternative
baselines of the system. In this case, the methodologies presented in this chapter will not
only support the engineering team in selecting the best configuration for each single baseline,
but will also allow to compare and trade between the baselines based on their performances,
constraint-violation conditions and robustness.



Chapter 4
Global Design Approach

The local approach based on the Augmented Mixed Hypercube (AMH) discussed in the pre-
vious chapter, provides a structured framework for the engineering team to explore the design
space in the neighborhood of a specific point, e.g., a design baseline. The AMH has some lim-
itations. One of them is that when the design region of interest becomes larger a polynomial
representation of the system (the fulcrum of the AMH approach) may not be accurate enough.
This aspect limits the dimensions of the AMH, but on the other hand when the AMH is too
small, large parts of the design space may be left unexplored. This is an undesired side-effect
of the proper utilization of the AMH approach. For a well-informed decision-making process,
the design space shall be explored to a large extent, instead. In this way, the risk of neglecting
potentially optimal solutions is reduced and eventually eliminated.

Multiple augmented mixed hypercubes generated in different regions of the design space
may help the engineering team to better explore the design space. There is the risk, how-
ever, that computational resources are invested in portions of the design space that will yield
sub-optimal solutions. There are more efficient methods that can be implemented when the
purpose is to find optimal solutions to a problem characterized by having many objectives and
constraints, with continuous and discrete variables covering a large design region. Heuristic
Multi-Objective Optimization (MOO) algorithms, for instance, seem to be the most suitable
approach (Pardalos and Romeijn, 2002; Holland, 1975; Goldberg, 1989; Kennedy et al., 2001).
These algorithms provide a set of global-optimal solutions with respect to all the objectives
and constraints at the same time.

Even though it is empirically proven that excellent results can be obtained using MOO
algorithms, it is also true that some optima could be the result of a particular combination of
design variables that will exhibit a steep drop in performance when the levels of the design
variables are only slightly modified. For this reason, in this chapter we introduce a novel global
design approach for the design and optimization of complex systems based on a synergistic
utilization of the global MOO and the local AMH approach. It is called PROA, Pareto Robust
Optimization Algorithm, and it brings benefits to the engineering team in understanding the
quality of the optimal solutions provided by standard optimizers.

In Section 4.1 of this chapter we describe the main characteristics of global multi-objective
optimization. Some global optimizers are compared and an applicative example of the Lunar
space-station test case is provided to show the benefits of having global optimization already
at conceptual-design level. In Section 4.2 we discuss the Pareto Robust Optimization Algo-
rithm, providing some validation examples. Further, we apply PROA to the Satellite system
for localized Earth-observation test case.

87



88 Global Design Approach

4.1 Global multi-objective optimization

The problem of designing and optimizing a space system, considering its operative environ-
ment and the mission it will accomplish, is highly constrained and characterized by having
multiple objectives, with continuous and discrete (e.g., architectural) variables. A generalized
mathematical formulation is shown hereafter:

Minimize f (x) = [f1 (x) , f2 (x) , . . . , fM (x)]T ∈ F
where x = [x1, x2, . . . , xN ]T ∈ X

gj (x) ≥ 0 j = 1, . . . , J

subject to hk (x) = 0 k = 1, . . . ,K

x
(L)
i ≤ xi ≤ x(U)

i i = 1, . . . , N

(4.1)

The N × 1 vector x is the design vector (i.e., , the design-variable set) and the M × 1 vector
f (x) contains the objective functions. The problem has J inequality constraints (g), and K
equality constraints (h). X represents the design space, while F is the objective space. Every
design variable may assume values between a minimum (x(L)i ) and a maximum (x(U)

i ). The

intersection of all the intervals
[
x
(L)
i , x

(U)
i

]
forms the design-region of interest or design search-

space, which is a subset ofX . A minimization problem can be transformed into a maximization
one by multiplying with -1 the objectives.

In multi-objective optimization problems the optimum is treated differently compared to
single-objective optimization problems. The former aims at finding a set of good compro-
mises, i.e., trade-offs, rather than a single optimal solution, by optimizing all the objectives
simultaneously. This set of solutions is found using the Pareto-optimality concept. A solution
is defined to be Pareto-optimal or non-dominated if there is no feasible solution for which one
cannot improve a single objective without causing a degradation of at least one other objec-
tive. According to the Pareto-optimality concept, a vector a ∈ X is said to dominate another
vector b ∈ X in a minimization problem, also written as a ≺ b , if and only if the following
relationship holds:

∀i ∈ {1, . . . , N} : fi (a) ≤ fi (b) ∧ ∃i ∈ {1, . . . , N} : fi (a) < fi (b)

The set of non-dominated vectors, plotted in the objective space, is defined as the Pareto
front, schematically shown in Figure 4.1. The determination of the true Pareto front, PFtrue
(i.e., the theoretical obtainable Pareto front), depends on many aspects such as the complexity
of the problem of interest, the number of design variables and objectives, the nature of the
front itself (concave/convex, continuous/discrete) and the number of function evaluations
executed.

An optimization problem posed in the form of Eq. (4.1) can be solved following different
approaches. However, not all of them are applicable and some of them are more effective
than others, especially for design spaces of high dimensionality, with both continuous and
discrete variables. In the following paragraphs we will briefly provide an overview of existing
methods in the literature that may potentially be used to solve the MOO problem.

Local optimization

The class of local gradient-based techniques mathematically guarantees that an optimal solu-
tion is reached. Local gradient-based methods require continuity in the search space and in the
space of the objective functions and constraints, and their first derivatives. Especially when
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Figure 4.1 Schematic representation of the concept of the Pareto-dominance. a ≺ b, e, g and
c ≺ e, g, d. The solutions h and i are not dominated by any other current solution.

dealing with architectures of a space system, the design variables are not always continuous,
e.g., the choice of a particular launcher. When also databases are included in the design pro-
cess, continuity does not even apply. Further, such methods are characterized by finding local
optima, locked in the impossibility to overcome this limitation. Global optimization methods,
on the other hand, may cover a large portion of the design space while searching for the op-
timum, and provide mechanisms for avoiding local optima, e.g., random mutation in the case
of genetic algorithms (Goldberg, 1989). It is for this reason that global optimization methods
are considered in this chapter as a tool in support of the engineering team for the exploration
of the design space.

Global optimization - deterministic methods

Deterministic methods like branch-and-bound algorithms (Back et al., 2000; Mitten, 1970), re-
laxation strategies, enumerative methods (Pardalos and Romeijn, 2002), and interval-analysis
methods show poor convergence in some cases, and a rapid increase of computational ef-
fort when the dimensions of the search space increase (Alefeld and Mayer, 2000). Dynamic
Programming (DP) is a combinatorial optimization technique, which demonstrated to reach
exact solutions for problems with specific formulations (also multi-objective as demonstrated
by Abo-Sinna and Hussein (1995)), involving the solution of subproblems of similar nature
to build the global optimal solution (Bellman and Dreyfus, 1962). The modification of the
problem structure to be solvable by a DP algorithm is not always possible, especially in col-
laborative, possibly distributed, design environments. Classical methods for the generation
of the Pareto front like the Normal Boundary Intersection (Das and Dennis, 1998), the Adap-
tive Weighted-Sum (Kim and de Weck, 2005), the Direct Search Domain (Erfani and Utyuzh-
nikov, 2010), and the Normal Constraint method (Messac and Mattson, 2004), to mention a
few, have shown a good performance in finding Pareto-optimal solutions for multi-objective,
constrained, continuous and discontinuous, optimization problems. A good overview of these
methods and a comparison of the performance of a few of them is presented in Shukla and Deb
(2007).

Global optimization - heuristic methods

The non-classical heuristic methods like evolutionary strategies (Back et al., 2000), simulated
annealing (Sanguthevar, 2000), and tabu-search (Tan et al., 2003; Glover, 1989, 1990), proved to
be particularly flexible, and applicable to continuous and discontinuous problems with one or
more objectives and constraints (Deb, 2001; Coello Coello et al., 2007). Also other approaches
exist that exploit alternative formulations of the multi-objective problem. The Iso-performance
method, for instance, allows for obtaining optimal solutions amongst those that were previ-
ously determined to meet the performance requirements with sufficient margins (de Weck
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Figure 4.2 Schematic of a general implementation of a heuristic algorithm for multi-objective
optimization.

et al., 2002). Physical Programming, instead, demonstrated the possibility to generate Pareto
fronts in multi-objective problems considering experts judgment already during the optimiza-
tion (Messac and Mattson, 2002). Heuristic methods will be considered in this thesis as global
optimization methods. The reason is that they are flexible, scalable, easy to use, and problem-
independent.

4.1.1 Popular heuristic multi-objective optimization approaches

During the last twenty years, many multi-objective optimization techniques and algorithms
have been developed and implemented to solve ad-hoc mathematical problems (Fonseca
and Fleming, 1995; Van Veldhuizen and Lamont, 1998). Possible distinctions are made be-
tween stochastic and deterministic, or between algorithms that use scalarization of the multi-
objective problem and others that do not decompose the problem to solve it. Some of the most
widely used multi-objective optimization methods have been mentioned at the beginning of
this section, therefore for the details readers are encouraged to read the original studies.

Stochastic MOO algorithms demonstrated to be very flexible and their formulation does
not require knowledge about the model to be optimized. They are easy to use, and easy to
implement with general problems (continuous and discrete). For these reasons, in this thesis
we consider a specific class of stochastic MOO algorithms as Pareto-generating techniques,
namely the evolutionary algorithms. This class of algorithms is called evolutionary because it
mimics the evolutionary behavior of living species, e.g., transmission of genetic material (in
this case represented by the design parameters) from a generation to the next.

In the following subsection a brief description of three popular MOO evolutionary algo-
rithms is provided, with a comparison on constrained and unconstrained test problems. These
algorithms all work according to the general scheme presented in Figure 4.2. However, each
of them has a particular characteristic that differentiates it from the others in terms of selec-
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Figure 4.3 Selection and diversity preservation principles of the NSGAII algorithm.

tion of the individuals, mating amongst the individuals, and maintaining diversity within the
population.

Once the initial population is generated (selecting the design-variable levels) and evaluated
(executing the model simulations), a new population is created by using the characteristics of
the fittest individuals in the population. The new population is then evaluated, and the process
starts again with the best set of individuals. To the best of our knowledge, the most popularly
used evolutionary algorithms are the Non-dominated Sorting Genetic Algorithm II (NSGAII),
the Multi-Objective Particle Swarm Optimization (MOPSO), and the Multi-Objective Evolu-
tionary Algorithm with Decomposition (MOEA/D).

Non-dominated Sorting Genetic Algorithm II

The Non-dominated Sorting Genetic Algorithm II proposed by Deb et al. (2002), was devel-
oped as an improved version of the NSGA introduced earlier (Srinivas and Deb, 1995). As in
the original concept of genetic algorithms (developed for single-objective implementations),
NSGAII uses techniques inspired by natural evolutions, e.g., crossover and mutation for the
reproduction phase, as described already by Back et al. (2000). The selection of the individuals
is based, instead, on the non-domination principle. At every step of the optimization process,
once the model is evaluated the solutions are sorted according to their fitness in the Pareto
sense, i.e., non-domination sorting. Thus, the individuals of the new population are selected
amongst the best non-dominated individuals of the old population and its offspring, obtained
during the reproduction phase.

There are several approaches that could be used to sort the individuals, see, for instance,
the discussion in Deb et al. (2002). The result is that the population is subdivided into several
fronts, ranked in order of optimality. In Figure 4.3(a) the solutions on the objective space have
been assigned to four different fronts. The population of the successive iteration of the opti-
mization process is selected starting from the individuals on the first front, until the maximum
number of individuals is reached. The mechanism of the crowding distance, schematically
represented in Figure 4.3(b), is one of the mechanisms discussed in the literature to maintain
diversity within the population. In this particular case, for instance, the solution represented
by the gray circle is preferred over the one represented by the square. This is due to the larger
distance between the gray circle and its neighbor solutions on the Pareto front if compared to
the distance between the square and its neighbor solutions on the Pareto front.
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Figure 4.4 A flock of birds searching for food, Leiden, The Netherlands. Credit: Guido Ridolfi.

Multi-Objective Particle Swarm Optimization

The Multi-Objective Particle Swarm Optimization proposed by Coello Coello et al. (2004), is
an extension of the Particle Swarm Optimization (PSO) approach developed by Kennedy and
Eberhart (1995). The PSO is a distributed behavioral algorithm, also classified as an agent-
based algorithm, inspired by the social dynamics of groups of individuals (e.g., flocks of birds
or fish schoolings) searching for resources, see Figure 4.4. Birds, for instance, are able to com-
municate between each other the position where food has been found. Further, they are able
to remember the geographical position where they found food themselves. In searching for
food, their exploration is driven by these two indications. Inheriting this principle, the veloc-
ity of the particles (which are the vectors with the design-variable values) in the design space
and their position, at each step of the optimization process, are determined by the following
equations (Kennedy and Eberhart, 1995):

vi+1 = w · vi + c1 · r() · (x∗i − xi) + c2 · r() · (x∗G − xi) (4.2)

xi+1 = xi + vi (4.3)

The term w · vi is an inertial contribution to the current movement of the particle in the
search space. The term c1·r()·(x∗i − xi) influences the velocity, v, proportionally to the distance
between the current position and the best position found by the particle itself during its journey
in the search space. The term c2 ·r() ·(x∗G − xi) is proportional, instead, to the distance between
the current position and the best position of the whole population in the search space. The
parameters w, c1 and c2 need to be tuned properly, depending on the problem at hand. The
parameter r() is a randomly-generated number between 0 and 1. The extension of this concept
to a multi-objective case, using the concept of Pareto-dominance to evaluate the goodness of the
particles, was introduced by Coello Coello et al. (2004). Reyes Sierra and Coello Coello (2005)
propose an improvement of the method by incorporating the concept of crowding distance
discussed before.

Multi-Objective Evolutionary Algorithm with Decomposition

The Multi-Objective Evolutionary Algorithm with Decomposition proposed by Zhang and
Li (2007) is an alternative method for computing the Pareto front of problems with multiple
objectives. The MOEA/D method is based on the decomposition of the problem into a number
of scalar sub-problems and on their simultaneous optimization. Consider, for instance, a two-
objective (f1 and f2) problem. The transformed scalar optimization problem can be formulated
as the optimization of the functional F = λ1f1 (x) + λ2f2 (x), where the λi are coefficients
subject to

∑
λi = 1, and x is the vector of the variables. This weighted-sum approach allows

for generating a set of N different Pareto-optimal vectors by using N different combinations
of weights. In correspondence with each combination of weights, an optimal solution is found
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Figure 4.5 Dominance principle in presence of constraints.

for the functional F . These represent the Pareto-optimal solutions. The Tchebycheff approach
and the boundary-intersection approach for the decomposition of the multi-objective problem
are discussed and compared in Zhang and Li (2007), to which the reader is referred for more
detailed information on the MOEA/D method.

4.1.2 Dealing with constraints

The evolutionary algorithms considered for the global optimization processes presented in this
thesis, all have the characteristics for which pairs of individuals (i.e., solutions) are compared
to select the most suited ones for the evolutionary process in common. The individuals are
compared on the basis of the Pareto-dominance principle and eventually also considering the
crowding distance. When the multi-objective problems have constraints, these shall also be
considered in the comparison between individuals. The general principle that we adopted is
that a feasible solution shall always be preferred over an infeasible solution, and that between
two infeasible solutions the less infeasible shall be preferred. When both solutions do not violate
the constraints, then they are compared as in the unconstrained case, i.e., based on the Pareto
dominance and crowding distance. A schematic representation of the dominance principle
in presence of constraints can be found in Figure 4.5. Clearly, solution A is preferred over
solution B because it is better in the Pareto sense. Solution E is preferred over solution F
because solution F is infeasible. Solution C is preferred over solution D because, even if they
are both infeasible, solution C is closer to the constraint (i.e., less infeasible).

4.1.3 Comparison of algorithms for multi-objective optimization.

For comparison purposes we tested the performances of NSGAII, MOPSO, and MOEA/D on
many of the test problems proposed by Zitzler et al. (2000), Deb et al. (2005), Deb (2001), and
Coello Coello et al. (2007).

Deb (1999) identified several characteristics that may prevent an MOO algorithm to con-
verge to the true Pareto front and to maintain diversity of the solutions. The Pareto front is
harder to reach in the case of multimodal and/or deceptive problems, and in problems with
isolated optima. Non-convexity and non-uniformity of the Pareto front, or discreetness of the
problem may lead to conditions for which diversity in the solutions is hard to maintain. In
Tables 4.1 and 4.2 the test functions used for comparing the three algorithms are presented. In
general two objectives are considered sufficient to reflect essential aspects of multi-objective
optimization (Coello Coello et al., 2007). Moreover, we only consider minimization problems,
since maximization or mixed maximization/minimization would not be more informative.

The results presented in the following figures were obtained using a population size of 100
individuals, with a maximum of 100 generations allowed, for all the algorithms compared.
The number of Pareto individuals is also a measure of the quality of the algorithms. In Figure
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Problem n Variable
Bounds

Objective Functions Comments

ZDT1 30 [0, 1]

f1(x) = x1

f2(x) = g(x)
[
1−

√
x1
g(x)

]
g(x) = 1 + 9

∑n
i=2 xi/(n− 1)

Convex

ZDT2 30 [0, 1]

f1(x) = x1

f2(x) = g(x)

[
1−

(
x1
g(x)

)2]
g(x) = 1 + 9

∑n
i=2 xi/(n− 1)

Non-convex

ZDT3 30 [0, 1]

f1(x) = x1

f2(x) = g(x)
[
1−

√
x1
g(x)
− x1
g(x)

sin (10πx1)
]

g(x) = 1 + 9
∑n
i=2 xi/(n− 1)

Convex
Disconnected

ZDT4 10
x1 ∈ [0, 1]
xi ∈ [−5, 5]
i = 2 . . . n

f1(x) = x1

f2(x) = g(x)
[
1−

√
x1
g(x)

]
g(x) = 1 + 10(n− 1) +

∑n
i=2

[
x2i − 10 cos (4πxi)

] Non-Convex

ZDT5a 11
x1 ∈ [0, 30]
xi ∈ [0, 5]
i = 2 . . . n

f1(x) = 1 + u (x1)

f2(x) =
∑n

i=2 v(u(x1))

f1(x)

v(u (x1)) =

[
2 + u (x1) if u (x1) < 5
1 if u (x1) = 5

Deceptive
Discrete

ZDT6 10 [0, 1]

f1(x) = 1− exp (−4x1) sin6 (6πx1)

f2(x) = g(x)

[
1−

(
f1(x)
g(x)

)2]
g(x) = 1 + 9

[∑n
i=2 xi/(n− 1)

]0.25
Non-convex

Non
uniformly
spaced

DTLZ1 3 [0, 1]

f1(x) = 0.5(1 + g(x)) · x1 · x2
f2(x) = 0.5(1 + g(x)) · x1 · (1− x2)
f3(x) = 0.5(1 + g(x)) · (1− x1)
g(x) = 100

[
1 + (x3 − 0.5)2 − cos(20π(x3 − 0.5))

]
(11n − 1)
local
Pareto
fronts

DTLZ2 3 [0, 1]

f1(x) = [1 + g(x)] cos
(
x1

π
2

)
cos
(
x2

π
2

)
f2(x) = [1 + g(x)] cos

(
x1

π
2

)
sin
(
x2

π
2

)
f3(x) = [1 + g(x)] sin

(
x1

π
2

)
g(x) = (x3 − 0.5)2

(11n − 1)
local
Pareto
fronts

Table 4.1 Unconstrained test functions. Adapted from (Zitzler et al., 2000) and Deb et al. (2005).
a u(xi) gives the number of ones in the bit vector xi(unitation).

4.6 the Pareto fronts obtained using the optimization algorithms on the first six problems of
Table 4.1 are presented. In all the cases MOEA/D reached the true Pareto front with evenly
distributed solutions. In most cases both NSGAII and MOPSO did not provide the true Pareto
front, remaining stuck to suboptimal solutions. In the ZTD4 and ZTD6 problems both NSGAII
and MOPSO provided extremely unsatisfactory results.

The DTLZ1 and DTLZ2 problems, despite presenting three objectives, are relatively easy
problems to solve. The three algorithms reached the true Pareto front in both cases. The true
Pareto front for the DTLZ1 problem is a plane passing through the points with coordinates
(1, 0, 0), (0, 1, 0), and (0, 0, 1). The true Pareto front for the DTLZ2 problem is a 1

8 of sphere, in
the positive octant, centered in 0 with radius equal to 1. However, as demonstrated in Figures
4.7 and 4.8 MOPSO and MOEA/D provided better results in terms of diversity of the solutions
on the Pareto front. Indeed, NSGAII reached clusters of solutions localized in some regions of
the Pareto front, which is an unwanted behavior for an MOA. In all cases the three algorithm
reached the true Pareto front.

Finally, in Figure 4.9 we present the results obtained on the constrained optimization prob-
lems of Table 4.2. The constraint-handling mechanism described in Section 4.1.2 allowed the
algorithms to cope with the proposed constrained problems. Indeed, NSGA-II and MOEA/D
obtained the correct constrained solutions in all cases. MOPSO did not perform as well as the
other two algorithms that we implemented. In the TNK problem both NSGA-II and MOEA/D
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Problem n Variable
Bounds Objective Functions Comments

TNKa 2 [0, π]

f1(x) = x1
f2(x) = x2

Subject to

−x21 − x22 + 1 + a · cos (b · arctan (x1/x2)) < 0
(x1 − 0.5)2 + (x2 − 0.5)2 − 0.5 < 0

Disconnected
Non-Linear
constraints

DTLZ9b - [0, 1]

fj(x) =
∑bj n

2 c
i=b(j−1)n

2 c
x0.1i j = 1, 2

Subject to

f22 (x) + f21 (x)− 1 ≥ 0

Constrained
surface

Table 4.2 Constrained test functions. Adapted from Coello Coello et al. (2004), and Deb et al.
(2005). a TNK problem a = 0.1, b = 32; TNK-II problem a = 0.1

(
x21 + x22 + 5x1x2

)
, b = 32;

TNK-III problem a = 0.1
(
x21 + x22 + 5x1x2

)
, b = 8

(
x21 + x22

)
. b Increasing number of variables,

i.e., 20, 30, and 60, see Figure 4.9.

reached the correct solution. In Figure 4.9, for the three TNK problems, the inside area delim-
ited by the black lines is the feasible area. For all the other test problems MOEA/D performed
better, especially with a large number of design variables. The arrows represent points in the
objective space where MOEA/D provided a solution while NSGA-II and/or MOPSO did not.
With an increasing number of variables, in the case of problem DTLZ9, MOEA/D was able to
provide a stable solution to the multi-objective problem, while NSGA-II suffered, remaining
stuck to one of the many local Pareto fronts. In these two last graphs the results obtained with
the MOPSO algorithms are not shown.

As a result of the testing process, we can conclude that MOEA/D reaches the Pareto front
quickly when compared to MOPSO and NSGAII, and it is more accurate in the determination
of the Pareto front, maintaining a higher level of diversity of the solutions. This means that
using MOEA/D there are high chances of getting solutions close to the true Pareto front and
that the solutions presented at the end of the process are more diverse from each other, giving
more degrees of freedom for the final decision process. Due to its capability to deal with
constrained multi-objective problems, in the presence of different types of Pareto fronts, and
due to its convergence speed, accuracy, and solution diversity characteristics, we decided to
use the MOEA/D algorithm for the optimization processes discussed in this chapter. In this
subsection we have often mentioned the true Pareto front. It is the Pareto front that can be
computed analytically from the problem definition, i.e., it is the region in the design space
where the dominance principle, discussed at the beginning of the chapter, is valid. Later in
this chapter we will also consider the known Pareto front defined as the best approximation
of the Pareto front obtained with a MOO algorithm. For more details on the methodologies
briefly introduced in this section, and for more information regarding the test problems, their
formulation, and the analytical Pareto fronts (i.e., the mathematical expressions of the true
Pareto fronts), readers are encouraged to refer to the original studies.
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Figure 4.6 Comparison of the MOA on six unconstrained problems.
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Figure 4.7 Comparison of the MOAs on the DTLZ1 problem. On the top graph a side visualization
of the Pareto front obtained with the three algorithms is shown. On the graphs at the
bottom, the Pareto fronts are shown separately as obtained by each algorithm.
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Figure 4.8 Comparison of the MOAs on the DTLZ2 problem. On the top graph a side visualization
of the Pareto front obtained with the three algorithms is shown. On the graphs at the
bottom, the Pareto fronts are shown separately as obtained by each algorithm.
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Figure 4.9 Comparison of the MOA on four constrained problems. The arrows represent points in
the objective space where MOEA/D provided a solution while NSGA-II and/or MOPSO
did not. The solid lines represent the constraints.


