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Quantum well electron scattering rates through longitudinal optic-phonon
dynamical screened interaction: An analytic approach

Marco E. Vallonea)

Dipartimento di Elettronica e Telecomunicazioni, Politecnico di Torino, corso Duca degli Abruzzi 24, 10129
Torino, Italy

(Received 9 April 2013; accepted 16 July 2013; published online 2 August 2013)

A quantum model is developed to obtain electron capture and hot electron intraband relaxation

times in a quantum well, for electron-longitudinal optic (LO) phonon scattering. In particular, we

have investigated the effect of carrier density and electron energy, obtaining semi-analytic

expressions as function of carrier density, a topic often neglected in literature, despite its

fundamental interest in semiconductor physics. We demonstrated that the usual approximation of

constant scattering time in modeling applications is often not adequate, because these parameters

vary considerably with the injected or photogenerated carrier density. Furthermore we show that

the scattering through the emission of pure LO-phonons is not a good approximation when the

population increases, whereas the interplay between LO-phonon and collective plasma modes must

be considered. We obtained novel semi-analytic expressions in the single plasmon pole dynamical

form of the random phase approximation, without making use of the more usual static limit of it.
VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4817242]

I. INTRODUCTION

Electrons and holes dynamics in III–V semiconductor

nanostructures for optoelectronics has been extensively stud-

ied in literature. Many works have shown that, in semicon-

ductor bulk and quantum-wells (QW) heterostructures,

capture and relaxation processes mainly occur through

carrier-carrier scattering and longitudinal optical (LO) pho-

nons emission.1–5

Several authors have investigated these processes, calcu-

lating scattering rates at different levels of approximation. A

first group of works calculate the capture time from a bulk-

state into a QW, describing its oscillating behavior with the

QW width.6–9 These works, despite their unquestionable

value, do not deal with the dependency of capture time on

the carrier density, having considered the Fr€olich LO-

phonon Hamiltonian with the unscreened Coulomb potential.

Other works3,10,11 offer numeric and very complete

investigations about these two population relaxation mecha-

nisms in QWs and also in quantum-dots,12 making use of the

full frequency and wave vector dependent dielectric function

and the renormalized phonon frequencies due to phonon–

plasmon coupling. However, the full understanding of the

physical mechanisms at play may be in this case quite

difficult and a brief comparison between their and our

approaches are given in Sec. V. Nevertheless its comprehen-

sion is crucial not only in optoelectronics, but also for the

simulation of hot carrier relaxation in solar cells13 and light-

emitting diodes (LED), for which in several cases efficiency

droop may be observed.14

The intent of this paper is to make use of a known for-

malism to develop an original method for (a) calculating the

hot electrons relaxation time in QW confined states and (b)

for the evaluation of electrons capture/escape times into and

from QW, via emission/absorption of coupled LO-phonon-

plasmon15,16 for arbitrary value of carrier density.

We address here LO-phonons only just as an example,

but with the appropriate changes all other types of phonon

interactions can be considered as well. The carrier–carrier

scattering and its interplay with phonon scattering will be

presented in a future separate paper. In fact, the same formal-

ism may be employed to describe many other relaxation

processes and the scope of this paper is not to include them

all, but to take this process as example of application of a

powerful method of investigation, offering a new formula-

tion and allowing to shed some light into certain peculiarities

of the underlying physics that, in the author’s opinion, have

not been highlighted yet in a clear way.

We emphasize that the development of simple model

(ready to be implemented in device modeling tools) that calcu-

lates scattering time as a function of carrier density can have

many applications, among which its inclusion in rate equation

systems describing laser and semiconductor optical amplifier

dynamics, but also the evaluation of phonon-assisted Auger

recombination coefficient;17,18 furthermore its inclusion in

light-emitting diodes modeling tools may be helpful in under-

standing their efficiency droop mechanisms.14,19 In Sec. II, we

develop the general formalism, whereas in Secs. III and IV, we

respectively calculate the intraband relaxation and capture

time in QWs applying the developed concepts, and then in

Sec. V, some conclusions and final remarks will be given.

II. GENERAL FORMALISM

The formalism we are developing in this section offers a

general formulation of the scattering processes in quantum

wells, mediated by the emission or absorption of bulk LO-

phonon in arbitrarily dense carrier plasma. We describe the

LO-phonon screened interaction by the Fr€olich Hamiltonian,

in which the dynamically screened electrostatic potential isa)Electronic mail: marco.vallone@polito.it.
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considered, according to the Single Plasmon Pole (SPP)

description of the Random Phase Approximation (RPA) for-

malism.20 We do not make the usual long-wavelength and

static limits of SPP (the Thomas–Fermi limit), retaining

instead the full dynamic expression of the dielectric function.

Although the dynamic SPP is a well known formalism, it is

not usually employed in this context because of its complex-

ity. Nevertheless its advantage is consistent and leads in a

natural way to the coupling between plasmon and LO-

phonon, describing screening and Fermi band-filling effects

in a self-consistent fashion.

We assume that all interfaces in heterostructure are pla-

nar, so that momenta and wavefunctions can be decomposed

in in-plane and orthogonal components. Therefore, if r ¼
rðx; yÞ is the position vector in the QW plane and z is the

growth direction, the in-plane motion of electrons with in-
plane wavevector k is described by a plane wave expðik � rÞ;
whereas in the z direction, the motion is described by a

Bloch state, whose envelope wavefunction is wðzÞ: In addi-

tion and for further simplification, we assume valid the effec-

tive mass approximation and parabolic bands, given that the

focus of this paper is on the role of the dynamical screening

of the interaction, more than on the band-structure. As far as

many useful definitions and constants are concerned, we

refer to Table I.

We consider a carrier in an initial state w1 of energy E
and momentum k that emits a phonon of momentum q and

frequency xm; making a transition to the state w2 of energy

E0 and momentum k0 ¼ k � q: Decomposing momenta in the

in-plane components k, k0; q and orthogonal components kz,

k0z; qz, we can write the unscreened in-plane interaction

Coulomb potential V0 as20

V0ðqÞ ¼
4pe2

�0�s

ð1
�1

dz

ð1
�1

df
1

2p

ð1
�1

dqz

� w�1ðzÞw�2ðfÞ
expðiqzjz� fjÞ

q2 þ q2
z

w2ðfÞw1ðzÞ: (1)

Extending the integration to the complex plane and adding to

the path a semicircle at infinity in the positive half-plane giv-

ing no contribution, the integration in qz is straightforward,

exploiting the contour integration around the integrand pole

in qz ¼ iq; yielding

V0ðqÞ ¼
2pe2

�0�s

ð1
�1

dz

ð1
�1

df w�1ðzÞw�2ðfÞ

� expð�qjz� fjÞ
q

w2ðfÞw1ðzÞ: (2)

It is worth of note the fact that Eq. (1) always contains the

three-dimensional (3D) Coulomb potential form

V3Dðq; qzÞ ¼
4pe2

�0�sðq2 þ q2
z Þ
; (3)

regardless of the interacting involved states. For realistic

QW of width Lz we obtain

V0ðqÞ ¼
2pe2

�0�s

IðqÞ
q
; (4)

in which the form factor I(q) only depends on the details of

envelope eigenfunctions.21 Instead, if we were interested in

obtaining the interaction potential between two perfectly

two-dimensional (2D) quantum well states (that is, consider-

ing w1ðzÞ and w2ðzÞ as d-Dirac functions), we obtained the

well known 2D Coulomb potential V0ðqÞ ¼ 2pe2=ð�0�sqÞ;
that is, IðqÞ ¼ 1:

We do not limit the present discussion to the simple 2D

case, but we address the general situation of a finite-width

QW, whose orthogonal envelope wavefunction wðzÞ can be

evaluated at the desired accuracy, keeping into account strain

with the most appropriate treatment. Following the path here

outlined, we can therefore write the carrier-phonon interac-

tion matrix element Vef f ðq; xmÞ as22

Vef f ðq; xmÞ ¼
ð1
�1

dz

ð1
�1

df
1

2p

ð1
�1

dqz

� w�1ðzÞw�2ðfÞexpðiqzjz� fjÞ

� �M2 Dðq;xmÞ
�2ðq;xmÞ

w2ðfÞw1ðzÞ ; (5)

in which the renormalized propagator for a phonon of fre-

quency xm is22

Dðq;xmÞ ¼
2 xLO

x2
m � x2

LO � xLO
M2ðqÞPðq;xmÞ

�ðq;xmÞ

: (6)

Here, M2 is the unscreened carrier-phonon matrix element

and �ðq;xmÞ is the screened dielectric function, given

respectively by22

M2ðqÞ ¼ 1

2
K�xLOV0ðqÞ; (7)

1

�ðq;xmÞ
¼ 1þ

X2
pl

x2
m � x2

q

; (8)

where Xpl and xq are, respectively, the plasma and the effec-

tive plasmon frequencies20 and Pðq;xmÞ is the polarization,

TABLE I. Quantities definition list.

Symbol Meaning and notes

e elementary charge

�h reduced Planck’s constant

a fine structure constant

c light velocity

�0 vacuum permittivity

m0 electron free rest mass

kB Boltzmann’s constant

m carrier mass, in unit of m0

�s static dielectric constant

�1 dynamic dielectric constant

K� ��1
1 � ��1

s

xLO longitudinal optical phonon frequency
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related to the dielectric function through �ðq;xmÞ ¼ 1

�V0ðqÞPðq;xmÞ: The phonon propagator can be re-written,

making use of Eqs. (1), (7), and (8), as

Dðq;xmÞ ¼
2 xLOðx2

m � x2
qÞ

ðx2
m � x2

þÞðx2
m � x2

�Þ
; (9)

where

x2
6 ¼

x2
q þ x2

LO

2
6

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2

q � x2
LOÞ

2 þ 4K�x2
LOX2

pl

q
; (10)

in which the carrier- and q- dependencies are implicit in the

definition of xq and Xpl:
With all these concepts in mind, we consider the free,

not renormalized propagator of a particle of effective mass

m, energy E ¼ �hx and momentum k that just emitted a pho-

non of frequency xm and momentum q; decaying in a state

of momentum k � q: Following the Matsubara’s formal-

ism,22 the free propagator reads (l is the Fermi energy, cal-

culated considering a two-dimensional QW with a single

conduction band, parabolic dispersion energy E(k), and

effective mass approximation)20

G0ðk; q; ix; ixmÞ ¼
1

ixm � ixþ xkq þ l
�h

; (11)

where �hxkq ¼ �h2jk � qj2=ð2mÞ: The propagator allows to

calculate the retarded self-energy Rr gained by the particle at

various levels of approximation. At the lower order in elec-

tron–phonon coupling, it can be visualized as a Feynman’s

diagram made of a particle line (the propagator G) that emits

and reabsorbs a screened phonon (represented by the interac-

tion Veff). Its real part <Rr gives rise to a shift in the position

of the electron energy levels and appears as an extra term in

the denominator of G. However, it is customary in modeling

devoted applications to consider for G the expression of G0

in Eq. (11), setting the real part of the self-energy <Rr to

zero, as the phonon contribution to the electronic energy can

be thought of already included in the band structure.

The imaginary part of self-energy =Rr; instead, gives

rise to a level broadening and yields the scattering rate, from

which the relaxation time follows: this constitutes the object

of the present study. Although it is customary in literature to

make use of the static limit of RPA-SPP dielectric function

(the Thomas–Fermi approximation,20 much simpler to man-

age), we do not follow this path, because of the remarkable

amount of physics that would be lost in that way. We instead

calculate =Rr to the lowest order in the electron phonon cou-

pling,22 but making use of the dynamic RPA-SPP dielectric

function, as

Rrðk;xÞ ¼ �
1

b�h

X
q

X
xm

Vef f ðq; xmÞ

� G0ðk; q; ix; ixmÞ: (12)

The motivation for this choice consists in the fact that pho-

non–plasmon coupling becomes increasingly important as

the carrier density increases and its effects cannot be

discarded. Now we can first make the integration in qz fol-

lowing the same contour technique employed in obtaining

Eq. (2). Then, after the integration in z and f, the phonon-

mediated interaction matrix element Vef f ðq; xnÞ to be

employed in Eq. (12) reads

Vef f ðq; xmÞ ¼ �
2pe2K�x2

LOIðqÞ
�0�s q

�
ðx2

m � x2
q þ X2

plÞ
2

ðx2
m � x2

qÞðx2
m � x2

þÞðx2
m � x2

�Þ
: (13)

Now we can make the frequency xm summation in Eq. (12)

following the Matsubara’s method,22,23 converting it to an in-

tegral in xm and extending it to the complex plane. The inte-

grand has a double triplet of poles at xj ¼ 6ðxq;x�;xþÞ
(that in the text, for compactness of notation, is also called

xj ¼ 6ðx1x2;x3Þ), and one at energy

�hxG � Eþ ig� �hxkq � l; (14)

due to the expression of the particle propagator. The infini-

tesimal positive energy g shifts the poles of propagator out

of real axis, allowing for the integral to exist. The sum over

residuals on these poles forms a very general self-energy

expression in which Bose and Fermi occupation factors nB

and nF arise in a natural way.22,23 Each residual gives an

additive contribution to the self-energy. In this way, the self-

energy has three additive contributions for emission and

three for absorption of a phonon-plasmon quantum of

energy, respectively for the positive and negative values of

xj: The pole in xG contributes to each phonon–plasmon

mode 6xj both in emission and in absorption, in a way that

depends on the considered scattering process. At the end of a

lengthy but straightforward calculation, in which we con-

verted the 2D q-summation into an integral, exploiting the

translational invariance, the self-energy reads

Rr6ðk;EÞ ¼ �
K�x2

LOa�hc

p�s

ð2p

0

dh
ð1

0

q dq
IðqÞ

q

�
X3

j¼1

1

2
6

1

2
þ nBj

� �
Bj7nFFj

xG7xj
; (15)

where h is the angle between q and k,

Bj ¼
ðx2

j þ X2
pl � x2

qÞ
2

2xj

Y3

n 6¼j; n¼1

ðx2
j � x2

nÞ
(16)

and

Fj ¼
ðx2

G þ X2
pl � x2

qÞ
2

2xj

Y3

n 6¼j; n¼1

ðx2
G � x2

nÞ
: (17)

In all what follows we write for brevity nF and nBj instead of

nFð�hxkq � lÞ and nBð�hxjÞ; furthermore, the upper (lower)
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sign in Rr6 refers to emission (absorption) of a phonon-

plasmon quantum of energy.

The quantities Bj and Fj come, respectively, from the

residuals in 6xj and xG and they are not present in literature

about scattering times: this because they do not appear in cal-

culations making use of unscreened or statically screened

Coulomb interaction, whereas in totally numerical calculations,

their role is obscured in the general formulas. They should be

intended as correcting terms that multiply the usual Bose and

Fermi distributions, representing the interplay between dynami-

cal screening and statistical occupancy factors.

In order to obtain semi–analytic results, it is more con-

venient to change the integration variable to xG; exploiting its

definition given in Eq. (14), obtaining q as a function of xG

qðxGÞ ¼ k cosðhÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðE� l� �hxGÞ

�h2
� k2sin2ðhÞ

r
:

(18)

Now the integration can be extended to the negative axis,

dividing the integrand by 2, successively extending it to the

complex plane, adding a counterclockwise semicircle at in-

finity in the upper plane giving no contribution. The integra-

tion in xG can now be done considering the formal Dirac’s

identity

lim
g!0þ

1

xþ ig
¼ P

1

x

� �
� ipdðxÞ (19)

and observing that the argument of Dirac-d is a function with

simple zeroes only, given by roots of equation

xG 7 xjðxGÞ ¼ 0; (20)

whose solutions (let us name them x̂j) can be easily found

numerically, resulting functions of N, E, and h, with values

that depend on the sign considered in Eq. (15). If the minus

sign is chosen, Eq. (20) gives two positive roots, xrel
� and

xrel
þ ; representing the lower and upper relaxation frequen-

cies. Instead, if the plus sign is chosen, the two positive roots

represent the two excitation frequencies xexc
� and xexc

þ : The

contribution to the imaginary part of the self energy due to

the mode x̂j results

=Rj
r6ðk;E; x̂jÞ ¼

K�x2
LOam�hc

2�s

ð2p

0

dh
Iðx̂jÞ

1

2
6

1

2
þ nBj

� �
Bj7nFFj

� �
H
�

E� lHðlÞ7�hx̂j

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðE� l7�hx̂jÞ � �h2k2sin2ðhÞ

q ; (21)

in which the h integration is only a matter of software imple-

mentation (here H is the Heaviside step-function). The relax-
ation and excitation times (respectively srel

6 and sexc
6 )

corresponding to xrel
6 and xexc

6 are given by

1=srel
6 ¼

2

�h
=R6

rþðk;EÞ

1=sexc
6 ¼ 2

�h
=R6

r�ðk;EÞ:
(22)

In the remainder of this paper, we examine the limiting

case which is not complicated by this integration, considering

h ¼ 0; the development of the calculation depends now on

the particular scattering process we are considering. We stress

that Bj, Fj, nBj, nF, and x̂j are all functions of N, E, k, and h
through Eq. (18) evaluated at the integrand pole in Eq. (15).

III. INTRABAND RELAXATION IN QUANTUM WELLS

We consider a quasi-two-dimensional system made of

an unstrained and undoped InGaAs single quantum well at

room temperature having a width of 8 nm, whose states of

energy E(k) have a parabolic dispersion kinetic energy

EðkÞ ¼ En þ �h2k2=ð2mÞ; En are the stationary Schr€odinger

equation eigenvalues. Effective perpendicular carrier masses

m and quantized level positions En in the well have been

computed according to Ref. 24, finding m ¼ 0:047 m0 and

E0 ¼ 51 meV above the bottom of QW conduction band (m0

is the free electron mass). The confinement is obtained with

InP barriers and the conduction band offset between well

and barrier results to be 249 meV (therefore, the binding

energy of the electron level is 198 meV). The form factor

I(q) has been calculated according to Ref. 21 just as an

example: different and more rigorous forms can be employed

depending on what material and band structure we are deal-

ing with, nothing changing of the present formalism.

Without losing generality, we can also set En ¼ 0; moving

the energy reference on the confined level.

As we already stressed, an electron can lose energy

emitting phonon–plasmons of frequency xrel
� (lower plasmon

mode) and xrel
þ (higher plasmon mode). The intraband relax-

ation time for the emission of a phonon–plasmon of fre-

quency xrel
j (here j ¼ 6) is then given by Eq. (22) and it is

important to point up the fact that for zero carrier density we

obtain Bþ ¼ 0; B� ¼ F� ¼ 1=ð2xLOÞ; hence, the self-

energy recovers an usual form.25 Furthermore, it must be

stressed that each phonon–plasmon mode xrel
j separately

contributes to the self-energy and the restriction imposed by

the energy conservation separately applies to each of them.

Considering for simplicity the zero temperature limit

where the Bose term nBj ¼ 0; the factor 1� nF in the numer-

ator assures that a real phonon–plasmon can be emitted only

if the final electron state is allowed. This means that the elec-

tron initial energy must be at least �hxrel
6 above the lowest

available state, as shown in Fig. 1, that is,

E� l HðlÞ > �hxrel
6 : (23)
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Frequencies xrel
� and xrel

þ have been calculated versus N and

shown in Fig. 2 for the given structure, for EðkÞ ¼ 150 meV

(we remind that, for low carrier density, xrel
� � xLO; around

35 meV in this material at T ¼ 300 K). The energy conserva-

tion imposes a maximum allowed frequency transition,

reported in the figure as well (dashed–dotted line), defined

by Eq. (23). We can observe that, if N is below �1:5
� 1011 cm�2; the relaxation via LO-phonon emission is the

only allowed: the higher plasma mode frequency xrel
þ lies

above the ðE� l HðlÞÞ=�h line, so it is forbidden, whereas

for density 1:5� 1011 � N � 1:5� 1012 cm�2, both modes

are allowed. All this reflects in the corresponding electron

relaxation times srel
� and srel

þ calculated by Eq. (22) and

shown in Fig. 3 as a function of two-dimensional carrier den-

sity, for h ¼ 0 (only for simplicity) for EðkÞ ¼ 50 meV and

EðkÞ ¼ 150 meV: Commenting the case for EðkÞ ¼

150 meV; the lower plasma mode is the only one allowed if

N � 1:5� 1011 cm�2 (the dashed-dotted line), whereas for

1:5� 1011 � N � 1:5� 1012 cm�2 both modes are allowed

(although xrel
� remains the dominant mode, being the fastest

one). In fact, looking at Fig. 2, we can observe that in this

interval of N both modes lie below the upper allowed fre-

quency transition (the dashed–dotted line, EðkÞ � lHðlÞ).
When carrier density increases, the relaxation via xrel

þ
plasma mode becomes increasingly competitive, reducing its

scattering time by two orders of magnitude. The higher

FIG. 1. Relaxation of an electron with energy E(k) by the emission of a pho-

non–plasmon. In the example, the mode xrel
� (red solid arrow) is allowed,

whereas xrel
þ (blue dashed) is forbidden.

FIG. 2. Lower (red solid) and higher (blue dashed) plasma modes xrel
� and

xrel
þ ; with the upper allowed frequency transition ðEðkÞ � lHðlÞÞ=�h;

imposed by energy conservation (dashed–dotted line). The allowed and for-

bidden regions for each transitions are marked in the graph, where it is also

indicated the N value above which Fermi energy enters in conduction band

(CB), l > 0: The values of carrier density 1:5� 1011 cm�2; 1:5�
1012 cm�2; and 2:2� 1012 cm�2 discussed in the text are indicated as well

with vertical black lines.

FIG. 3. (a) Relaxation times srel
� (solid and dashed-dotted lines) and srel

þ (dashed and dotted lines) for an electron in a confined state of a 8 nm wide quantum

well, with a kinetic energy respectively of EðkÞ ¼ 50 and 150 meV: (b) Detail of the case for EðkÞ ¼ 50 meV; showing the exchange of the two modes.
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plasma mode xrel
þ becomes again forbidden when the elec-

tron Fermi energy l rises above EðkÞ � �hxrel
þ (this happens

for carrier density above �1:5� 1012 cm�2), and relaxation

via the lower plasma mode xrel
� becomes again the only

allowed process. In the end, when carrier density approaches

2:2� 1012 cm�2; no relaxation is possible via any LO-pho-

non-plasmon mode. Of course, other and more efficient

decaying channels are dominant in this regime (e.g.,

electron-electron scattering) but they are not addressed in

this work.

The curve for EðkÞ ¼ 50 meV shows a strong resonance

at N � 4:7� 1011 cm�2 (red solid line in Fig. 3); this feature

takes place whenever, for some value of carrier density N, the

two modes xrel
� ðNÞ and xrel

þ ðNÞ take the same value and are

both allowed. For this value of N, the two plasmon-modes

exchange their roles and the self-energy related to xrel
� has a

zero, corresponding to a (virtually) infinite lifetime. The other

mode (dashed line in Fig. 3(b)) takes its role and the total

relaxation time stot follows the fastest of the two modes with

continuity. The reduction of relaxation times srel
6 for increas-

ing carrier density, a quite counter-intuitive feature, is worth

of an explanation: until the Fermi filling effect is not dominant

(below N ¼ 1012 cm�2), the dependence of srel
6 on the factorffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m
	
EðkÞ � lðNÞ � �hx̂6



� �h2k2sin2ðhÞ

q
determines their

reduction for increasing values of N through the rise of the

Fermi energy l, favoring the phonon–plasmon emission prob-

ability. Instead, when carrier density increases above

1012 cm�2 (in the given example), Fermi band filling reduces

the density of available final states, making the relaxation

time to increase up to a value of N above which the relaxation

becomes forbidden.

IV. CAPTURE TIME INTO QUANTUM WELLS

We consider the quantum capture of an electron from a

3D barrier state with momentum k¼ 0, to a bound quantum

well electron state, whose energy is DE below the bottom of

barrier conduction band (where we set the zero of energy),

through the emission of a phonon–plasmon. Following the

shown path, the relaxation via the modes xrel
6 must now be

intended as giving origin to capture processes, so for coher-

ence we call them xcap
6 : The imaginary part of the self-

energy is given by, after the integration in the scattering

angle h,

=R6
rþ¼

K�x2
LO

ffiffiffiffi
m
p

a�hcpffiffiffi
2
p

�s

Iðxcap
6 Þ

HðDE�l��hxcap
6 Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

DE�lHðlÞ��hxcap
6

�r

�½ð1þnB6ÞB6�nFF6�: (24)

The corresponding capture times of the two modes are given

by 1=scap
6 ¼ 2=�h=R6

rþ similarly to srel
6 ; whereas the total cap-

ture time is given by scap
tot ¼ 1=½1=scap

þ þ 1=scap
� Þ�: The posi-

tion k¼ 0 does not result in a limitation: we are considering

an initial thermalized state only to better show the mecha-

nism, but Eq. (21) (which the calculation is based on) can be

employed for all possible values of k. In Fig. 4, two different

situations are considered: the first one (Fig. 4(a)) describes

the case in which the lower plasmon mode is allowed,

because DE > �hxcap
� : The higher plasmon mode is forbidden,

given that no available states exist at E ¼ ��hxcap
þ (for sim-

plicity in the drawing, the Fermi energy is considered to lie

below the QW state).

The second situation, shown in Fig. 4(b), considers the

case in which DE is greater than both �hxcap
6 : in this case, cap-

ture can occur via both xcap
6 through the emission of pho-

non–plasmons of momentum q. We expect the minimum

capture time when DE � �hxcap
� ; given that in this case it can

occur also for q � 0:
In Fig. 5, the capture time is reported as function of DE;

for some values of carrier density N. The increase of DE can

be thought of as an increase of quantum well width or barrier

height, progressively confining more the bound level. For

N ¼ 109 and 1010cm�2 the capture through xcap
� can happen

only for DE above �39 meV; because of energy conservation

FIG. 4. Capture scattering scheme from a parabolic Ek bulk barrier state

(dashed) to a quantum well state (solid) with a binding energy DE: (a) No

capture is possible via phonon-plasmon emission with frequency xcap
þ ;

whereas capture via the xcap
� mode is allowed with the emission of a

phonon-plasmon of momentum q. (b) In this case the capture is possible

through both plasmon modes.

FIG. 5. Total capture time versus quantum well binding energy, for several

values of 2D carrier density N (in the legend, values are in cm�2).
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prescription. The capture through xcap
þ can happen only if

DE is above �80� 90 meV: However, in this case the cap-

ture time through xcap
þ is in the order of 10�8 s and it does

not contribute in practice. Instead, considering the cases N ¼
1011 and 1012cm�2; at low energy xcap

þ is the only allowed

mode: nevertheless it corresponds to a quite long capture

time. The large reduction of capture time occurring respec-

tively around �40 and �90 meV is due to xcap
� ; becoming

allowed as soon as DE overcomes it, constituting the feature

known as resonant capture.3,9

Concerning the momentum q of the emitted phonon–-

plasmon, it must be stressed that this is the value at the pole
of Eq. (15) integrand: from a quantum point of view, there

are infinitely virtual modes of emission from which, integrat-

ing over all possible values of q, the value at the pole results

as a consequence of energy-momentum conservation laws.

In Fig. 6, we show the total capture time versus carrier

density N. In Fig. 6(a), capture time is shown as function of

N for several values of DE: The lines for DE ¼ 50; 100, and

250 meV have got contributions from both xcap
� and xcap

þ ;
whereas the line for DE ¼ 30 meV gets contribution only

from xcap
þ ; in the N-interval in which the transition is

allowed.

It is interesting to observe again that capture time is pro-

portional to the factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DE� l� �hxcap

6

p
; so it is an increas-

ing function of DE and a decreasing function of N, through

the Fermi energy l (in agreement with Ref. 3, for example).

The explanation of the general behavior is easily attained:

considering as an example the case for DE ¼ 50 meV;
described by the dashed line in Fig. 6(a) (blue online), we

report in Fig. 6(b) separately scap
� and scap

þ : for N ¼ 4

�1010 cm�2, the two plasmon modes exchange their roles,

but the total capture time practically follows the lowest curve

(that is, the fastest capture mode) until it exists. When the

dashed line ends (that is, for N higher than 4:5� 1011 cm�2),

the slowest mode becomes the only allowed one, giving ori-

gin to the sudden increase of capture time (well visible in

Fig. 6(a) as well).

Still considering Fig. 6(a), the most visible effect of rais-

ing the confinement energy DE consists in an increase of the

N-point value at which the xcap
� mode becomes forbidden,

leaving the xcap
þ mode as the only possible one (this points is

clearly visible in the figure for the curves DE ¼ 50 meV and

DE ¼ 100 meV as a sharp “cusp”). Another effect, visible at

low-medium values of carrier density, is a small increase of

the total capture time for a given value of carrier density.

However, there is another more interesting effect better

visible when higher values of DE are considered: as already

FIG. 6. (a) Total capture time versus 2D carrier density, for several values of quantum well state binding energy (30, 50, 100, and 250 meV). (b) Capture times

scap
� and scap

þ versus carrier density (respectively via xcap
� and xcap

þ ) for DE ¼ 50 meV: The vertical black lines correspond to density values as in Fig. 5.

FIG. 7. Total capture time versus 2D carrier density, for DE ¼ 250 meV;
where the anti-screening effect is better visible.
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pointed out in Sec. III, the reduction of relaxation/capture

times for increasing carrier density (anti-screening effect) is

a counter-intuitive effect that comes from the rise of the

Fermi energy l, favoring the phonon–plasmon emission

probability. This effect can be better appreciated in the curve

for DE ¼ 250 meV that we report also on a linear time-scale

in Fig. 7: the decrease continues until N � 2� 1012 cm�2;
then the Fermi band filling prevails and the capture time fast

increases.

V. CONCLUSIONS

In the present work, we addressed the intraband relaxa-

tion and carrier capture into quantum wells, obtaining semi-

analytic expressions as function of carrier density with

dynamic SPP dielectric function, a topic often neglected in

literature, despite its fundamental interest in semiconductor

physics.

This approach has allowed to point out the role of cou-

pling between LO-phonon and plasmon, describing in a com-

prehensible way how the carrier density affects the most

effective phonon–plasmon scattering mode. The increase of

carrier density makes the intraband relaxation and interband

capture time firstly to reduce, because of a resonance

between E� l and the energy of the phonon–plasmon �hxrel
j

(or �hxcap
j for the capture process), and successively to

increase, because of Fermi band filling increase.

Furthermore, the Bose and Fermi occupation factors

appear to be corrected by factors expressing the interplay

with the dynamical screening, a feature not present in litera-

ture due to the scarce attention to these issues. All these facts

and the figures presented in the paper demonstrate how inad-

equate can be to keep scattering times as constant respect to

N and E(k) in modeling calculations.

Population effects (dynamical screening of interacting

potential and Fermi occupation factors) must be kept into

account especially in laser and semiconductor optical ampli-

fier (SOA) dynamics, photodetector efficiency calculations,

etc. For many high-speed applications, SOAs must have a

fast gain recovery to avoid system penalties arising from bit

pattern dependencies. The gain recovery of SOAs is limited

by the carrier lifetime, which itself depends on the QW car-

rier density, determined by a non-trivial interplay of applied

current and optical intensity in the active layer. Furthermore,

SOAs and LEDs based on multiple-QW active layer nor-

mally require as uniform as possible QW carrier population,

that dynamically changes during input-signal and strongly

depends on capture and escape times. Therefore, their non-

linear behavior with carrier density must be considered in

the formulation of a rate-equation set that realistically pre-

tend to describe the system performances.

As we stressed in the Introduction, in literature there are

many works addressing capture times in quantum wells.

Most of them focus on rigorous multi-quantum-well subband

calculations, evaluating the relaxation rate among them, but

without addressing population effects. Good examples of

them are Refs. 6–9. It is not possible to compare directly our

work with those, because of their different scope: in fact

their main purpose consists in discussing the oscillating

behavior of capture time with quantum well width. This is a

very important point for laser and optical amplifier efficiency

and it has received rightly much attention. Instead, there are

few works addressing carrier density effects offering good

examples of full numerical approach. Among them, excellent

works are Refs. 3 and 10. They report calculations in the

RPA using full multiple-subband and frequency-dependent

screening, implementing very complete algorithms, finding

an increasing capture rate for increasing carrier density, in

qualitative agreement with our finding (they report total cap-

ture times scap
tot versus QW width, so a comparison is not im-

mediate; nevertheless, the order of magnitude and the trend

of scap
tot with density N are consistent). In another good exam-

ple of numerical calculation,26 intrasubband scattering rates

are semi-analytically calculated in the static screening

approximation of RPA and numerically with a full RPA,

pointing up the necessity of using the dynamic dielectric

function to describe the enhancement of the intrasubband

scattering rates. Nevertheless, they do not show neither scat-

tering rates as explicit functions of carrier density nor the rel-

ative contributions of the plasmonic modes separately, but

only the total scattering rates, although in good qualitative

agreement with our rates calculated as a function of confin-

ing energy (compare for example Fig. 3 in Ref. 26 and our

Fig. 5).

In few words, we focus on the exploitation of semi-

analytic methods to address population effects, the interplay

between occupancy factors and dynamical screening, and the

coupling of plasmon modes, and we can say that our analytic

and other numerical approaches complement each other. In

addition, the evaluation of phonon assisted Auger recombi-

nation,17,18 in which the electron–phonon scattering self-

energy is a crucial ingredient, may receive further under-

standing considering this approach, for its fast implementa-

tion in any numeric algorithm.

As a final remark, although our method automatically

includes one-phonon contributions from all orders in the

carrier-phonon coupling constant (implicit in RPA formal-

ism), we point out that there are still many terms that we

omit from the perturbation expansion. Besides the interac-

tions with all other kind of phonons, we can mention the

neglected contributions of multiple-phonon processes and

the carrier–carrier scattering and its coupling with carrier-

phonon scattering, which will be addressed in a separate pa-

per. Furthermore, we have considered in the present work

only III-V alloys, in order to avoid the more complicated

case of materials for which polarization charges must be

taken into account, as GaN/InGaN, for which the band struc-

ture is much more complicated and probably the present

treatment may result inadequate.
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