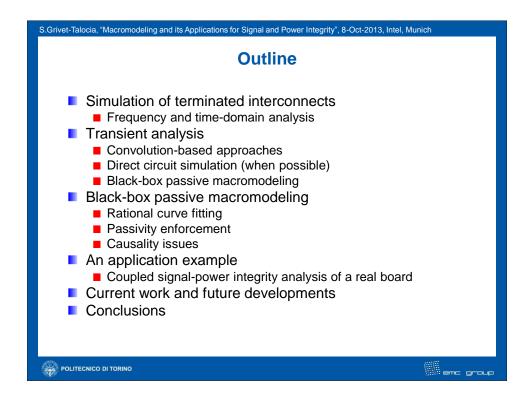
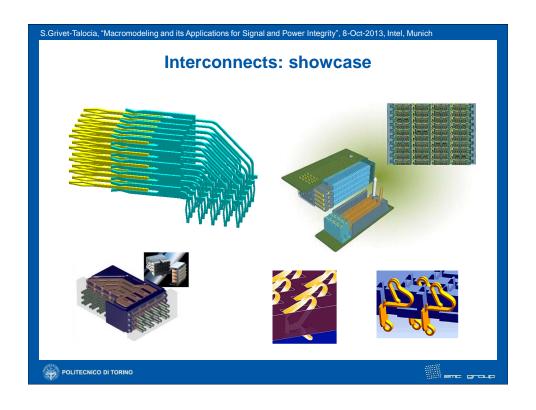
POLITECNICO DI TORINO Repository ISTITUZIONALE

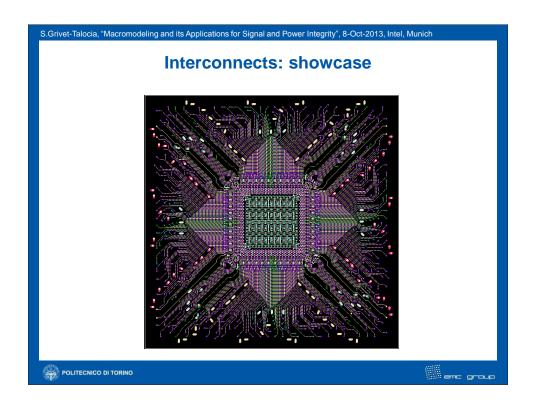
Macromodelling and its Applications to Signal and Power Integrity

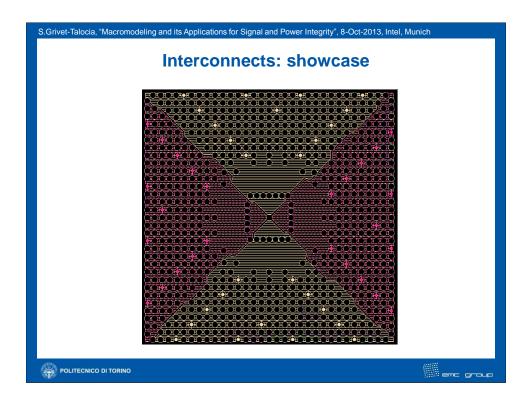
Original Macromodelling and its Applications to Signal and Power Integrity / GRIVET TALOCIA, Stefano ELETTRONICO (2013), pp. 1-42.
Availability: This version is available at: 11583/2516695 since: Publisher:
Published DOI:
Terms of use:
This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository
Publisher copyright

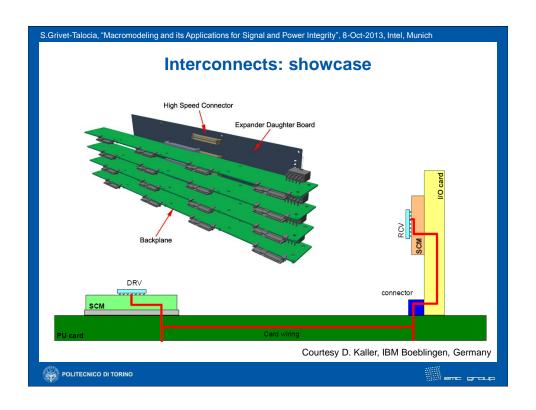
(Article begins on next page)

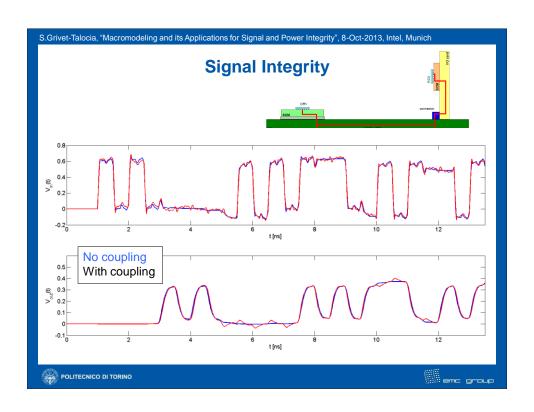


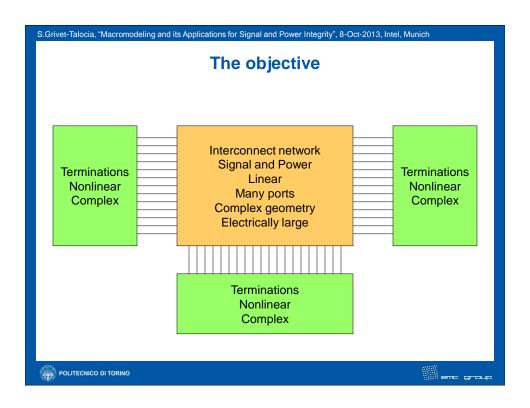


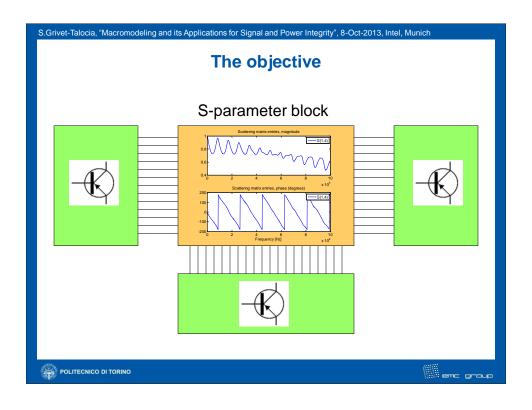


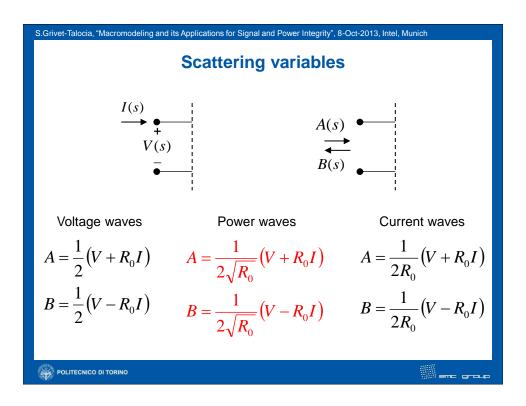


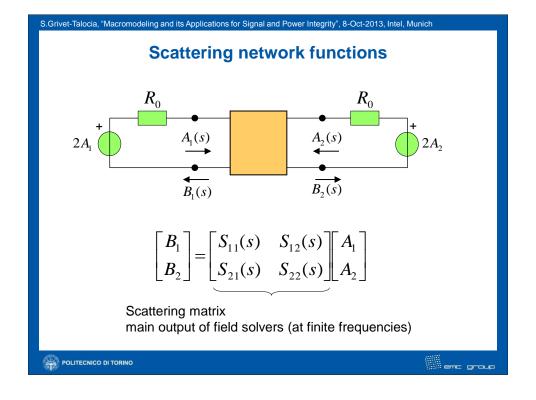


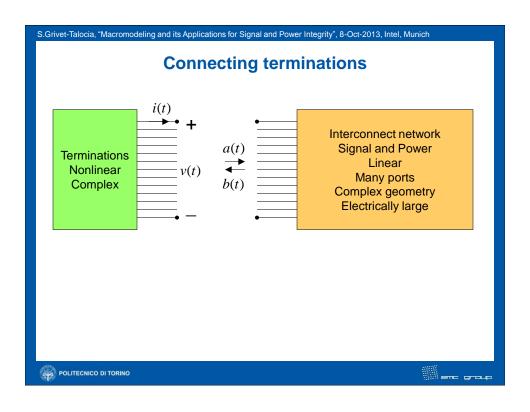


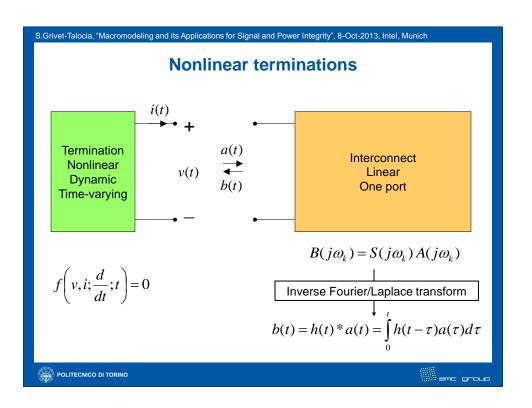


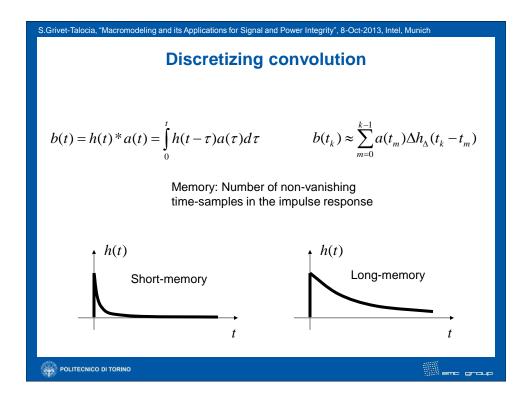


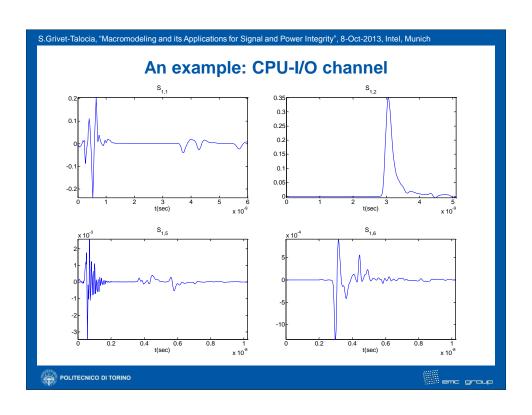


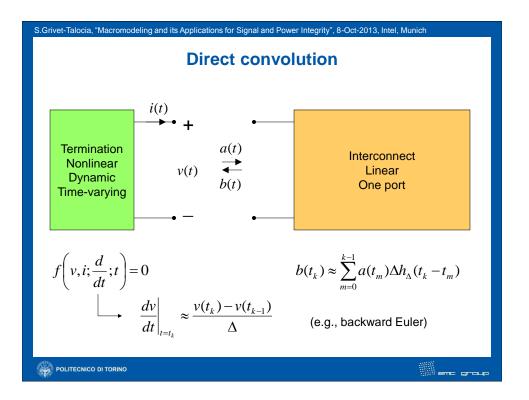


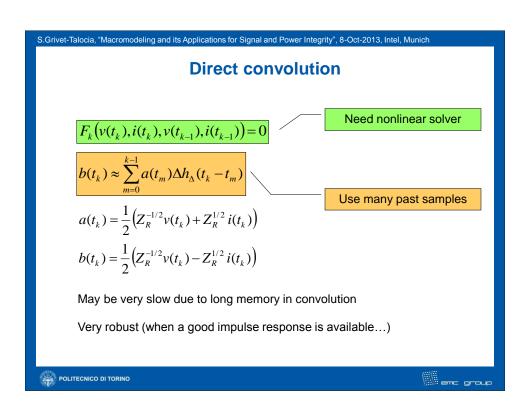


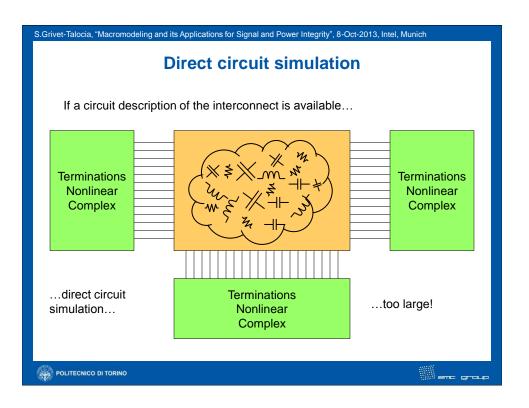


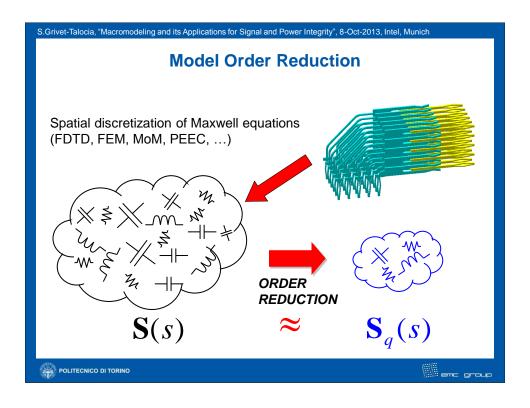






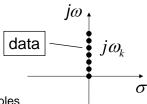






Black-Box Macromodeling

$$\mathbf{h}(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \mathbf{S}(j\omega) e^{j\omega t} d\omega$$



Parametric closed-form model fitting frequency samples

$$\mathbf{S}(s) \approx \sum_{n=1}^{N} \frac{\mathbf{R}_{n}}{s - p_{n}} + \mathbf{S}_{\infty}$$

Macromodeling via rational function fitting $s = i\omega_{L}$

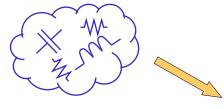
Analytic inversion of Laplace transform

$$\mathbf{h}(t) \approx \sum_{n=1}^{N} \mathbf{R}_{n} \exp(p_{n}t) u(t) + \mathbf{S}_{\infty} \delta(t)$$

May be used directly in SPICE via equivalent circuit extraction

S.Grivet-Talocia, "Macromodeling and its Applications for Signal and Power Integrity", 8-Oct-2013, Intel, Munich

Rational function fitting: why?



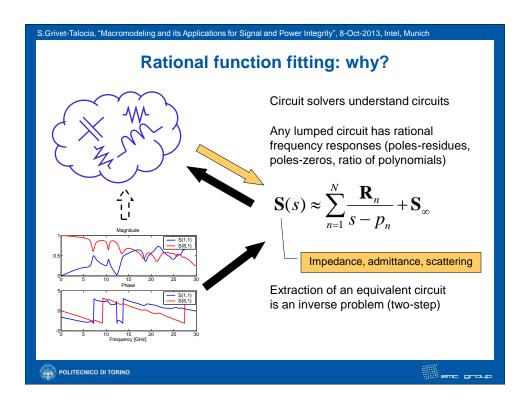
Circuit solvers understand circuits

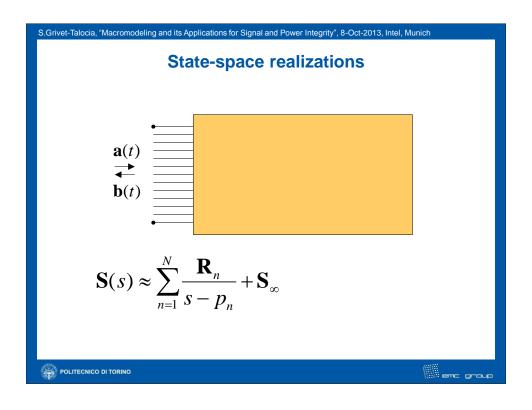
Any lumped circuit has rational frequency responses (poles-residues, poles-zeros, ratio of polynomials)

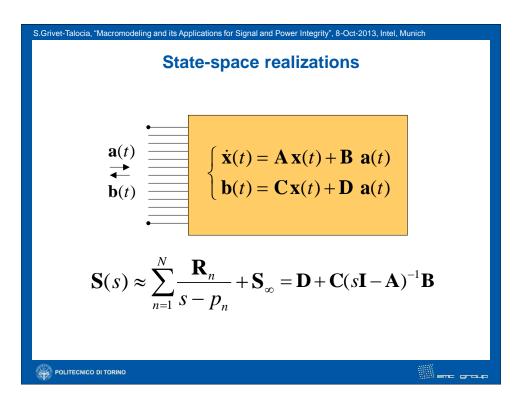
$$\mathbf{S}(s) \approx \sum_{n=1}^{N} \frac{\mathbf{R}_{n}}{s - p_{n}} + \mathbf{S}_{\infty}$$

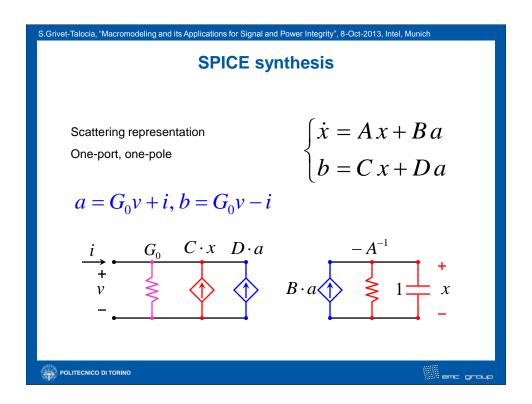
Impedance, admittance, scattering

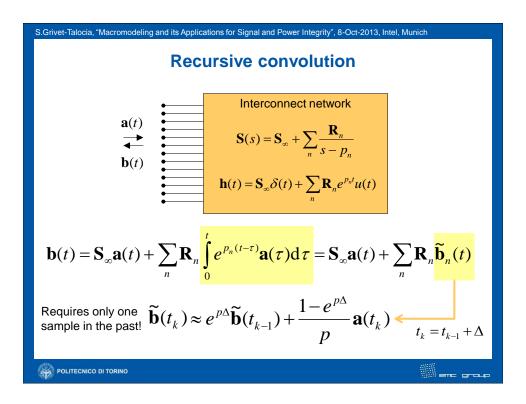
POLITECNICO DI TORINO

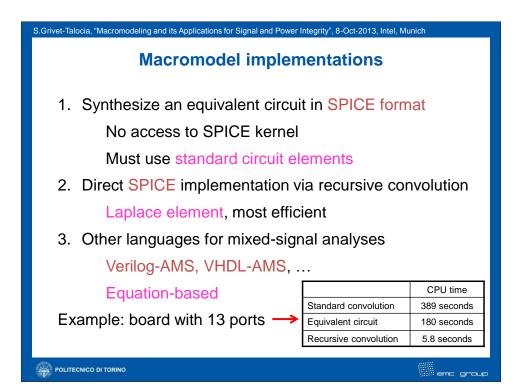












S.Grivet-Talocia, "Macromodeling and its Applications for Signal and Power Integrity", 8-Oct-2013, Intel, Munich

Rational curve fitting

Model:
$$S(s)$$

$$S(s) = \frac{\alpha_0 + \alpha_1 s + \alpha_2 s^2 + \dots + \alpha_N s^N}{\beta_0 + \beta_1 s + \beta_2 s^2 + \dots + \beta_N s^N}$$
Solutional forms
$$S(s) = \sum_{n=1}^N \frac{R_n}{s - p_n} + S_\infty$$

$$S(s) = S_\infty \frac{(s - z_1)(s - z_2) \cdots (s - z_N)}{(s - p_1)(s - p_2) \cdots (s - p_N)}$$

3 alternative rational forms

$$S(s) = \sum_{n=1}^{N} \frac{R_n}{s - p_n} + S_{\infty}$$

$$S(s) = S_{\infty} \frac{(s - z_1)(s - z_2) \cdots (s - z_N)}{(s - p_1)(s - p_2) \cdots (s - p_N)}$$

 $S(j\omega_k) \approx \hat{S}(j\omega_k) = \hat{S}_k \quad k = 1, \dots, K$ Fitting:

S.Grivet-Talocia, "Macromodeling and its Applications for Signal and Power Integrity", 8-Oct-2013, Intel, Munich

Vector Fitting

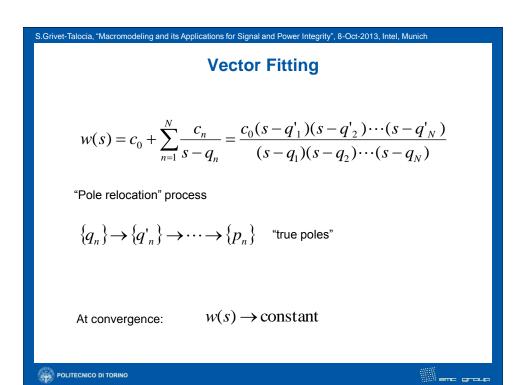
$$\hat{S}(s) \approx S(s) = \frac{r_0 + \sum_{n=1}^N \frac{r_n}{s - q_n}}{c_0 + \sum_{n=1}^N \frac{c_n}{s - q_n}} \text{ (arbitrary, as long as distinct)}$$
 Input data

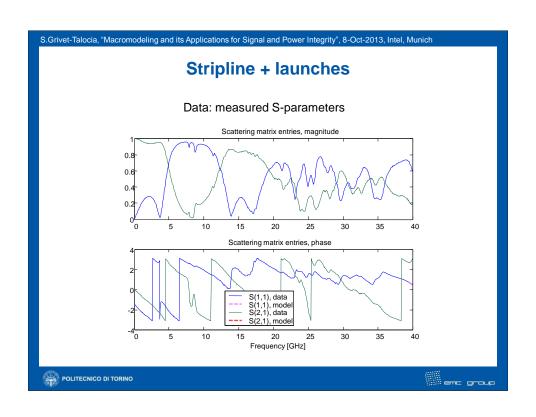
Linearized (weighted) system: multiply by the denominator

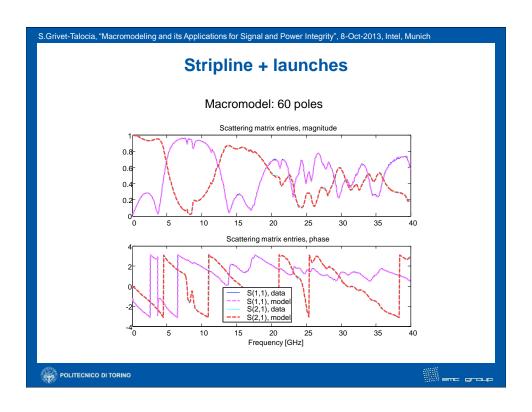
$$\left[c_{0} + \sum_{n=1}^{N} \frac{c_{n}}{s - q_{n}}\right] \hat{S}(s) \approx r_{0} + \sum_{n=1}^{N} \frac{r_{n}}{s - q_{n}} \qquad s = j\omega_{k}, k = 1, \dots, K$$

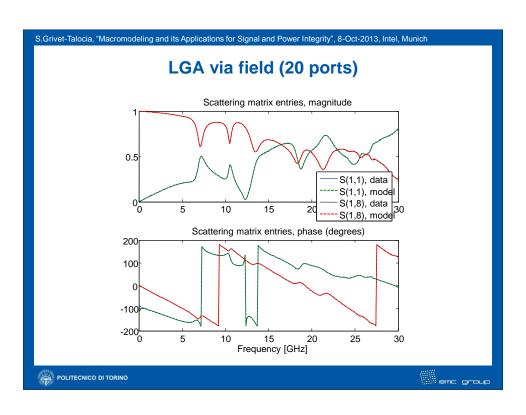
The VF "weight function" $w(s) = c_0 + \sum_{n=1}^N \frac{c_n}{s - q_n}$ Linear Least Squares

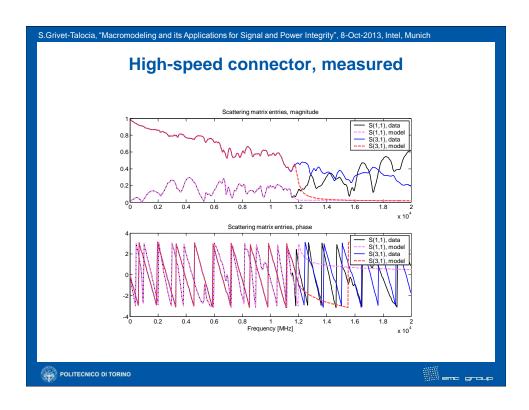
POLITECNICO DI TORINO

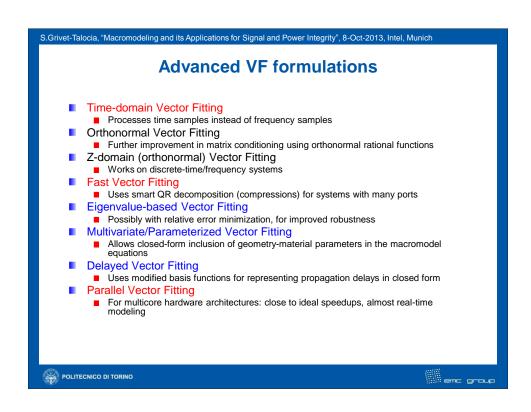




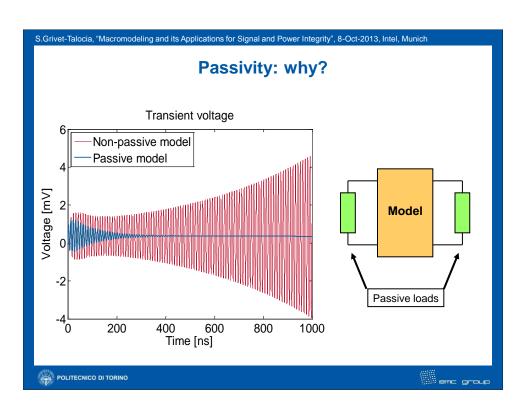


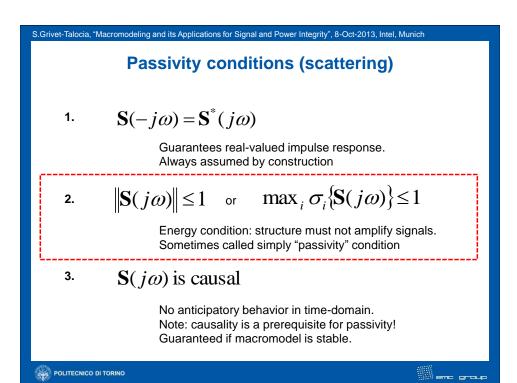


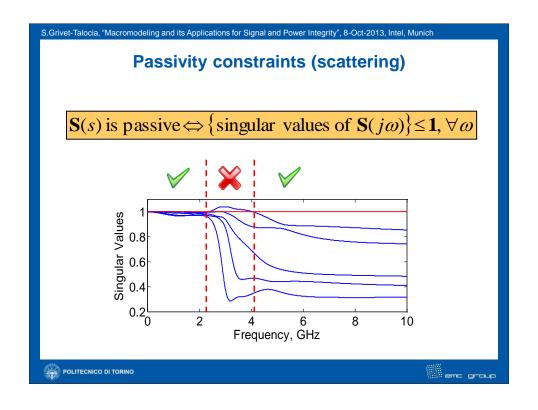


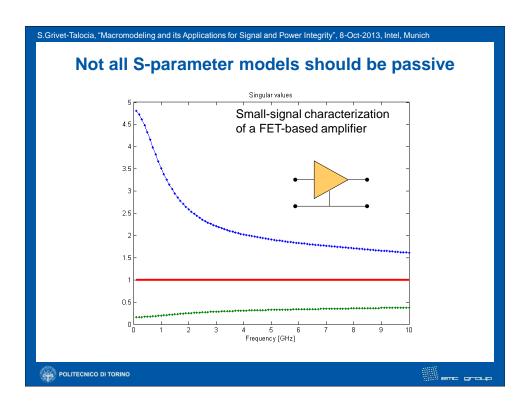


Gr	ivet-Talocia, "M				er Integrity", 8-Oct-2013, ore platfori	
	Ports	Samples	Order	CPU Time 1 core	CPU Time 16 cores	Speedup
	83	1228	30	196.08	14.36	13.7 X
	48	690	26	28.32	2.10	13.5 X
	56	1001	50	139.18	11.18	12.4 X
	160	101	6	6.78	1.07	6.3 X
	167	27	12	7.11	0.96	7.4 X
	34	570	64	42.82	3.60	11.9 X
POLITECNICO DI TORINO				37		emc gro











S.Grivet-Talocia, "Macromodeling and its Applications for Signal and Power Integrity", 8-Oct-2013, Intel, Munich

Checking passivity (scattering)

 $\{\text{singular values of } \mathbf{S}(j\omega)\} \leq \mathbf{1}, \quad \forall \omega$

Several techniques can be used

Frequency sweep test: most straightforward

- · Choose a set of frequency samples
- Compute S and its singular values, and check
- Time-consuming for large models
- · May give wrong answers due to poor sampling

S.Grivet-Talocia, "Macromodeling and its Applications for Signal and Power Integrity", 8-Oct-2013, Intel, Munich

Checking passivity

 $\{\text{singular values of } \mathbf{S}(j\omega)\} \leq \mathbf{1}, \quad \forall \omega$

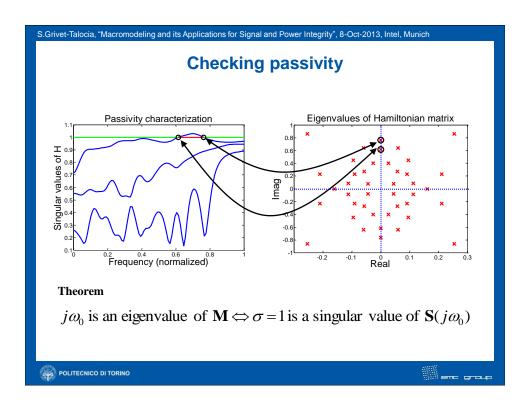
State-space
$$\mathbf{\dot{x}}(t) = \mathbf{A} \mathbf{x}(t) + \mathbf{B} \mathbf{a}(t)$$

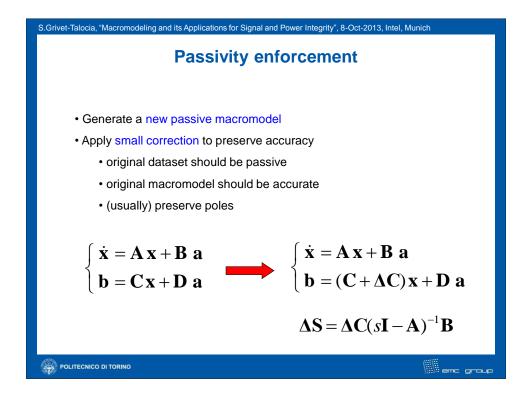
macromodel $\mathbf{\dot{b}}(t) = \mathbf{C} \mathbf{x}(t) + \mathbf{D} \mathbf{a}(t)$

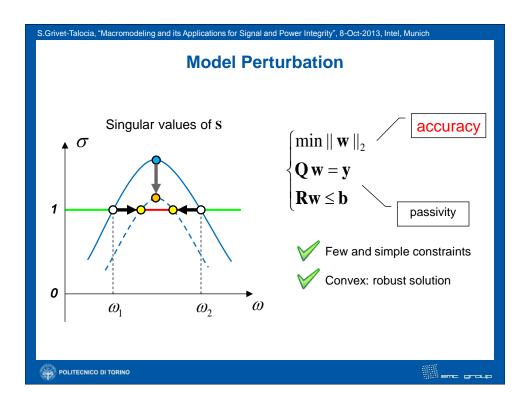
Eigenvalues of Hamiltonian matrix

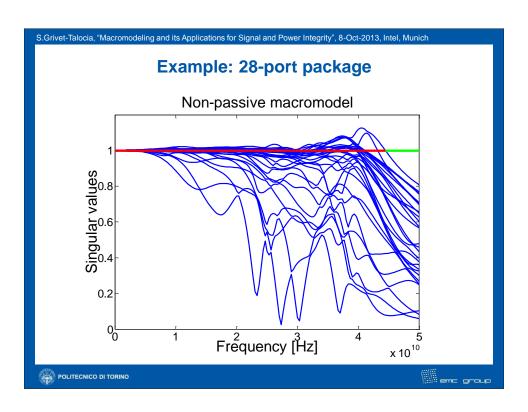
$$\mathbf{M} = \begin{pmatrix} \mathbf{A} - \mathbf{B} \left(\mathbf{D}^T \mathbf{D} - \mathbf{I} \right)^{-1} \mathbf{D}^T \mathbf{C} & -\mathbf{B} \left(\mathbf{D}^T \mathbf{D} - \mathbf{I} \right)^{-1} \mathbf{B}^T \\ \mathbf{C}^T \left(\mathbf{D} \mathbf{D}^T - \mathbf{I} \right)^{-1} \mathbf{C} & -\mathbf{A}^T + \mathbf{C}^T \mathbf{D} \left(\mathbf{D}^T \mathbf{D} - \mathbf{I} \right)^{-1} \mathbf{B}^T \end{pmatrix}$$

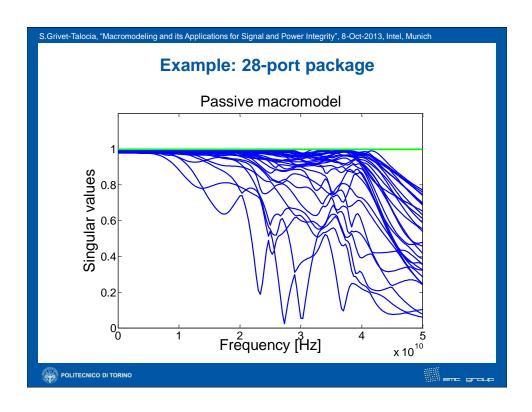
Real matrix $oldsymbol{M}$ must have no imaginary eigenvalues

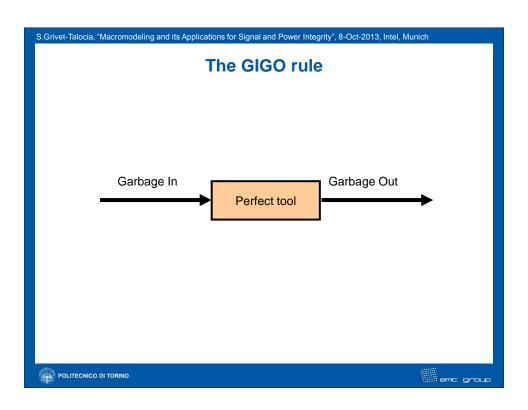


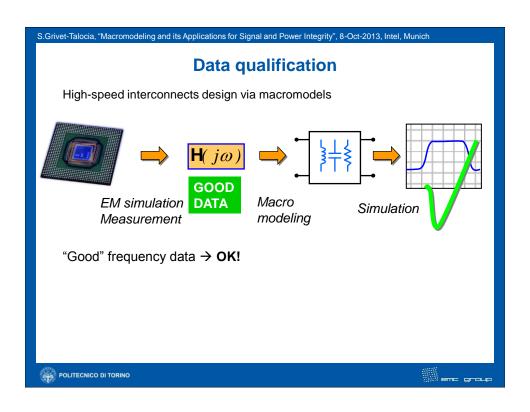


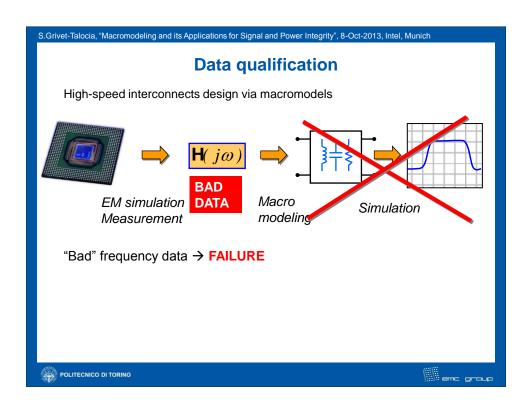


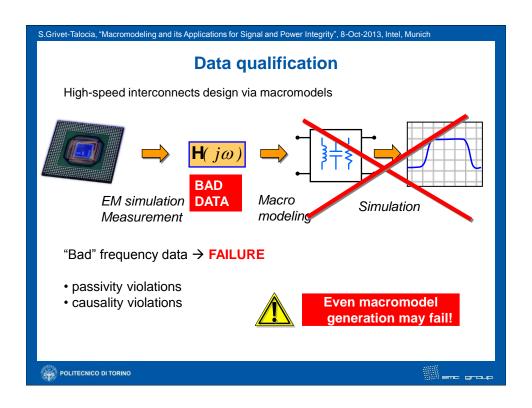


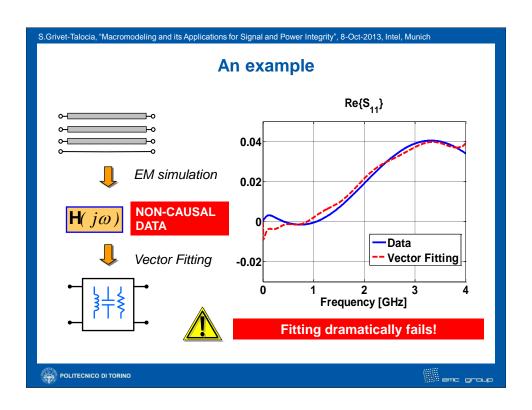


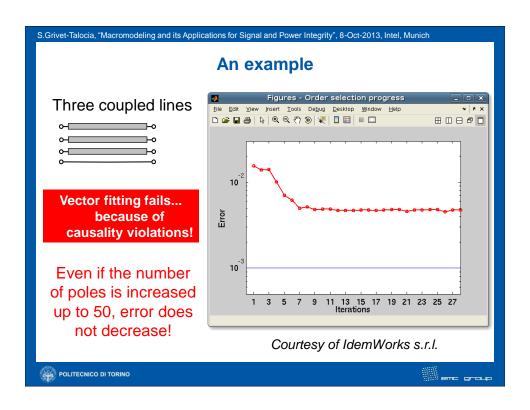


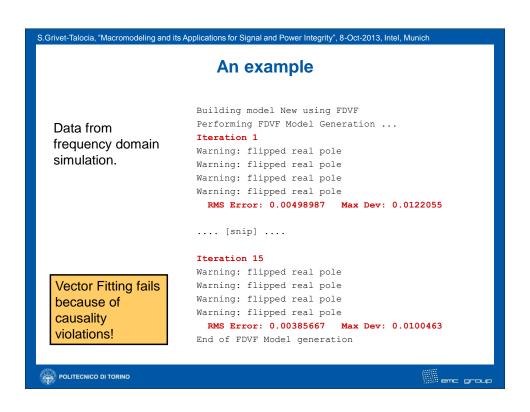


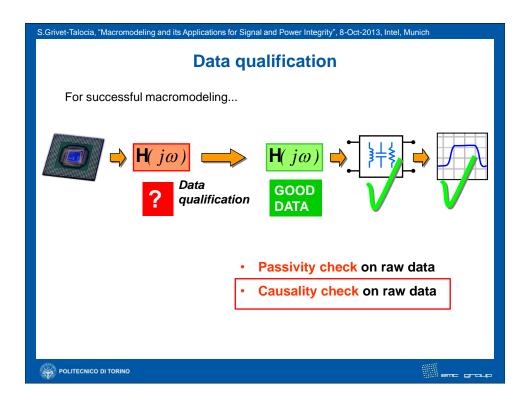


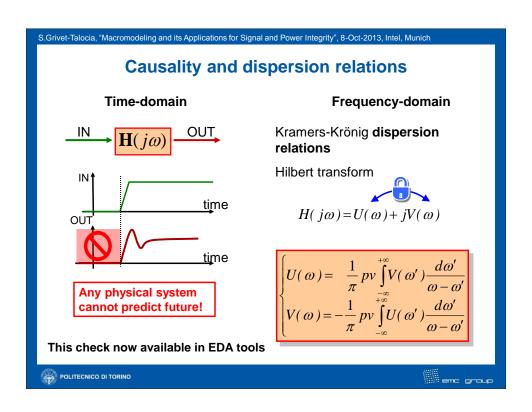


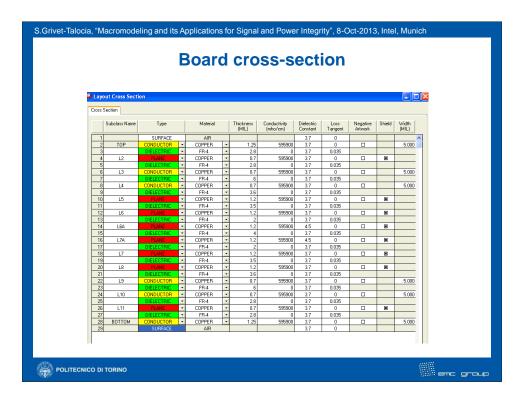


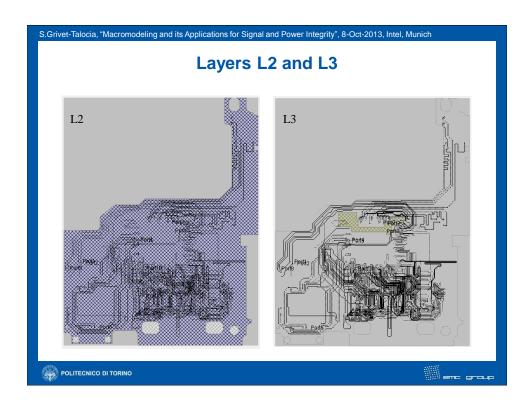


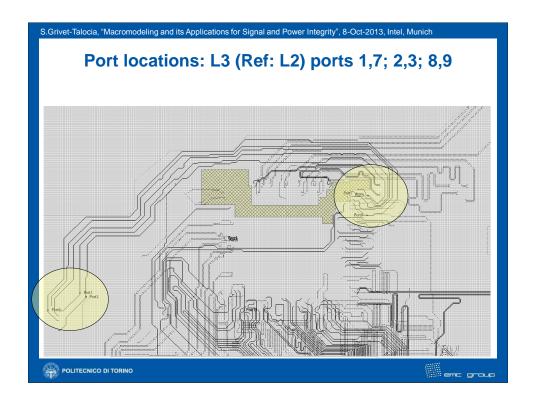


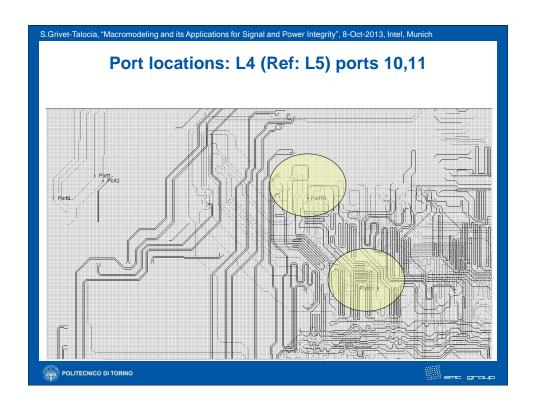


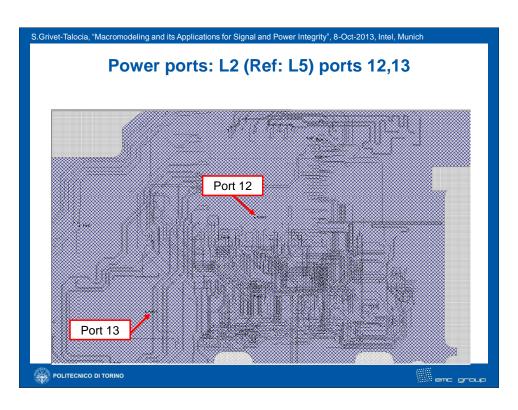


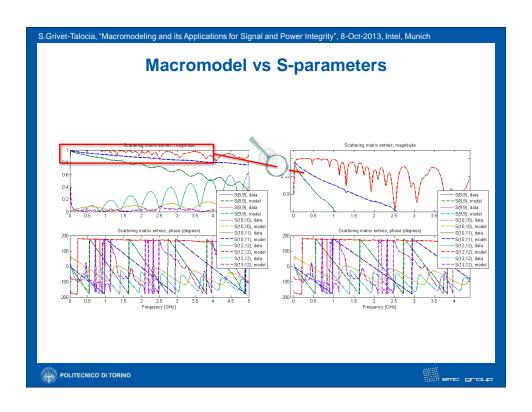


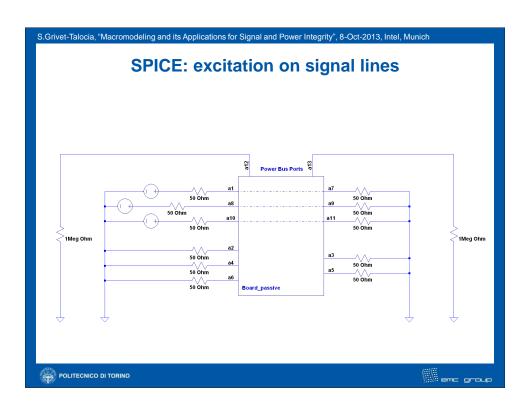


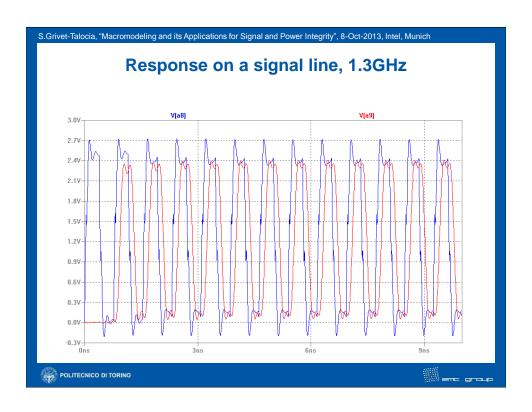


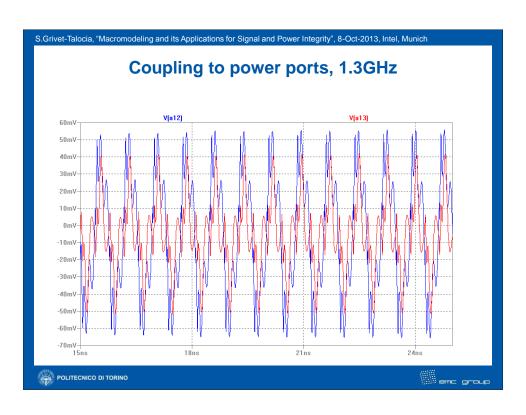




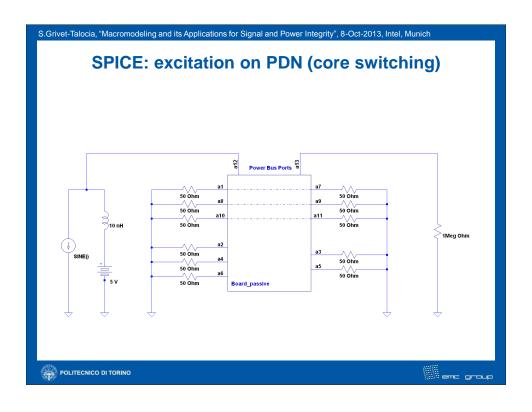


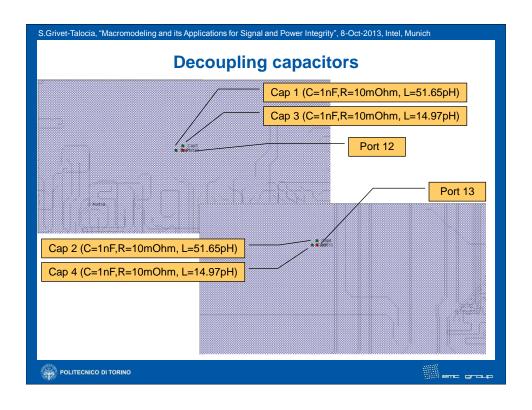


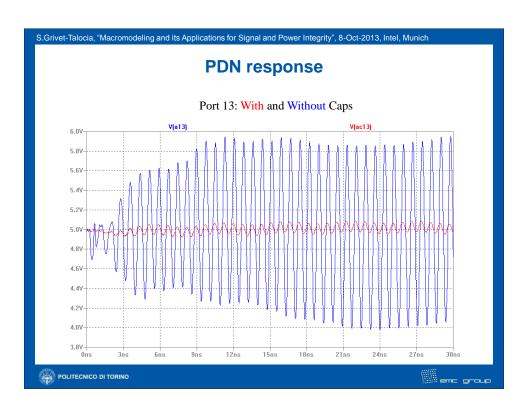


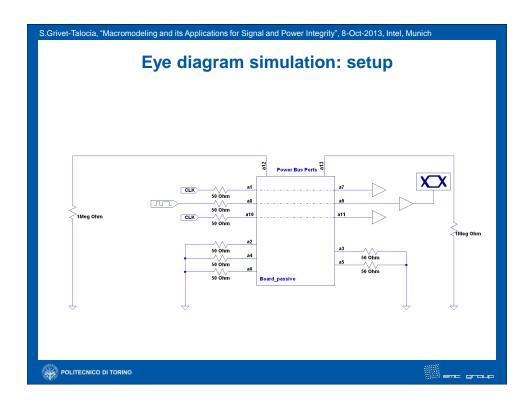


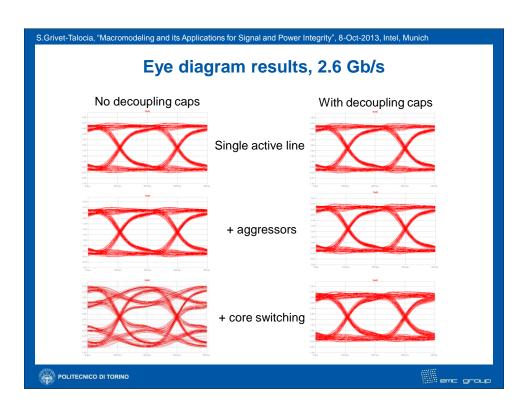












Outline

Simulation of terminated interconnects
Transient analysis
Black-box passive macromodeling
An application example
Current work and future developments
Macromodeling for RF and AMS systems
Small-signal (parameterized) reduced-order modeling
Noise-compliant synthesis
Conclusions



