
25 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Strengthening measurements from the edges: application-level packet loss rate estimation / Basso, Simone; Meo,
Michela; DE MARTIN, JUAN CARLOS. - In: COMPUTER COMMUNICATION REVIEW. - ISSN 0146-4833. - 43:3(2013),
pp. 45-51. [10.1145/2500098.2500104]

Original

Strengthening measurements from the edges: application-level packet loss rate estimation

Publisher:

Published
DOI:10.1145/2500098.2500104

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2516320 since:

ACM New York, NY, USA

Strengthening Measurements from the Edges:
Application-Level Packet Loss Rate Estimation

Simone Basso
Nexa Center for Internet &

Society, Dept. of Control and
Computer Engineering,

Politecnico di Torino, Italy
simone.basso@polito.it

Michela Meo
Dept. of Electronics and

Telecommunications,
Politecnico di Torino, Italy
michela.meo@polito.it

Juan Carlos De Martin
Nexa Center for Internet &

Society, Dept. of Control and
Computer Engineering,

Politecnico di Torino, Italy
demartin@polito.it

ABSTRACT

Network users know much less than ISPs, Internet exchanges
and content providers about what happens inside the net-
work. Consequently users cannot either easily detect net-
work neutrality violations or readily exercise their market
power by knowledgeably switching ISPs.

This paper contributes to the ongoing efforts to empower
users by proposing two models to estimate – via application-
level measurements – a key network indicator, i.e., the packet
loss rate (PLR) experienced by FTP-like TCP downloads.

Controlled, testbed, and large-scale experiments show that
the Inverse Mathis model is simpler and more consistent
across the whole PLR range, but less accurate than the more
advanced Likely Rexmit model for landline connections and
moderate PLR.

Categories and Subject Descriptors

C.2.3 [Computer-Communication Networks]: Network
Operations—Network Monitoring ; C.4 [Performance of
Systems]: Measurement techniques

General Terms

Measurement, Performance

Keywords

Network neutrality, TCP, Application level measurements

1. INTRODUCTION
One of the focal points of the network neutrality debate

is the deep information asymmetry between the network
and its edges. Internet service providers (ISPs), Internet
exchanges and content providers, in fact, have access to
a wealth of information on data traffic, user behavior and
peering. On the contrary, users have access to very coarse-
grained information, mediated by a number of intermedi-
aries (e.g., upstream providers, content delivery networks)
and interfaces (e.g., the TCP/IP stack).

The first step to re-balance such information asymmetry
is to develop tools and services that make access networks
more transparent. There are several ways to increase trans-
parency and several possible perspectives: in the following
we list some of the most relevant projects in this area.

The Web100 project exposes the internals of the Linux
TCP/IP stack [7] to userspace applications like NDT (the

Network Diagnostic Tool) [3]. Measurement Lab is a dis-
tributed server-side platform that provides network-transpa-
rency applications with hosting and other services, includ-
ing Web100 support [6]. Glasnost compares a certain pro-
tocol flow (e.g., BitTorrent) with a reference flow to detect
traffic shaping and its cause (e.g., the port number, the pay-
load) [5]. Neubot (the tool used in this paper) uses centrally-
coordinated agents to run periodic multi-protocol network
performance tests [2]. Dasu is a plugin for the Vuze BitTor-
rent client that combines passive and non-intrusive active
measurements to monitor the level of service provided by
its users’ ISPs [10].

All these tools and services have the objective of collecting
data from a great number of users and networks. If the
tools operate at the application level (either as stand-alone
applications or as plugins), they are more likely to involve
a great number of users, although this design choice implies
that the collected data is more coarse grained than the data
collected with kernel level measurements.

To help gathering more data from application-level mea-
surements, we recently proposed the Inverse Mathis mo-
del [1]. Inverse Mathis is a simple model (based on the
Mathis model [8]) that provides a coarse-grained estimate
of the packet loss rate experienced by TCP downloads from
application-level measurements made at the receiver. The
model is well suited to estimate the packet loss rate of any
FTP-like large download; as such, it is meant to be imple-
mented, e.g., into a web browser as a plugin, to analyze data
collected during large downloads. However, the model is not
applicable to cases when small messages are exchanged (e.g.,
Web browsing, BitTorrent).

In this paper we go beyond the Inverse Mathis model by
introducing the Likely Rexmit model, a new model based on
a more sophisticated analysis of the receiver’s application-
level data, specifically designed to be more accurate than
the Inverse Mathis model for the important scenarios of
ADSL and Fast Ethernet connections. To produce data
useful to compare the new model to the previous one, we
implemented a new test for our network measurement ap-
plication, Neubot1. This test (called ‘raw test’) performs
a TCP download from a random Measurement Lab server,
and produces the data needed for both the Likely Rexmit
and the Inverse Mathis models.

We analyze the results of running the ‘raw test’ from
ADSL, Fast Ethernet and 3G connections (henceforth, con-
trolled experiments), from a testbed where we varied the

1http://neubot.org.

packet drop rate (testbed experiments), and from the access
networks of the 1,480 users that have so far installed Neubot
(large-scale experiments).

The packet loss rate estimated by our models can be
one of the many ‘signals’ that could feed a meta measure-
ment system, such as the one envisioned by Palfrey and
Zittrain [9], that collects insights from diverse sources (mea-
surement tools, applications, content providers, ISPs) to
measure the Internet from different perspectives and with
different levels of precision, using coarse-grained results to
trigger more specific measurements - a powerful approach to
re-balance the information asymmetry currently disfavoring
users.

The remainder of this paper is organized as follows. In
Section 2 we describe the two models. In Section 3 we de-
scribe the ‘raw test’ implementation. In Section 4, 5 and
6 we describe the results of controlled, testbed and large-
scale experiments, respectively. In Section 7 we draw the
conclusions.

2. MODELS DESCRIPTION
In this Section we recall the description of the Inverse

Mathis model and we introduce the Likely Rexmit model.
Both models use information collected at the application

level only; both address a single TCP connection download-
ing data at full speed; both assume that the flow lasts long-
enough to reach the equilibrium and that the impact of the
initial transient is limited.

Consequently, both models can address HTTP and FTP
downloads, but they can not properly model web brows-
ing, since the browser typically fetches small objects, or
BitTorrent-like peer-to-peer downloads, when small pieces
are fetched from peers using request-response protocols.

Additionally, they can not properly model connections
over very lossy links, when TCP never exits Slow Start, thus
working in stop-and-wait mode.

2.1 The Inverse-Mathis Model
The Inverse-Mathis model [1] derives from the Mathis

model, a well-known model that describes the macroscopic
behavior of the TCP Congestion Avoidance algorithm and
provides a simple formula to predict the goodput of a sus-
tained steady-state TCP connection [8].

The Mathis formula predicts a TCP connection goodput
given estimates of the packet loss rate (PLR) and of the
round trip time (RTT). By inversion of the Mathis for-
mula, we compute the Inverse-Mathis (Inv-M) estimated
PLR (EPLR):

EPLRInv−M =

(

MSS · C

goodput ·RTT

)

2

(1)

where:

1. goodput is computed by dividing the number of re-
ceived bytes by the download time;

2. MSS is the maximum segment size;

3. RTT is the round trip time;

4. C is an empirical constant (defined by the original
Mathis model) that incorporates the loss model and
the acknowledgment strategy: when the loss model is
random and TCP uses delayed ACKs, the value of this
constant is 0.93.

The Mathis model assumes that the connection bottleneck
is always the network, i.e., that the PLR is always greater
than zero. As a consequence, the PLR estimated by Inv-M
is never zero. This means that it cannot detect cases when
there are no losses (e.g., when the performance is limited by
an under-dimensioned receiver’s buffer), in which case its
PLR estimate cannot be trusted.

Moreover, the Mathis model makes the assumption that
the RTT is constant and equal to the RTT measured by the
TCP sender during the download. This assumption implies
that the Inv-M model accuracy depends on the accuracy of
the RTT estimate.

In our implementation, the RTT estimate is the connect

delay (i.e., the time required for the connect() system call
to complete). We use the connect delay because it is readily
available at application level. However, this choice poses a
problem. It is well known in literature, in fact, that (es-
pecially in the context of home networks) the average RTT
during a download is higher than the one at connect time
due to the gateway’s queuing delay [4].

To quantify the error caused by the gateway’s queuing
delay, in the following Sections we will compare the results
of the Inv-M model using connect delay to the results of the
Inv-M model using the average Web100 RTT (a case later
indicated as ‘Benchmark Inverse Mathis’, or B-IM).

2.2 The Likely-Rexmit Model
We designed the Likely Rexmit (L-Rex) model when we

noticed the negative impact of the gateway’s queuing delay
on the average RTT and, in turn, on the Inverse Mathis
model accuracy. We specifically designed L-Rex to be more
accurate than Inverse Mathis for ADSL and Fast Ethernet
connections, which are, with cable, the most commonly used
landline connections.

The model is called ‘Likely Rexmit’ because it analyzes
the application-level dynamics of the recv() system call to
identify likely ‘rexmit’ (i.e., retransmission) events.

To better understand L-Rex, it is useful to describe the
steps we made to design it. We started from the empirical
observation of what happens at the application receiver side
of ADSL and Fast Ethernet connections:

1. since recv() returns as soon as data is available, it is
usually triggered at the reception of segments. Typ-
ically, in slow networks (e.g., ADSL) one segment is
received at a time, while faster networks (e.g., Fast
Ethernet) receive one or two segments with similar
probability. In short, any level 2 connection has its
typical number of bytes returned by recv();

2. during a burst of packets, the time elapsed between
the occurrence of two consecutive recv()s is very small,
because many back-to-back packets are received.

3. between two consecutive bursts there is typically a ‘si-
lence period’, which is usually smaller than one RTT.
If the pipeline is full, however, the receiver sees the
continuous arrival of more-or-less equally-spaced seg-
ments (i.e., there is no silence period).

Successively, we observed what happens after a loss:

4. the silence period is longer than usual (typically more
than 1 RTT). In fact, recv() cannot return because it

is waiting for the missing segment. In the best case
(i.e., Fast Retransmit) an additional RTT is needed to
retransmit the packet and to trigger recv();

5. when the window is large, recv() returns to userspace
a large, non-typical number of bytes (the lost segment
plus all the segments that arrived while recv() was
blocked).

We empirically noticed that many losses followed the pat-
tern indicated by 4. and 5.: a longer-than-usual silence pe-
riod, and a large, non-typical number of bytes. We used
this information to define two empirical rules that count
the number of estimated losses, which, in turn, is needed to
compute the estimated packet loss rate.

The two empirical rules operate on a list that contains
the number of bytes received by each recv() and the time
elapsed since previous recv(). As a preliminary step, before
we can apply the rules, we need to scan the list once, to
compute the number of received bytes frequency. Then, we
scan again the list and we count the number of cases for
which:

(i) the time elapsed since the previous recv() is greater
than H ·RTT ;

(ii) the number of received bytes is (a) greater than 1 MSS
and (b) less frequent than K.

Once the number of estimated losses is known, the L-Rex
estimated PLR (EPLR) is computed as follows:

EPLRL−Rex =
losses

received bytes / MSS
(2)

where losses is the number of estimated losses, received bytes

is the number of received bytes, and MSS is the maximum
segment size.

From repeated experiments, we optimized the value of the
parameters H and K to maximize the number of identified
losses for ADSL and Fast Ethernet access networks with
moderate losses2. The optimal values are, respectively, 0.7
and 1%.

Unlike Inverse Mathis EPLR estimates, the L-Rex EPLR
can be zero. However, there is no certainty that a zero value
corresponds to no losses. For example, when there are losses
that do not match the empirical rules (i) and (ii) above, the
EPLR is zero.

3. IMPLEMENTATION
To produce data useful to compare the Likely Rexmit (L-

Rex) model to the previously-developed Inverse Mathis (Inv-
m) model, we wrote and deployed a new ad-hoc Neubot
test, called ‘raw test’. This test is an active transmission
test that connects to a random Measurement Lab server (on
port 12345) and performs a 10-second random-data TCP
download.

During the ‘raw test’, the sender saves TCP state vari-
ables, exported by Web100. Notably, it saves: (a) Conges-

tionSignals, the number of congestion signals experienced
by TCP; (b) SegsOut, the total number of segments sent by
TCP, including retransmitted ones.

2ADSL and Fast Ethernet were chosen because they repre-
sent important Internet access technologies to which we had
easy access.

Meanwhile, the receiver saves application-level data: (c)
the connect delay; (d) the goodput; (e) the maximum seg-

ment size, obtained via getsockopt(); (f) a list that contains
the number of bytes returned by each recv() and the time
elapsed since the previous recv().

The (a)-(f) data above allows us to compute the Inv-M
and the L-Rex PLR, using the procedures described in Sec-
tion 2.1 and 2.2. It also allows us to compute the real PLR
(RPLR) by dividing CongestionSignals by SegsOut. This is
the PLR experienced by the transmitter, and we will use it
as the ground truth to evaluate both models.

4. CONTROLLED EXPERIMENTS
In this Section, we discuss the results of ‘raw test’ ex-

periments performed on access networks for which we could
capture packets (called ‘controlled experiments’ because we
had full control over the computer where Neubot was in-
stalled). The objective is to investigate how both models
approximate the Real PLR (RPLR).

4.1 Qualitative Overview
Nine controlled experiments on a combination of Internet

connections (ADSL, Fast Ethernet and 3G) and platforms
(Linux, Windows, and MacOS)3 were run. Neubot testing
policy was modified to start a new ‘raw test’ every 15 sec-
onds. Tests were performed towards random Measurement
Lab servers. Each experiment is relative to one connection
and one operating system, and contains at least 100 tests.

Fig. 1 shows the results of 3 experiments for both the In-
verse Mathis (Inv-M) and the Likely Rexmit (L-Rex) mod-
els. The dashed bisector line represents the exact prediction
by a model that covers the whole RPLR range. Therefore,
the closer to the bisector the points are, the more accurate
the model is.

Inv-M points are reasonably close to the bisector, but do
not evenly distribute around it. L-Rex points, instead, are
considerably closer to the bisector and are more evenly dis-
tributed. The points distribution suggests that we can re-
duce the error by averaging multiple experiments on the
same network path.

Windows XP ADSL points differ significantly between
the two models, with L-Rex points much closer to the real
PLR. Tcptrace4 reveals that Windows XP performance is
in most cases (79%) limited by the receiver’s buffer; there-
fore, Mathis assumptions are not met, and the corresponding
EPLR cannot be trusted.

4.2 Median Behavior
In the previous Section, we qualitatively showed that the

L-Rex model is more accurate, with points evenly distributed
around the bisector. Now, the question is whether we can
reduce the noise and obtain a robust estimate of the typical
PLR of a network path. As an indication of that, we use
the median PLR.

We decided to use the median, and not the average, be-
cause the former is more robust to outliers. The PLR, in
fact, can potentially range over a few orders of magnitude,

3We never changed the system’s default TCP/IP configura-
tion; therefore, we always run a flavor of NewReno. Win-
dows 7 and Linux automatically scaled their TCP buffers,
while MacOS 10.6 and Windows XP had fixed buffers.
4http://www.tcptrace.org/.

1
e

-0
4

1
e

-0
2

1e-04 1e-02

In
v
-M

 E
P

L
R

RPLR

ADSL Windows XP

1
e

-0
4

1
e

-0
2

1e-04 1e-02

In
v
-M

 E
P

L
R

RPLR

Campus Linux

1
e

-0
4

1
e

-0
2

1e-04 1e-02

In
v
-M

 E
P

L
R

RPLR

3G MacOS

1
e

-0
4

1
e

-0
2

1e-04 1e-02

L
-R

e
x
 E

P
L

R

RPLR

ADSL Windows XP

1
e

-0
4

1
e

-0
2

1e-04 1e-02

L
-R

e
x
 E

P
L

R

RPLR

Campus Linux

1
e

-0
4

1
e

-0
2

1e-04 1e-02

L
-R

e
x
 E

P
L

R

RPLR

3G MacOS

Figure 1: Estimated PLR (EPLR) versus the real
PLR (RPLR).

and we want to avoid that occasional large values skew the
estimate. For example, if the typical PLR is 5 · 10−4, one
single sample equal to 10−3 can considerably shift the aver-
age.

To study the models median behavior, we have performed
repeated controlled ‘raw test’ experiments with seven Mea-
surement Lab sites (corresponding to 21 servers). They were
selected to represent near (i.e., same continent) and far (i.e.,
transoceanic) destinations. From the results we computed
the RPLR, the Inv-M EPLR and the L-Rex EPLR.

Successively, we grouped experiments performed by the
same client with the same server together, and we computed
the medians (ignoring cases where we had less than 4 sam-
ples).

4.3 Comparison of the models
Fig. 2 shows the empirical cumulative distribution func-

tion (CDF) of the relative error, computed on the medians.
There are at least 13 points for each CDF.

The distribution indicates that L-Rex is more accurate
than Inv-M. There is good probability that the L-Rex error
is limited; e.g., in the ADSL Linux case, for more than 75%
of the samples the relative error is lower than 0.4.

In Fig. 2, no CDF is plotted for 3G MacOS L-Rex; we
investigated and we noticed that the relative error is 100%
(i.e., the median EPLR is zero) in 18 cases out of 19. This
happens because the variance of the number of bytes re-
turned by recv() was higher than it is for the ADSL and
Fast Ethernet connections for which we optimized L-Rex;
therefore, the 1% threshold was too strict to detect the vast
majority of the losses. In our future work, we look forward
to better adapt the 0.7 and 1% thresholds to the character-
istics of the access network.

We also investigated whether L-Rex is more accurate than
Inv-M because of the RTT estimation error induced by the
gateway’s queuing delay. To do that, as anticipated in Sec-
tion 2.1, in the Inv-M formula we replaced the connect de-
lay with the average Web100 RTT. This change reduced
the error, but the model was still not as accurate as L-Rex,
suggesting that the gateway’s queuing delay is not the only
reason why Inv-M is less accurate than L-Rex (more on this
point in Section 6).

5. TESTBED EXPERIMENTS
In the previous Section, we have tested both models on

access networks that we controlled. However, we did not

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

E
m

p
ir
ic

a
l
C

D
F

Relative Error

ADSL Linux

Inv-M
L-Rex

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

E
m

p
ir
ic

a
l
C

D
F

Relative Error

ADSL MacOS

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

E
m

p
ir
ic

a
l
C

D
F

Relative Error

ADSL Win7

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

E
m

p
ir
ic

a
l
C

D
F

Relative Error

Campus Linux

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

E
m

p
ir
ic

a
l
C

D
F

Relative Error

Campus Win7

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

E
m

p
ir
ic

a
l
C

D
F

Relative Error

3G MacOS

Figure 2: Empirical cumulative distribution func-
tion (CDF) of the relative error.

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

E
m

p
ir
ic

a
l
C

D
F

Relative Error

PDR 5e-03

Inv-M
L-Rex

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

E
m

p
ir
ic

a
l
C

D
F

Relative Error

PDR 5e-04

Inv-M
L-Rex

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
E

m
p
ir
ic

a
l
C

D
F

Relative Error

PDR 5e-05

Inv-M
L-Rex

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

E
m

p
ir
ic

a
l
C

D
F

Relative Error

PDR 0e+00

Inv-M
L-Rex

Figure 3: Empirical cumulative distribution func-
tion (CDF) of the relative error for varying packet
drop rates (PDR).

control the typical loss ratio of the end-to-end path, which
was a mixture of bursty losses (caused by the gateway queue
dynamics) and much-less-bursty background losses, typical
of the traversed (long distance) networks.

In this Section, we use a testbed to add random losses
to the typical background losses of a network path. This
allows us to study how the model behaves when the back-
ground loss rates of a network path increases (simulating
what happens when there is congestion or when a Provider
is actively managing router queues).

To run the experiment, Neubot was installed on a Linux
box which was attached to a Linux gateway in our campus
Fast Ethernet network. The gateway was configured to dis-
card packets with a random loss model and no correlation.
To do that, we used Netem, the Linux kernel’s network em-
ulation framework5.

Successively, we run ‘raw test’ experiments with varying
packet drop rates (PDR) at the gateway. We varied the
PDR from 0 (i.e., the PLR was the typical PLR of each
network path) to 5 · 10−3 (where the PDR dominated over
the typical PLR of every path we tested).

Fig. 3 shows the empirical cumulative distribution func-
tion (CDF) of the relative error. Each experiment consists
of at least 37 samples, with only three experiments with

5http://www.linuxfoundation.org/collaborate/workgroups
/networking/netem.

RPLR equal to zero (two for PDR equal to 5 ·10−5, and one
for PDR equal to zero).

The trend is that Likely Rexmit (L-Rex) is more accurate
than Inverse Mathis (Inv-M) when the PDR is higher than
5 · 10−5. For lower PDR, L-Rex is less accurate than Inv-M.
This trend reflects the general behavior of the models for
different RPLR ranges, as we will see in the next Section.

6. LARGE-SCALE EXPERIMENTS
In this Section, we analyze the results of ‘raw test’ ex-

periments run from the access networks of the 1,480 users
that have installed Neubot. The objective is to study the
models accuracy at different RPLR ranges (including when
the RPLR is zero).

6.1 Data Overview and Preprocessing
Our dataset contains the results of the ‘raw test’ per-

formed by Neubot instances installed worldwide. The data-
set is in the public domain and can be downloaded freely
from the Neubot web site6.

From 18th November 2012 to 17th February 2013, 565,559
tests were performed by 22,681 unique IP addresses and
by 1,480 unique Neubot IDs, using four diverse platforms:
Win32 (259,910; 46% of the tests), MacOS (228,712; 40%),
Linux (75,497; 14%), and FreeBSD (1,440; 0.25%). We
will concentrate on the first three cases. Tests were per-
formed towards 33 Measurement Lab sites (corresponding
to 99 distinct servers), with a nearly uniform distribution of
the load among them. Countries with more tests are: the
U.S. (195,059; 34%), Italy (92,210; 17%), Germany (67,496
11%), France (32,098; 5%), and the U.K. (27,271; 4%).

Neubot does not gather information on the type of access
network used by the device on which it is installed (i.e.,
whether it is fixed or mobile). However, a quick analysis
of the involved Autonomous Systems shows very few mobile
providers.

From the above data, we computed the RPLR, the Inverse
Mathis (Inv-M) and the Likely Rexmit (L-Rex) EPLR. As
anticipated in Section 2.1, we also estimated the PLR with
Inv-M using the average Web100 RTT in place of the connect
delay. We will indicate this case as the ‘Benchmark Inverse
Mathis’ (B-IM).

As in Section 4.2-4.3, we compute the medians to reduce
the noise caused by outliers. We group together experiments
performed by the same client with a Measurement Lab site,
and we compute the median EPLR and the median RPLR
(ignoring the cases with less than 8 samples).

6.2 Relative Error
Fig. 4 shows the empirical cumulative distribution func-

tion (CDF) of the relative error computed on the medians,
for different RPLR ranges and operating system platforms.
Unlike Section 4, here we can not distinguish between Win-
dows 7 and XP because Neubot identifies only the platform.
Tab. 1 shows the number of points used for the CDF.

In Fig. 4, for high RPLR (i.e., greater than 10−3) and
moderate RPLR (i.e., between 10−4 and 10−3), the L-Rex
model error is reasonably limited, and the model is more
accurate than Inv-M: in the worst case (Win32 for moderate
RPLR), in fact, L-Rex has lower relative error than Inv-M

6http://neubot.org/data

RPLR MacOS Linux Win32

[10−3
,∞) 1,456 (24%) 378 (20%) 1,529 (22%)

(10−4
, 10−3) 2,179 (35%) 839 (44%) 2,115 (30%)

(0, 10−4] 389 (6%) 373 (19%) 357 (5%)
0 2,148 (35%) 333 (17%) 3,039 (43%)

Table 1: Number of points in Fig. 4 (first three rows)
and Fig. 5 (last row).

for 65% of the samples. However, for low RPLR (i.e., lower
than 10−4), it is less accurate than the Inv-M model.

As we noted in Section 2.2, in fact, the L-Rex model was
designed and optimized for landline networks with moderate
losses. This explains why it is more effective than Inv-M for
RPLR greater than 10−4.

We performed one extra experiment on a Gigabit Ethernet
with default MSS (1460 bytes) to understand L-Rex reduced
accuracy with low RPLR. We noticed that the variance of
the number of bytes returned by each recv() was higher than
it is for the ADSL and Fast Ethernet connections for which
we optimized L-Rex; therefore, the 1% threshold was too
strict to detect all the losses.

The large-scale experiments confirm the gateway’s queu-
ing delays. Indeed, when we use the Web100 average RTT
in place of the connect delay, we typically obtain a more ac-
curate estimate (indicated as B-IM in Fig. 4). In particular,
for Win32 and MacOS, B-IM is the most accurate model for
both high and low RPLR conditions.

To complete our comparison of the two models, we study
now the case where the RPLR is zero. We did not study
it before because in controlled and testbed experiments the
case was not frequent. Instead, as Tab. 1 shows, this case is
more significant in large scale experiments.

6.3 Absolute Error When RPLR is zero
Fig. 5 shows the empirical cumulative distribution func-

tion (CDF) of the absolute error for different operating sys-
tem platforms when the RPLR is equal to zero. The error is
computed on the medians and is equal to the EPLR (since
the RPLR is zero). Tab. 1 shows the number of points used
for the CDF.

When the RPLR is zero, L-Rex is the best model, because
in the worst case (Win32) it yields zero 65% of the times. On
the contrary, Inv-M is much less accurate, but this should
not come as a surprise: as we anticipated in Section 2.1, in
fact, the model EPLR cannot be zero.

The distribution also shows that the L-Rex model is less
likely to yield high estimates when the RPLR is zero. In
general, L-Rex is the most accurate model (equally with B-
IM for Linux). In the worst case (Win32), for 25% of the
samples the model yields a value greater than 10−4 when
the RPLR is zero.

6.4 Comparison of the models
Large scale experiments results confirm that L-Rex is more

accurate than Inv-M to estimate moderate to high PLR.
However, L-Rex is less accurate than Inv-M for low PLR. L-
Rex is also good at detecting when there are no losses (even
though this is not the case for which it was designed).

Inv-M, instead, is consistent along the whole PLR range.
However, Inv-M is less accurate than L-Rex for high and
moderate PLR, and it cannot identify (by construction) the
case when the PLR is zero.

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

E
m

p
ir
ic

a
l
C

D
F

Relative Error

MacOS (RPLR >= 1e-03)

Inv-M
L-Rex
B-IM

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

E
m

p
ir
ic

a
l
C

D
F

Relative Error

Linux (RPLR >= 1e-03)

Inv-M
L-Rex
B-IM

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

E
m

p
ir
ic

a
l
C

D
F

Relative Error

Win32 (RPLR >= 1e-03)

Inv-M
L-Rex
B-IM

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

E
m

p
ir
ic

a
l
C

D
F

Relative Error

MacOS (1e-04 < RPLR < 1e-03)

Inv-M
L-Rex
B-IM

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

E
m

p
ir
ic

a
l
C

D
F

Relative Error

Linux (1-e04 < RPLR < 1e-03)

Inv-M
L-Rex
B-IM

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

E
m

p
ir
ic

a
l
C

D
F

Relative Error

Win32 (1e-04 < RPLR < 1e-03)

Inv-M
L-Rex
B-IM

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

E
m

p
ir
ic

a
l
C

D
F

Relative Error

MacOS (0 < RPLR <= 1e-04)

Inv-M
L-Rex
B-IM

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

E
m

p
ir
ic

a
l
C

D
F

Relative Error

Linux (0 < RPLR <= 1e-04)

Inv-M
L-Rex
B-IM

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

E
m

p
ir
ic

a
l
C

D
F

Relative Error

Win32 (0 < RPLR <= 1e-04)

Inv-M
L-Rex
B-IM

Figure 4: Empirical cumulative distribution func-
tion (CDF) of the relative error for different RPLR
ranges and operating system platforms.

 0

 0.2

 0.4

 0.6

 0.8

 1

1e-06 1e-04 1e-02 1e+00

E
m

p
ir
ic

a
l
C

D
F

Absolute Error

MacOS (RPLR == 0)

Inv-M
L-Rex
B-IM

 0

 0.2

 0.4

 0.6

 0.8

 1

1e-06 1e-04 1e-02 1e+00

E
m

p
ir
ic

a
l
C

D
F

Absolute Error

Linux (RPLR == 0)

Inv-M
L-Rex
B-IM

 0

 0.2

 0.4

 0.6

 0.8

 1

1e-06 1e-04 1e-02 1e+00

E
m

p
ir
ic

a
l
C

D
F

Absolute Error

Win32 (RPLR == 0)

Inv-M
L-Rex
B-IM

Figure 5: Large-scale experiments: Empirical cumu-
lative distribution function of the absolute error for
different operating system platforms when RPLR is
equal to zero.

We also observed that Inv-M precision is reduced by the
gateway’s queuing delay problem. This suggests that the
model can be improved by using a better average RTT esti-
mation. However, since B-IM (which uses Web100 average
RTT) is still less accurate than L-Rex for moderate RPLR
(see Fig. 4), the gateway’s queuing delay seems not to be
the only reason why Inv-M is less accurate than L-Rex.

7. CONCLUSION
In this paper, we proposed the Likely Rexmit model for

estimating the packet loss rate (PLR) experienced by a sus-
tained TCP connection (e.g., an FTP download) from ap-
plication level measurements.

We compared the proposed model to our previous model
(Inverse Mathis) in large scale experiments, as well as in ex-
periments performed in access networks we controlled (e.g.,
an ADSL that we could observe), and in a testbed, where
we varied the packet drop rate.

Results show that the Likely-Rexmit model is more ac-
curate than the Inverse-Mathis model for PLR greater than
10−4. However, Likely Rexmit is more complex because it
gathers data each time recv() returns, and, at the end of the
transfer, it needs to process such data to identify likely re-

transmissions. Also, Likely Rexmit works poorly with mo-
bile networks. The Inverse Mathis model, instead, is simpler
and less accurate, but its accuracy is more consistent across
the whole PLR range, and it is also much more reliable with
mobile networks.

To summarize, the Likely Rexmit model should be clearly
preferred over the Inverse Mathis model for landline access
networks when moderate PLR are expected.

Our experiments also show that Likely Rexmit accuracy
is slighly lower (e.g., Gigabit Ethernet) or significantly lower
(e.g., mobile) in the access networks where the variance of
the number of bytes returned by each recv() is higher than
what Likely Rexmit assumes. As part of our future work, we
aim to make Likely Rexmit generally more accurate by re-
placing the static threshold on the number of bytes returned
by each recv() with a more dynamic rule that depends on
the distribution of the number of received bytes.

We also plan to perform controlled experiments on cable
access networks, as well as experiments to study the effect of
competing traffic over the network link (e.g., a background
download from Windows update).

8. REFERENCES
[1] S. Basso, M. Meo, A. Servetti, and J. C. De Martin.

Estimating Packet Loss Rate in the Access Through
Application-Level Measurements. In ACM SIGCOMM

W-MUST 2012, pages 7–12, 2012.

[2] S. Basso, A. Servetti, and J. C. De Martin. The
Network Neutrality Bot Architecture: a Preliminary
Approach for Self-Monitoring of Internet Access QoS.
In IEEE ISCC 2011, pages 1131–1136, 2011.

[3] R. Carlson. Developing the Web100 Based Network
Diagnostic Tool (NDT). In PAM 2003, 2003.

[4] M. Dischinger, A. Haeberlen, K. P. Gummadi, and
S. Saroiu. Characterizing Residential Broadband
Networks. In ACM SIGCOMM IMC 2007, pages
43–56, 2007.

[5] M. Dischinger, M. Marcon, S. Guha, K. P. Gummadi,
R. Mahajan, and S. Saroiu. Glasnost: Enabling End
Users to Detect Traffic Differentiation. In USENIX

NSDI 2010, pages 405–418, 2010.

[6] C. Dovrolis, K. Gummadi, A. Kuzmanovic, and
S. Meinrath. Measurement Lab: Overview and an
Invitation to the Research Community. ACM
SIGCOMM Computer Communication Review,
40(3):53–56, 2010.

[7] M. Mathis, J. Heffner, and R. Reddy. Web100:
Extended TCP Instrumentation for Research,
Education and Diagnosis. ACM SIGCOMM Computer

Communication Review, 33(3):69–79, 2003.

[8] M. Mathis, J. Semke, J. Mahdavi, and T. Ott. The
Macroscopic Behavior of the TCP Congestion
Avoidance Algorithm. ACM SIGCOMM Computer

Communication Review, 27(3):67–82, 1997.

[9] J. Palfrey, and J. Zittrain Better Data for a Better
Internet. Science, 334(6060):1210–1211, 2011.

[10] M. A. Sánchez, J. S. Otto, Z. S. Bischof,
D. R. Choffnes, F. E. Bustamante, B. Krishnamurthy,
and W. Willinger. Dasu: Pushing Experiments to the
Internet’s Edge. In USENIX NSDI 2013, pages
487–499, 2013.

