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Abstract

In the frame of the research in biology and in particular in regenerative medicine, it is widely requested the
ability to perform measurements that have a low impact on the observed biological systems. Many
measurements imply sample modifications and also sample fixation avoiding living samples measurements.

In this doctoral thesis it is presented the realization of an advanced optical multimodal microscope that
integrates coherent anti-Stokes Raman scattering, second harmonic generation and two-photon excitation
fluorescence techniques in a single powerful tool. The combination of all these microscopy techniques in a
single microscope allows gathering more information during samples imaging, implementing fluorescence
technique with label free techniques.

A description of the experimental setup of the realized multimodal microscope is presented together with
the metrological characterization of the instrument, evaluating the main uncertainty sources that influence
the measurement processes.

Label free microscopy techniques allow performing measurements on biological samples with low
invasiveness, since to image the specimens it is not demanded any specific sample preparation. This
characteristic leads to measurements on living samples with a true low impact, opening new avenues on
the research in biology and in particular way in regenerative medicine.

Novel applications of these microscopy techniques are presented to study the extracellular matrix
production in both fixed and living samples, as well as to characterize the scaffolds topology and the
scaffold-cells interactions in a time-lapse experiment using living samples.

This doctorate thesis is composed by a state of the art chapter in which are discussed the advanced
nonlinear optical microscopy techniques from a theoretical point of view, the main experimental
implementations of CARS microscopy and the main parameters and properties to be measured relevant in
regenerative medicine applications and products.

A chapter is dedicated to the experimental setup for the realization of the multimodal CARS-SHG-TPEF
microscope at the I.N.Ri.M. laboratory.

A specific chapter is dedicated to the study of the main sources of uncertainty of the measurements using
CARS, TPEF and SHG techniques.

A chapter in which are discussed the biological experiments realized using the multimodal CARS-SHG-TPEF
microscope and at the end a final chapter with the conclusion of this doctorate thesis.

This study has been conducted at the Italian institute of metrology (Istituto Nazionale di Ricerca
Metrologica, I.N.Ri.M.) as part of the projects REGENMED, METREGEN and ACTIVE with funding
respectively from the UE (ERA-NET plus Grant Agreement No 217257) and from Piedmont Region on UE
under the programs CIPE 2007- converging technologies, grant 0126000010-METREGEN and POR-FESR I-
1.1.3-11.1 - ACTIVE.
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The main accomplished results are:

* The development of the whole experimental multimodal CARS-SHG-TPEF microscopy system
* The theoretical study of the main sources of uncertainty in the measurements with CARS, TPEF and
SHG techniques.
* The realization of biological experiments using these microscopy techniques:
o To study the collagen production from fixed histological sections of human dermal
fibroblasts cultured in fibrin gel scaffold using CARS and SHG techniques
o To study the collagen production by live human fibroblasts and mesenchymal stem cells
cultured in fibrin gel scaffold using CARS and SHG techniques
o To characterize polymeric scaffolds in culture media with a label-free method using CARS
and SHG techniques
o To study the colonization in a two days time-lapse experiment of a polymeric scaffold by
human mesenchymal stem cells stained with calcein using CARS and TPEF techniques
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CHAPTER 1

1. Introduction

Optical imaging microscopy techniques are widely used as tools and methodologies in many researches and
analyses in the fields of biology, pharmaceuticals, material sciences, forensic science, nanotechnologies,
etc.

Generally, optical microscopy methodologies are employed to characterize biological samples and to
measure for example their physical parameters (sizes, surfaces, morphology, etc.), their biological
properties (cell viability, proliferation, signalling, etc.), their chemical properties (molecular biology,
proteins, lipids, nucleic acids) or their mechanical parameters (structures, topology, porosity, etc.).

Since the discovery of the cells till nowadays, imaging techniques allowed tremendous progresses in
biology. The technologies advanced from the traditional techniques based on transmitted light microscopy
and today, fluorescence microscopy based on fluorescent probes that identify the specific biomarkers, is
widely used.

However until now there is a lack of studies that evaluate and guarantee the reproducibility and the
accuracy of biological measurements specifically addressed to these techniques, together with a general
lack of traceability to the International System of units SI. This implies that all the measurements in medical
and industrial frames that actually need a strong accuracy, are repeated a large number of times to
overcome, with a statistical approach, the lack of a strong metrology. Examples of these solutions are the
high-throughput screening (HTS) techniques that allow performing more than 100000 tests per day with
last technology progresses. Although these techniques allow understanding the interaction or the meaning
of particular biochemical processes in biological systems, this approach leads to very high costs in industrial
production chains and in products quality tests. Moreover, biomedical research and in particular,
regenerative medicine research, need the development of new techniques that reduce the invasiveness of
the measurement methods. A specific activity on this field has been demanded to the National Metrology
Institutes (NMI) to give a metrological support to the measurement in the biosciences [1].

Metrology in the bioscience will place the basis of accurate and confident quality control and quality
assurance of new products from biotechnology [2]. This will lead to improve strongly the knowledge
related to biological processes and to guarantee a better comparison between laboratories reducing the
risks of data manipulations and the risks for the public health.

In this doctorate thesis it is proposed the development of advanced nonlinear optics microscopy techniques
with low invasiveness, namely: coherent anti-Stokes Raman scattering (CARS), second harmonic generation
(SHG) and two-photon excitation fluorescence (TPEF). Moreover, the metrological analysis referred to the
microscopy measurements is presented together with some specific innovative applications that make use
of these microscopy techniques to measure some parameters of great importance in the regenerative
medicine.

This study has been conducted at the Italian institute of metrology (Istituto Nazionale di Ricerca
Metrologica, I.N.Ri.M.) as part of the projects REGENMED, METREGEN and ACTIVE with funding
respectively from the UE (ERA-NET plus Grant Agreement No 217257) and from Piedmont Region on UE
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under the programs CIPE 2007- converging technologies, grant 0126000010-METREGEN and POR-FESR I-
1.1.3-11.1 - ACTIVE.

The main accomplished results are:

* The development of the whole experimental multimodal CARS-SHG-TPEF microscopy system
* The theoretical study of the main sources of uncertainty in the measurements with CARS, TPEF and
SHG techniques.
* The realization of biological experiments using these microscopy techniques
o To study the collagen production from fixed histological sections of human dermal
fibroblasts cultured in fibrin gel scaffold using CARS and SHG techniques
o To study the collagen production by living human fibroblasts and mesenchymal stem cells
cultured in fibrin gel scaffold using CARS and SHG techniques
o To characterize polymeric scaffolds in culture media with a label-free method using CARS
and SHG techniques
o To study the colonization in a two days time-lapse experiment of a polymeric scaffold by
human mesenchymal stem cells stained with calcein using CARS and TPEF techniques

During the realization of these results also these derived products have been developed:

* Software to control the optical spectrum analyser in order to gather data for the spectral
characterization in the infrared region of the filter used based on Labview.

* Software to control the excitation sources wavelength and perform automatic measurements of
CARS spectra and TPEF intensity spectra versus excitation wavelength based on Labview.

* An electronic circuit that realizes the transimpedance amplifier of the photomultiplier tube (PMT)
output current.

* Afilter holder that reduces stray light towards the PMT in forward detection.

* An objective holder with all the necessary degrees of freedom for precise optical alighnment during
microscopy forward detection.

* A complete shield in aluminium that prevents stray light from the environment during the
microscopy measurements.

¢ Algorithms to perform automatic image analyses.

* An incubator to be placed on the microscopy stage in order to allow multi-day time-lapse

experiments.
Some of the accomplished results have also characteristic of originality namely:

* For the first time in Italy have been conducted biological sample imaging using CARS microscopy
and combination of CARS technique with SHG or TPEF techniques.

* The proposed method for collagen produced by living stem cells in culture detection using SHG
technique as a first signal of cellular differentiation in a non-invasive and non-destructive way.

* The proposed method to use CARS microscopy to characterize scaffolds in culture medium
analysing also the cells migration and colonization in a time-lapse experiment using TPEF
microscopy.

* The theoretical study of the main sources of uncertainty in the measurements with CARS, TPEF and
SHG techniques.
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This doctorate thesis is composed by a state of the art chapter in which are discussed the advanced
nonlinear optical microscopy techniques from a theoretical point of view, the main experimental
implementations of CARS microscopy and the main parameters and properties to be measured relevant in
regenerative medicine applications and products.

A chapter is dedicated to the experimental setup for the realization of the multimodal CARS-SHG-TPEF
microscope at the I.N.Ri.M. laboratory.

A specific chapter is dedicated to the study of the main sources of uncertainty of the measurements using
CARS, TPEF and SHG techniques.

A chapter in which are discussed the biological experiments realized using the multimodal CARS-SHG-TPEF
microscope and at the end a final chapter with the conclusion of this doctorate thesis.




CHAPTER 2

2.State of the Art

Advanced nonlinear optical microscopy techniques

The progress in laser technologies with the realization and the spread of ultrafast pulsed lasers has also
pushed the realization and the development of new optical microscopy techniques based on non-linear
optics (NLO) phenomena.

The combination of pulsed lasers with laser scanning microscopy has opened a wide variety of NLO
techniques such as for example coherent anti-Stokes Raman scattering (CARS), two-photon excitation
fluorescence (TPEF) and second harmonic generation (SHG).

The excitation source optimal for CARS microscopy allows also exciting other non-linear optical processes
that could be exploited and implemented in the same microscope in order to get more information from
the sample. In this way, with a single tool is possible to use more microscopy techniques simultaneously
and for this reason this collection of techniques is called multimodal microscopy.

CARS microscopy allows label-free and chemically selective imaging of the sample in a non-invasive way
since no special samples preparations are needed.

Two-photon excitation fluorescence can be used to observe fluorescent tags inside the specimens that can
be expressed by the sample itself (fluorescent proteins or endogenous autofluorescence in cells) or added
during the sample preparation.

Second harmonic generation is a process that allows observing materials with a non-centrosymmetric
molecular structure, since these materials under specific conditions can double the frequency of an
impinging light radiation. SHG can be also considered a label-free non-invasive and chemically selective
technique and samples can be imaged without any special preparations.

Coherent Anti-Stokes Raman Scattering Microscopy

When a monochromatic radiation impinges a molecular system the light can experience three possible
effects: absorption, transmission and scattering. When a molecule absorbs light, the kinetic energy of the
hitting photon is completely transferred to the molecular system; when the light is transmitted through the
material, the hitting photon passes the material lattice without any perturbation.

The scattering is a process that involves absorption and re-emission of a photon by the molecular system.
The scattering could be elastic if the same amount of absorbed kinetic energy is re-emitted (Rayleigh
scattering), or inelastic if the kinetic energy of the re-emitted photon is different from that of the hitting
photon. Raman scattering is an example of inelastic scattering. If the material absorbs part of the impinging
photon energy, the new re-emitted photon will be red shifted with respect to the hitting one and the
energy difference is converted in vibrations or rotations of molecule (Stokes Raman scattering shift). If the
re-emitted photon absorbs some kinetic energy from the vibrations or rotations of the molecule, it will be
blue-shifted with respect to the hitting photon (anti-Stokes Raman scattering shift).
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The scattering is an induced secondary emission process and photons can be re-emitted in any directions
independently by the direction of the hitting photon that originated the process. The Raman scattering
process admits that the molecular system can be excited at an energy level very unstable called “virtual

IU

level” that has a very short lifetime of about 10™* second, just enough to allow the photon absorption and
re-emission. This phenomena makes Raman scattering different from the fluorescence process since in
fluorescence the absorption of a photon, drives the molecule in an excited state that then relaxes
vibrationally and electronically in lower energy states with a decay time several order larger than that of

Raman scattering.

The Raman spectroscopy is a technique that exploits the Raman scattering processes to investigate the
vibrational or rotational modes of molecules, looking at the frequency shifts of the scattered photons.
However, in normal conditions, only a very small part of photons impinging a molecular system are
scattered inelastically (about one out of a million) and thus the efficiency of this process is very low.

Raman process is related to the polarizability a of a molecule electron cloud and a Raman transition can be
activated only in presence of non-zero polarizability with respect to the normal coordinates generally
expressed as Q, representing molecule vibrations or rotations.

In the classical framework for the understanding of the Raman scattering process, a photon may be thought
also as an electromagnetic radiation that interacting with a material induces a dipole moment P:

P =aE (1)

Where a is the polarizability of the material and E is the strength of the electric field of the incident
photon. For the incident photon, the electric field may be expressed as:

E = Eycos(2mwot) (2)

Where w, is the frequency of the incident photon (wg = %). If (2) is substituted into (1) yields the time-

dependent induced dipole moment:

P = aEycos(2mwyt) (3)
The polarizability is a function of the instantaneous position of the constituent atoms of the molecular
structure and for every molecular bond the atoms are confined under specific vibrational modes. The
vibrational modes have quantized energy and thus only particular vibrational frequencies wyi,. The
physical displacement dQ of the atoms due to the particular vibrational modes may be expressed as:

dQ = Qg cos(Lmwy;pt) (4)

Where @, is the maximum displacement about the equilibrium position that typically doesn’t exceed the
10% of the overall bond length. In the condition of small displacements, the polarizability may be
approximated by a Taylor series expansion truncated at the first term,

a
a=a,+ £dQ (5)
Substituting the eq. (4) into (5) the polarizability is given by:
da
a=ay+ £Q0 cos(2mwyipt) (6)

Using the above relation (6) the induced dipole moment (3) may be written as:
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P = aEycos(2mwyt) + Z_ZQOEO cos(2mwyt) cos(2mw,ipt) (7)

After recasting using a trigonometric identity the eq. (7) may be written as:

da QoEy

P = aEycos(2nwyt) + (£ .

) {eos[2m(wo — wyip)t] +eos[2m(wo + wuip)ty (8)

The last relation shows that the induced dipole moment has three different frequency components, that
are wy, (Wy— Wyip), and (wgy + wyip), which determine the possible frequencies of the scattered
radiation. The first scattered frequency w, coincides with the frequency of the incident radiation and it is
related to the Rayleigh elastic scattering. The latter two frequencies (wg — wyip), and (wy + wy;p) differ
from the frequency of the incident radiation and are related to the inelastic Raman scattering. It must be

taken into account that inelastic Raman scattering may exist only if the term £ differs from zero. This

means that a vibrational mode can be Raman active only if there is a change in the polarizability during the
vibrational displacement of atoms. This characteristic makes Raman scattering generally more suitable to
detect symmetric vibrations of non-polar groups.

Coherent anti-Stokes Raman scattering process

Coherent anti-Stokes Raman Scattering (CARS) is a four waves mixing process that differs from the
spontaneous Raman scattering process because the vibrational modes of the material are coherently driven
by beating of two optical waves instead of thermal excitation. The CARS signal is directly related to the third
order non-linear susceptibility )((3), which exhibits resonances of the material. Although CARS is a process
that involves three excitation waves, in most of the practical implementations two of the three waves have
the same frequency, so that two optical beams do actually interact (provided that one of them, the so
called pump wave, contributes to the interaction with two photons).

The energy diagram of a typical CARS process with the involved level transitions is shown in Fig. 2.1 (right
side), together with that of spontaneous Raman scattering in its Stokes and anti-Stokes forms (left side).
The Raman active vibrational transition occurs at frequency wg. The pump wave has frequency w,,

whereas the second excitation wave, the Stokes wave is placed at wg = ®, — wg; the CARS wave occurs

at W = Wy + wg = 20 — ws.

Raman
scattering CARS
~ A - ~ AL N
incoherent
emission K“_’ 1 virtual levels
(spontaneous)\“ ”
[0 ') O | ® coherent
P S P12 .~ emission
O)P Og mp @Dys
vibrational level 4 4
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ground level
H_/ \ ]

Stokes anti-Stokes

Fig. 2.1 Energy diagrams of spontaneous Raman scattering (left) and CARS (right).
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In CARS the Raman active mode of the material is coherently driven (hence the name of the effect) by the
beating of the pump and Stokes wave at wg = @, — ws. The CARS wave at W, results from the inelastic
scattering of the wave at w,, by the molecular vibrations coherently driven by the beating. For the sake of
completeness it must be noted that a similar mechanism creates, for reasons of symmetry, another wave at
w.s = 2wgs — wg (Coherent Stokes Raman Scattering, CSRS). In the case of the CSRS the material before
and at the end of the scattering process needs to be in an excited vibrational level. This condition makes
the detection of this wave more difficult than that of the anti-Stokes wave.

CARS signal being coherently driven by the excitation sources is several orders stronger than spontaneous
Raman, allowing faster microscopic and spectroscopic analyses than spontaneous Raman.

Finally, it should be noted that the waves at w, and wg are directly coupled by Stimulated Raman
Scattering (SRS), and experience either gain or loss. These properties form the basis for Stimulated Raman
Gain (or Loss) Spectroscopy [3-5].

In the simple case where the interacting fields are described as plane waves propagating along the z axis
normal towards a slab of nonlinear material of thickness L, assuming negligible depletion of the excitation
fields (pump and Stokes signals) and negligible loss into the material, the solution of the coupled
propagation equations for the interacting fields is straightforward [6].
In particular the following expression for the anti-Stokes (CARS) signal intensity exiting the nonlinear slab,
I,s(wgs, L), is obtained:
21

5 1@ @as)| 17 (w0, 0)1 (w5, 0)12 #

2

2
Ywgs

Ias(waSvL) = (9)

16e3ctn(wqs)n(ws)n?(w

Where the phase mismatch Ak and the non-linear susceptibility are given respectively by:

Ak = kgs — (2ky, — ks) (10)
X(3)(wa5) = é)aSX(3): é)pé)pé)s (11)
(k; = ZTi,i = p, S, aS; the vectors €; are the unit vectors of the polarization direction of the various fields;

the nonlinear susceptibility is in general a four-rank tensor, and the two dots indicate tensor product).

The oscillating term depending on the phase mismatch Ak takes into account the coherent nature of the
generation process, where the final signal builds up from coherent addition of the waves generated at
different positions along the slab of non-linear material. If the phase-matching condition is not satisfied,
Ak # 0, part of the radiation generated along the sample will interfere destructively between each other,
so that the output becomes weaker and depends critically on the sample thickness L as discussed below.
The observed CARS intensity is maximum when phase matching with the excitation beams is achieved
(Ak = 0); the intensity is proportional to the square of the intensity of the pump field, depends linearly on
the intensity of the Stokes field.

The CARS signal intensity depends on the square modulus of the third-order non-linear susceptibility of the
material, )((3). This is another important feature affecting the spectral behaviour of the CARS emission. In
general, the third order susceptibility is made of non-resonant contributions lumped in the term )(IE,?, and

resonant contributions as follows:
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3 3
X§1)11((“CARS =2wp — “’S) = XI(\Ilg +

Arp + Arp + Arp (12)
pr—Za)p—iFTp pr—ZwS—iFTp pr—(wp+ws)—i1"Tp

AR
a)R—(a)p+(u5)—iFR

+ 2z

Where the three terms on the second line are resonant contributions due to two-photon processes
produced by the pump and Stokes beams whereas the terms on the third line are resonant contribution
due the Raman transitions. The Ar terms are constants related to the mode density and the Raman cross
sections of the various active transitions, whereas 2I; is the corresponding linewidth.

In practice, when using pump and Stokes signal in the near IR the two-photon processes are far from
resonance and can be lumped in the non-resonant term. If, finally, in the observation region there is only
one active Raman resonance, at wg, the third order susceptibility could take the form:

3 3 3 3 A 3 A 3 ARA . ART
R C SN O N O R _ 3, _4r (3) , _Ar RTR

= = + l
wr—(wp—ws)—iTg NR © A—irg ANR A2-ir% A2-T%

(13)

Where A = wg — w, + ws is the detuning from the Raman resonance frequency. The third order
susceptibility being a complex number, several terms come in to play in the expression for the CARS
intensity, namely:

(3)
@ ||, ®% L _4k  24rXNgA
|X1111| - |XNR| +A2+r§+ A2+T% (14)

From eq. (14) appears clearly that the shape of the CARS spectrum is different from that of the Raman
spectrum of the vibrational transition obtained traditionally. The CARS spectrum has a marked dispersive
character and the emission peak is shifted with respect to the Raman emission line (A = 0) , depending on
the linewidth of the Raman transition.

The CARS spectrum is therefore asymmetrical with respect to the active Raman resonance wg. The point
where the CARS spectrum crosses the value of the non resonant background does not correspond to the
actual Raman resonance. Examples of calculated CARS spectra are given in Fig. 2.2 for various values of the
Raman linewidth Tk (0.5, 1 e 2 cm™). In the figures on the left, the real part (red curve) and the imaginary

2
part (blue curve) of the third order susceptibility are depicted together with |)(IE,3;3 (green curve). The

Raman spectrum is proportional to the square of the imaginary part of )((3) (blue curves). The resulting
CARS spectra are given in the figures on the right.

It is important to note that for positive detuning there is a region where there is destructive interference
between the CARS signal and the background radiation giving an intensity of the resulting signal lower than
that of the background.

The square dependence of CARS intensity on the third order non-linear susceptibility also implies that the
generated intensity is proportional to the square of the density of the chemical species under study. This
aspect is to be kept in mind when using CARS spectroscopy for quantitative analysis of specimens.

The CARS signal can be detected in forward (kss along z), forward CARS (F-CARS), and backward direction
(kas along —z), E-CARS. The phase matching condition, 4AkL < m can be fulfilled if Ak = 0 or L = 0. It is
important to note that for a very thin sample (L~0), the phase matching condition is realized in both the
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