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Abstract

In this article, we combine the Carrera’s Unified Formulation (CUF) [8, 6] and cell based

smoothed finite element method [26] for studying the static bending and the free vibration

of thin and thick laminated plates. A 4-noded quadrilateral element based on field consis-

tency requirement is used for this study to suppress the shear locking phenomenon. The

combination of cell based smoothed finite element method and field consistent approach with

CUF allows a very accurate prediction of field variables. The accuracy and efficiency of the

proposed approach are demonstrated through numerical experiments.
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1 Introduction

With the rapid development of engineering, there is an increasing demand for new ma-

terials which suits the harsh working environment without losing its mechanical, thermal

or electrical properties. Engineered materials such as the composite materials are used in

the construction of aeronautical and aerospace vehicles, as well as civil and mechanical

structures. This is attributed to their excellent strength-to and stiffness-to-weight ratios

and their possibility of tailoring the properties in optimizing the structural response. How-

ever, the analysis of such structures is a complex task, compared with conventional single

layer metallic structures. This is because of the exhibition of coupling among membrane,

torsion and bending strains; weak transverse shear rigidities; and discontinuity of the me-

chanical characteristics along the thickness of the laminates. For these reasons, in recent

years, there is a great deal of interest in research for accurately modelling and simulat-

ing the characteristics of composite structures through different higher-order displacement

functions for two-dimensional theories. This is because the two dimensional theories lead to

less expensive models compared to three-dimensional one. In this context, the applications

of analytical/numerical methods based on various 2D higher-order theories for static and

dynamic analyses of rectangular laminates have recently attracted the attention of several

researchers.

Various structural theories proposed for evaluating the characteristics of composite lam-

inates under different loading situations have been reviewed by [34, 27, 18] and recently by

Khanda et al., [20]. In general, three different approaches have been used to study laminated

composite structures: single layer theories, discrete layer theories and mixed plate theory.

In the single layer theory approach, layers in laminated composites are assumed to be one

equivalent single layer (ESL), whereas in the discrete layer theory approach, each layer is con-

sidered in the analysis. Although the discrete layer theories provide very accurate prediction

of the displacements and the stresses, increasing the number of layers increases the number

of unknowns. This can be prohibitively costly and significantly increase the computational

time [44]. To overcome the above limitation, zig-zag models developed by Murukami [28]

can satisfy the transverse shear stresses continuity conditions at the interfaces. Moreover,

the number of unknowns are independent of the number of layers. Reddy and Robbins [38]

presented a review of various equivalent-single-layer and layerwise laminated plate theories

and their finite element models.

Recently, some researchers have attempted to combine the single layer theories and the

discrete layer theory to overcome the limitations of each one. Carrera [8, 29, 6] derived a

series of axiomatic approaches, coined as ‘Carrera Unified Formulation’ (CUF) for the gen-

3



eral description of two-dimensional formulations for multilayered plates and shells. With

the unified formulation it is possible to implement in a single software a series of hierar-

chical formulations, thus affording a systematic assessment of different theories, ranging

from simple ESL models up to higher order layerwise descriptions. This formulation is a

valuable tool for gaining a deep insight into the complex mechanics of laminated structures.

Demasi [10, 11, 12, 13, 14] presented mixed plate theories based on the Generalized Unified

Formulation (GUF).

The CUF has been implemented in the finite element method [8, 29] and more recently

in the meshless methods based upon collocation with radial basis function [16]. Although

FEM provides a general and systematic technique for constructing basis functions, a number

of difficulties still exists in the development of plate elements based on shear deformation

theories, one of which is the shear locking phenomena. Different techniques by which the

locking phenomena can be suppressed include: (a) retain the original interpolations and

use optimal integration rule [17]; (b) assumed natural strain method [1, 41] and (c) en-

hanced assumed strain method [40]. Recently, Carrera et al., [7] employed 4-noded mixed

interpolation of tensorial components (MITC) technique for multilayered plate elements.

By incorporating the strain smoothing technique into the finite element method (FEM),

Liu et al., [26] have formulated a series of smoothed finite element methods (SFEM), named

as cell-based SFEM (CS-FEM) [32, 3], node-based SFEM [25], edge-based SFEM [24], face-

based SFEM [31] and α-FEM [23]. Nguyen-Xuan et al., [33] employed CS-FEM for Mindlin-

Reissner plates. The curvature at each point is obtained by a non-local approximation via

smoothing function. From the numerical study presented, it was concluded that the CS-

FEM technique is robust, computationally inexpensive, free of locking and importantly

insensitive to mesh distortions. In [2], CS-FEM has been combined with the extended FEM

to study moving boundary problems.

In this study, a Co 4-noded quadrilateral element is employed to study the static bending

and free vibration of laminated composites. The plate kinematics is based on Carrera Uni-

fied Formulation (CUF) and a sinusoidal shear deformation theory is used to approximate

the displacements. A CS-FEM with field consistent shear flexible consistency approach is

employed to study the response of laminated composites. The influence of various param-

eters, viz., the thickness of the plate, the fiber orientation, the ply lay up and the material

properties on the response of the laminated composite plates is numerically studied.

The paper is organized as follows. Section 2 presents an overview of the Unified For-

mulation, the finite element discretization and the cell-based smoothing technique for im-

plementation of the CUF. A discussion on computing the fundamental nuclei is also given.
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The present formulation is compared with results available in the literature and the numer-

ical results are presented in Section 3, bringing out the influence of various parameters on

the static bending and the natural frequencies, followed by concluding remarks in the last

section.

2 Carrera Unified Formulation

2.1 Basis of CUF

Let us consider a laminated plate composed of perfectly bonded layers with coordinates

x, y along the in-plane directions and z along the thickness direction of the whole plate,

while zk is the thickness of the kth layer. The CUF is a useful tool to implement a

large number of two-dimensional models with the starting point is the description at the

layer level. By following the axiomatic modelling approach, the displacements u(x, y, z) =

(u(x, y, z), v(x, y, z), w(x, y, z)) are written according to the general expansion as:

u(x, y, z) =

N
∑

τ=0

Fτ (z)uτ (x, y) (1)

where F (z) are known functions to model the thickness distribution of the unknowns, N is

the order of the expansion assumed for the through-thickness behaviour. By varying the free

parameter N , a hierarchic series of two-dimensional models can be obtained. The strains

are related to the displacement field via the geometrical relations:

ǫpG =
[

εxx εyy γxy

]T
= Dpu

ǫnG =
[

γxz γyz εzz

]T
= (Dnp +Dnz)u (2)

where Dp,Dnp and Dnz are differential operators given by:

Dp =





∂x 0 0
0 ∂y 0
∂y ∂x 0



 , Dnp =





0 0 ∂x
0 0 ∂y
0 0 0



 ,

Dnz =





∂z 0 0
0 ∂z 0
0 0 ∂z



 . (3)

The 3D constitutive equations are given as:

σpC = CppǫpG +CpnǫnG

σnC = CnpǫpG +CnnǫnG (4)
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with

Cpp =





C11 C12 C16

C12 C22 C26

C16 C26 C66



 Cpn =





0 0 C13

0 0 C23

0 0 C36





Cnp =





0 0 0
0 0 0
C13 C23 C36



 Cnn =





C55 C45 0
C45 C44 0
0 0 C33



 (5)

The Principle of Virtual Displacements (PVD) in case of multilayered plate subjected to

mechanical loads is written as:

Nk
∑

k=1

∫

Ωk

∫

Ak

{

(δǫkpG)
T
σ

k
pC + (δǫknG)

T
σ

k
nC

}

dΩk dz =

Nk
∑

k=1

∫

Ωk

∫

Ak

ρkδukT

s ük dΩk dz +

Nk
∑

k=1

δLk
e (6)

where ρk is the mass density of the kth layer, Ωk, Ak are the integration domain in (x, y)

and the z direction, respectively, k indicates the layer and the subscripts G and C indicate

the geometrical and the constitutive equations, respectively. Upon substituting the geo-

metric relations (Equation (2)), the constitutive relations (Equation (4)) and the unified

formulation into the variational PVD statement, we have:
∫

Ωk

∫

Ak

{

(

Dk
pFsδu

k
s

)T {

Ck
ppD

k
pFτu

k
τ +Ck

pn(D
k
nΩ +Dk

nz)Fτu
k
τ

}

+

[

(Dk
nΩ +Dk

nz)fxδu
k
s)

T(Ck
npD

k
pFτu

k
τ +Ck

nn(D
k
nΩ +Dk

nz)Fτu
k
τ )
]}

dΩk dz =

Nk
∑

k=1

∫

Ωk

∫

Ak

ρkδukT

s ük dΩk dz +

Nk
∑

k=1

δLk
e

(7)

After integration by parts, the governing equations for the plate in the mechanical case are

obtained:

δukT

s : Kkτs
uu uk

τ = Pk
uτ (8)

and in the case of free vibrations, we have:

δukT

s : Kkτs
uu uk

τ = Mkτsük
τ (9)

where the fundamental nucleus Kkτs
uu is obtained as:

Kkτs
uu =

[

(−Dk
p)

T(Ck
ppD

k
p +Ck

pn(D
k
nΩ +Dnz) + (−Dk

nΩ +Dk
nz)

T(Ck
npD

k
p +Ck

nn(D
k
nΩ +Dk

nz))
]

FτFs

(10)
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and Mkτs is the fundamental nucleus for the inertial term given by:

Mkτs
ij =

{

ρkFτFs if i = j
0 if i 6= j

(11)

and the corresponding Newmann type boundary conditions on Γk are:

Πkτs
d uk

τ = Πkτs
d uk

τ (12)

where

Πkτs
d =

[

(Ikp)
T
(

Ck
ppD

k
p +Ck

pn(DnΩ +Dnz)
)

+ (Iknp)
T
(

Ck
npD

k
p +Cnn(D

k
nΩ +Dk

nz)
)]

(13)

where Ikp and Ikpn depend on the boundary, given by:

Ikp =





nx 0 0
0 ny 0
ny nx 0



 , Iknp =





0 0 nx

0 0 ny

0 0 0



 (14)

where nx, ny are the normals andPk
uτ are variationally consistent loads with applied pressure.

For more detailed derivation and for explicit form of the fundamental nuclei, interested

readers are referred to [8, 29].

2.2 Element description

The plate element employed in this study is a C0 continuous element and according to the

isoparametric description, the components of each displacement unknown uτ are expressed

as:

uτ = NIqτI , I = 1, 2, · · · , Nn (15)

where NI are the standard finite element shape functions. By introducing the unified formu-

lation for the displacements, given by Equation (15) into the strain-displacement relations

(see Equation (2)), we have:

ǫkpG = Dk
p(Fτu

k
τ ) = Dk

p(FτNI)q
k
τI

ǫknG = (Dk
nΩ +Dk

nz)(Fτu
k
τ ) = Dk

nΩ(FτNI)q
k
τI + Fτ,zNIq

k
τI (16)

Upon substituting, Equations (15) and 16 into Equations (10) and 11, we can compute the

stiffness and the mass matrix of the system. The formulation is implemented in MATLAB

and the solution to the static bending is computed by Gauss-elimination algorithm and the

solution to free vibration problem is computed from a standard eigenvalue algorithm.
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2.3 Overview of the strain smoothing method

In the following, the strain smoothing method is briefly discussed. For more detailed dis-

cussion, readers are referred to the literature and the references therein [32, 3]. The strain

smoothing method (SSM) was proposed in [9], where the strain is written as the divergence

of a spatial average of the standard (compatible) strain field - i.e., symmetric gradient of

the displacement field. Elements are divided into subcells, as shown in Figure (1). The

strain field, ε̃hij used to compute the stiffness matrix is computed by a weighted average of

the standard strain field εhij. At a point xC in an element Ωh, the smoothed strain field is

given by:

ε̃hij =

∫

Ωh

εhij(x)Φ(x− xC) dx (17)

where Φ is a smoothing function that generally satisfies the following properties:

Φ ≥ 0 and

∫

Ωh

Φ(x) dx = 1 (18)

One possible choice of Φ is given by

Φ =







1

AC
xC ∈ ΩC

0 xC /∈ ΩC

where AC is the area of the subcell. This process of smoothing the gradient field is called

as ‘cell-based smoothed finite element method’ (CS-FEM) in the literature [32, 3].

2.4 In-plane strain

In this article, we apply smoothing technique to the in-plane strains by a divergence esti-

mation via a spatial averaging of the strain fields as explained earlier. In other words, the

domain integrals are transformed into boundary integrals. This smoothing technique avoids

the evaluation of the derivatives of the shape functions and thus avoiding the iso-parametric

mapping. The smoothing is performed over arbitrary smoothing cell, ΩC , illustrated in

Figure (1) with boundary ΓC =
⋃nb

b=1
Γb
C , where Γb

C is the boundary segment of ΩC and nb

is the total number of edges of each smoothing cell. The relation between the smoothed

in-plane strain and the nodal displacements is given by:

ǫ̃kpG = D̃k
pCq

k
τI (19)

8



Γ
C

Node

Gauss point

Smoothing cells

Ω
C

Figure 1: Example of finite element meshes and smoothing cells. The integration is per-
formed along the boundary of each subcell. The smoothing cells, Ω

C
and Γ

C
is the boundary

of the subcell.

where D̃k
pC is the smoothed strain-displacement matrix, given by:

D̃k
pC =

1

AC

∫

ΓC

FτNI





nx 0 0
0 ny 0
ny nx 0



 dΓ (20)

where nx and ny are the normals to the edge of the smoothing cell. Nguyen-Xuan et al., [32]

did a systematic study on the influence of the number of subcells on the performance of

Reissner-Mindlin plates. It was concluded that elements with one subcell exhibits two zero

energy modes, while elements with two, three and four subcells maintain sufficient rank and

no zero-energy modes. In this study, we use four subcells per element.

2.5 Shear locking

If the interpolation functions given for a QUAD-4 are used directly to interpolate the un-

known displacement fields in deriving the shear strains (γxz, γyz) and the membrane strains

(ǫpG), the element will lock and show oscillations in the shear and the membrane stresses.

The oscillations are due to the fact that the derivative functions of the out-of plate dis-

placement do not match that of the rotations in the shear strain definition. To alleviate the
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locking phenomenon, the terms corresponding to the derivative of the out-of plate displace-

ment must be consistent with the rotation terms. In this study, field redistributed shape

functions are used to alleviate the shear locking [30]. The field consistency requires that

the transverse shear strains and the membrane strains must be interpolated in a consistent

manner. If the element has edges which are aligned with the coordinate system (x, y), the

terms in shear strains (γxz, γyz) are approximated by [41] by the following substitute shape

functions:

Ñ1(η) =
1

4

[

1− η 1− η 1 + η 1 + η
]

Ñ2(ξ) =
1

4

[

1− ξ 1 + ξ 1 + ξ 1− ξ
]

. (21)

Note that, no special integration rule is required for evaluating the shear terms. A numerical

integration based on the 2 × 2 Gaussian rule is used to evaluate all the terms.

Remark 2.1. In this study, curvature based smoothing technique proposed by Chen et al., [9]

for meshfree methods and applied for plates by Nguyen et al., [33] is employed to approxi-

mate the extension and the bending strains.

Remark 2.2. Field consistent shape functions are employed to approximate the shear strains.

3 Numerical examples

In this section, we present the static response and the natural frequencies of laminated

composite plates using four noded quadrilateral element. In this study, the in-plane dis-

placements u, v and the transverse displacement w are expressed by sinus shear deformation

theory (SINUS-ZZ) as:

u = uo + zu1 + sin
(πz

h

)

u2

v = vo + zv1 + sin
(πz

h

)

v2

w = wo + zw1 + z2w2 (22)

where uo, vo and wo are translations of a point at the middle-surface of the plate, w2 is higher

order translations, and u1, v1, u3 and v3 denote rotations [42] and considers a quadratic

variation of the transverse displacement w allowing for through-the-thickness deformations.

The effect of the plate aspect ratio, the ply angle and the ratio of Young’s modulus E1/E2

is numerically studied. Before proceeding with a detailed study on the effect of different
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parameters on the response of cross-ply laminated plates, the formulation developed here

is compared against available results pertaining to static bending and free vibration of

cross-ply laminated plates. Based on a progressive mesh-refinement, a 20 × 20 structured

quadrilateral mesh is found to be adequate to model the full laminated plate for the present

analysis. For sake of brevity, the mesh convergence is not shown here. In this study, the

results from the smoothing technique is denoted by CS-FEMQ4. The results with standard

Q4 element with field consistent approach is also presented, denoted by FEM-Q4.

3.1 Static bending

The static analysis is conducted for cross-ply laminated plates with three and four layers

under following sinusoidal load:

pz = Po sin
(πx

a

)

sin
(πy

a

)

(23)

where Po is the amplitude of the mechanical load. The origin of the coordinate system

is located at the lower-left corner on the midplane. The physical quantities are non-

dimensionalized by following relations, unless otherwise mentioned:

w = w(a/2, a/2, 0)
100h3E2

Pa4
; σxx = σxx(a/2, a/2, h/2)

h2

Pa2
;

σyy = σyy(a/2, a/2, h/4)
h2

Pa2
; τxx = τxx(0, a/2, h)

h

Pa
;

τxy = τxy(a, a, h/2)
h2

Pa2
. (24)

3.1.1 Four layer (0◦/90◦)s square cross-ply laminated plate under sinusoidal
load

A square simply supported laminate of side a and thickness h, composed of four equally

thick layers oriented at (0◦/90◦)s is considered. The plate is subjected to a sinusoidal vertical

pressure given by Equation (23). The material properties are as follows: E1 = 25E2; G12 =

G13 = 0.5E2; G23 = 0.2E2; ν12 = 0.25. For this example, there is a three-dimensional

exact solution by Pagano [35]. In Table 1, we present results for the SINUS-ZZ theory

with strain smoothing and field consistent approach. Also presented are the solutions from

the standard 4-noded element with field consistent approach, denoted by FEM-Q4. We

compare the results with higher order plate theories [36, 15], first order theory [37] and

an exact solution [35]. The effect of plate thickness is also shown in Table 1. It is clear
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that the FSDT cannot be used for thick laminates. It can be seen that the results from

the present formulation show very good agreement with those in the literature and very

precise transverse displacements and stresses are obtained. The main features of the present

formulation are: (1) theories from ESL to higher order layer descriptions can be implemented

within a single code (since it is based on CUF); (2) the strain smoothing technique reduces

the computational effort and also improves the accuracy of the field variables and (3) the

present formulation is insensitive to shear locking.

3.1.2 Three layer (0◦/90◦/0◦) square cross ply laminated plate under sinusoidal
load

In this case, a square laminate of side a and thickness h, composed of three equally thick

layers oriented at (0◦/90◦/0◦) is considered. It is simply supported on all edges and subjected

to a sinusoidal vertical pressure of the form, given by Equation (23). The material properties

for this example are: E1 =132.38 GPa, E2 = E3 =10.756 GPa, G12 =3.606 GPa, G13 =

G23 = 5.6537 GPa, ν12 = ν13 = 0.24, ν23 = 0.49. In Table 2, we present results for the SINUS-

ZZ theory with strain smoothing and field consistent approach. The results from the present

formulation are compared with the analytical solution [4, 5] and MITC4 formulation [7]. It

can be seen that the numerical results from the present formulation are found to be in

good agreement with the existing solutions. Moreover, the present formulation shows an

improvement in the accuracy of the field variables when compared to other formulations

and is insensitive to shear locking.

3.2 Free vibration - cross-ply laminated plates

In this example, all layers of the laminate are assumed to be of the same thickness, density

and made up of the same linear elastic material. The following material parameters are

considered for each layer

E1

E2

= 10,20,30, or 40; G12 = G13 = 0.6E2;

G3 = 0.5E2; ν12 = 0.25.

The subscripts 1 and 2 denote the directions normal and the transverse to the fiber direction

in a lamina, which may be oriented at an angle to the plate axes. The ply angle of each

layer is measure from the global x−axis to the fiber direction. The example considered is a

simply supported square plate of the cross-ply lamination (0◦/90◦)s. The thickness and the

length of the plate are denoted by h and a, respectively. The thickness-to-span ratio h/a =

12



Table 1: The normalized central deflection w = w(a/2, a/2, 0)100E2h
3

Pa4
, stresses, σxx =

σxx(a/2, a/2, h/2)
h2

Pa2
, σyy = σyy(a/2, a/2, h/4)

h2

Pa2
and τxz = τxz(0, /a2, 0)

h
Pa

of a simply
supported cross-ply laminated square plate [0◦/90◦/90◦/0◦], with E1 = 25E2, G12 = G13 =
0.5E2, G23 = 0.2E2, ν12 =0.25.

a/h Method w σxx σyy τxz

4

HSDT [36] 1.8937 0.6651 0.6322 0.2064

FSDT [37] 1.7100 0.4059 0.5765 0.1398

Elasticity [35] 1.9540 0.7200 0.666 0.2700

RBF [15] 1.9783 0.6765 0.5872 0.2332

Present (FEM Q4) 1.8949 0.6617 0.5615 0.2913

CS-FEM Q4 (4 subcells) 1.9089 0.7067 0.6273 0.2201

10

HSDT [36] 0.7147 0.5456 0.3888 0.2640

FSDT [37] 0.6628 0.4989 0.3615 0.1667

Elasticity [35] 0.7430 0.5590 0.4030 0.3010

RBF [15] 0.7325 0.5627 0.3908 0.3321

Present (FEM Q4) 0.7135 0.5670 0.3682 0.3517

CS-FEM Q4 (4 subcells) 0.7195 0.5597 0.3905 0.2952

100

HSDT [36] 0.4343 0.5387 0.2708 0.2897

FSDT [37] 04337 0.5382 0.2705 0.1780

Elasticity [35] 0.4347 0.5390 0.2710 0.3390

RBF [15] 0.4307 0.5431 0.2730 0.3768

Present (FEM Q4) 0.4302 0.5559 - 0.3766

CS-FEM Q4 (4 subcells) 0.4304 0.5368 - 0.3285
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Table 2: Transverse displacement w = w(a/2, a/2, h/2) at the center of a multilayered plate
[0◦/90◦/0◦] with E1 = 132.38 GPa, E2 = E3 = 10.756 GPa, G12 = 3.606 GPa, G13 = G23 =
5.6537 GPa, ν12 = ν13 = 0.24, ν23 = 0.49. A structured quadrilateral mesh with 20 × 20
elements

w a/h

10 50 100 500 1000

Analytical (ESL-2) [4, 5] 0.9249 0.7767 0.7720 0.7705 0.7704

MITC4 [7] 0.9195 0.7713 0.7666 0.7650 0.7650

Present (FEM Q4) 0.9152 0.7700 0.7651 0.7636 0.7635

CS-FEM Q4 (4 subcells) 0.9235 0.7703 0.7655 0.7639 0.7639

0.2 is employed in the computations. In this study, we present the non dimensionalized free

flexural frequencies as, unless specified otherwise:

Ω = ω
a2

h

√

ρ

E2

Table 3 lists the fundamental frequency for a simply supported cross-ply laminated

square plate with h/a = 0.2 and for different ratio of Young’s modulus, E1/E2. It can be

seen that the results from the present formulation are in very close agreement with the values

of [21] based on higher order theory, the meshfree results of Liew et al., [22] and Ferreira

et al., based on FSDT and higher order theories with radial basis functions [16]. The effect

of plate thickness on the fundamental frequency is shown in Table 4. It can be seen that

the results agree with the results available in the literature. The present formulation is

insensitive to shear locking.

4 Conclusion

In this article, the cell based smoothing technique for implementation of the Carrera Unified

Formulation was detailed and discussed. The efficiency and accuracy of the present approach

is demonstrated with few numerical examples. The shear locking is suppressed by employing

a field consistent approach. This improved finite element technique shows insensitivity to

shear locking and produce excellent results in static bending and free vibration of cross-ply

laminated plates.
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Table 3: The normalized fundamental frequency Ω = ωa2/h
√

ρ/E2 of a simply supported
cross-ply laminated square plate (0◦/90◦)s with h/a = 0.2, E1

E2
= 10, 20, 30 or 40, G12 =

G13 = 0.6E2, G23 = 0.5E2, ν12 = 0.25.

Method Mesh subcell(s) E1/E2

10 20 30 40

Liew [22] 8.2924 9.5613 10.3200 10.8490

Reddy, Khdeir [21] 8.2982 9.5671 10.3260 10.8540

FSDT [16] 21×21 8.2982 9.5671 10.3258 10.8540

HSDT [16] (ν23 = 0.18) 21×21 8.2999 9.5411 10.2687 10.7652

Present FEM Q4 20×20 8.3651 9.5801 10.2980 10.7894

CS-FEM Q4 20×20

1 8.3604 9.5755 10.2937 10.7853

2 8.3615 9.5767 10.2950 10.7866

4 8.3639 9.5790 10.2970 10.7883

8 8.3642 9.5793 10.2973 10.7887

Table 4: Variation of fundamental frequencies, Ω = ωa2/h
√

ρ/E2 with a/h for a simply

supported square laminated plate [0◦/90◦/90◦/0◦], Ω = ωa2/h
√

ρ/E2, with E1/E2 = 40,
G12 = G13 =0.6E2, G23 =0.5E2, ν12 = ν13 = ν23 = 0.25.

Method a/h
2 4 10 20 50 100

FSDT [43] 5.4998 9.3949 15.1426 17.6596 18.6742 18.8362
Model-1 (12dofs) [19] 5.4033 9.2870 15.1048 17.6470 18.6720 18.8357
Model-2 (9dofs) [19] 5.3929 9.2710 15.0949 17.6434 18.6713 18.8355
HSDT [36] 5.5065 9.3235 15.1073 17.6457 18.6718 18.8356
HSDT [39] 6.0017 10.2032 15.9405 17.9938 18.7381 18.8526
Present(FEM Q4) 5.4029 9.3005 15.1790 17.7578 18.7993 18.9657
CS-FEM Q4 (4 subcells) 5.4026 9.2998 15.1766 17.7540 18.7947 18.9611
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