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On affine scaling inexact dogleg methods for

bound-constrained nonlinear systems∗

Stefania Bellavia†, Sandra Pieraccini‡

Abstract

Within the framework of affine scaling trust-region methods for bound

constrained problems, we discuss the use of a inexact dogleg method as

a tool for simultaneously handling the trust-region and the bound con-

straints while seeking for an approximate minimizer of the model. Fo-

cusing on bound-constrained systems of nonlinear equations, an inexact

affine scaling method for large scale problems, employing the inexact dog-

leg procedure, is described. Global convergence results are established

without any Lipschitz assumption on the Jacobian matrix, and locally fast

convergence is shown under standard assumptions. Convergence analy-

sis is performed without specifying the scaling matrix used to handle the

bounds, and a rather general class of scaling matrices is allowed in actual

algorithms. Numerical results showing the performance of the method are

also given.

Key words: bound-constrained equations, affine scaling, trust-region

methods, dogleg methods, inexact Newton methods, global convergence.

1 Introduction

Affine scaling methods have been originally proposed by Coleman and Li for
the solution of bound-constrained optimization problems in [8, 9, 10] and fur-
ther extended to the solution of different classes of problems and tailored for
handling large dimension problems. Generalization of such methods to non-
linear minimization subject to linear inequality constraints [11] and to nonlin-
ear programming problems [34] have been proposed. Moreover, these methods
have been also modified in order to solve bound constrained nonlinear systems
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[33, 1, 4, 2, 3, 24, 38, 19] and systems of equalities and inequalities [27, 26, 29].
Affine scaling methods have been also used in conjunction with conic models [37]
and Barzilai-Borwein gradient methods [20]. Methods suitable for large scale
problems have been proposed, too [5, 31, 7]. Furthermore, we mention that
affine scaling methods described in [8, 9, 10] are at the core of several functions
implemented in the Matlab Optimization Toolbox.

An attractive aspect of affine-scaling interior point method is that they show
strong local and global convergence properties: in most of the papers cited above
the affine scaling scheme is combined with a trust-region approach in order to get
a globally convergent scheme. Then, common ingredients of these approaches
are the scaling diagonal matrix and the trust-region subproblem. The scaling
matrix plays a key role in the definition of scaling-affine methods. The pioneer-
ing scaling matrix was proposed by Coleman and Li in [9]; Heinkenschloss et
al. made a step further and proposed new scaling matrices that combined with
a projection allowed to establish superlinear and quadratic converge without
the strict complementarity assumption. Kanzow and Klug proposed in [23] a
further scaling matrix with improved smoothness properties. Recently, a new
scaling matrix is proposed and employed in [36]. Finally, we mention that a
scaling matrix is implicitly defined also in [20].

Affine-scaling methods for bound constrained problems embedded in a trust-
region framework [1, 2, 4, 5, 7, 9, 26, 27, 29, 31, 33, 36, 38] require, at a generic
nonlinear iteration k, the solution of the following subproblem:

minpmk(p)
s.t. xk + p ∈ int(Ω)

‖D(xk)−1/2p‖2 ≤ ∆k

(1)

where, given the current iterate xk, mk(p) is a suitable local model for the
function that has to be minimized, Ω is the n-dimensional box Ω = {x ∈ R

n | l ≤
x ≤ u}, int(Ω) is the interior of Ω, D(x) is the diagonal positive definite scaling
matrix and ∆k > 0 is the trust-region radius. Here, the inequalities are meant
component-wise and the vectors l ∈ (R ∪ −∞)n, u ∈ (R ∪ +∞)n are specified
lower and upper bounds on the variables such that Ω has nonempty interior.

We mention that the subproblem (1) can be solved invoking an iterative
optimization procedure, as adopted in [33, 36], but this may be computationally
demanding. A different approach has been followed in [1, 2, 4, 5, 7, 9, 26, 27, 29,
31] where essentially a double-dogleg strategy is used: the classical trust-region
is solved, then the trust-region step is projected/truncated onto Ω and a convex
combination of this projected step and the generalized Cauchy step gives the
required approximated solution of the sub-problem (1). In the solution of large
scale problems the trust-region subproblem is approximately solved using two
dimensional subspace approaches [5, 7]. Note that in the above approaches, in
the first phase the bound constraints are not taken into account and only in the
second phase they come into play.

Here, we first give a general framework describing a inexact dogleg procedure
for computing an approximate solution to (1) where the trust-region constraints
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and the bounds are simultaneously handled. This procedure can also be em-
ployed in conjunction with non-quadratic models as tensor models for nonlinear
systems [32] or conic models [12, 37] for minimization problems. In the inexact
dogleg procedure the model mk(p) is minimized along a path whose foundations
are a scaled Cauchy step and a projected approximate unconstrained minimizer
of mk(p). Unlike the standard dogleg, in this approach the path is not a convex
combination of these two steps, but a more general combination: this is due
to the fact that the minimizer of mk(p) is computed in an approximate way,
in the spirit of Inexact or Truncated Newton methods and moreover it may be
projected. Then, many theoretical properties of the dogleg curve are lost and
more flexibility is allowed in the choice of the step. This is the reason why
we refer to this procedure as an inexact dogleg. The framework given here is a
generalization to the bound constrained setting of the inexact dogleg procedure
introduced in [30].

Then, we show that the Inexact Dogleg procedure, used within affine scaling
methods, gives rise to methods with strong local and global convergence prop-
erties. In particular, we focus on the solution of bound constrained nonlinear
systems and we analyze from a theoretical and computational point of view
the behavior of Inexact affine scaling methods for large scale bound constrained
nonlinear systems employing the inexact dogleg procedure to compute the trial
step. The problem we are interested in is to find a vector x ∈ R

n satisfying

F (x) = 0, x ∈ Ω, (2)

where F : X 7→ R
n is a continuosly differentiable mapping and X ⊆ R

n is an
open set containing the n-dimensional box Ω.

We remark that the theoretical analysis performed here is carried out without
specifying the scaling matrix used to handle the bounds. This gives rise to
an algorithm with some flexibility in choosing the scaling matrix. In fact, a
rather general class of scaling matrices is allowed in actual implementations
of the method. Moreover, global convergence is proven without any Lipschitz
assumption on the Jacobian of F (x) and locally fast convergence is ensured
under standard assumptions.

The procedures employed in [3] and in [37] belong to the inexact dogleg
framework outlined here. However, in both cases the inexact dogleg path is
built around the exact minimizer of the model mk(p) instead of around an
approximate one. In [3] the properties of scaling matrices proposed in literature
have been analyzed and the computational behavior of an affine-scaling method
employing such inexact dogleg path has been studied. A numerical comparison
among the scaling matrices is also carrried out and the matlab code Codosol

is introduced. The convergence theory carried out here covers also the method
proposed in [3] where the convergence theory is not given. In [37] the dogleg
path is used in conjunction with conic models.

We close this section mentioning that all the trust-region affine scaling meth-
ods we are aware of use the ℓ2 norm trust-region subproblem. Since in (1) also
the bounds constraints must be imposed, an appealing proposal is to employ
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the ℓ∞ norm trust-region. However, this latter subproblem is expensive to be
solved, whereas both the inexact dogleg procedure and the double-dogleg proce-
dures used in [1, 2, 4, 5, 7, 9, 26, 27, 29, 31] are not computational demanding,
and their cost reduces to the cost of computing a, possibly approximate, uncon-
strained minimizer of the quadratic model.

The paper is organized as follows. In Section 2 we briefly recall the frame-
work for trust-region affine scaling methods for bound constrained minimization;
in Section 3 the inexact dogleg procedure is described; the affine scaling inexact
dogleg method is then described in Section 4, and its convergence properties
are analyzed in Section 5. Finally, some numerical experiments are proposed in
Section 6.

1.1 Notation

Throughout the paper we use the following notation. For any mapping F :
X → R

n, differentiable at a point x ∈ X ⊂ R
n, the Jacobian matrix of F at

x is denoted by F ′(x) and for any mapping f : X → R, the gradient of f at
x is denoted by ∇f(x). The subscript k is used as index for a sequence and
when clear from the context the argument of a mapping is omitted. Then, for
any function F , the notation Fk is used to denote F (xk). To represent the i-th
component of a vector x ∈ R

n the symbol (x)i is used but, when clear from the
context, the brackets are omitted. For any vector y ∈ R

n, the 2-norm is denoted
by ‖y‖ and the open ball with center y and radius ρ is indicated by Bρ(y), i.e.
Bρ(y) = {x : ‖x− y‖ < ρ}.

2 The affine scaling trust-region framework

In this section we briefly describe the framework of trust-region affine scaling
methods for bound constrained minimization problem, giving the basic concepts
that will be useful for the development of the next sections.

Let us consider the minimization problem

min
x∈Ω

f(x) (3)

where f : R
n → R is a differentiable function. As originally shown by Coleman

and Li [9], a solution x∗ to (3) satisfies

D(x∗)∇f(x∗) = 0, (4)

whereD(x) is a proper diagonal scaling matrix of order n with diagonal elements
given by

dCL
i (x) =















ui − xi if (∇f(x))i < 0 and ui <∞,
xi − li if (∇f(x))i > 0 and li > −∞,
min{xi−li, ui−xi} if (∇f(x))i = 0 and li > −∞ or ui <∞,
1 otherwise.

(5)
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We remark that this scaling matrix is possibly discontinuous in points x for
which ∇f(x)i = 0 for some component i.

The original scaling matrix proposed in [9] was generalized in [21]. In this
latter paper it is shown that first order optimality conditions for problem (3)
are given by (4) for any diagonal matrix D(x) with diagonal elements satisfying

di(x)















= 0 if xi = li and ∇f(x)i > 0,
= 0 if xi = ui and ∇f(x)i < 0,
≥ 0 if xi ∈ {li, ui} and ∇f(x)i = 0,
> 0 otherwise.

(6)

It is straightforward to note that elements given by (5) satisfy (6).
Affine scaling methods aim at building a strictly feasible sequence {xk}.

Then, given xk ∈ int(Ω) at hand, in order to ensure a stepsize large enough to
produce a strictly feasible point and an acceptable progress towards a solution,
affine scaling methods need to move towards the interior of Ω along search
directions well-angled with respect to the bounds. The direction of the scaled
gradient dk, i.e.

dk = −Dk∇fk,

is an useful tool as it allows to implicitly handle the bounds by means of the
diagonal matrix Dk. However, in order to go beyond a scaled gradient direction
and obtain fast convergence of the method, trust-region strategies are adopted.
Then, at iteration k, given an iterate xk ∈ int(Ω) and the trust-region radius
∆k, an approximate solution p(∆k) of the following subproblem is required:

min
p∈Rn

{mk(p) : ‖Gk p‖ ≤ ∆k, xk + p ∈ int(Ω)} (7)

where mk is a suitable model for f around xk. Note that problem (7) differs
from problem (1) in the definition of the trust-region shape. In fact, in (7) the

two choices Gk = I or Gk = D
−1/2
k are allowed. The first choice of G yields the

standard spherical trust-region problem. The second one leads to the elliptical
trust-region given in (1). Spherical trust-regions have been used in methods
[5, 3, 26, 27, 29, 31, 37]. Further, let us define the so-called generalized Cauchy
step pc(∆k), that is the minimizer of the model along the scaled gradient dk,
constrained to be in the trust-region and to satisfy xk +pc(∆k) ∈ int(Ω). Then,

pc(∆k) = τkdk (8)

where τk is the solution of the one dimensional problem:

min
τ

{mk(τdk) : τ‖Gk dk‖ ≤ ∆k, xk + τdk ∈ int(Ω)}.

In order to get global convergence, the approximate minimizer p(∆k) is required
to satisfy the following Cauchy decrease condition:

mk(p(∆k)) ≤ mk(pc(∆k)). (9)
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Finally, following the standard trust-region philosophy, the sufficient improve-
ment condition

ρf (p(∆k)) =
f(xk) − f(xk + p(∆k))

mk(0) −mk(p(∆k))
≥ β (10)

is required to hold for a given constant β ∈ (0, 1). Namely, if (10) is satisfied,
then p(∆k) is accepted, the new iterate xk+1 = xk + p(∆k) is formed and the
trust-region radius may be increased. Otherwise, p(∆k) is rejected and ∆k is
shrunk.

3 The inexact-Dogleg procedure

This section gives a detailed description of the inexact dogleg procedure for
computing the trial step p(∆k). Let us assume to have at disposal an approx-
imate minimizer pIN

k of the model mk(p). In order to guarantee that the new
step is in the interior of Ω a projection, followed by a step back, is performed.
That is, we consider the step p̄IN

k given by:

p̄IN
k = αk(P (xk + pIN

k ) − xk), αk ∈ (0, 1), (11)

where P (x)i = max{li,min{xi, ui}} and the scalar αk ∈ (0, 1) is employed in
order to move back from the boundary.

We clearly have
‖p̄IN

k ‖ < ‖pIN
k ‖. (12)

Next, in order to produce an approximate trust-region step, we consider the
linear path p(γ) given by:

p(γ) = pc(∆k) + γ(p̄IN
k − pc(∆k)), γ ∈ R.

Note that γ is not necessarily confined to the interval [0, 1], as in a standard
dogleg approach: this is due to the fact that, as pIN

k is not the exact minimizer
of the model and it may also be projected, many theoretical properties of the
dogleg curve are lost and we allow more flexibility in the choice of the step.

Then, we minimize our model along p(γ) within the trust-region and the
strictly feasible set. That is, we consider the function

φ(γ) = mk(p(γ)). (13)

Now, since we need p(γ) in the trust-region, we compute the values of γ for
which p(γ) intersects the trust-region boundary. Taking squares of ‖Gkp(γ)‖ =
∆k, we obtain

(1 − γ)2‖Gkpc(∆k)‖2 + γ2‖Gkp̄
IN
k ‖2 + 2γ(1 − γ)pc(∆k)TG2

k p̄
IN
k = ∆2

k

which rearranged gives

γ2‖Gk(pc(∆k)− p̄IN
k )‖2−2γpc(∆k)TG2

k(pc(∆k)− p̄IN
k )+‖Gkpc(∆k)‖2−∆2

k = 0
(14)
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Then, two values γ±, given by

γ± =

(

pc(∆k)TG2
k(pc(∆k) − p̄IN

k ) ±
(

(

pc(∆k)TG2
k(pc(∆k) − p̄IN

k )
)2 −

‖Gk(pc(∆k) − p̄IN
k )‖2(‖Gkpc(∆k)‖2 − ∆2

k)
)

1

2

)

/‖Gk(pc(∆k) − p̄IN
k )‖2

solve the above equation. Note that condition pc(∆k) 6= p̄IN
k is always verified,

as otherwise the path p(γ) degenerates to the Cauchy point. Then, the argument
of the square root in γ± is non negative if ‖Gkpc(∆k)‖ ≤ ∆k. Clearly, we cannot
have ‖Gkpc(∆k)‖ > ∆k, so existence of two real solutions of (14) is ensured.

Let us comment on the case ‖Gkpc(∆k)‖ = ∆k. We have

γ± =
pc(∆k)TG2

k(pc(∆k) − p̄IN
k ) ± |pc(∆k)TG2

k(pc(∆k) − p̄IN
k )|

‖Gk(pc(∆k) − p̄IN
k )‖2

i.e., one of the two solutions is given by γ = 0, that is p(γ) = pc(∆k). Indeed, if
the Cauchy point lies on the boundary of the trust-region (‖Gkpc(∆k)‖ = ∆k),
one of the solutions of (14) is trivially the Cauchy point itself. Furthermore, if
Gkpc(∆k) and Gk(pc(∆k)− p̄IN

k ) are orthogonal vectors, the path p(γ) cuts the
boundary of the trust-region in a unique point corresponding to pc(∆k). Then,
the path degenerates to the Cauchy point. We underline that in finite precision
this event in unlikely to happen.

Finally, we have to take into account that p(γ) is required to produce a
strictly feasible point. We note that the new point xk + p(γ) belongs to the
interior of Ω if γ ∈ [0, 1], because both pc(∆k) and p̄IN

k are feasible steps. On
the other hand, if we move along p(γ) with γ negative or γ > 1 we need to
check if strict feasibility of the new point is mantained and shorten the step if
necessary. Let us consider the stepsize to the boundary from xk + pc(∆k) along
p̄IN

k − pc(∆k). Then, if γ > 1, we set:

Λi =

{

max
{

li−((xk)i+(pc(∆k))i)

(p̄IN
k −pc(∆k))i

, ui−((xk)i+(pc(∆k))i)

(p̄IN
k −pc(∆k))i

}

if (p̄IN
k − pc(∆k))i 6= 0

+∞ if (p̄IN
k − pc(∆k))i = 0

and take
γ̄+ = min

i
Λi(p),

whereas if γ < 0 we set:

Λi =

{

max
{

li−((xk)i+(pc(∆k))i)

−(p̄IN
k −pc(∆k))i

, ui−((xk)i+(pc(∆k))i)

−(p̄IN
k −pc(∆k))i

}

if (−p̄IN
k + pc(∆k))i 6= 0

+∞ if (−p̄IN
k + pc(∆k))i = 0

and
γ̄− = −min

i
Λi(p).

To summarize, the choice of γ is made as follows. Since we want to minimize
mk(p(γ)), we first seek for the unconstrained minimizer

γ̂ = argmin
γ∈R

φ(γ). (15)
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Moreover, since p(γ) must belong to the trust-region and xk + p(γ) is required
to be strictly feasible, we perform the following choice: if γ̂ > 0, we choose
γ = min(γ̂, γ+, θγ̄+), whereas if γ̂ < 0, we choose γ = max(γ̂, γ−, θγ̄−), with
θ ∈ (0, 1) and we set the trial step p(∆k) = p(γ).

Next, we sketch the process for finding p(∆k). We underline that this proce-
dure generates a step that satisfies the decrease condition (9) as pc(∆k) belongs
to the path p(γ).

Inexact Dogleg framework

Input parameters: xk ∈ int(Ω), ∆k > 0, dk, p̄IN
k , θ ∈ (0, 1)

Compute pc(∆k) by (8).
Compute γ̂ by (15).
If γ̂ > 0

compute γ+ and γ̄+ and set γ = min{γ̂, γ+, θγ̄+}
Else

compute γ− and γ̄− and set γ = max{γ̂, γ−, θγ̄−}
Set p(∆k) = pc(∆k) + γ(p̄IN

k − pc(∆k)).

4 The Affine Scaling Inexact-Dogleg method

This section is devoted to describe an affine scaling procedure for large scale
nonlinear systems of the form (2) where the trial step p(∆k) is computed by an
inexact Dogleg procedure belonging to the framework outlined in the previous
section.

We start by noting that every solution of (2) is a solution of the following
bound constrained optimization problem:

min
x∈Ω

f(x) = min
x∈Ω

‖F (x)‖, (16)

and that ∇f(x) = F ′(x)
T
F (x).

Our method belongs to the trust-region affine scaling methods described in
Section 2 applied to (16). Here we specify the main ingredients of our method:
the choice of the model mk(p), the computation of the unconstrained approxi-
mate minimizer pIN

k of the model and the computation of scalars τk in (8) and
γ̂ in (15).

As standard in the solution of nonlinear systems, we do not employ second
order derivatives of f and at the k-th nonlinear iteration we take, as a model
for f(x) = ‖F (x)‖ around xk, the norm of the linear model for F , i.e.

mk(p) = ‖Fk + F ′
kp‖.

We consider a quite general scaling matrix D(x) satisfying (6) and some addi-
tional assumptions which are given in the next section. In (7) both spherical
and elliptical trust-regions are allowed.
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The computation of the scalar τk needed in (8) to build the generalized
Cauchy step pc(∆k) is carried out as follows. First,

τ ′k = argmin
‖τGkdk‖≤∆k

mk(τdk) = min

{

− FT
k F

′
kdk

‖F ′
kDk∇fk‖2

,
∆k

‖GkDk∇fk‖

}

is computed and if xk + τ ′kdk ∈ int(Ω), we let τk = τ ′k in (8). Otherwise we let
λk be the stepsize along dk to the boundary, i.e.

λk = min
1≤i≤n

Λi, where Λi =

{

max
{

li−(xk)i

(dk)i
, ui−(xk)i

(dk)i

}

if (dk)i 6= 0

∞ if (dk)i = 0
,

(17)
and set τk smaller than λk. Summarizing, the parameter τk in (8) is given by

τk =

{

τ ′k if xk + τ ′kdk ∈ int(Ω)
θλk, θ ∈ (0, 1) otherwise.

Focusing on the definition of the path p(γ) and more precisely on the com-
putation of an approximate minimizer of the model, we take into account that
we are in a large scale setting. Then, pIN

k is chosen as an Inexact Newton step
satisfying

F ′
k p

IN
k = −Fk + rk, ‖rk‖ ≤ ηk‖Fk‖, (18)

where ηk ∈ [0, 1) is the forcing term.
With this ingredient at hand we have that the function φ(γ) in (13) is given

by
φ(γ) = ‖Fk + F ′

kpc(∆k) + γF ′
k(p̄IN

k − pc(∆k))‖. (19)

The function φ(γ) is convex, as it is the composition of an affine function and
a convex function [6]. Then γ̂ exists and can be esaily computed as follows. For
the sake of simplicity let us set a = Fk + F ′

kpc(∆k) and b = F ′
k(p̄IN

k − pc(∆k)).
We have

φ′(γ) =

∑n
i=1(ai + γbi)bi
‖a+ γb‖ =

aT b+ γbT b

‖a+ γb‖ .

Hence φ′(γ) = 0 for γ = γ̂ with

γ̂ = −a
T b

bT b
= − (Fk + F ′

kpc(∆k))TF ′
k(p̄IN

k − pc(∆k))

‖F ′
k(p̄IN

k − pc(∆k))‖2
. (20)

Further, we have

φ′′(γ) =
bT b‖a+ γb‖ − (aT b+ γbT b)φ′(γ)

‖a+ γb‖2
.

Hence

φ′′(γ̂) =
bT b

‖a+ γb‖ > 0

and φ(γ) is therefore attaining a minimum at γ̂.
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Therefore, the trial step is p(∆k) = pc(∆k)+γ(p̄IN
k −pc(∆k)), where pc(∆k)

is given in (8), p̄IN
k is the projection onto Ω of the inexact Newton step pIN

k

satisfying (18), γ is computed by the Inexact-Dogleg procedure with φ(γ) and
γ̂ given in (19) and (20), respectively.

Let us observe that γ̂ > 0 whenever ‖Fk + F ′
kpc(∆k)‖ > ‖Fk + F ′

kp̄
IN
k ‖. In

fact,

aT b = (Fk + F ′
kpc(∆k))T ((Fk + F ′

kp̄
IN
k ) − Fk − F ′

kpc(∆k))

= (Fk + F ′
kpc(∆k))T (Fk + F ′

kp̄
IN
k ) − ‖Fk + F ′

kpc(∆k)‖2

≤ ‖Fk + F ′
kpc(∆k)‖(‖Fk + F ′

kp̄
IN
k ‖ − ‖Fk + F ′

kpc(∆k)‖).

We are now ready to sketch our procedure:

Affine Scaling Inexact Dogleg (AS ID) Method

Input parameters: the starting point x0 ∈ int(Ω), the function G, ∆min > 0,
the initial trust-region size ∆̄0 > ∆min, β, δ, θ ∈ (0, 1).

For k = 0, 1, . . .
1. Set ∆k = ∆̄k.
2. Choose αk ∈ (0, 1), ηk ∈ [0, 1).
3. Compute the solution pIN

k to (18).
4. Form p̄IN

k by (11).
5. Set dk = −Dk∇fk.
6. Find p(∆k) by the Inexact Dogleg procedure.
7. While ρf (p(∆k)) < β

7.1 Set ∆k = δ∆k.
7.2 Find p(∆k) by the Inexact Dogleg procedure.

8. Set xk+1 = xk + p(∆k).
9. Choose ∆̄k+1 > ∆min.

Now, we make some comments that mainly focus on some algorithmic issues.
First, we point out that the trust-region size is updated according to standard
rules, i.e. on the basis of agreement between the adopted model and the merit
function. So, at each iteration ∆k is enlarged if (10) is satisfied. Otherwise,
the trust-region radius is reduced. The positive constant ∆min is employed as
a lower bound on the initial trust-region size allowed at each iteration.

We underline that p̄IN
k does not depend on the trust-region radius and so it

is computed only once at each iteration, even if reductions of the trust-region
radius are needed.

Another important point is that each iteration of the above method is well-
defined because the while-loop at step 7 cannot continue indefinitely. In fact,
we prove that there exists a sufficiently small ∆k such that condition (10) is
verified. So, after a finite number of repetitions, the while-loop terminates (see
the following Proposition 5.1).

Finally, we underline that our method can be implemented in a matrix-free
manner provided that an operator performing the products F ′ times a vector
and F ′T times a vector is available.

10



5 Convergence analysis

The convergence analysis of AS ID method is organized as follows. First, in
Section 5.1 we will prove well-posedness of the scheme, i.e. finite termination of
the while loop in step 7 of AS ID method. Then, in Section 5.2 global conver-
gence to a stationary point of (16) is proved without any Lipschitz assumption
on F ′. Finally, in Section 5.3 the local convergence properties of the method
are investigated.

5.1 Finite termination

Given an iterate xk such that ‖Dk∇fk‖ 6= 0, finite termination of the while loop
in step 7 of AS ID method is proved under the following assumptions.

Assumption 1: The sequence {xk} generated by the AS ID method is bounded

Assumption 2: The scaling matrix D(x):

(i) satisfies (6);

(ii) is bounded in Ω ∩Bρ(x) for any x ∈ Ω and ρ > 0;

(iii) there exists a λ̄ > 0 such that the stepsize λk to the boundary from
xk along dk (see (17)) satisfies λk > λ̄ whenever ‖∇fk‖ is uniformly
bounded above.

Assumption 3: F ′(x) is uniformly continuous in Ω.

Note that Assumption 2-(iii) implies the constraint compatibility of dk: this
property avoids the problem of running directly into a bound by ensuring that
the stepsize to the boundary remains bounded away from zero. Furthermore,
it is straightforward to note that, as D(x) satisfies (6), it is nonsingular for
x ∈ int(Ω).

In [3], the authors showed that the scaling matrix (5) as well as those pro-
posed in [23] and in [20] satisfy Assumption 2. Then, these three matrices can
be used within the AS ID method.

The following technical lemma paves the way for proving finite termination
of the while loop in Step 7 of AS ID method.

Lemma 5.1 Let xk be generated by Method AS ID and assume that ‖D1/2
k ∇fk‖ 6=

0. Then
‖Fk‖ − ‖Fk + F ′

kp(∆k)‖ ≥ (1 −
√

1 − ωk)‖Fk‖ (21)

with

ωk = min

(

θλk,
∆k

‖GkDk∇fk‖
,

1

‖F ′
k‖2‖Dk‖

) ‖D1/2
k ∇fk‖2

‖Fk‖2
. (22)

11



Proof. First of all, we note that ‖Fk +F ′
kpc(∆k)‖ < ‖Fk‖ and from (9) it follows

that
‖Fk‖ − ‖Fk + F ′

kp(∆k)‖ ≥ ‖Fk‖ − ‖Fk + F ′
kpc(∆k)‖.

Then, we proceed proving some inequalities for the Cauchy step pc(∆k). Let
us set

ηc
k :=

‖Fk + F ′
kpc(∆k)‖

‖Fk‖
.

First, assume that the step has the form pc(∆k) = τkdk with

τk := − FT
k F

′
kdk

‖F ′
kDk∇fk‖2

= −F
T
k F

′
kdk

‖F ′
kdk‖2

.

Then, we have

(ηc
k)2 =

‖Fk + F ′
kpc(∆k)‖2

‖Fk‖2
=

‖Fk + τkF
′
kdk‖2

‖Fk‖2

=
FT

k Fk + 2τkF
T
k F

′
kdk + τ2

kd
T
k (F ′

k)TF ′
kdk

‖Fk‖2

= 1 + 2τk
FT

k F
′
kdk

‖Fk‖2
+ τ2

k

‖F ′
kdk‖2

‖Fk‖2

= 1 − 2
(FT

k F
′
kdk)2

‖F ′
kdk‖2‖Fk‖2

+
(FT

k F
′
kdk)2‖F ′

kdk‖2

‖F ′
kdk‖4‖Fk‖2

= 1 −
(

FT
k F

′
kdk

‖F ′
kdk‖‖Fk‖

)2

= 1 −
(

‖D1/2
k ∇fk‖2

‖F ′
kdk‖‖Fk‖

)2

≤ 1 −
(

‖D1/2
k ∇fk‖

‖F ′
k‖‖Fk‖‖D1/2

k ‖

)2

. (23)

Next, assume that pc(∆k) has the form pc(∆k) = τkdk with

τk = min

(

θλk,
∆k

‖GkDk∇fk‖

)

< −F
T
k F

′
kdk

‖F ′
kdk‖2

.

Then, proceeding as to prove (23) we get:

(ηc
k)2 = 1 + τk

(

2
FT

k F
′
kdk

‖Fk‖2
+ τk

‖F ′
kdk‖2

‖Fk‖2

)

≤ 1 + τk

(

2
FT

k F
′
kdk

‖Fk‖2
− (FT

k F
′
kdk)‖F ′

kdk‖2

‖F ′
kdk‖2‖Fk‖2

)

= 1 − min

(

θλk,
∆k

‖GkDk∇fk‖

) ‖D1/2
k ∇fk‖2

‖Fk‖2
. (24)

Relations (23) and (24) straightforwardly give

(ηc
k)2 ≤ 1 − ωk,

12



with ωk given in (22). Note that, as (ηc
k)2 is positive, it follows that 0 < ωk < 1.

The previous inequality immediately yields (21). �

Now, we are ready to show that the while loop terminates.

Proposition 5.1 Let xk be generated by Method AS ID and assume that ‖D1/2
k ∇fk‖ 6=

0. Then the while loop in Step 7 terminates.

Proof. In order to prove the thesis we need to consider the quantity

ρf (p(∆k)) = 1 − ‖F (xk + p(∆k))‖ − ‖Fk + F ′
kp(∆k)‖

‖Fk‖ − ‖Fk + F ′
kp(∆k)‖ .

Taylor’s theorem gives

F (xk + p(∆k)) = F (xk) + F ′
kp(∆k) +

∫ 1

0

(F ′(xk + tp(∆k)) − F ′
k)p(∆k) dt,

then the triangle inequality yields

‖F (xk + p(∆k))‖ ≤ ‖Fk + F ′
kp(∆k)‖ + ‖p(∆k)‖

∫ 1

0

‖F ′(xk + tp(∆k)) − F ′
k‖ dt

and we obtain:

‖F (xk + p(∆k))‖ − ‖Fk + F ′
kp(∆k)‖ ≤ ‖G−1

k ‖∆k

∫ 1

0

‖F ′(xk + tp(∆k)) − F ′
k‖ dt
(25)

Moreover, for

∆k ≤ min

(

θλk,
1

‖F ′
k‖2‖Dk‖

)

‖GkDk∇fk‖

from (22) we get:

ωk =
∆k‖D1/2

k ∇fk‖2

‖GkDk∇fk‖‖Fk‖2
.

Note that, for ωk ∈ (0, 1) it follows 1 −
√

1 − ωk >
1
2ωk. Then (21) yields

‖Fk‖ − ‖Fk + F ′
kp(∆k)‖ ≥ 1

2
∆k

‖D1/2
k ∇fk‖2

‖GkDk∇fk‖‖Fk‖
.

Then, from (25) we obtain

ρf (p(∆k)) ≥ 1 − 2
‖G−1

k ‖
∫ 1

0 ‖F ′(xk + tp(∆k)) − F ′
k‖ dt

‖D
1/2

k ∇fk‖2

‖GkDk∇fk‖‖Fk‖

.

Since F ′ is continuous, the limit of the right-hand-side of the previous inequal-
ity goes to 1 as ∆k tends to 0, therefore for ∆k sufficiently small we have
ρf (p(∆k)) > β and the while loop terminates. �
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5.2 Global convergence

Now we are ready to prove global convergence. Following [30], our proof is based
on [17, Corollary 3.6], which is reported here for the reader’s convenience.

Theorem 5.1 [17, Corollary 3.6] Let F : X 7→ R
n be continuously differen-

tiable and assume that {xk} ∈ X is such that the conditions

‖Fk‖ − ‖F (xk + pk)‖ ≥ β1 (‖Fk‖ − ‖Fk + F ′
kpk‖) (26)

‖Fk‖ − ‖Fk + F ′
kpk‖ ≥ 0 (27)

are satisfied for each k, with β1 ∈ (0, 1) independent of k and pk = xk+1 − xk.
If

∑

k≥0

predk

‖Fk‖
=
∑

k≥0

‖Fk‖ − ‖Fk + F ′
kpk‖

‖Fk‖

diverges, then Fk → 0. If in addition x∗ is a limit point of {xk} such that F ′(x∗)
is invertible, then F (x∗) = 0 and xk → x∗.

Our convergence result is stated in the following Theorem.

Theorem 5.2 Let Assumptions 1 and 2 be satisfied. Then all the limit points
of {xk} are stationary points for problem (16). Further, if there exists a limit
point x∗ ∈ int(Ω) of {xk} such that F ′(x∗) is nonsingular, then ‖Fk‖ → 0 and
all the accumulation points of {xk} solve problem (2). If, in addition, there
exists a limit point x∗ ∈ Ω such that F (x∗) = 0 and F ′(x∗) is invertible, then
xk → x∗.

Proof. Let x∗ be a limit point of {xk} and suppose that x∗ is not a stationary
point. Then F (x∗) 6= 0 and

D(x∗)∇f(x∗) 6= 0.

In particular, for at least an index i ∈ {1, ..., n} we have di(x
∗) 6= 0 and

∇f(x∗)i 6= 0. We also have as an immediate consequence

D1/2(x∗)∇f(x∗) 6= 0.

Looking at (6), this means we are in one of the following three situations:
i) li < x∗i < ui, ii) x∗i = li and ∇f(x∗)i < 0, iii) x∗i = ui and ∇f(x∗)i > 0.
Due to the continuity of ∇f(x), there exists a neighborhood Ñ of x∗ such that
∇f(x∗)i∇f(x)i > 0 ∀x ∈ Ñ ∩ Ω. Let us consider case i) and let ε = min{x∗i −
li, ui − x∗i } and N∗ ⊂ Ñ such that N∗ ∩ Ω ⊂ Bε/2(x

∗). Then di(x)∇f(x)i 6= 0

for any x in N∗ ∩ Ω. Then, we have D(x)∇f(x) 6= 0 and D(x)1/2∇f(x) 6= 0
for any x ∈ N∗ ∩ Ω. The same result is obtained in case ii) and case iii) using
analogous arguments, letting ε = ui − x∗i and ε = x∗i − li, respectively.

Further by continuity we have

sup
x∈N∗∩Ω

‖F ′(x)‖ < +∞.
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The previous arguments imply that there exist constants m > 0 and M > 0
such that ∀x ∈ N∗ ∩ Ω we have

‖D(x)1/2∇f(x)‖ ≥ m, ‖F ′(x)‖ ≤M.

Assumption 2 implies that there exist constants χD > 1 and λ̄ > 0 such that

‖D1/2
k ‖ ≤ χD, ‖GkD

1/2
k ‖ ≤ χD,

and
λk > λ̄

for any xk ∈ N∗ ∩ Ω. Hence for xk ∈ N∗ ∩ Ω, recalling (22) we have

ωk =
‖D1/2

k ∇fk‖
‖Fk‖2

min

(

θλk‖D1/2
k ∇fk‖,

∆k‖D1/2
k ∇fk‖

‖GkDk∇fk‖
,
‖D1/2

k ∇fk‖
‖F ′

k‖2‖Dk‖

)

≥ m

‖F0‖‖Fk‖
min

(

θλ̄m,
∆k

χD
,

m

M2χ2
D

)

. (28)

Then, for

∆k < mχD min

(

θλ̄,
1

M2χ2
D

)

=: ∆̃

we have from (28)

ωk ≥ ∆km

χD‖F0‖‖Fk‖
.

Therefore, as 1 −√
1 − ωk >

1
2ωk, proceeding as in Proposition 5.1 we obtain:

ρf (p(∆k)) ≥ 1 − 2‖G−1
k ‖∆k

∫ 1

0 ‖F ′(xk + tp(∆k) − F ′
k‖ dt

∆km
χD‖F0‖‖Fk‖

‖Fk‖

≥ 1 − 2
χ2

D

m
‖F0‖

∫ 1

0

‖F ′(xk + tp(∆k) − F ′
k‖ dt .

The uniform continuity of F ′ implies that there exists ∆̂ < ∆̃ such that for
∆k ≤ ∆̂ we have ρf(p(∆k)) > β for any xk ∈ N∗ ∩ Ω. This implies, for the

updating rule of the trust-region radius, that ∆k > δ∆̂. Then, from (21) and
(28) we have

‖Fk‖ − ‖Fk + F ′
kp(∆k)‖

‖Fk‖
≥ 1 −

√
1 − ω̄, with ω̄ =

m

‖F0‖2

δ∆̂

χD
> 0.

Since xk ∈ N∗ for infinitely many k, the series

∞
∑

k=1

predk

‖Fk‖

diverges.
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Note that the sequence {xk} satisfies (26) and (27). Then we are in a position
to apply Theorem 5.1 and to conclude that F (x∗) = 0. This is a contradiction
and therefore x∗ is a stationary point.

Moreover, ‖Fk‖ is a bounded and strictly decreasing sequence, hence it is
convergent, then, if there exists a limit point x∗ ∈ int(Ω) such that F ′(x∗) is
nonsingular, it follows that limk→∞ ‖Fk‖ = 0. Finally, if there exists x∗ ∈ Ω
such that F (x∗) = 0 and F ′(x∗) is invertible, we can apply Theorem 3.3 of [17]
with η = 1, that proves the convergence of xk to x∗. �

5.3 Superlinear convergence

In this subsection we will prove superlinear convergence of the AS ID method.
In the sequel we assume the following:

Assumption 4: ‖F ′‖ is bounded above on

L = ∪∞
k=0 {x ∈ X : ‖x− xk‖ ≤ r}, r > 0,

and χJ = supx∈L ‖F ′(x)‖.

Assumption 5: F ′ is Lipschitz continuous in an open, convex set containing
L, with constant 2γL.

Assumption 6: For any x̄ in int(Ω) there exist ρ̄ > 0 and χx̄ such that
Bρ̄(x̄) ⊂ int(Ω) and ‖D(x)−1‖ ≤ χx̄ for any x in Bρ̄/2(x̄).

Note that Assumption 4 is always satisfied if Ω is compact as F ′ is continu-
ous.

In the following lemma we report some useful inequalities whose proof is not
reported here as it is a straightforward adaption of that of [5, Lemma 4.2].

Lemma 5.2 Let x∗ ∈ Ω be a limit point of the sequence of iterates {xk} gen-
erated by the AS ID method such that F (x∗) = 0 and F ′(x∗) is nonsingular.
Let K1 = 2 ‖F ′(x∗)‖, K2 = 2 ‖F ′(x∗)−1‖, µ = max{K1,K2}/2, Γ ∈ (0, 1/µ) be
given. Then, there exists ρ > 0 so that if x ∈ Bρ(x

∗) then x ∈ L and

‖x− x∗‖ ≤ K2 ‖F (x)‖, (29)

‖F (x)‖ ≤ K1 ‖x− x∗‖, (30)

‖F ′(x)
−1‖ ≤ K2, (31)

‖F (x) − F (z) − F ′(z)(x− z)‖ ≤ Γ‖x− z‖2 for all z ∈ Bρ(x
∗). (32)

In order to discuss the convergence rate issues, we make the additional hy-
pothesis ‖Gkp

IN
k ‖ → 0 as k → ∞. In practice, this condition may fail to hold

only when Gk = D
−1/2
k and x∗ belongs to the boundary of Ω. On the other

hand, it is guaranteed when Gk = I or when Gk = D
−1/2
k and x∗ lies in the

interior of Ω. To show this, note that by (18) and (31) we get

‖pIN
k ‖ = ‖F ′−1

k (−Fk + rk)‖ ≤ (1 + ηk) ‖F ′−1
k ‖ ‖Fk‖ ≤ 2K2 ‖Fk‖, (33)
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whenever xk ∈ Bρ(x
∗). This implies that ‖pIN

k ‖ → 0 as k → ∞. Further, when
x∗ ∈ int(Ω), by Assumption 6 we have ‖D−1

k ‖ ≤ χx∗ for any xk ∈ Bρ̄/2(x
∗).

Letting ρ̃ = min(ρ̄, ρ), as x∗ is a limit point of {xk}, there exists k̃ such that xk ∈
Bρ̃/2(x

∗) for any k > k̃. Then, eventually we have ‖D−1/2
k pIN

k ‖ ≤ χ
1/2
x∗ ‖pIN

k ‖ →
0 as k → ∞.

From now on, with γL and χJ as in Assumptions 4-5, K1, K2 and Γ as in
Lemma 5.2, we let

K∗ = ‖F ′(x∗)‖ ‖F ′(x∗)−1‖,
ν = 8K∗ (K2χJ + 1), (34)

δk = K2Γν
2‖xk − x∗‖ + 4K∗ ηk,

ψk = χJδk + γLν
2‖xk − x∗‖ +K1(1 − αk),

σk = max{ψk, K2( Γν2‖xk − x∗‖ + ψk)}.

In the next two lemmas we give some technical results which pave the way for
proving fast convergence rate.

Lemma 5.3 Assume that there exists a solution x∗ of (2) such that F ′(x∗) is
nonsingular and that the sequence {xk} generated by the AS ID method con-
verges to x∗. Suppose that

• either Gk = I, k ≥ 0, or

• Gk = D
−1/2
k , k ≥ 0, and ‖Gkp

IN
k ‖ → 0 as k → ∞.

Then there exists ρ1 ≤ ρ such that for all xk ∈ Bρ1
(x∗) ∩ int(Ω)

‖Gkp̄
IN
k ‖ ≤ ∆̄k, (35)

where ∆̄k is the initial trust-region radius at kth iteration. Further, when xk ∈
Bρ1

(x∗) ∩ int(Ω) we have

‖Fk + F ′
kp

IN
k ‖ ≤ K1 ηk‖xk − x∗‖, (36)

‖p̄IN
k ‖ < ‖pIN

k ‖ ≤ ν‖xk − x∗‖, (37)

‖p(∆̄k)‖ ≤ ν‖xk − x∗‖. (38)

Proof. Relation (35) is proven by using the fact that ∆̄k ≥ ∆min, i.e. ∆̄k is
bounded below from zero for each k ≥ 0. First let us consider the case Gk = I,
∀k ≥ 0. Inequality (33) yields limk→∞ ‖pIN

k ‖ = 0. Then, with ρ as in Lemma
5.2, there exists ρ1 ≤ ρ such that ‖p̄IN

k ‖ ≤ ‖pIN
k ‖ ≤ ∆̄k when xk ∈ Bρ1

(x∗) ∩
int(Ω) and the thesis (35) follows. Now consider the case Gk = D

−1/2
k , ∀k ≥ 0.

Noting that |(p̄IN
k )i| ≤ |(pIN

k )i|, we immediately have ‖Gkp̄
IN
k ‖ ≤ ‖Gkp

IN
k ‖.

Hence, from the assumption limk→∞ ‖Gkp
IN
k ‖ = 0, we get (35).

The remaining results are proven independently of the form of Gk. Result
(36) is easily proven as by (18) and (30) we obtain

‖Fk + F ′
kp

IN
k ‖ ≤ ηk‖Fk‖ ≤ K1ηk‖xk − x∗‖.
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Result (37) is derived noting that by (12), (33) and (30) we get

‖p̄IN
k ‖ < ‖pIN

k ‖ ≤ 2K2 ‖Fk‖ ≤ 8K∗ ‖xk − x∗‖.

Then, by (34) relation (37) follows.
Finally, we move on proving (38). We have

‖p(∆̄k)‖ = ‖p(γ)‖ ≤ ‖pc(∆̄k)‖ + |γ|‖p̄IN
k − pc(∆̄k)‖. (39)

Let us consider the value of |γ|. From (20) we have

|γ| ≤ |γ̂| ≤ ‖Fk + F ′
kpc(∆̄k)‖

‖F ′
k(p̄IN

k − pc(∆̄k))‖ ≤ ‖Fk + F ′
kpc(∆̄k)‖‖(F ′

k)−1‖
‖p̄IN

k − pc(∆̄k)‖

≤ K2‖Fk + F ′
kpc(∆̄k)‖

‖p̄IN
k − pc(∆̄k)‖ . (40)

Moreover, recalling (8) we have

‖pc(∆̄k)‖ = τk‖Dk∇fk‖ ≤ −FT
k F

′
kdk

‖F ′
kDk∇fk‖2

‖Dk∇fk‖

≤ ‖F ′
k‖‖Fk‖‖Dk∇fk‖2

‖F ′
kDk∇fk‖2

≤ ‖F ′
k‖‖Fk‖‖(F ′

k)−1‖2.

From Assumption 4, (30) and (31), the last inequality yields

‖pc(∆̄k)‖ ≤ χJK1K
2
2‖xk − x∗‖.

Finally, let

pgC
k = − FT

k F
′
kdk

‖F ′
kDk∇fk‖2

dk, ηgC =
‖Fk + F ′

kp
gC
k ‖

‖Fk‖
.

Then, ηgC ≤ 1 as pgC
k is the unconstrained minimizer of the model along dk.

Moreover, note that pc(∆k) = βkp
gC
k where βk = 1 if τk = − F T

k F ′

kdk

‖F ′

kDk∇fk‖2 and

βk < 1 if τk = ∆k

‖GkDk∇fk‖
or τk = θλk. Therefore, it follows:

‖Fk + F ′
kpc(∆̄k)‖ = ‖Fk + F ′

kβkp
gC
k ‖

≤ (1 − βk)‖Fk‖ + βkηgC‖Fk‖
= (1 − βk(1 − ηgC))‖Fk‖ ≤ ‖Fk‖

Then, (30) yields:
‖Fk + F ′

kpc(∆̄k)‖ ≤ K1‖xk − x∗‖.
Hence, by (39) and (40) we have

‖p(∆̄k)‖ ≤ ‖pc(∆̄k)‖ +K2‖Fk + F ′
kpc(∆̄k)‖

≤ χJK1K
2
2‖xk − x∗‖ +K2K1‖xk − x∗‖

= K1K2(χJK2 + 1)‖xk − x∗‖.
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This proves (38). �

Lemma 5.4 Assume that there exists a solution x∗ of (2) such that F ′(x∗) is
nonsingular and that the sequence {xk} generated by the AS ID method con-
verges to x∗. Suppose that

• either Gk = I, k ≥ 0, or

• Gk = D
−1/2
k , k ≥ 0, and ‖Gkpk‖ → 0 as k → ∞.

Then, there exists ρ2 such that for all xk ∈ Bρ2
(x∗) ∩ int(Ω) we have

‖Fk + F ′
k p̄

IN
k ‖ ≤ σk‖xk − x∗‖, (41)

‖xk + p̄IN
k − x∗‖ ≤ σk‖xk − x∗‖.

Proof. The thesis straightforwardly follows from [5, Lemma 4.4] replacing
ptr(∆̄k) with pIN

k and p̄tr(∆̄k) with p̄IN
k . �

In the next Theorem we show that, if ηk → 0 as k → ∞, eventually the
step p(∆̄k) satisfies condition (10). Then it is not necessary to reduce the trust-
region radius. Moreover, for k sufficiently large, p(∆̄k) is an inexact Newton
step that provides a linear residual bounded by σk‖xk − x∗‖. This yields the
superlinear/quadratic convergence of the procedure.

Theorem 5.3 Assume that there exists a solution x∗ of (2) such that F ′(x∗)
is nonsingular and that the sequence {xk} generated by the AS ID method con-
verges to x∗. Suppose that ηk → 0, αk → 1, as k → ∞, and

• either Gk = I, k ≥ 0, or

• Gk = D
−1/2
k , k ≥ 0, and ‖Gkp

IN
k ‖ → 0 as k → ∞.

Then, eventually, p(∆̄k) satisfies (10) and the sequence {xk} converges to x∗

superlinearly. Moreover, if

ηk = O(‖Fk‖), αk = 1 −O(‖Fk‖) as k → ∞,

the convergence rate is quadratic.

Proof. Recall that, in the step selection rule, p(∆̄k) is obtained minimizing
the convex function φ(γ) within the intersection of the trust-region and the
interior of the feasible set Ω. Further, xk + p̄IN

k belongs to the trust-region
for xk ∈ Bρ1

(x∗), with ρ1 as in Lemma 5.3. Moreover it belongs to the path
described by φ(γ) and it is a feasible point. From these arguments and from
(41), it follows

‖Fk + F ′
kp(∆̄k)‖ ≤ ‖Fk + F ′

kp̄
IN
k ‖ ≤ σk‖xk − x∗‖ (42)
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for xk ∈ Bρ2
(x∗) with ρ2 as in Lemma 5.4.

Now we prove that eventually p(∆̄k) satisfies (10). First note that, from
(38), we get

‖xk + p(∆̄k)− x∗‖ ≤ ‖xk − x∗‖+ ‖p(∆̄k)‖ ≤ (1 + ν)‖xk −x∗‖ ≤ (1 + ν)ρ2 ≤ ρ1.

Hence, xk + p(∆̄k) belongs to Bρ1
(x∗). Then,

ρf (p(∆̄k)) =
‖Fk‖ − ‖F (xk + p(∆̄k))‖
‖Fk‖ − ‖Fk + F ′

kp(∆̄k)‖

=
‖Fk‖ − ‖F (xk + p(∆̄k)) − Fk − F ′

kp(∆̄k) + Fk + F ′
kp(∆̄k)‖

‖Fk‖ − ‖Fk + F ′
kp(∆̄k)‖

≥ ‖Fk‖ − ‖F (xk + p(∆̄k)) − Fk − F ′
kp(∆̄k)‖ − ‖Fk + F ′

kp(∆̄k)‖
‖Fk‖ − ‖Fk + F ′

kp(∆̄k)‖

= 1 − ‖F (xk + p(∆̄k)) − Fk − F ′
kp(∆̄k)‖

‖Fk‖ − ‖Fk + F ′
kp(∆̄k)‖

≥ 1 − Γ‖p(∆̄k)‖2

‖Fk‖ − ‖Fk + F ′
kp(∆̄k)‖ ≥ 1 − Γ‖p(∆̄k)‖2

1
K2

‖xk − x∗‖ − σk‖xk − x∗‖

≥ 1 − K2Γν
2‖xk − x∗‖2

(1 −K2σk)‖xk − x∗‖ = 1 − K2Γν
2‖xk − x∗‖

1 −K2σk

Note that σk → 0 and ‖xk − x∗‖ → 0. Then, for k large enough we certainly
have

1 − K2Γν
2‖xk − x∗‖

1 −K2σk
> β.

Hence, xk+1 = xk + p(∆̄k). From (29) and (32) we have

‖xk + p(∆̄k) − x∗‖ ≤ K2‖F (xk + p(∆̄k))‖
≤ K2(‖F (xk + p(∆̄k)) − Fk − F ′

kp(∆̄k)‖ + ‖Fk + F ′
kp(∆̄k)‖)

≤ K2(Γ‖p(∆̄k)‖2 + ‖Fk + F ′
kp(∆̄k)‖).

Further, from (42) and (38) we get

‖xk + p(∆̄k) − x∗‖ ≤ K2(Γ‖p(∆̄k)‖2 + σk‖xk − x∗‖)
≤ K2(Γν

2‖xk − x∗‖ + σk)‖xk − x∗‖. (43)

Since we have

σk = O(‖xk − x∗‖ + ηk + (1 − αk)), k → ∞,

(43) ensures superlinear convergence rate if ηk → 0 and αk → 1 as k → ∞.
Moreover, if ηk = O(‖Fk‖) and 1 − αk = O(‖Fk‖), by (29)-(30) we get σk =
O(‖xk − x∗‖) and this yields quadratic convergence rate. �
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6 Numerical experiments

In this section, we report on numerical experiments with the AS ID method.
Our aim is to prove the computational feasibility of the method, give general
information about its numerical performance and compare its performance with
that of the affine scaling method for large scale problems provided in the Matlab
function lsqnonlin. The solver lsqnonlin is available in the Matlab Optimiza-
tion Toolbox and it is designed to solve square or overdetermined bound con-
strained nonlinear least-squares problems. The solver is based on the method
decribed in [7] where an inexact affine scaling trust region approach is used in
conjunction with the Coleman and Li scaling matrix and elliptical trust regions.
An approximate solution of the trust region subproblem (1) is computed using
a 2D-subspace procedure involving the computation of an inexact Newton step.
Then, in order to enforce the bounds the trial step is chosen as the best of
three steps: the cauchy step (8), the truncated 2D-trust region solution and the
reflection of the 2D trust region solution, truncated to remain strictly feasible.
The Inexact Newton step is computed solving the arising linear system by the
CG method with an adaptive choice of the tolerance in the stopping criterion.
Note that, the effort to compute the Inexact Newton step may be completely
lost in case the procedure for choosing the trial step selects the Cauchy step.

The experiments were carried out on a set of 14 widely studied problems,
with dimension between n = 500 and n = 12500. Problems are listed in Table 1.
Problems Pb1-Pb3 and Pb14 are already equipped with bounds on the variables.
Problems Pb4-Pb13 have more than one solution and bounds have been added
in order to select specific solutions. The bounds used in the numerical results
are reported in Table 1 along with problem dimensions. Concerning Pb14, the
lower bound reported in the table does not apply to the first 2020 components
of x.

We performed our experiments starting from both good and poor initial
guesses. As a general rule, we used the following starting points:

• x0 = l+ ν
5 (u− l), ν = 1, 2, 3, 4 for problems having finite lower and upper

bounds;

• x0 = l+ 10ν−2eT , with ν = 0, 1, 2, 3 and e = (1, . . . , 1), for problems with
infinite upper bound;

• x0 = −10ν−2eT , ν = 0, 1, 2, 3 for the problem with infinite lower bound.

For problem Pb14 we used one single starting point used in [16]. As a whole,
we performed 53 tests.

For a detailed description of the problems we refer the reader to the refer-
ences reported in the table; here we only mention that Pb2 and Pb3 are non-
linear complementarity problems which have been reformulated as a system of
n = 12500 smooth box-constrained nonlinear equations (see [35]). Pb2 depends
on a parameter λ and we set λ = 6. Pb14 comes from the KKT condition of a
convex Nash Equilibrium problem [16]. These latter problems were included in
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Table 1: Test Problems
Pb # Name and Source n Box

1 Chemical equilibrium system [22, system 1] 11000 [0,∞]
2 Bratu NCP [13] 12500 [0,∞]
3 Obstacle [13] 12500 [0,∞]
4 Discrete boundary value function [28, Problem 28] 500 [−100, 100]
5 Trigexp1 [25, Problem 4.4] 1000 [−100, 100]
6 Troesch [25, Problem 4.21] 500 [−1, 1]
7 Trigonometric system [25, Problem 4.3] 5000 [π, 2π]
8 Tridiagonal exponential [25, Problem 4.18] 2000 [e−1, e]
9 Countercurrent Reactors [25, Problem 4.1] 10000 [−1, 10]
10 Five Diagonal [25, Problem 4.8] 5000 [1,∞]
11 Seven Diagonal [25, Problem 4.9] 5000 [0,∞]
12 Bratu Problem [25, Problem 4.24] 10000 [−∞, 1.5]
13 Poisson Problem [25, Problem 4.25] 10000 [−5, 5]
14 Spam Problem [16] 10100 [0,+∞]

the tests set for testing the considered methods on problems with solutions on
the boundary of the feasible set, as their solutions lie on ∂Ω.

The Jacobian matrices of all the problems were evaluated analitically.
We implemented the AS ID method in a Matlab code, using the standard

spherical trust-region and the pioneer scaling matrix given by Coleman and
Li. Furthermore, we have choosen to test a Newton-GMRES implementation.
That is, we used Restarted-GMRES as iterative linear solver for computing pIN

k

satisfying (18). GMRES was restarted every 50 iterations, allowing a maximum
of 20 restarts. We used the null initial guess. The forcing terms were computed
by the adaptive choice given in [18], i.e. η0 = 0.9, and ηk = 0.9 ‖Fk‖2 / ‖Fk−1‖2,
for k ≥ 1 , with the safeguards suggested in [18, p. 305]. If GMRES fails in
computing pIN

k satisfying (18), the algorithm continued with pIN
k given by the

last computed GMRES iterate.
We avoided to use a preconditioner when GMRES managed to compute

the inexact Newton step with the prescribed accuracy. Therefore, we used a
preconditioning strategy only in the solution of Pb2, Pb7, Pb9, Pb12 and Pb13.
We used the following preconditioning technique. At the first nonlinear iteration
we compute a preconditioner for F ′

0 using the ilu Matlab function with drop
tolerance set to 0.1. Then, the preconditioner is reused for preconditioning the
linear systems arising in the subsequent nonlinear iterations. The preconditioner
is recomputed whenever GMRES fails in satisfying the accuracy requirement
(18).

We set ∆0 = 1, ∆min =
√
ǫm, β = 0.75, θ = 0.99995, δ = 0.25. Moreover, at

step 7.1 we reduced the trust-region radius by setting ∆k = min{0.25 ∆k, 0.5 ‖pk‖}
and, at step 9, we allowed the next iteration with an increased trust-region ra-
dius if condition (10) holds (in this case, we set ∆̄k+1 = max{∆k, 2‖pk‖}),
otherwise, we left unchanged the radius. For the computation of the projected
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step p̄IN
k we used αk = max {0.95, 1 − ‖Fk‖} for all k.

We stopped all the runs when the condition

‖Fk‖ ≤ 10−6 (44)

was met. Such occurrence was indicated as a successful termination. On the
other hand, the code declares a failure either if the number of nonlinear iterations
was greater than 400 or if the number of F -evaluations was greater than 1000.
In addition, a failure was declared if the trust-region size was reduced below
10−8 or if ‖Fk+1 − Fk‖ ≤ 100εm‖Fk‖. This condition may indicate that the
method does not manage to escape from a local minimizer of the merit function
which is not a solution of (2). We remark that these two last situations never
happened in our tests.

Lsqnonlin declares successful termination when the first-order optimality
conditions for (3) are below a prescribed tolerance ǫ1, i.e.

‖Dk∇fk‖∞ ≤ ǫ1. (45)

Moreover, the code terminates either if the norm of the current step is less than
a prescribed tolerance ǫ2, i.e.

‖xk+1 − xk‖ ≤ ǫ2, (46)

or if the relative change in the function value satisfies

‖Fk+1 − Fk‖ ≤ ǫ1‖Fk‖. (47)

In this two latter situations lsqnonlin declares neither a failure nor a success of
the procedure. Moreover, lsqnonlin is stopped when none of the above three
stopping criteria is satisfied within 400 nonlinear iterations or the line search
could not sufficiently decrease the residual along the current search direction. In
our experiments we decided to consider a test successfully solved by lsqnonlin

either if (45) is verified or one of the two conditions (46) and (47) is met and
‖Fk‖ ≤ 10−6.

In the first set of experiments we run lsqnonlin with the default tolerances
for the stopping criteria. In the second set of experiments we followed [15]
and, in order to compare the performance of the codes when the approximate
solutions returned have the same level of accuracy, we re-run all the tests where
(44) is not satisfied with the default tolerances, reducing the tolerances by a
factor 10. This process is repeated until (44) is met or the tolerances provided
to the solver reach 10−16. In this latter case, a failure is declared. All the tests
are run using the diagonal proconditioner provided by lsqnonlin.

We have chosen to measure the algorithms efficiency by the number It of
iterations and the number Fe of F -evaluations. In fact, the measure in terms
of iteration count takes into account the number of linear systems solved by
each method and the number of Jacobian evaluations. On the other hand, the
number of F -evaluations depends on the number of nonlinear iterations and the
number of the performed reductions of the trust-region size when the step is
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Figure 1: Performance profiles in terms of nonlinear iterations (left) and function
evaluations (right); lsqnonlin run with default tolerances

rejected. Note that the computational cost of the algorithm increases as the
number of rejected trial steps increases.

The results of the numerical experimentation are illustrated using the per-
formace profile approach [14]. In this approach, when m solvers are compared
on a test set, the performance of each solver in the solution of a test is measured
by the ratio of its computational effort and the best computational effort by any
solver on this test. In Figure 1 we report the performance profiles in terms of
nonlinear iterations (left) and of F -evaluations (right); the figure refers to use
of lsqnonlin with default tolerances. We recall that the right side of the plot
gives the percentage of the test problems that are successfully solved by the
solver. On the other hand, the left side of the plot gives the percentage of test
problems for which the solver is the most efficient. As a first comment, we can
observe that AS ID successfully solves the 87% of tests. Namely, it fails in the
solution of seven problems. Problems successfully solved required a reasonable
number of nonlinear iterations and F evaluations: 16 nonlinear iterations and 18
F -evaluations as an average, except for Pb3 with ν = 0, 3 and Pb7 with ν = 3.
On the other hand, lsqnonlin successfully solves the 59% of test. Then, the
solver fails in the solution of 22 tests. Focusing on the tests successfully solved
we underline that the stopping criterion (44) is not met in 13 out of 31 tests.
The performance profiles also show that, using the number of linear iteration
as performance measure, AS ID is the best code in the solution of about the
43% of tests and it is within a factor two from the best code in the solution of
81% of tests. These percentages slightly decrease if we consider the number of
F -evaluation as a performance measure.

Figure 2 displays performance profiles obtained running lsqnonlin with
tolerances stricter than the standard ones, in order to enforce the convergence
test (44). It is quite evident, as expected, that the number of successes of
lsqnonlin increases. In fact, lsqnonlin manages to solve about the 75% of
tests. At this regard, we mention that 13 failures of lsqnonlin with default
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Figure 2: Performance profiles in terms of nonlinear iterations (left) and function
evaluations (right); lsqnonlin run with tolerances chosen in order to satisfy (44)

tolerances are to be ascribed to the stopping criterion (47) that prematurely
terminates the run. The use of stricter tolerance values allows to recover these
failures. On the other hand, an increase in the number of nonlinear iterations
and F evaluations was obviously observed.

In order to compare the two approaches in terms of efficiency, in Figure 3
we report the performance profiles obtained considering only tests successfully
solved by both methods. In this figure, data concerning lsqnonlin refer to the
stricter tolerances used in order to fulfill condition (44). This way, the two codes
can be fairly compared, as the approximate solutions returned are obtained to
the same level of accuracy. The major conclusion that can be drawn from Figure
3 is that method AS ID is more efficient, both in terms of nonlinear iterations
and F -evaluations than lsqnonlin in about the 58% of the tests successfully
solved by both codes. Morever, AS ID is within a factor two from the best code
in the majority of these runs. All things considered, the approach taken in AS ID
seems to outperform lsqnonlin both in terms of efficiency and robustness.
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[28] J. J. Moré, B. Garbow, and K. Hillstrom, Testing unconstrained
optimization software, ACM Trans. Math. Softw., 7 (1981), pp. 136–140.

[29] B. Morini and M. Porcelli, Tresnei, a matlab trust-region solver for
systems of nonlinear equalities and inequalities, Computational Optimiza-
tion and Applications, 51 (2012), pp. 27–49.

[30] R. P. Pawlowski, J. P. Simonis, H. F. Walker, and J. N. Shadid,
Inexact Newton dogleg methods, SIAM J. Numer. Anal., (2008).

[31] M. Porcelli, On the convergence of an inexact gauss-newton trust-region
method for nonlinear least-squares problems with simple bounds, Optimiza-
tion Letters, 7 (2013), pp. 447–465.

[32] R. B. Schnabel and P. D. Frank, Tensor methods for nonlinear equa-
tions, SIAM J. Numer. Anal., 21 (1984), pp. 815–843.

[33] M. Ulbrich, Nonmonotone trust-region methods for bound-constrained
semismooth equations with applications to nonlinear mixed complementar-
ity problems, SIAM J. Optim., 11 (2000), pp. 889–917.

[34] L. N. Vicente, Local convergence of the affine-scaling interior point al-
gorithm for nonlinear programming, Computational Optimization and Ap-
plications, 17 (2000), pp. 23–35.

[35] T. Wang, R. D. C. Monteiro, and J.-S. Pang, An interior point
potential reduction method for constrained equations, Mathematical Pro-
gramming, (1996), pp. 159–195.

[36] X. Wang and Y. X. Yuan, A trust region method based on a new affine
scaling technique for simple bounded optimization, Optimization Methods
and Software, 28 (2013), pp. 871–888.

28



[37] L. Zhao and W. Sun, A conic affine scaling dogleg method for nonlin-
ear optimization with bound constraints, Asia-Pacific journal of Operation
Research, 30 (2013).

[38] D. Zhu, An affine scaling trust-region algorithm with interior backtrack-
ing technique for solving bound-constrained nonlinear systems, Journal of
Computational and Applied Mathematics, 184 (2005), pp. 343–361.

29


