
20 September 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A software-based self test of CUDA Fermi GPUs / DI CARLO, Stefano; Gambardella, G.; Indaco, M.; Martella, I.;
Prinetto, Paolo Ernesto; Rolfo, D.; Trotta, P.. - STAMPA. - (2013), pp. 1-6. (Intervento presentato al convegno IEEE 18th
European Test Symposium (ETS) tenutosi a Avignon (F) nel 27-30 May 2013) [10.1109/ETS.2013.6569353].

Original

A software-based self test of CUDA Fermi GPUs

Publisher:

Published
DOI:10.1109/ETS.2013.6569353

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2513497 since: 2016-09-16T17:51:07Z

IEEE Computer Society

A software-based self test of
CUDA Fermi GPUs

Authors: Di Carlo, S.; Gambardella, G. ; Indaco, M. ; Martella, I. ; Prinetto, P. ; Rolfo, D. ; Trotta, P..

Published in the Proceedings of the IEEE 18th European Test Symposium

N.B. This is a copy of the ACCEPTED version of the manuscript. The final
PUBLISHED manuscript is available on IEEE Xplore®:

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6569353

DOI: 10.1109/ETS.2013.6569353

© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be

obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for resale

or redistribution to servers or lists, or reuse of any copyrighted component of this work in

other works.

!Politecnico di Torino

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6569353
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6569353
http://dx.doi.org/10.1109/ETS.2013.6569353
http://dx.doi.org/10.1109/ETS.2013.6569353

A Software-Based Self Test of CUDA Fermi GPUs
Stefano Di Carlo⇤, Giulio Gambardella⇤, Marco Indaco⇤, Ippazio Martella†, Paolo Prinetto⇤,

Daniele Rolfo⇤, Pascal Trotta⇤

Politecnico di Torino
Dipartimento di Automatica e Informatica

Corso Duca degli Abruzzi 24, I-10129, Torino, Italy
⇤Email: {FirstName.FamilyName}@polito.it

† Email: {FirstName.FamilyName}@gmail.com

Abstract—Nowadays, Graphical Processing Units (GPUs) have
become increasingly popular due to their high computational
power and low prices. This makes them particularly suitable for
high-performance computing applications, like data elaboration
and financial computation. In these fields, high efficient test
methodologies are mandatory. One of the most effective ways
to detect and localize hardware faults in GPUs is a Software-
Based-Self-Test methodology (SBST). In this paper a fully com-
prehensive SBST and fault localization methodology for GPUs
is presented. This novel approach exploits different custom test
strategies for each component inside the GPU architecture. Such
strategies guarantee both permanent fault detection and accurate
fault localization.

I. INTRODUCTION

In the last years, the continuous demand for computational
power resulted in an increasing number of cores integrated
in a single chip. In this scenario, Graphic Processing Units
(GPUs) have replaced multi-core processors in several High
Performance Computing (HPC) applications. Modern GPUs
support hundreds of cores and they are inherently designed
to perform parallel operations. Moreover, dedicated program-
ming instruments for developing GPU ready applications en-
able programmers to exploit this huge computational power
also for the solution of general-purpose computing problems
[1][2][3][4][5]. Reliability is still a big issue for GPU cores.
While in their original application domain (i.e., video process-
ing) wrong pixels caused by either soft or hard errors have a
negligible effect on the user experience, when GPUs are ex-
ploited in HPC applications such as financial or scientific com-
putations, correctness and high dependability become a pri-
mary requirements. In this context, Software-Based-Self-Test
(SBST) represents a promising test solution already exploited
in several single-core processor architectures [6][7][8][9].
SBST techniques exploit the microprocessor Instruction Set
Architecture (ISA) to generate instruction sequences able to
test a wide range of hardware modules, without introducing
any hardware modification, and thus stressing the system in
its actual operational condition. One of the main drawbacks
of SBST, when applied to black box modules such as GPUs
whose internal architecture is usually hidden and not available
to the systems designer, is a precise evaluation of the obtained
fault coverage. This requires a careful design and selection of
the type of functional test applied to the core. Techniques such

as Duplication-based [10][11][12], Check pointing-based [13],
Algorithm-based [14], Static compiler analysis-based [15] and
Dynamic profiling-based [16] have been somehow applied to
detect errors in specific GPU applications. However, they usu-
ally introduce high performance overhead or require custom
modifications to be adapted to the highly parallelized GPU
architecture. To the best of our knowledge, no comprehensive
and effective SBST methodology, targeting GPUs, has been
proposed so far. This paper tries to cover this gap, introducing
an SBST and fault localization methodology suitable for the
last generation of CUDA Fermi GPUs. It guarantees fine-
grained fault detection exploiting different custom test strate-
gies and an accurate localization of the faulty streaming multi-
processor unit. The paper is organized as follow: in Section
II the CUDA architecture overview is provided, in Sections
III, IV and V the proposed methodology and test procedures
are shown, while in VI the experimental results are depicted.
Finally, some conclusions are drawn.

II. CUDA OVERVIEW

Compute Unified Device Architecture (CUDA) is a parallel
computing architecture developed by nVidia for graphic pro-
cessing, used as computing engine in nVidia GPUs. nVidia
supports programmers by releasing the CUDA Toolkit, which
embeds the Software Development Kit (SDK), a compre-
hensive software development environment. Among the tools
provided by the CUDA Toolkit, the CUDA Visual Profiler
(cudaprof) provides the user with feedbacks for code opti-
mization. Furthermore, the CUDA Occupancy Calculator helps
to set-up the execution on the GPU in order to achieve high
occupancy of internal resources. nVidia also released a soft-
ware architecture that enables CUDA-based GPUs to execute
programs written in C, C++, Fortran, OpenCL, DirectCom-
pute, and other languages [17]. In general, a CUDA program
is a set of parallel kernels (i.e., blocks of code executing a
given function on the GPU) organized by the compiler into
threads, thread blocks, and grids of thread blocks. A thread
block is a set of concurrently executing threads. Each thread in
a thread block executes an instance of the kernel. It is assigned
with a thread identifier (thread ID) within its thread block, a
program counter, a set of registers, per-thread private memory,
inputs, and output results [17]. A grid is an array of thread

blocks that execute the same kernel. The CPU provides in
input to the GPU the grid in order to start the kernel execution.
At the end of the execution, the CPU can flush the GPU
global memory to acquire output data. The internal architecture
of a CUDA GPU comprises: (1) a Block dispatcher that
schedules the input grid by assigning each thread block to
the internal logic; (2) a Global Memory to store data and final
results during the kernel execution; (3) a Shared Cache to
speed up read/write operations on the global memory; and
(4) several Streaming Multiprocessors (SM), representing the
main computational units in charge of executing the scheduled
thread blocks. Fig. 1 reports the internal architecture of a
SM. The Thread Dispatcher, dispatches each thread of a
thread block to one of several computational cores. These
cores include: CUDA cores equipped with a fully-pipelined
Integer Unit (IU) and a fully pipelined Floating Point Unit
(FPU), several Special Function Units (SFU) able to execute
transcendental instructions (i.e., sine, cosine, inverse square
root, etc.), a Shared Memory shared among threads inside a
thread block and several Load/Store Units (LD/ST) managing
read/write operations on the shared memory.

Fig. 1: SM internal structure

The Compute Capability (CC) is the main parameter charac-
terizing a CUDA GPU. The Fermi architectures, considered
in this paper, are characterized by CC equal to 2.0 or 2.1. In
Fermi architecture with CC 2.0, each SM contains 32 CUDA
cores (2 columns of 16 cores). Every CUDA core is able to
execute both double and single precision integer and floating
point instructions. In CUDA GPUs with CC 2.1 each SM
contains 48 CUDA cores (3 columns of 16 cores), with just
the third column able to execute double-precision instructions.
Moreover, cores on the third column can execute dual-issued
single precision instructions. All remaining parts of the SM
are the same in both architectures and include 16 Load/Store
Units and 4 Special Function Units [17].

III. OUR METHODOLOGY

The proposed SBST methodology targets each SM inside
a Fermi GPU, providing both permanent fault detection and
localization. Fig. 2 introduces the computational flow exploited
to test SMs.
First, a set of test kernels, one for each internal component
of the SM, has been defined. Some of these kernels (i.e.,
the ones for testing CUDA cores) exploit well-known SBST

Fig. 2: Basic test approach

procedures adapted to be executed on a GPU. The remaining
kernels targeting the Thread Dispatcher and the SFUs, instead,
implement ad-hoc test procedures. When the test kernel is
created, the CPU starts the kernel on the GPU. The GPU
executes several parallel instances of the test kernel (one for
each internal module of each SM), and, for each instance, it
computes the related test results (TR) or test signatures (TS).
Each thread appends to the computed TS/TR the identifier
of the SM (SM ID) where it has been executed, and this
information is sent back to the CPU. The SM ID is computed
reading the content of the special register %smid [18]. The
CPU compares the TR/TS contained in each test response
with the precomputed Golden TR (GR)/Golden TS (GS).
If a mismatch occurs, a fault is detected and the SM ID
is used to localize the faulty SM. In order to execute test
procedures on the GPU, every test kernel must be written
exploiting the inline-assembly provided by the CUDA-ISA
[18]. The inline-assembly makes it possible to precisely define
the instructions that the CUDA core must execute, preventing
changes introduced by the compiler. Moreover, all for loops
required by the test procedure must be unrolled exploiting the
compiler directive #pragma unroll [19]. This directive placed
before each for loop, prevents the insertion of extra operations
at compile time that could alter the test coverage.
Finally, to ensure the complete execution of the test procedure
on each internal module of a SM, the test kernel must be
executed with the right configuration, taking into account the
size of the grid and the size of the thread blocks (see Section
II). The way this can be achieved will be deeply analyzed in
Section IV.

IV. TEST KERNEL CONFIGURATION

Fig. 3 shows the steps required to compute the optimal test
kernel configuration. This task exploits the Visual Profiler and
the CUDA Occupancy Calculator (see Section II). The CUDA
Occupancy Calculator is able to define the size of the grid
(GrS) required to achieve the complete occupation of all re-
sources available in a SM. This computation is based on three
parameters, namely: (1) the Register per Thread (RpT), (2) the
Shared Memory per Block (SMpTB) and (3) the Threads Block
Size (TBS). RpT and SMpTB define respectively the number
of registers used by each thread and the amount of shared

Fig. 3: Distribution methodology flow diagram

memory used by each thread block. These two parameters
can be defined by running the kernel inside the Visual Profiler
(see Fig. 3).
Providing in input to the CUDA Occupancy Calculator the
value of Register per Thread and Shared Memory per Block,
the kernel configuration is computed by testing different values
of Threads Block Size until the full SM resources are properly
allocated.

V. TEST PROCEDURES

This Section defines the procedures for testing the modules
inside a SM. A particular remark must be done for the
Shared Memory (see Section II). The test of this component
is not taken into account in the proposed work, because in
every Fermi CUDA GPU this memory is natively protected
by a Single-Error Correction Double-Error Detection Code
(SECDED ECC) [17]. Any time an uncorrectable error is
detected by the ECC, the kernel execution is stopped and an
error message is sent to the CPU. Programmers can catch this
error and identify the fault on the memory.

A. CUDA Core Test Procedure
As described in Section II, a Floating-Point Unit (FPU)

and an Integer Unit (IU) are the building blocks of a CUDA
core. SBST of these kind of components has been deeply
analyzed in the literature. Among the available solutions, in
this paper we exploit those proposed by Paschalis et al. [20]
and Xenoulis et al. [21], which can be applied to black box
modules and, at the same time, guarantee high coverage.
Regardless the implementation details that are available in the
cited papers, the overall idea of these two procedures is to
execute a sequence of arithmetic/logic operations, involving
the unit under test, repeated using several deterministic (in
the case of [20]) or pseudo-random (in the case of [21]) input
test patterns. Finally, the selected test procedures require to
compact the outcomes of all into an output signature.
The way this test procedure can be implemented in a GPU
changes between Fermi architectures with CC 2.0 and Fermi
architectures with CC 2.1. In CUDA GPUs with CC 2.0 both
the IU and the FPU can perform single and double precision

instructions. No modifications are required to the original
test procedure to cope with this architecture and the test can
follow the flow introduced in Fig. 2. A different situation
arises when CUDA GPUs with CC 2.1 are considered. In
this architecture only the third column of CUDA cores is able
to execute double-precision instructions. Moreover, during the
execution of single-precision instructions, this column of cores
executes only dual-issued instructions. Therefore, to ensure
the complete test execution on every CUDA core, the test
procedure for single-precision IU and FPU must involve dual-
issue instructions. Dual issue instructions are used whenever
the thread dispatcher (see Section II) finds two consecutive
independent instructions. Duplicating each instruction of the
test procedure is enough to guarantee this condition. Let
us consider the following example of instruction duplication
where the left column reports the original test sequence and
the right column reports the duplicated one:

)
mul(r1,r2,r3)

mul(r1,r2,r3) mul(r5,r6,r7)
add(r4,r4,r1) add(r4,r4,r1)

add(r8,r8,r5)

To guarantee that two duplicated instructions are independent
and therefore dual-issued, it is enough to use disjoint sets
of registers. The correct activation of this mechanism can be
monitored by comparing the instruction throughput of a test
procedure with duplicated instructions, with the corresponding
version without duplicated instructions. A throughput incre-
ment of about 30% is a good indicator that dual-issued in-
structions are used and therefore the test procedure is executed
also on the third column of CUDA cores. Finally, since double-
precision operations are inherently executed only on the third
CUDA core column, instructions to test double precision IU
and FPU operations do not need to be duplicated.

B. Special Function Unit Test Procedure
SFUs in a CUDA GPU execute a fast approximation of tran-

scendental instructions on 32-bit input floating-point numbers.
The supported transcendental operations (SFU operations) are:
sine, cosine, base-2 logarithm, base-2 exponential, reciprocal,
square root and inverse square root.
The way to test these functions still need to be properly inves-
tigated. The test procedure proposed in this paper computes
each SFU operation for a set of pseudo-random test patterns.
Then, the obtained test results (GPU results) are compared
with golden results precomputed on the CPU.
The fault-detection cannot be performed with a simple equiv-
alence check, because golden and GPU results are affected
by different tolerances. In fact, CPU results are affected by
the machine epsilon [22], that depends on the used processor,
while GPU results are influenced by the SFU tolerance. More-
over, each SFU operation is affected by a different tolerance
and, in the CUDA-ISA User Guide [18], these tolerances are
not well documented. To overcome these issues, tolerances
of SFU operations must be characterized. A test campaign

performed on different Fermi GPUs has highlighted that SFU
operations do not provide reasonable results for the entire 32-
bit floating-point range. Outside a given input range (valid
input range), the obtained results are saturated to a fixed
value. Valid input ranges for each SFU have been computed
exploiting a binary search approach and reported in Table I.

TABLE I: Valid input ranges for SFU operations

SFU operation
Valid input range

Negative range Positive range
UB LB LB UB

sine - - 1.87E-07 1.57
cosine - - 1.31E-06 1.57

base-2 logarithm - - 1.17E-38 3.36E+38
base-2 exponential -1.27E+02 -1.19E-07 1.19E-07 1.28E+02

reciprocal -8.50E+37 -1.18E-38 1.17E-38 8.50E+37
square root - - 1.17E-38 3.36E+38

inverse square root - - 1.17E-38 3.36E+38

SFU characterization consists of computing the relative error
between results obtained executing the SFU operation on a
golden CPU and on a golden GPU, according to (1).

"

gpu

=
y

cpu

� y

gpu

y

cpu

(1)

where "

gpu

is the relative error, y

gpu

is the result obtained
from a golden GPU, and y

cpu

is the result obtained from the
CPU.
The kernel for computing y

gpu

is written exploiting the inline
assembly associated with each SFU operation. In such a way, it
is possible to ensure that obtained results are really computed
by a SFU. To achieve a high characterization precision, the
"

gpu

has been computed for each value contained in the valid
input range (i.e., exhaustive characterization), leading to an
overall execution time of 20 minutes. Since the characteriza-
tion task must be performed during the design phase only, the
required time is totally acceptable.
The exhaustive characterization highlights that "

gpu

changes
depending on the input provided to the SFU operations.
The "

gpu

ranges from a minimum ("
gpu,min

) to a maximum
("

gpu,max

). For each SFU, "

gpu,min

is always zero, while
"

gpu,max

have significant variation depending on the input
values. Since "

gpu,max

fluctuations are of some order of mag-
nitude, for obtaining a better characterization the following
steps are performed: (i) the valid input range of each SFU
is split, (ii) each sub-range is characterized with a "

gpu,max

,
(iii) sub-ranges with similar "

gpu,max

are grouped, and (iv)
grouped sub-ranges are characterized with the maximum
"

gpu,max

inside the group. This approach ensures a fine-grain
characterization resulting in a better precision.
After the characterization task, input test patterns are generated
maintaining their values inside input valid ranges reported
in Table I. They are defined by generating a set of equally
distributed 32-bit floating point numbers inside each valid
input range.

Then, CPU golden results (y
cpu

) and GPU results are com-
puted for each SFU operation and for each input test pattern.
For each couple of CPU and GPU results, "

gpu

is computed.
Fault detection is performed exploiting a well known approach
used in Oscillator-Based Test (OBT) [23] methodologies (see
Fig.4).

Fig. 4: Fault detection strategy for SFUs

Basically, the approach assumes as fault-free all results con-
tained in the "

gpu

range, defined by the characterization task,
and faulty all others. Obviously, the proposed approach is
not able to detect faults that alter a result without bringing
it outside the "

gpu

range. However, from a functional point
of view, these faults introduce an error on the results totally
comparable with the one natively introduced by the SFU
operations. Their escape can be therefore accepted (i.e., these
faults can be maintained undetected).

C. Thread Dispatcher Test Procedure
The Thread Dispatcher dispatches threads of a thread block

among the SM internal logic cores. It is a completely custom
module developed by nVidia, so an ad-hoc test methodology
must be developed.
A fault on a thread dispatcher can lead to different kinds of
errors. For example, two threads could be allocated, at the
same time, on the same hardware component or a thread could
never be allocated. In both cases one thread is never executed
on the GPU. Another kind of fault could cause a change of
the thread identifier (thread ID).
The proposed test procedure is composed of a part executed
on the CPU and one executed on the GPU. Algorithm 1
shows the basic operations performed by the proposed test
methodology on the CPU side, where max thread per block
is the maximum number of threads that can be contained into
a thread block (i.e., in Fermi architecture this value is equal
to 1024).

Algorithm 1 CPU-side test procedure

1: flag vector[max thread per block] = {�1, ...,�1}
2: Run kernel(flag vector)
3: fault = FALSE

4: for i = 0 ! size of(flag vector) do
5: if flag vector[i] ! = i then
6: fault = TRUE

7: end if
8: end for

The kernel is executed on the GPU (Run kernel in Alg. 1)

as a grid. The kernel simply assigns to the flag vector cell,
pointed by thread ID, the thread ID value. At the end of the
GPU execution, the CPU receives the vector and it verifies that
each cell contains a value equal to the cell index (statements
from 4 to 8 of Alg. 1), any mismatch represents a fault.
The only fault that is not covered is the case in which
two threads swap their identifier. Although, in this case the
fault cannot lead to a wrong execution because the complete
execution is anyway computed in the right way.
Since in each SM there is only one thread dispatcher,
to ensure the complete test of this component, the kernel
must be executed as a grid composed of thread blocks of
max thread per block threads.

VI. EXPERIMENTAL RESULTS

Performed experiments target two main characteristics of
the proposed methodology: the execution time of each test
procedure and the fault detection capability.
The CUDA devices used for the tests are: a GeForce GTX
560Ti and a GeForce GTX 580. The former has 1 GB of
dedicated RAM, 8 SMs, each one equipped with 48 CUDA
cores and 4 SFU, and 2.1 compute capability. The latter is
a card with 1.5 GB of dedicated RAM, 16 SMs and a 2.0
compute capability. Each SM contains 32 CUDA cores and 4
SFUs. An Intel Core i5-2500k CPU is used as CPU.
The execution time of each test procedure is characterized
in terms of GPU Execution Time (GET), and the time spent
on the CPU to perform the faults detection and localization
(CET). GET does not include the time required to execute the
kernel, only, but also the time to transfer TR/TS to the CPU.
Table II shows the execution times associated with each test
procedure.

TABLE II: Test procedure execution times

CUDA GPU Test procedure GET [ms] CET [ms]
IU 3.191 0.096

GeForce FPU 1,201.252 0.181
GTX560ti SFU (10k patterns) 11.996 18.015
(CC 2.1) SFU (100k patterns) 77.230 193.024

Thread Dispatcher 0.611 0.039
IU 1.596 0.109

GeForce FPU 609.991 0.173
GTX580 SFU (10k patterns) 26.701 18.125
(CC 2.0) SFU (100k patterns) 133.495 194.023

Thread Dispatcher 0.314 0.039

As shown in Table II, the CET related to the IU and FPU
test is shorter than the one associated with the SFU test. This
strictly depends on the operations that must be performed by
the CPU to detect a fault. The procedure adopted to test the
IU and the FPU provides a single test signature, thus the CPU
must check the correctness of one data, only. Instead, the SFU
test procedure provides in output a test result for each applied
input test pattern, leading to a high number of checks to detect
a fault.

Moreover, comparing the execution time of the two proposed
test cases, the only differences concern the IU and the FPU
test procedures. This is due to the different test approaches to
test the IU and FPU in GPUs with CC 2.0 and 2.1. In fact, as
described in Section V-A, more operations are required to test
GPU with a CC 2.1 (e.g., GeForce GTX560ti) compared to
the operations required by GPU with a CC 2.0 (e.g., GeForce
GTX580).
In order to verify the fault detection capability of the proposed
test procedures a fault injection campaign has been performed.
The fault injection aims at injecting single and multiple stuck-
at faults on each module inside a SM.
Since nVidia does not provide a description of the internal
structure of SMs, the faults are injected only on the input and
output interfaces of each SM functional block.
Basically, the CPU creates a set of faults equally distributed
among the input/output interfaces. These information are pro-
vided in input to the GPU exploiting a bitmask. The GPU,
before starting the test procedure, performs the injection of
the faults identified by the bitmask. In addition, the GPU takes
trace of the SM in which faults have been injected and, at the
end of the test, it provides this information to the CPU.
Finally, the CPU counts the number of the detected faults in
order to verify the achieved fault coverage. It also compares
the localized faulty SMs with the ones traced by the GPU, in
order to verify the fault localization.
Table III reports the number of faults injected in each SM
functional block, and the related fault coverage.

TABLE III: Fault injection campaign

Module Injected Faults Detected Faults [%]
IU 16,648,768 99.9%

FPU 16,648,768 99.8%
SFU (10k patterns) 16,484,549 92.38%
SFU (100k patterns) 16,484,549 93.16%
Thread Dispatcher 16,463,528 100%

The high fault detection rate achieved by the IU and FPU test
procedures (see Table III) is due to the adopted test procedures
(i.e., [20] for IU test and [21] for FPU test). In fact, these
two procedures ensure by them self very high-fault coverage
independently by the internal architecture of the module under
test.
A particular remark has to be done for the SFU test. The fault
detection rate of this test procedure strongly depends on the
precision adopted to characterize the "

gpu

(see Section V-B).
In our tests, the "

gpu

associated with each SFU operation
is characterized by defining six different ranges. For the
sake of completeness, Fig. 5 reports an example of "

gpu

characterization. As shown in Table III, increasing the number
of test patterns the fault detection rate does not increase too
much. This is due to the fact that the fault escapes associated
to our methodology do not depend on the number of used test
patterns, but they depend more on the precision whereby the
"

gpu

is characterized.

Fig. 5: "
gpu

characterization for reciprocal SFU operation

VII. CONCLUSION

This paper proposes an SBST methodology to test CUDA
Fermi GPUs. The proposed methodology targets the test of
each functional block inside SMs, and it exploits different
custom test strategies in order to guarantee a fine-grained per-
manent fault detection. Moreover, it performs fault-localization
at SM-level, enabling the possibility of localizing faulty SMs
inside the CUDA Fermi GPU under test.
The experimental results show that the proposed test proce-
dures have a very high fault detection capability, and they
require a short time to be executed, making them suitable for
on-line test.

REFERENCES

[1] A. Benso, S. Di Carlo, G. Politano, and A. Savino, “GPU acceleration
for statistical gene classification,” in Proc. of 2010 IEEE International
Conference on Automation Quality and Testing Robotics (AQTR), vol. 2,
pp. 1–6, 2010.

[2] A. Benso, S. Di Carlo, G. Politano, A. Savino, and A. Scionti, “GPU
cards as a low cost solution for efficient and fast classification of high
dimensional gene expression datasets,” Control Engineering and Applied
Informatics, vol. 12, no. 3, pp. 34–40, 2010.

[3] Y.-T. Lo, Y.-L. Tsai, H.-W. Wang, Y.-P. Hsu, and T.-W. Pai, “Using solid
angles to detect protein docking regions by cuda parallel algorithms,”
in Proc. of 8th International Symposium on Parallel and Distributed
Processing with Applications (ISPA), pp. 536–541, 2010.

[4] H. Patel, “GPU accelerated real time polarimetric image processing
through the use of cuda,” in Proc. of 2010 IEEE National Aerospace
and Electronics Conference (NAECON), pp. 177–180, 2010.

[5] S. Potluri, A. Fasih, L. Vutukuru, F. Al Machot, and K. Kyamakya,
“CNN based high performance computing for real time image processing
on GPU,” in in Proc. Joint 3rd International Workshop on Nonlinear
Dynamics and Synchronization (INDS) & 16th International Symposium
on Theoretical Electrical Engineering (ISTET), pp. 1–7, 2011.

[6] A. Paschalis and D. Gizopoulos, “Effective software-based self-test
strategies for on-line periodic testing of embedded processors,” IEEE
Trans. on Computer-Aided Design of Integrated Circuits and Systems,
vol. 24, no. 1, pp. 88–99, 2005.

[7] S. Di Carlo, P. Prinetto, and A. Savino, “Software-based self-test of set-
associative cache memories,” IEEE Trans. on Computers, vol. 60, no. 7,
pp. 1030–1044, 2011.

[8] S. Alpe, S. Di Carlo, P. Prinetto, and A. Savino, “Applying march tests to
k-way set-associative cache memories,” in Proc. of 13th IEEE European
Test Symposium (ETS), pp. 77–83, 2008.

[9] A. Benso, S. Di Carlo, and A. Savino, “Software-based self-test for
reliable applications in railway systems,” in Railway Safety, Reliability
and Security: Technologies and Systems Engineering, pp. 198–220, IGI
Global, 2012.

[10] M. Dimitrov, M. Mantor, and H. Zhou, “Understanding software ap-
proaches for GPGPU reliability,” in Proc. of 2nd Workshop on General
Purpose Processing on Graphics Processing Units, pp. 94–104, ACM,
2009.

[11] J. W. Sheaffer, D. P. Luebke, and K. Skadron, “A hardware redundancy
and recovery mechanism for reliable scientific computation on graphics
processors,” in Proc. of the 22nd ACM Symposium on Graphics hard-
ware (SIGGRAPH/EUROGRAPHICS), pp. 55–64, Eurographics Associ-
ation, 2007.

[12] K. S. Yim, C. Pham, M. Saleheen, Z. Kalbarczyk, and R. Iyer, “Hauberk:
Lightweight silent data corruption error detector for GPGPU,” in Proc.
of 2005 Parallel Distributed Processing Symposium (IPDPS), pp. 287–
300, 2011.

[13] F. Sinclair, “G-cp: Providing fault tolerance on the GPU through
software checkpointing,” 2010.

[14] C. Ding, C. Karlsson, H. Liu, T. Davies, and Z. Chen, “Matrix multi-
plication on GPUs with on-line fault tolerance,” in Proc. of 9th IEEE
International Symposium on Parallel and Distributed Processing with
Applications (ISPA), pp. 311–317, IEEE Computer Society, 2011.

[15] K. Pattabiraman, Z. Kalbarczyk, and R. Iyer, “Automated derivation of
application-aware error detectors using static analysis,” in 13th IEEE
International On-Line Testing Symposium (IOLTS), pp. 211–216, 2007.

[16] M. Ernst, J. Cockrell, W. Griswold, and D. Notkin, “Dynamically
discovering likely program invariants to support program evolution,”
IEEE Trans. on Software Engineering, vol. 27, no. 2, pp. 99–123, 2001.

[17] nVidia, NVIDIA’s Next Generation CUDA Computer Architecture:
Fermi, 2006.

[18] nVidia, Parallel Thread Execution ISA v.3.0, 2012.
[19] nVidia, nVidia CUDA C Programming Guide v.4.2, 2012.
[20] A. Paschalis, D. Gizopoulos, N. Kranitis, M. Psarakis, and Y. Zo-

rian, “Deterministic software-based self-testing of embedded processor
cores,” in Proc. of 2001 Conference on Design, Automation and Test in
Europe (DATE), pp. 92–96, 2001.

[21] G. Xenoulis, D. Gizopoulos, M. Psarakis, and A. Paschalis, “Instruction-
based online periodic self-testing of microprocessors with floating-point
units,” IEEE Trans. on Dependable and Secure Computing, vol. 6, no. 2,
pp. 124–134, 2009.

[22] M. Overton, Numerical computing with IEEE floating point arithmetic
including one theorem, one rule of thumb, and one hundred and one
exercises. Society for Industrial and Applied Mathematics (SIAM),
2001.

[23] K. Arabi and B. Kaminska, “Oscillation-test methodology for low-cost
testing of active analog filters,” IEEE Trans. on Instrumentation and
Measurement, vol. 48, no. 4, pp. 798–806, 1999.

