POLITECNICO DI TORINO Repository ISTITUZIONALE

Macromodelling and its Applications to Signal and Power Integrity

Original

Macromodelling and its Applications to Signal and Power Integrity / GRIVET TALOCIA, Stefano. - ELETTRONICO. - (2013), pp. 1-8. (Intervento presentato al convegno 2013 European Microwave Week tenutosi a Nurnberg, Germany nel October 6-11, 2013).

Availability: This version is available at: 11583/2516700 since: 2015-07-15T07:23:20Z

Publisher:

Published DOI:

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

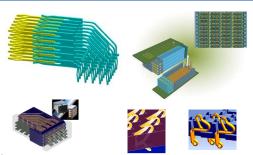
Publisher copyright

(Article begins on next page)

Macromodelling and its Applications to Signal and Power Integrity

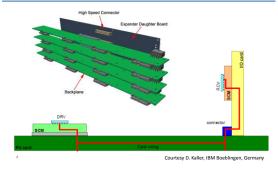
Stefano Grivet-Talocia

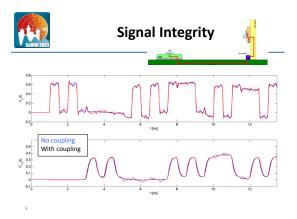
Dept. Electronics and Telecommunications Politecnico di Torino, Italy stefano.grivet@polito.it

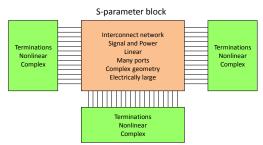


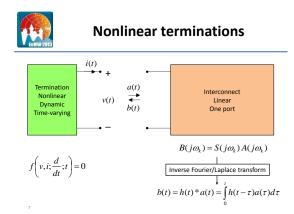
Outline

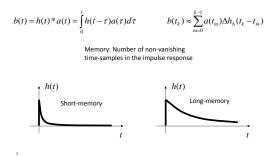
- Simulation of terminated interconnects
 Frequency and time-domain analysis
- Transient analysis
 - Convolution-based approaches
 - Direct circuit simulation (when possible)
 - Black-box passive macromodeling
- Black-box passive macromodeling
 - Rational curve fitting
 - Passivity enforcement
- An application example
- Coupled signal-power integrity analysis of a real board
- Conclusions

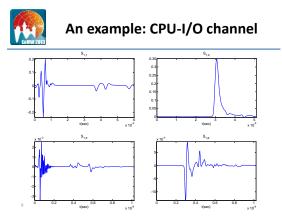


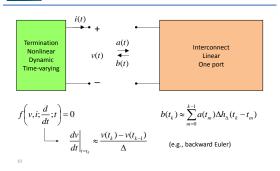

Interconnects: showcase

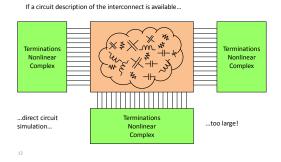

Interconnects: showcase

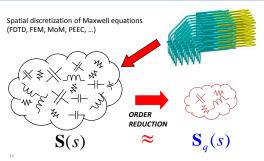



The objective

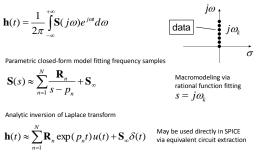


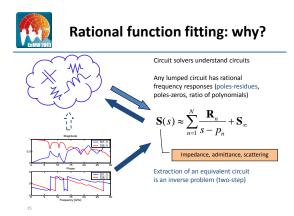

Discretizing convolution

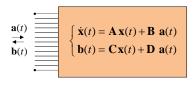

Direct convolution

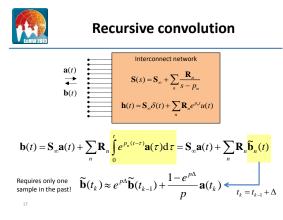


Direct circuit simulation



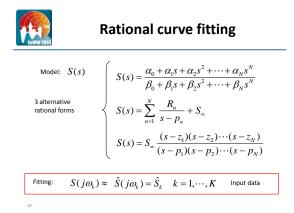

Model Order Reduction

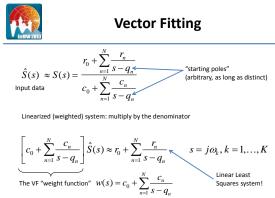

Black-Box Macromodeling

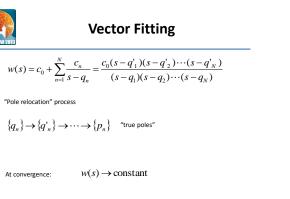


State-space realizations

$$\mathbf{S}(s) \approx \sum_{n=1}^{N} \frac{\mathbf{R}_n}{s - p_n} + \mathbf{S}_{\infty} = \mathbf{D} + \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B}$$

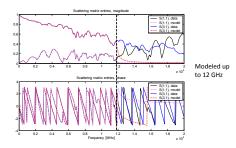



Macromodel implementations


- Synthesize an equivalent circuit in SPICE format No access to SPICE kernel Must use standard circuit elements
 Direct SPICE implementation via recursive convolution Laplace element, most efficient
- 3. Other languages for mixed-signal analyses

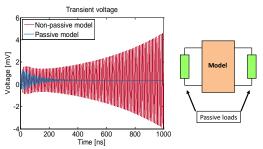
Verilog-AMS,	VHDL-AMS,
--------------	-----------

Equation-based		CPU time		
	Standard convolution	389 seconds		
Example: board with 13 ports	Equivalent circuit	180 seconds		
18	Recursive convolution	5.8 seconds		



High-speed connector, measured

Advanced VF formulations

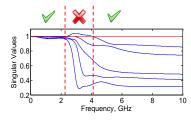

- Time-domain Vector Fitting

 Processes time samples instead of frequency samples
- •
- Further improvement in matrix conditioning using orthonormal rational functions
 Further improvement in matrix conditioning using orthonormal rational functions
 Z-domain (orthonormal) Vector Fitting

- Works on Excrete-time/Frequency systems Fast Vector Fitting Uses smart OR decomposition (compressions) for systems with many ports Eigenvalue-based Vector Fitting •
- Possibly with relative error minimization, for improved robustness
- Multivariate/Parameterized Vector Fitting
 Allows closed-form inclusion of geometry-material parameters in the macromodel equations Delayed Vector Fitting – Uses modified basis functions for representing propagation delays in closed form .
- Parallel Vector Fitting For multicore hardware architectures: close to ideal speedups, almost real-time modeling

Passivity: why?

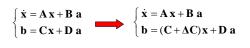
Passivity conditions (scattering)


1.	$\mathbf{S}(-j\omega) = \mathbf{S}^*(j\omega)$									
	Guarantees real-valued impulse response. Always assumed by construction									
2.	$\ \mathbf{S}(j\omega)\ \le 1$ or $\max_i \sigma_i \{\mathbf{S}(j\omega)\} \le 1$									
	Energy condition: structure must not amplify signals. Sometimes called simply "passivity" condition									
3.	$\mathbf{S}(j\omega)$ is causal									

No anticipatory behavior in time-domain. Note: causality is a prerequisite for passivity! Guaranteed if macromodel is stable.

Passivity constraints (scattering)

$\mathbf{S}(s)$ is passive $\Leftrightarrow \{ \text{singular values of } \mathbf{S}(j\omega) \} \leq \mathbf{1}, \forall \omega$


Passivity violations: why?

- · Data from measurement
 - Improper calibration and de-embedding, human mistakes
 - Measurement noise
- Data from simulation
 - Poor meshing
 - Inaccurate solver
 - Bad models or assumptions on material properties
 - Poor data post-processing algorithms
 - Putting together results from two solvers
- Macromodel
 - Approximation errors in Vector Fitting
 - May be critical out-of-band, where no data sample is available

Passivity enforcement

- Generate a new passive macromodel
- Apply small correction to preserve accuracy
 - original dataset should be passive
 - original macromodel should be accurate
 - (usually) preserve poles

30

A case study: coupled Signal/Power Integrity

This case study courtesy of

- Georgia Institute of Technology, Atlanta GA, USA
- E-System Design, Inc.
 - Provided field solver Sphinx
- Politecnico di Torino

E-Surtem Derion

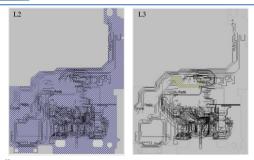
- IDEMWORKS

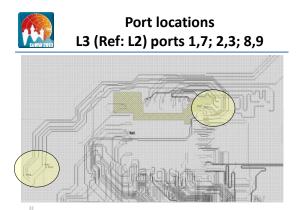
- IdemWorks s.r.l.
 - Provided passive macromodeling tool IdEM

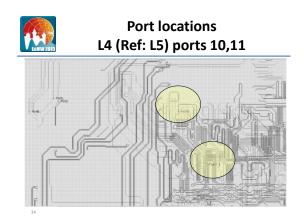
www.e-systemdesign.com www.idemworks.com

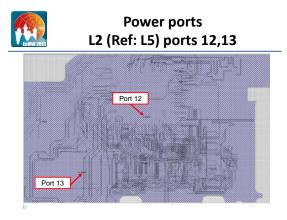
 $\Delta \mathbf{S} = \Delta \mathbf{C} (s\mathbf{I} - \mathbf{A})^{-1} \mathbf{B}$

Model Perturbation

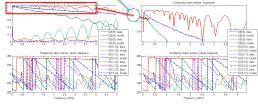


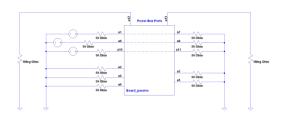

Board cross-section

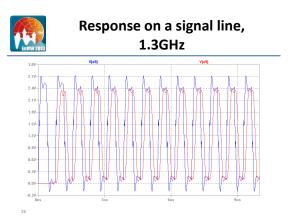

: 54	ction													
Subclass Name		e Type		Material		Thickness (MIL)	Conductivity (mho/on)	Dielectric Constant	Loss Targeri	Negative Adwark	Shield	Widh (MIL)		
1		SURFACE		SURFACE		AR				37	0			
2 T0P		CONDUCTOR	•	COPPER		1.25	595900	37	0	0		5.000		
3			•	FR-4		2.8	0	37	0.035					
4	L2		•	COPPER		0.7	595900	37	0		8			
5		CIELECTRIC	•	FR-6		2.8	0	37	0.035					
6	L3	CONDUCTOR		COPPER	•	0.7	592900	37	0			5.000		
2		DIFLECTRIC	-	FR-4		ť		37	0.035					
9	14	CONDUCTOR	•	COPPER	•	0.7	595300	37	0	D		5.000		
9		DIFFECTAC	•	FR-6		2.6	0	37	0.035					
ā.	15		•	COPPER		1.2	535300	37	0					
		CHELECTRIC	-	FR-4		3.5	0	37	0.035					
2	L6		•	COPPER	٠	1.2	191900	37	0	D				
5			-	FR-4		2		37	0.035					
8	LGA		•	COPPER		1.2	595900	4.5	0					
5		CIELECTRIC	•	FR-4	٠	4	0	37	0.035					
6	L7A		•	COPPER		1.2	\$99900	4.5	0		×			
2			•	FB-6		2	0	37	0.035					
3	17	PLANE	•	COPPER	*	1.2	595900	37	0	0				
9			•	FB-4		3.5		3.7	0.075					
2	LB	PLANE		DOPPER		1.2	535300	37	0		×			
		CHELECTRIC	•	FR-4		3.6	0	37	0.035					
2	L9	DONDUCTOR	•	COPPER		0.7	595900	37	0			5.000		
3		CHELECTRIC	•	FB-4		£.	0	37	0.035					
4	L10	CONDUCTOR	*	COPPER		0.7	595900	37	0			5.000		
5			•	FR-4		2.8	0	37	0.035					
6	L11		•	COPPER		0.7	\$99900	3.7	0					
2		CHELECTRIC	*	FR-4		2.8	0	37	0.035					
8	801TOM	CONDUCTOR		COPPER		1.25	595900	37	0			5.000		
<u>5</u>				A/R				37	0					

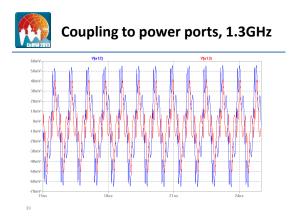


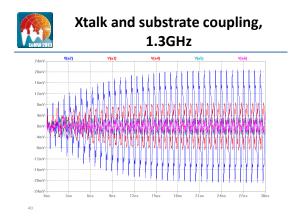
Layers L2 and L3



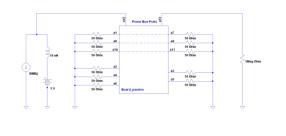


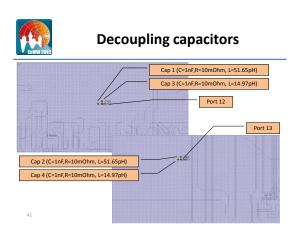




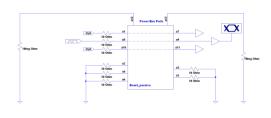


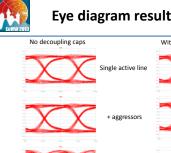
SPICE: excitation on signal lines





SPICE: excitation on PDN (core switching)




PDN response



Eye diagram simulation: setup

Eye diagram results, 2.6 Gb/s

"Signal Integrity Summary"

Application:

- Fast numerical assessment of Signal and Power Integrity problems during early design stages
- Problems:
 - Mixing time-domain circuit-level models (NL) with frequencydomain description of interconnect networks, complexity, efficiency
- Solution:
 - Rational black-box macromodeling + smart implementation
 - · Key enabling factors for fast system-level simulation, design optimization, what-if analyses

October 7, 2013 Christian Schuste