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Outline 

• Simulation of terminated interconnects 
– Frequency and time-domain analysis 

• Transient analysis 
– Convolution-based approaches 
– Direct circuit simulation (when possible) 
– Black-box passive macromodeling 

• Black-box passive macromodeling 
– Rational curve fitting 
– Passivity enforcement 

• An application example 
– Coupled signal-power integrity analysis of a real board 

• Conclusions  
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Interconnects: showcase Interconnects: showcase 

4 Courtesy D. Kaller, IBM Boeblingen, Germany 

Signal Integrity 
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No coupling 
With coupling 
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The objective 

Interconnect network 
Signal and Power 

Linear 
Many ports 

Complex geometry 
Electrically large 

Terminations 
Nonlinear 
Complex 
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S-parameter block 
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Nonlinear terminations 
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Discretizing convolution 
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An example: CPU-I/O channel 
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Direct convolution 
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Direct convolution 
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Use many past samples 

Very robust (when a good impulse response is available…) 

May be very slow due to long memory in convolution 
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Direct circuit simulation 
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Complex 
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If a circuit description of the interconnect is available… 

…direct circuit 
simulation… …too large! 
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Model Order Reduction 

ORDER 
REDUCTION 
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Spatial discretization of Maxwell equations 
(FDTD, FEM, MoM, PEEC, …) 
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Black-Box Macromodeling 
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Rational function fitting: why? 

Any lumped circuit has rational 
frequency responses (poles-residues, 
poles-zeros, ratio of polynomials) 
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Circuit solvers understand circuits 

Extraction of an equivalent circuit 
is an inverse problem (two-step) 

Impedance, admittance, scattering 
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Recursive convolution 
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Macromodel implementations 

1. Synthesize an equivalent circuit in SPICE format 

No access to SPICE kernel  

Must use standard circuit elements 

2. Direct SPICE implementation via recursive convolution 

Laplace element, most efficient 

3. Other languages for mixed-signal analyses 

Verilog-AMS, VHDL-AMS, … 

Equation-based 

Example: board with 13 ports 

 

CPU time 

Standard convolution 389 seconds 

Equivalent circuit 180 seconds 

Recursive convolution 5.8 seconds 
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Rational curve fitting 
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Vector Fitting 
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Vector Fitting 
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High-speed connector, measured 
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Advanced VF formulations 

• Time-domain Vector Fitting 
– Processes time samples instead of frequency samples 

• Orthonormal Vector Fitting 
– Further improvement in matrix conditioning using orthonormal rational functions 

• Z-domain (orthonormal) Vector Fitting 
– Works on discrete-time/frequency systems 

• Fast Vector Fitting 
– Uses smart QR decomposition (compressions) for systems with many ports 

• Eigenvalue-based Vector Fitting 
– Possibly with relative error minimization, for improved robustness 

• Multivariate/Parameterized Vector Fitting 
– Allows closed-form inclusion of geometry-material parameters in the macromodel equations 

• Delayed Vector Fitting 
– Uses modified basis functions for representing propagation delays in closed form 

• Parallel Vector Fitting 
– For multicore hardware architectures: close to ideal speedups, almost real-time modeling 
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Passivity: why? 
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Passivity conditions (scattering) 
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Guarantees real-valued impulse response. 
Always assumed by construction 

Energy condition: structure must not amplify signals. 
Sometimes called simply “passivity” condition 

No anticipatory behavior in time-domain. 
Note: causality is a prerequisite for passivity! 
Guaranteed if macromodel is stable. 
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Passivity violations: why? 

• Data from measurement 
– Improper calibration and de-embedding, human mistakes 

– Measurement noise 

• Data from simulation 
– Poor meshing 

– Inaccurate solver 

– Bad models or assumptions on material properties 

– Poor data post-processing algorithms 

– Putting together results from two solvers 

• Macromodel 
– Approximation errors in Vector Fitting 

– May be critical out-of-band, where no data sample is available 
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Passivity enforcement 
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A case study: coupled 
Signal/Power Integrity 

This case study courtesy of 

– Georgia Institute of Technology, Atlanta GA, USA 

– E-System Design, Inc. 

• Provided field solver Sphinx 

– Politecnico di Torino 

– IdemWorks s.r.l. 

• Provided passive macromodeling tool IdEM 

www.idemworks.com 

www.e-systemdesign.com E-System Design 
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Board cross-section 
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Layers L2 and L3 

L2 L3 
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Port locations 
L3 (Ref: L2) ports 1,7; 2,3; 8,9 

34 

Port locations 
L4 (Ref: L5) ports 10,11 
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Power ports 
L2 (Ref: L5) ports 12,13 

Port 13 

Port 12 
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Macromodel vs S-parameters 

http://it.dreamstime.com/lente-dingrandimento-thumb311233.jpg
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SPICE: excitation on signal lines 

38 

Response on a signal line, 
1.3GHz 
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Coupling to power ports, 1.3GHz 
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Xtalk and substrate coupling, 
1.3GHz 
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SPICE: excitation on PDN 
(core switching) 
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Decoupling capacitors 

Cap 3 (C=1nF,R=10mOhm, L=14.97pH) 
 

Cap 1 (C=1nF,R=10mOhm, L=51.65pH) 
 

Cap 4 (C=1nF,R=10mOhm, L=14.97pH) 
 

Cap 2 (C=1nF,R=10mOhm, L=51.65pH) 
 

Port 12 
 

Port 13 
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PDN response 

Port 13: With and Without Caps 

44 

Eye diagram simulation: setup 

45 

Eye diagram results, 2.6 Gb/s 

Single active line 

+ aggressors 

+ core switching 

No decoupling caps With decoupling caps 

„Signal Integrity Summary“ 

October 7, 2013 Christian Schuster 46 

 Application: 

 Fast numerical assessment of Signal and Power Integrity 

problems during early design stages 

 Problems: 

 Mixing time-domain circuit-level models (NL) with frequency-

domain description of interconnect networks, complexity, 

efficiency 

 Solution: 

 Rational black-box macromodeling + smart implementation 

 Key enabling factors for fast system-level simulation, design 

optimization, what-if analyses 


