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Abstract: Springs are used in simple demonstrations for the students of Physics classes to illustrate the Hooke’s 

Law and harmonic oscillations. The spring is usually considered as a light object that does not possess a mass. What 

happens if the spring is heavy, that is, its mass is not negligible? This paper aims to discuss this problem as plainly 

as possible. An experiment is also proposed.  
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Introduction 

To study the harmonic oscillations, we use the simple 

pendulum described as an idealized body consisting 

of a point mass, suspended by a light inextensible 

cord. In laboratory, the students can measure the 

period of small oscillations and obtain, with rulers 

and stop-watches, an evaluation of the acceleration of 

gravity. Another measurement that seems as simple 

as that previously proposed, is the measurement of 

the force constant of a spring. For an ideal spring, we 

assume valid the Hooke’s Law. In a static 

experience, a body is suspended by the spring. At 

equilibrium, the elastic force of the spring is 

balancing the weight of the suspended mass. Using 

Hooke’s Law, we obtain the force constant 

measuring several deformations of the spring, 

corresponding to different suspended masses. 

Another way to measure this force constant is by 

means of a dynamical method, based on the 

oscillations of suspended bodies and the 

measurement of their periods.  

 

What happens if the spring has a small, not negligible 

mass, that is, it is “heavy“? The discussion of this 

problem is the aim of the paper. The mass suspended 

by a spring, which has its mass, becomes a part of a 

more complex system. Let us call m the mass 

uniformly distributed on the spring and M the 

suspended mass. If M is oscillating, we observe that 

during the motion each section of the spring is 

moving with its velocity different from that of the 

suspended mass. We have then the motion of body M 

and that of the spring to determine. Let us remember 

that for a light spring, that is a spring having no mass, 

this last motion does not exist: the spring is simply 

connecting the suspended mass M to a fixed body, 

for instance a stand on a table or the ceiling, giving 

the interaction between them. 

 

Generally, the problem of the heavy spring is solved 

considering an effective mass of the spring, defined 

as the mass that must be added to the suspended mass 

to have a more correct prediction of the behaviour of 

the system. The effective mass of the spring, 

assumed as independent whether the direction of the 

spring-mass system is horizontal, vertical or oblique, 

is 1/3 of the mass of the spring (a detailed discussion 

on the effective mass of the spring is proposed at 

Ref.1).  

 

 

Fig.1. The frame of reference for spring and body. 

 

A simple approach to the effective mass problem is 

the following. Let us call m the mass of the spring, 

with a free length L, and k the constant of the spring 

determined by its stiffness. Take an infinitesimally 

thin segment of the spring, which is at a distance y 

from the fixed end of the spring (see Fig.1). Its length 

is dy and mass dm. To the manner in which the 

spring is attached, the static deformation of the spring 

is assumed according to the simple equation: dy/x = 

(y/L). If the dynamic shape of the spring were the 

same as the static deformation, the mass and velocity 

of the spring element dy would be:

dy
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The kinetic energy of the spring would be equal to: 
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 (2) 

 

m/3 is the effective mass that is often used in 

evaluating the period of an oscillating mass M 

suspended by a heavy spring: for the period, instead 

of =2(M/k)
1/2

, it is used  =2((M+m/3)/k)
1/2

. This 

conclusion approximates the true behaviour of a 

heavy spring. During the oscillation, each part of the 

spring has its velocity and then it is not described by 

a linear function of the position.  

 

The heavy spring at equilibrium 

Since the spring is heavy, when hung vertically from 

one end, it will stretch under its own weight. We can 

first find the form of the spring in equilibrium [2]. 

We assume the heavy spring as an elastic medium 

with section S and length L, Young modulus E and 

density   m/SL. The correspondence between the 

Young Modulus and the constant of the spring is 

given as: 

m

Lk
E

m

k

L

E 2

2





  (3) 

It is convenient to use as reference position, the 

spring as it would be if the gravity did not act: that is, 

vertical and uniform. Let us consider two sections S 

and S’ of the spring. Two points of the spring P on S 

and Q on S‘, at the reference positions x and x+x, 

will be displaced, under the effect of the gravity, by 

the quantities y and y+y respectively (see Fig.2). 

          
Fig.2 Frame of reference 

 

The mass element m from P to Q is subjected to the 

actions of gravity and of the two tensions T,T+T. 

Each mass m is at equilibrium when: 

0 xgST
    

      

 (4) 

Since the extension of the element y is given by the 

applied force T+T, we have [2]: 

x

y
ESTT





  (5) 

Processing to the limit as x0, dT/dx =  Sg, T = 

S E dy/dx, we have then: 
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 (6) 

 

with the boundary conditions: 

Lxfor
dx

dy
,xfory  000

 (7) 

 

That is, the tension vanishes at the lower end [2]. The 

solution is: 
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Using Eq.3, we have that:  
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For x=L, we have  yo= mg /(2 k). The length of the 

elongated spring is L+yo. 

 

The oscillating spring 

In the case that the vertical spring is oscillating about 

this equilibrium position, the displacement y of each 

section of the spring is a function of position and 

time, y(x, t). Each section of the spring satisfies the 

equation:   
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   (11) 

 

A simple solution will be:  f (x, t)   sin( x) cos( t 

+  ) + yo, where   and  are linked by the relation  

  ( /E)
1/2.  The general solution is a linear 

combination:  

 

f (x, t)      A sin  ( /E)
1/2

x  cos ( t +)  +  

yo     (12) 
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with the sum on all the angular frequencies of the 

spring. 

Imagine that the system is at rest till the initial time, 

when we let the spring to start its oscillation. The 

initial velocity of the spring is null: we have then ( 

y/ t)t=0=0, giving =0.  The general solution of 

Eq.11 is: 

 

y (x, t)      A sin  ( /E)
1/2

x  cos ( t)  +  yo  

  (13) 

 

Let us suppose a small displacement 0 from the 

condition of equilibrium, L+yo, that we have under 

the sole action of gravity. To have this small 

displacement we need to apply a force to the lower 

end of the spring. Since at the initial time to=0, we 

have the displacement o, the function  y*(x)=xo /L  

is a suitable solution for the boundary conditions. At 

to=0, the solution for the oscillating case must be 

equal to function the y*(x). This condition allows to 

find coefficients A , imposing that: 

 

  A sin  ( /E)
1/2

 x  =  y*(x) = x o / L   

  (14) 

 

To complete the discussion of the heavy spring, we 

have to determine the angular frequency of 

oscillation. During it, the free end of the spring is 

subjected to a null tension ( y / x)x=L  0, giving 

then ( cos ( /E)
1/2

L ) =0, that we can immediately 

solve as:   

 

 ( /E)
1/2

L = (n+½),  n = 0,1,2,3...     (15) 
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Each section of the spring has a motion which is the 

superposition of many harmonic motions, the 

respective angular frequencies given by Eq.15’. 

 

With a mass suspended 

In the case that we have a mass M suspended by the 

heavy spring, the following boundary conditions in 

the static case are required:  

LxforMg
x

y
ESxfory
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;00    (16) 

The static solution is: 
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   (17) 

 

For x=L, we have yo=(M+m/2) g/k, which is giving 

the elongation of the heavy spring with a mass 

attached. In the case that the mass M is oscillating 

about this equilibrium position, we have again for the 

spring the equation: 
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   (18) 

 

The solution will be y  f (x, t) + A’x+B’x
2
. 

Again, we consider that f (0,t) must be equal to zero, 

because the section corresponding to x  0  is at a 

fixed position.  A simple solution is:  f (x, t)   sin( 

x) cos( t + ) , where   and  are linked by the 

relations    ( /E)
1/2. The general solution is a 

linear combination:  

 

y (x, t)      A sin  ( /E)
1/2

x  cos ( t )  +  A’ x 

+ B’ x
2
                          (19) 

 

where we imagined that at the initial time to  the 

system has a null velocity. 

As previously done, we imagine that the spring is at 

equilibrium under the effect of its weight, the weight 

of the mass M and a force F applied to M,  

maintaining the displacement o + yo , till the initial 

time to0. Before to, the system is at rest and the 

velocity of any point is zero.  

The displacement of the spring at x=L and t=0: 

 

Lxfor*y;xfor*y o  00
 

  (20) 

 

To find the coefficients A , we impose at to=0: 

 

  A sin  ( /E)
1/2

 x  = xo /L .    

  (21) 

 

Coefficients A can be deduced from (21) after the 

angular frequencies  have been determined. 

To find the set of frequencies, we study the motion of 

mass M. Note that the displacement of M coincides 

with that of the end of the spring. The acceleration of 

M is then  
2
y(l, t) / t

2
  and the equation of motion 

for M is:  
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 S E ( y / x)x=L  +  M g    M  
2
 y(L, t) / t

2
  

  (22) 

 

After equations (16) and (19), we have: 

 

S ( E)
1/2

  cos  ( /E)
1/2

 L    m  
2 
sin  ( /E)

1/2
 

L  (23) 

 

Using the dimensionless parameter: 

 

p   ( /E)
1/2

 L     

  (24) 

 

and having   S L  m , Eq.(23) turns out to be: 

 

p sin p   (m/M)  cos p    

  (25) 

 

This equation has infinite solutions p1, p2, .... pn  ,... 

giving the set of angular frequencies:  

 

n   L
1 

(E /)
1/2  

pn  (26) 

 

The general solution is:  

y(x, t)    n  An  sin (pn x /L) cos L
1

(E/)
1/2 

pn t  +   

A’ x + B’ x
2
  (27) 

 

where  An  are coming from the condition 

 

n An sin(pn x/L)    x0 /L   (28) 

 

The motion of the mass is the superposition of many 

harmonic motions, creating a motion which is not 

harmonic. However coefficients An, which can be 

obtained from (28), are decreasing in magnitude as n 

is increasing: a good approximation is then to 

consider only the coefficient A1 being different from 

zero. This corresponding to the first root  p1  of (24), 

which is greater than 0 and less than  /2. With this 

approximation, the motion is harmonic, with period  

  2 /1, or:  

 

      2  L ( /E)
1/2

 / p1   (29) 

 

Figure 3 shows the behaviour of the first root p, as a 

function of the mass ratio M/m. Some values of the 

first root are given in the Table I. 

 
Figure3: Behaviour of first p as a function of the mass ratio M/m. The limit value for very small mass ratios is the 

value /2 given by Eqs. 15,15’.  

 

M/m  p1  M/m  p1  

0.25 1.2646         1.75 0.6910         

0.50 1.0769         2.0 0.6532         

0.75 0.9512         2.25 0.6211         

1.0 0.8603         2.50 0.5932         

1.25 0.7910         2.75 0.5688         

1.50 0.7360         3.0           0.5472         

Table I: Values of  first p for several mass ratios M/m.   
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Let us consider    2 /1 , that is    0  / p1,  0   

2 L ( /E)
1/2

. Period  0   can be obtained from 

measurements, plotting as a function of the 

suspended mass M, the measured period    times p1. 

This product is a constant equal to 0 . Using  masses  

M1 , M2 , ... Mi , ... MN   and having   1 , 2 , ... i ... N  

, the value  0 turns out to be:  

 

0     N 
1

 i i p1( i) = N 
1

 i 0,i   

 (30) 

 

where   i  Mi /m . The constant of the spring is k  

S E / L , and then k  (2 /0) 
2 
m. 

In this approach we avoided the use of an effective 

mass, which is determined in Ref.3. 

 

Discussion 

Let us report the results of experimental 

measurements obtained with a heavy spring of  m  

0.057 kg, with several suspended masses, as given in 

the first column of Table II. The second column is 

reporting the corresponding value of p1  as from 

Eq.25.  is the measured period. Note that the 

product  p1, is constant (under experimental 

uncertainty). The last column gives the force constant 

of the spring defined as ki  (2 /0, i) 
2 

m, in one 

measurement

. 

m/M p1 

from Eq.25 
  (s) 

measured 

 p1    (s) ki  (N/m) 

0.520 0.664 0.636 0.4226 12.601 

0.562 0.686 0.609 0.4183 12.861 

0.570 0.690 0.612 0.4228 12.589 

0.449 0.624 0.674 0.4203 12.738 

0.389 0.586 0.711 0.4169 12.947 

0.297 0.519 0.806 0.4186 12.842 

Table II 

 

From Eq.30, the force constant of the heavy spring is 

12.76 N/m. As uncertainty of the measurement, let us 

assume   (12.9512.59)/2 N/m =  0.18 N/m. The 

periods have been measured with stop-watches, over 

20 oscillations, avoiding the count of the first 

oscillations. 

 

We can compare this dynamical evaluation of the 

force constant with that obtained from static 

measurements. Let us use a reference mass  mref = 

0.0648 kg; this mass provokes a deformation, which 

adds to the deformation given by gravity. We 

measure a distance dref of 16.0 cm, as that given in 

Figure 4. This is the distance from the supporting 

stand to the hook at the end of the spring (see Fig.4). 

 

The force constant of the heavy spring will be:  

k=g (M  mref)/(D  dref)  (31) 

 

 
Figure 4 

 

Table III shows the result of measurements, with 

several hanged masses, for g=9.8 m/s
2
.  
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M (kg) D (cm) k (N/m) 

0.0817 17.3 12.740 

0.1096 19.4 12.913 

0.1014 18.65 13.535 

0.1000 18.5 13.798 

0.1270 20.5 13.546 

0.1918 25.5 13.101 

Table III 

 

The average value is 13.27 N/m. The uncertainty is  

(13.80−12.74)/2 N/m =  0.53 N/m. There is then a 

small overlap between the result of this static 

measurement with the previously proposed 

dynamical one. 

 

The static evaluation is based on the measurement of 

lengths. In the laboratory, we used a rule for 

carpentry and this is why we proposed in Eq.31 to 

choose a reference mass and a reference length, 

measured with the spring supporting the reference 

mass, instead of the length of the heavy spring at rest 

under the effect of its sole weight. The rule for 

carpentry is not the best tool for measuring distances, 

but the proposed approach can be surely refined. 
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