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Abstract 

We present a worst case analysis for the Generalized Bin Packing Problem, a novel packing problem arising in many 
Transportation and Logistics settings, characterized by multiple item and bin attributes and by the joint presence of both 
compulsory and non-compulsory items.  The contribution of this paper is twofold: we conduct a worst case analysis applied to 
the much richer Generalized Bin Packing Problem of two outstanding bin packing algorithms (the First Fit Decreasing and the 
Best Fit Decreasing algorithms) arising in Transportation and Logistics, and we propose two semi-online algorithms also 
arising in the fields of Transportation and Logistics.  We also show how knowing part of the instance or the whole instance is 
not enough for computing worst case ratio bounds. 
 
© 2013 The Authors. Published by Elsevier Ltd. 
Selection and/or peer-review under responsibility of Scientific Committee. 
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1. Introduction 

Packing problems in Transportation and Logistics are often more complex than the ones traditionally present 
in the literature. In particular, it is quite normal to face situations where the nature of the problem cannot be 
reduced to a single packing problem. For this reason, in recent years the research community started to think to 
new multi-attribute and multidimensional extensions of packing problems, as already done in the VRP field 
(Crainic et al., 2008). One of the latest attempts in the direction of the generalization of packing problems is the 
so called Generalized Bin Packing Problem (GBPP). Given a set of containers, different in cost and volume, and 
a set of items, characterized by volume, profit and the compulsory attribute, i.e. the attribute stating if the model 
is obliged to load an item or whether it can decide according to an economic criterion, the GBPP aims to find the 
subset of bins and the subset of non-compulsory items such that all the items (all the compulsory and the chosen 
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non-compulsory ones) are accommodated into the bins and the overall cost, given by the cost for using the bins 
minus the profit associated to the items is minimized. 

As shown in Baldi et al. (2012a), the GBPP is able to describe new operational settings in Transportation and 
Logistics characterized by the joint optimization of company revenues and transportation costs and by the 
presence of different 3PL or container types. Moreover, in multi-modal and cross-continental transportation, 
freight is not shipped directly from origins to destinations but calls at intermediate platforms named 
transshipment facilities. At these facilities freight consolidation and handling operations are performed and, 
usually, freight is moved to another transportation vector. However, a portion of the freight might wait to proceed 
its journey to destination, depending on the overall trade-off between freight profits and shipping costs. The 
GBPP is the first packing problem able to model this setting. Additionally, the GBPP copes with the majority of 
the traditional packing problems, ranging from Knapsack to Bin Packing and to different variants of Multiple 
Knapsack and Cutting Stock problems.  

Baldi et al. (2012a, b) proposed both bounds and exact and approximate methodologies in order to address this 
problem. Moreover, a preliminary worst case analysis has recently been proposed (Baldi et al., 2013). The GBPP 
is rooted on earlier bin packing problems which are the eldest Bin Packing Problem (BPP), the Variable Sized 
Bin Packing Problem (VSBPP), and the most recent Variable Cost and Size Bin Packing Problem (VCSBPP). 
We briefly recall here these problems. 

The BPP was first investigated by Ullman (1971) and Garey et al. (1972). Johnson (1973) proposed the Next 
Fit (NF) algorithm and proved that its performance ratio is 2. Johnson et al. (1974) showed that the First Fit (FF) 
and the Best Fit (BF) algorithms have both performance ratios of 17/10. Moreover, they computed a worst case 
ratio bound for the First Fit Decreasing (FFD) and the Best Fit Decreasing (BFD) algorithms equal to 11/9. de la 
Vega & Lueker (1981) presented a polynomial time approximation scheme, Seiden (2002) studied the online 
variant, and Crainic et al. (2007a, b) introduced fast lower bounds and conducted an asymptotic worst case 
analysis on BPP lower bounds. Li & Chen (2006) studied the variant where all bins have the same capacity but 
are characterized by a non-decreasing concave cost function of the bin utilization. The VSBPP was introduced by 
Friesen & Langston (1986). The authors provided one online and two offline algorithms and proved that their 
worst case ratios are 2, 3/2, and 4/3, respectively. Murgolo (1987) presented an approximation scheme and Kang 
& Park (2003) provided two offline algorithms and showed that their asymptotic worst case ratio is equal to 3/2. 
Crainic et al. (2011) proposed accurate bounds for the VCSBPP. For this problem, Epstein & Levin (2008, 2012) 
provided an APTAS and an AFPTAS. 

Although Baldi et al. (2013) performed a worst case analysis for the GBPP, this study is not complete because 
only online algorithms were considered. In this paper, we extend the work of Baldi et al. (2013) by also 
considering semi-online and offline settings. These two settings often arise in Transportation and Logistics where 
orders (i.e., the items) are not known a priori but arrive along time to a shipping company. In many 
circumstances, shipping companies do not immediately ship the already received freight (coming from customers 
and leading to final destinations) but decide to wait in order to receive more freight to dispatch with a unique 
shipment.  The semi-online setting of the GBPP also arises in freight transportation, and in particular among 
freight forwarders and carriers, where freight is shipped through means of transport with cadenced departure 
times. 

We show that, being the GBPP a richer setting due to the presence of multiple attributes and of both 
compulsory and non-compulsory items, it is impossible to guarantee a worst case ratio. 

This paper is organized as follows. In Section 2, we present in a  more formal way the problem and the 
nomenclature. In Section 3, we present our worst case analysis results, while conclusions and future 
developments are discussed in Section 4. 
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2. Problem setting 

In the GBPP, a set of items with volume and profit has to be loaded into proper bins characterized by capacity 
and cost. Moreover, items can be compulsory and non-compulsory. Whilst compulsory items must be taken, non-
compulsory items might not be loaded if this is beneficial. Aim of the GBPP is to minimize the overall cost, 
given by the difference between the costs of the selected bins and the profits of the taken non-compulsory items. 

We name I the set of items and J the set of bins. We also name IC and INC the set of compulsory and non-
compulsory items respectively. Clearly, IC∪ INC = I and IC∩ INC = ∅. Let wi and pi be respectively the volume 
and the profit of item i ∈ I and Wj and Cj respectively the capacity and the cost of bin j ∈ J. As for the VCSBPP, 
bins are classified into bin types i.e., bins belonging to the same bin type have the same capacity and cost. We 
name T the set of bin types and Wt and Ct the capacity and the cost of bins belonging to bin type t ∈ T. Finally, 
the indicator function σ: J → T reveals the type σ(j) ∈ T of bin j ∈ J. 

3. Worst case results 

Let Π  be a minimization problem,  ∈ Π  be an instance of the problem Π, A be an algorithm, A( ) the value of 
the solution yielded by the algorithm A when applied to instance  ∈ Π, and OPT( ) be the optimum of instance  
∈ Π, then the asymptotic worst-case ratio is the smallest positive R such that for any instance  of problem Π  we 
have that 

 
A( )  R⋅ OPT( ) + O(1)    (1) 
 
Similarly, the absolute worst-case ratio is the smallest positive ρ such that the for any instance  of problem Π 

we have that 
 
A( )  ρ ⋅ OPT( )   (2) 
 
We prove a lemma to which we will refer within the proofs of the following theorems. In particular, we show 

that, due to the presence of non-compulsory items, there are instances where the optimum and the value yielded 
by an algorithm differ by a linear term which, in principle, can be arbitrarily large. In Lemma 1, we show that it 
is impossible to guarantee both an absolute and an asymptotic worst case ratio in these circumstances. 

 
 

Lemma 1 
Given a minimization problem P and an algorithm A, let (m, n) ∈ P be an instance of the problem with m and 

n non-negative integers such that A( (m, n)) = m and OPT( (m, n)) = m - n, with , ,  > 0. Then, it is 
impossible to compute the asymptotic and the absolute worst case ratio for algorithm A. 

 
Proof 
If there exists an asymptotic worst case ratio then, according to (1), we have to find proper R and O(1) such 

that  
 

m  R( m - n) + O(1).     (3) 
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If we consider the particular instance (0, n), then (3) becomes 
 
0  -R n + O(1).  (4) 
 
Since n can be arbitrarily large and  > 0, then, independently of the constant O(1), it must be R  0. Vice 

versa, considering instance (m, 0), (3) becomes 
 

m  R m + O(1).     (5) 
 
Since m can be arbitrarily large and  > 0, then, independently of the constant O(1), it must be R  / . Since, 

by hypothesis, both  and  are positive, then their ratio is a positive number. Hence, requiring R  /  
contradicts the previous requirement that R  0. Therefore, it is impossible to compute the asymptotic worst case 
ratio. Since such a result holds independently of constant O(1) and according to (2) the absolute worst case ratio 
is the particular case when O(1) = 0, then it is also impossible to compute the absolute worst case ratio. 

� 
Lemma 1 will be used in Theorem 1 to prove that no worst case ratio can be computed for the offline FFD and 

BFD algorithms. These are well known heuristics, initially conceived for the BPP (Garey, 1972) and recently 
adapted to the GBPP by Baldi et al. (2012a). To make this article self contained, we briefly recall here the FFD 
and the BFD heuristics adapted by Baldi et al. (2012a) to the GBPP. Their pseudo-code is reported in Table 1. 
Both heuristics work with three lists: the Sorted Items List (SIL), the Sorted Bins List (SBL), and the list of 
selected bins (S). The SIL and the SBL lists are built according to a given sorting criterion. Baldi et al. (2012a) 
defined four sorting criteria. For each of them, the compulsory items are sorted at the top of the SIL list by non-
increasing volume. The four strategies are: 

 
• Sorting 1. Bins: Non-decreasing Cσ(j)/ Wσ(j) and non-decreasing volumes Wσ(j); Non-compulsory items: Non-

increasing pi/wi and non-increasing volumes wi 
 

• Sorting 2. Bins: Non-decreasing Cσ(j)/ Wσ(j) and non-decreasing volumes Wσ(j); Non-compulsory items: Non-
increasing volumes wi  and non-increasing pi/wi 

B 
• Sorting 3. Bins: Non-decreasing Cσ(j)/ Wσ(j) and non-increasing volumes Wσ(j); Non-compulsory items: Non-

increasing pi/wi and non-increasing volumes wi 
 

• Sorting 4. Bins: Non-decreasing Cσ(j)/ Wσ(j) and non-increasing volumes Wσ(j); Non-compulsory items: Non-
increasing volumes wi and non-increasing pi/wi. 

 
Finally, S is the list of the selected bins making up the solution yielded by the heuristics. Initially, all the items 

in SIL are unpacked and the list must be scanned. For each item i encountered when scanning SIL, both heuristics 
try to accommodate i into the already selected bins in S. The differences between the two heuristics is how such a 
bin, if exists, is determined. The FFD heuristics assigns item i to the first bin (if exists) among those in S able to 
accommodate it. The BFD heuristics assigns item i to the best bin (if exists) among those in S able to 
accommodate it. The best bin is the one with the least residual space after placing item i. If item i cannot be 
placed among the already selected bins in S (and this happens when none of them has enough residual space to 
accommodate the item), then a new bin b must be selected from the list of available bins SBL and added to S. If i 
is a compulsory item, then b is the first bin in SBL\S able to contain it. Once bin b has been selected from list SBL 
and added to list S, the compulsory item i is loaded into bin b. If item i is a non-compulsory item, then it is loaded 
into a new bin only if it is profitable, that is, if there exists, among the bins in SBL\S, a bin b such that the profit 
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of item i plus the profits of the succeeding non-compulsory items in SIL able to be accommodated into bin b 
together with item i is greater than the cost of bin b. The search of bin b is performed by the PROFITABLE function, 
which pseudo-code is reported in Table 2. If there exists a profitable bin b for the non-compulsory item i, then 
bin b is added to the list of the selected bins S and item i is loaded into bin b. After the whole SIL list has been 
scanned, the POST-OPTIMIZATION function (which pseudo-code is reported in Table 3) checks whether, for any 
selected bin j ∈ S making up the final solution, there exists, among the non-selected bins in SBL\S, a more 
convenient bin k. This happens when bin k can accommodate all the items which have been loaded into bin j and 
its cost is less than the cost of bin j. If such a swap is possible, then items into bin j are moved to bin k, with a 
loss (recall that we are dealing with a minimization problem) of Cσ(j) - Cσ(k). 

Table 1. Main procedure of FFD and BFD heuristics 

S:= ∅ 

for all i ∈ SIL do 

Identify the bin b ∈ S into which item i can be loaded 

• FFD: the first bin with enough empty volume to accommodate item i 

• BFD: the bin with the minimum free volume after loading item i 

if b exists then 

Load item i into bin b 

else 

if i ∈ IC then 

Identify the first bin b ∈ SBL\S such that wi  Wσ(b) 

Load item i into bin b 

S:= S ∪ {b} 

else 

Identify the bin b ∈ SBL\S such that PROFITABLE(i, b) returns TRUE 

if b exists then 

Load item i into bin b 

S:= S ∪ {b} 

else 

reject item i 

POST-OPTIMIZATION 

 

Table 2. PROFITABLE(i, b) 

SILi: sublist of SIL starting from the item i 

Load item i into bin b and initialize the bin profit Pb := pi 

for all l ∈ SILi do 

if item l can be loaded into bin b then 

Load item l into bin b and update the bin profit Pb := Pb + pl 

if Pb > Cσ(b) then 
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return TRUE 

else 

return FALSE 

 

Table 3. POST-OPTIMIZATION 

for all j ∈ S do 

for all k ∈ SBL\S do 

Uj:= i loaded into j wi 

if Wσ(k)  Uj and Cσ(k) < Cσ(j) then 

Move all the items from j to k 

S:= S\{j} ∪ {k}  

 
In Theorem 1, we prove a very strong result: it is impossible to guarantee asymptotic and absolute worst case 

ratios for the  FFD and BFD heuristics when applied to the GBPP. 
 
Theorem 1  
It is impossible to compute the asymptotic and the absolute worst case ratios for the FFD and BFD heuristics 

when applied to the GBPP. 
 
Proof 
Consider instance (m, n) consisting of two bin types (T = {1, 2}) with W1 = W, C1 = C, W2 = 72/75 W, C2 = 

49/50 C, and the set of items I is split into four subsets, , , , and , with | | = m, | | = 4n,  | | = 6n, and | | 
= 2n. An item which belongs to subset X ∈ { , , , } is called a type X item. Let type  items be compulsory 
with w  = 72/75 W, type  items be non-compulsory with w  = 18/75 W, p  = 22/100 C, and type  items be non-
compulsory with  w  = 25/75 W, p  = 32/100 C, and let type  items be non-compulsory with w  = 39/75 W and 
p  = 57/100 C. It is easy to verify that the optimal solution consists of m type 2 bins each containing one type  
compulsory item, and 2n  type 1 bins each containing two type  non-compulsory items and one type  non-
compulsory item: 

 
OPT( (m, n)) = mC2 + 2n(C1 – 2p  - p ) = 49/50 mC – 1/50 nC     (6) 

Applying any among the four sorting rules listed before, FFD and BFD use type 1 bins and pack first all the 
type  compulsory items, then all the type  non-compulsory items, all the type  non-compulsory items, and 
finally all the type  non-compulsory items. After packing all the type  compulsory items, each into type 1 bin, 
type  items must be accommodated. Since only one type  item can be accommodated into one type 1 bin, the 
PROFITABLE procedure scans the succeeding items: those of type . Only one type  item can be accommodated 
with one type  item into one type 1 bin, say b. The level of bin b is w  + w  = 64/75 W and its residual space is 
not enough to load any type  item. The overall profit of bin b is Pb = p  + p  = 89/100 C < C1. Therefore, all 
type  items will be rejected from algorithms FFD and BFD. When scanning type  items, at most three of them 
can be accommodated into one type 1 bin because 3w  = W = W1 but 3p  = 96/100 C < C1; therefore the 
PROFITABLE procedure rejects all the type  items in the list SIL with two type  succeeding items. In fact, this is 
not the case for the next to last and for the last type  items in the list SIL. More precisely, when the next to last 
type  compulsory item must be accommodated, the PROFITABLE procedure computes the overall profit Pb taking 
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into account that there are two more type  items and then type  items follow in the list. Loading two type  
items into one type 1 bin, there is room only for one more type  item (because 2w  + w  = 68/75 W < W1, but 
2w  + 2 w  = 86/75 W > W1). The overall profit Pb is then 2p  + p  = 86/100 C < C1; therefore even the next to 
last type  bin will be discarded. Even the last type  item will be discarded by the PROFITABLE procedure 
because it can be loaded with at most two type  items, but p  + 2p  = 76/100 C < C1. Finally, all the type  
items will be discarded because at most 4 of them can be loaded into one type 1 bin but 4p  = 88/100 C < C1. 
Therefore, 

 
FFD( (m, n)) = BFD( (m, n)) = mC1 = mC   (7) 
 
The theorem holds applying Lemma 1 with  = C,  = 49/50 C, and  = C/50. 

� 
 
We propose two semi-online settings where items arriving online are not directly packed into bins but are 

placed into a buffer. In the first setting, the buffer has a capacity of k > 1 items. When the buffer is full, the items 
in the buffer are loaded into the already open bins or, if necessary, into new bins. For this setting, we propose two 
semi-online algorithms named First Fit with Buffer and Rejections (FFBR) and Best Fit with Buffer and 
Rejections (BFBR). In the FFBR, each item is accommodated according to its arrival order and to a First Fit 
policy, i.e., it is loaded (if possible) into the first open bin able to contain it, otherwise a new bin is selected from 
a list of bins sorted according to a given criterion. In the BFBR, each item is accommodated according to its 
arrival order and to a Best Fit policy, i.e., it is loaded (if possible) into the best open bin able to contain it, 
otherwise a new bin is selected from a list of bins sorted according to a given criterion. As for the aforementioned 
BFD algorithm, the best bin is that bin with the least residual space after placing an item. At the end of the 
process, bins with an overall profit less than their cost will be rejected. In Theorem 2, we prove that even 
retaining some items into a buffer is not enough to guarantee an asymptotic and an absolute worst case ratio. In 
the second setting, the buffer has a time capacity of τ. When a time interval of length τ has elapsed, the items 
arrived within this interval are loaded into the already open bins or, if necessary, into new bins. At the end of the 
process, bins with an overall profit less than their cost will be rejected. We name First Fit with Time Buffer and 
Rejections (FFTBR) and Best Fit with Time Buffer and Rejections (BFTBR) the natural extension of algorithms 
FFBR and BFBR to this setting. 

In Theorem 3, we prove that even for algorithms FFTBR and BFTBR it is impossible to guarantee asymptotic 
and absolute worst case ratios. 

 
Theorem 2 
It is impossible to compute the asymptotic and absolute worst case ratio for algorithms FFBR and BFBR when 

applied to the GBPP. 
 
Proof 
Given the size k > 1 of the buffer, consider instance  k(m, n) consisting of one bin type with capacity W and 

cost C, and where the set of items I is split into three subsets, , , and , with | | = 2mk, | | = 2nk, and | | = 
2nk(k - 1). Let type  items be compulsory with w  = W, let type  items be non-compulsory with w  = W/k, p  = 
C/k + ε, and let type  items be non-compulsory with w  = W/k, and p  = C/k - 2ε/(k – 1), with ε > 0 small 
enough, and C > 2kε. Note that at most k type  items can be accommodated into one bin. Also, at most k type  
items can be accommodated into one bin. We have that kp  = C + kε > C and kp  = C - 2kε/(k – 1) < C. 
Consequently, the optimum consists of 2mk bins each containing one type  compulsory item and 2n bins each 
containing k type  non-compulsory items: 

 



670   Mauro Maria Baldi et al.  /  Procedia - Social and Behavioral Sciences   111  ( 2014 )  663 – 671 

OPT(  k(m, n)) = 2mkC + 2n(C - kpB) = 2mkC - 2nkε   (8) 
 
Consider the following sequence of items of instance k(m, n) for algorithm FFBR: 
 

 times2

 times1 times1

 times2

 times times

nk

kk

m

kk

iiiiiiiiii

−−

  (9) 

 
Then, applying FFBR or BFBR to sequence (9), we have 2mk bins each containing one type  compulsory 

item and 2nk bins each containing one type  non-compulsory item and k - 1 type  non-compulsory items. 
However, bins containing non-compulsory items will be rejected because p  + (k - 1)p  =  C - ε < C = C1. 
Therefore we have: 

 
FFBR(  k(m, n)) = BFBR(  k(m, n)) = 2mkC      (10) 
 
and the theorem holds applying Lemma 1 with  = 2kC,  = 2kC, and  = 2k 

� 
In Theorem 3, we prove that the same conclusion holds even for algorithm FFTBR and BFTBR. 
 
Theorem 3 
It is impossible to compute the asymptotic and absolute worst case ratio for algorithms FFTBR and BFTBR 

when applied to the GBPP. 
 
Proof 
The theorem trivially holds considering instance  k(m, n) in Theorem 2 where k items fall within each time-

slot of length τ. 
� 

4. Conclusion 

In this paper we presented a worst case analysis for the Generalized Bin Packing Problem (GBPP), a 
fundamental packing problem arising in many Transportation and Logistics settings due to the joint presence of 
multiple bin and item attributes and to the tradeoff between item profits and bin costs. Our main contribution was 
the development of a worst case analysis of two popular algorithms among bin packing problems (the First Fit 
Decreasing and the Best Fit Decreasing algorithms) extended to the much richer GBPP. In fact, worst case 
analyses of these outstanding algorithms were conducted for the classical Bin Packing Problem and for many 
variants of it, but not yet for the more general GBPP. 

Moreover, we also proposed two semi-online algorithms arising in freight transportation, in particular among 
carriers and shipping companies. Our study revealed that, in spite of a much richer problem as the GBPP (thanks 
to which it is possible to describe many Transportation and Logistics settings), the counterpart becomes that it is 
not possible to guarantee worst case ratio bounds. 

Nevertheless, this study is the starting point for further research works, in order to find finite worst-case ratio 
bounds algorithms for the GBPP, if they exist. 
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