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Content Download in Vehicular Networks
in Presence of Noisy Mobility Prediction

Francesco Malandrino, Student Member, IEEE, Claudio Casetti, Member, IEEE,
Carla-Fabiana Chiasserini, Senior Member, IEEE, and Marco Fiore, Member, IEEE

✦

Abstract—Bandwidth availability in the cellular backhaul is challenged
by ever-increasing demand by mobile users. Vehicular users, in par-
ticular, are likely to retrieve large quantities of data, choking the cel-
lular infrastructure along major thoroughfares and in urban areas. It is
envisioned that alternative roadside network connectivity can play an
important role in offloading the cellular infrastructure. We investigate
the effectiveness of vehicular networks in this task, considering that
roadside units can exploit mobility prediction to decide which data they
should fetch from the Internet and to schedule transmissions to vehicles.
Rather than adopting a specific prediction scheme, we propose a fog-of-
war model that allows us to express and account for different degrees of
prediction accuracy in a simple, yet effective, manner. We show that
our fog-of-war model can closely reproduce the prediction accuracy
of Markovian techniques. We then provide a probabilistic graph-based
representation of the system that includes the prediction information
and lets us optimize content prefetching and transmission scheduling.
Analytical and simulation results show that our approach to content
downloading through vehicular networks can achieve a 70% offload of
the cellular network.

Index Terms—Vehicular networks, content downloading, cellular net-
work offloading, time-expanded graphs.

1 INTRODUCTION
Thanks to new cellular technologies, spearheaded by the
much-vaunted blazing speeds of LTE-Advanced, consumers
are lulled into the false conviction that every information
content is always readily available onto their tablets or smart-
phones. While this may be true for home users, mobile users
are in for a rude awakening.

Many observers call for the development of alternative
communication systems to support and relieve the congested
cellular network in areas where the demand by mobile users
is expected to be the thickest. In particular, large-sized con-
tent downloading accounts for most of the traffic in access
networks [1], and is thus a prime candidate for relief efforts.
Its requirements are very different from those of information
dissemination [2], [3], uploading of user-generated data [4] or
content sharing [5]. Solutions designed to offload these kinds
of traffic are thus unfit for the scenario we consider.

In the context of vehicular networks, where data recipi-
ents are drivers, passengers and on-board vehicle computers,
content downloading becomes even more challenging. Several
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works in the literature have explored the deployment of
roadside units (RSUs) that provide spotty radio connectivity
to passing-by vehicles. Communication occurs through the
802.11p technology, according to what is commonly referred
to as an Infrastructure-to-Vehicle (I2V) paradigm, and also
leveraging opportunistic Vehicle-to-Vehicle (V2V) connec-
tivity. Previous work, e.g., [6]–[8], has established that, in
order to efficiently support content downloading, (i) RSU
deployment should target the areas expected to be the most
crowded by vehicles and (ii) I2V content transfer should be
complemented by V2V data relaying.

A part of the picture is still missing, though. Given the
ability to deliver information to passing-by vehicles through a
carefully planned-out RSU deployment, what exactly should
be delivered to them, and through which infrastructure? On
the one hand, uninterrupted 802.11p coverage of all roads is a
requirement that is too hard to come by, since duplicating the
existing cellular infrastructure would imply skyrocketing costs.
On the other hand, a spotty coverage could meet expectations
only on condition that the short time under coverage is fruitful:
RSUs should prefetch the content so as to have it promptly
available for passing-by vehicles requesting it. Matching be-
tween storage at RSUs and demands by vehicles is, however,
easier said than done. One possibility is that RSUs have access
to the content demand and to predictions of mobility patterns,
and exploit them to make prefetching decisions, as in [9].
These decisions however should be taken in view of both
direct I2V transfers to downloaders and transmissions to relay
vehicles deemed to meet downloaders later on.

To our knowledge, this work is the first to jointly study
content prefetching at RSUs, scheduling of I2V transmissions
and management of V2V relay transfers for data offloading,
given a possibly inaccurate mobility prediction. We describe
our system model in Sec. 2, and proceed as follows.

(i) We model the uncertainty affecting a mobility prediction
through a fog-of-war1 probabilistic representation of the inter-
node contacts. Specifically, given the exact knowledge of the
vehicular mobility and inter-node contacts, we add a noise
on the contact presence, duration and rate, as described in
Sec. 3. By varying the noise level, our fog-of-war model can
reflect different degrees of prediction accuracy. As a result,

1. The term “fog-of-war” is commonly used by the gaming industry when
information is increasingly hidden far away from the player’s viewpoint.
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the model is not a mobility prediction technique in itself,
rather, a convenient way to express the prediction uncertainty
and study its effect on the content downloading performance.
We verify that the fog-of-war model effectively applies to
predictions obtained with practical techniques. Specifically, we
show the tight match existing between the output of our fog-
of-war model and the accuracy of forecasts obtained through
Markovian techniques of different order (Sec. 3.3).

(ii) The output of the fog-of-war model is then used to build
a time-expanded graph with probabilistic weights, representing
the evolution of the inter-node contacts (Sec. 4.1).

(iii) We exploit such a graph to formulate a non-integer
linear programming (LP) optimization problem. The aim is to
maximize the amount of data that the system can offload to
the vehicular network. By solving the LP problem, each RSU
can jointly take content prefetching and scheduling decisions
(Sec. 4.2). The data forwarded by RSUs toward relays are
then delivered to downloaders, according to different schemes
(Sec. 5).

(iv) The offloading efficiency of the system outlined above
is compared against benchmark solutions, in the reference
scenario introduced in Sec. 6.1. We then assess the capability
of a vehicular network to relieve the cellular infrastructure in
the presence of location-specific content (Sec. 6.2). Validation
results obtained via simulation are also presented in Sec. 6.3,
before discussing related work in Sec. 7 and drawing conclu-
sions in Sec. 8.

2 SYSTEM MODEL
We consider a 802.11p-based vehicular network composed of
mobile users and fixed RSUs, deployed over a road topology
that is also covered by a cellular infrastructure. As depicted in
Fig. 1, RSUs provide a spotty, yet high-throughput, inexpen-
sive connectivity to vehicles. The cellular network, conversely,
guarantees seamless coverage at possibly high connection
costs. We consider vehicles to be equipped with a cellular in-
terface. Also, as foreseen by current standardization activities,
we assume that RSUs and vehicles have one 802.11p interface
only, and that I2V and V2V communications occur on different
frequency channels2. The system also includes Internet-based
servers: beside the server providing data content, we assume
the availability of a vehicular traffic manager and of a server
handling queries from vehicular users [10], [11].

Users of the vehicular network may become downloaders,
each possibly wishing to retrieve a different type of data
from the Internet-based content server. Since vehicles have
both a 802.11p and a cellular radio interface, multiple transfer
paradigms for content delivery are possible. More precisely,
downloaders can exploit the vehicular network to perform
direct transfers from the RSUs, or to be assisted by other
vehicles acting as relays. Such relays forward traffic either
through a connected multi-hop path or through a carry-and-
forward technique, i.e., vehicles that store and carry the data
before delivering them to the target downloader. Alternatively,

2. The extensions to the cases where the nodes have more than one
interface, and I2V/V2V communications occur on the same channel are
straightforward.

Fig. 1. Network system.

downloaders can resort to cellular transfers, in order to retrieve
the desired content. Examples of these transfer paradigms are
given in Fig. 1.

We model downloader demands by considering what they
request and how they get it, as follows. As far as the what is
concerned, we address both the cases of location-independent
and location-specific content demand [12]. Regarding the how,
downloaders try at first to obtain the data through inexpensive,
opportunistic exchanges with RSUs and relay vehicles. If the
desired content cannot be fully retrieved within a timeout T ,
the downloaders will pay to fetch the remaining portion via a
cellular transfer. Note that this model provides an incentive for
users to offload the cellular infrastructure through the vehicular
network.

Next, we detail the operations that the network and the users
undertake during the content downloading process.

A user wishing to retrieve a content generates a request
to the query management server, via either an RSU or the
cellular network [9]. The query includes the content identifier
and the position of the requesting vehicle. The query manager
forwards the pending request to the RSUs in the area where
the downloader is traveling. RSUs fetch portions of the content
from some server storing it. Finally, they deliver the data to
the target downloader directly, or to a relay vehicle deemed to
meet the downloader later on.

In order to efficiently use network resources over the
backbone and the airtime on the wireless medium, RSUs
must take timely content prefetching and scheduling decisions.
Thus, they try to “foresee” future direct or relayed transfer
opportunities that involve downloader vehicles [13]. To this
end, the aforementioned traffic manager collects information
on the position, speed and heading of cars through a real-time
traffic monitoring system, such as those currently implemented
by recent navigation solutions [10], [11]. By exploiting such
data, the traffic manager predicts the evolution of vehicle
movements over a near-future time horizon H , with a time
granularity δ (hereinafter referred to as time step). The pre-
dicted location of cars over the horizon H is then leveraged by
the traffic manager to determine future I2V and V2V contacts
(i.e., wireless links established by pairs of neighbors within
communication range3). We stress that the traffic manager can
use any technique to predict vehicle mobility and contacts.

3. Any propagation model or measurement-based observation can be used
to compile the set of I2V and V2V contacts.
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Each contact may logically extend over time, hence over
multiple steps. A contact is characterized by its probability to
occur and its expected data rate, whose value may vary during
the contact duration. Information on foreseen I2V and V2V
contacts are then periodically issued by the traffic manager to
the RSUs, at intervals of duration H . Each RSU can enhance
the traffic manager prediction by including the information
about the actual contacts it has with passing-by vehicles. The
RSU becomes aware of such contacts upon receiving heartbeat
messages, e.g., ETSI CAM messages or those described in the
SAE J2735 dictionary set.

Based on the overall contact information and taking into
account the data retrieval rate B from the content server, RSUs
make locally-optimal decisions on which data to prefetch and
toward which vehicles (either relays or downloaders) they
should be transmitted. V2V transfers occur if RSUs delegate
portions of content to relays, and these are in range of (or
subsequently meet) a downloader interested in such content.
Multi-hop data transmissions, whether of the connected for-
warding or of the carry-and-forward type, are limited to two
hops from the RSU, since this already allows for nearly
optimal performance [8], [14]. For the same reason, we do
not compare our approach against multi-hop routing protocols
for DTNs, as their complexity is unnecessary in a vehicular
network with infrastructure. We also assume that all vehicles
are available for traffic relay whenever they are not receiving
data from an RSU. Given the storage capabilities of envisioned
vehicular network nodes, the memory capacity at RSUs and
vehicles is not considered to be an issue.

Finally, errors in the message delivery process due to
inaccurate prediction or transmission failure are handled as fol-
lows. Each downloader acknowledges correctly-received data
to the Internet-based content server through, e.g., the cellular
network. That way, the content server keeps track of the data
downloaded by each user. When an RSU needs to prefetch data
to be delivered to a downloader (as determined by the solution
of the optimization problem), it queries the content server for
data that such a downloader still has to receive. Portions of
content lost during the previous prediction time intervals are
thus implicitly rescheduled for transmission in the upcoming
prediction interval. Note that a simple timeout mechanism is
enough to avoid that on-the-fly data (e.g., packets carried by
relays deemed to later meet the downloaders) are rescheduled
for transmission. Indeed, a timeout set to H steps suffices to
that end, since an RSU only schedules data transfers over such
a time horizon.

3 MODELING THE PREDICTION ACCURACY
In order to account for the uncertainty of the traffic manager
prediction in the downloading process, we propose a fog-of-
war model. Representing the forecast accuracy, our model can
apply to predictions obtained through any technique.

As detailed in Sec. 3.1, the construction of the fog-of-war
model starts from the exact knowledge of vehicular mobility
and takes the corresponding inter-node contacts as ground
truth. Then, uncertainty is represented by adding a noise that
affects presence, duration and rate of the contacts. Sec. 3.2

assesses the impact of the model parameters, while Sec. 3.3
validates our approach when the traffic manager employs
Markovian prediction techniques.

3.1 The fog-of-war model
Let P(u, H) be a contact prediction generated by the traffic
manager at step u, covering the following H steps. Specifi-
cally, P(u, H) defines: (i) the presence of each I2V or V2V
contact deemed to occur between time steps u and u + H ,
(ii) its duration and (iii) its data transmission rate. We assume
the presence, duration and rate of contacts in P(u, H) to be
affected by errors, which we model as follows.

We take the mobility trace and the resulting inter-node
contacts as ground truth. For each time step k ∈ [u, u+H), we
process the contacts that start at k. In order to model the error
affecting the prediction, we add a noise to the contact presence,
duration and rate. The noises affecting the three parameters are
assumed i.i.d. Gaussian-distributed variables with zero mean
and variance σ2

p , σ2
d, σ2

r , respectively. Noises affecting the
parameters of different contacts are also considered to be i.i.d.
random variables. The choice of a Gaussian distribution is
motivated by the need to describe the effect of several additive
sources of error on the prediction (e.g., uncertainty on node
positions, propagation conditions, link establishment proce-
dures). This assumption is validated in Sec. 3.3. In addition,
in Sec. 6.3, we show the marginal impact of neglecting the
correlation that may exist among errors affecting the contact
presence, duration and rate.

The variances σ2
p, σ2

d , σ2
r model the accuracy of the pre-

diction, since the larger the Gaussian noise variance, the less
precise the estimation. We let the variance grow linearly 4 with
the prediction time advance, as contacts occurring further in
time are increasingly hard to forecast. Our results in Sec. 3.3
support such an assumption.

Given a contact, we first extract a realization ν of the
Gaussian noise with variance σ2

p = σ2
0,p(k−u) for the presence

of I2V contacts and σ2
p = 2σ2

0,p(k−u) for the presence of V2V
contacts. Indeed, we assume that the uncertainty affecting the
predicted positions of two mobile end-points results in additive
noise. Hence, we let the variance value for V2V contacts be
twice as large as that for I2V contacts5. Such an assumption is
validated in Sec. 3.3. If |ν| ≤ 1, we assign a probability 1−|ν|
to the contact presence that expresses the likelihood with
which the traffic manager expects the contact to take place.
Otherwise, the contact is evicted and a new, spurious one is
created and assigned a probability equal to min{|ν|−1, 1}. The
nodes sharing the spurious contact are chosen randomly among
the network nodes. The spurious contact inherits the duration
and data link rate of the true contact that it has replaced.
This simple model captures the possibility that prediction
techniques underestimate actual contact opportunities when
0 < |ν| ≤ 1, and wrongly forecast future contacts when
|ν| > 1. Clearly, spurious contacts, appearing with the same

4. We assume a linear dependence because it is simple and, as shown later
in this section, more accurate than other dependency functions.

5. The sum of two independent Gaussian random variables is still Gaussian-
distributed with variance equal to the sum of the variances of the two
components.
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Fig. 2. Left: contact flip probability vs. the prediction time-
span, for σ2

0,d = σ2
0,r = 0 and varying σ2

0,p. Dots represent
the average probability. Right: number of contacts for
each vehicle, for σ2

0,p = σ2
0,r = 0 and varying σ2

0,d.

frequency with which actual contacts are evicted, are more
frequent if the prediction accuracy is low (i.e., high σ2

0,p) and
the estimation is pushed far ahead in time (i.e., large k − u).

For each contact indicated by the above procedure (be it
correct or not), we add to the duration of the contact a noise
with variance σ2

d = σ2
0,d(k − u). If the obtained value is not

positive, the contact is evicted. Likewise, a noise with variance
σ2

r = σ2
0,r(k − u) is extracted once for the whole contact

duration and added to the link data rate computed at each step.
The resulting value is bounded so that it is neither negative nor
greater than the maximum data rate. Note that, by introducing
errors in the contact duration and data rate prediction, our fog-
of-war model also accounts for wrong estimates of the number
of contacts by the traffic manager.

3.2 Impact of the model parameters
We take as reference scenario the real-world road topology and
the mobility trace described in Sec. 6.1. We set δ = 1 s and
H = 30 steps, and we investigate the impact of the fog-of-war
model parameters in terms of prediction quality.

The left plot in Fig. 2 presents the probability of contact
flip, i.e., that an actual contact in the prediction is removed
and a spurious one is created. The x-axis shows the time span
between the contact inception (step k) and the prediction com-
pilation (step u). The curves are obtained for σ2

0,d = σ2
0,r = 0

and different values of σ2
0,p, with σ2

0,p = 0 corresponding to a
flawless prediction. As expected, the larger the σ2

0,p, the higher
the probability to predict spurious contacts. Also, the time span
k − u has a significant impact, as contacts established further
in the future become less predictable and are affected by a
higher flip probability. However, contacts already existing at
step u have a null distance in time, hence they are always
correctly predicted.

In the plot, the dots on the curves represent the flip proba-
bility computed over all actual contacts in the mobility trace.
Note that for σ2

0,p ≥ 0.5 about 25% of predicted contacts
are spurious, while for σ2

0,p = 0.1 we have a quite reliable
prediction (about 9 out of 10 actual contacts are correctly
forecast within H).

The right plot in Fig. 2 shows the impact of σ2
0,d, when

σ2
0,p = σ2

0,r = 0. More precisely, we report the total number
of contacts per vehicle, over the vehicle trip, as the error on the

contact duration (σ2
0,d) varies. Clearly, σ2

0,d = 0 corresponds
to the actual contact duration statistics. On the x axis, the
vehicles are ordered according to the increasing number of
actual contacts they have. Note that the larger the σ2

0,d, the
higher the probability that contacts are evicted and do not
appear in the prediction at all. The impact of σ2

0,d is evident
for vehicles with a total number of contacts below 30: a
significant percentage is represented by shorter contacts that
tend to be evicted. Under moderate vehicle-density conditions,
such vehicles are typically those traveling on secondary roads.

Results showing the effect of σ2
0,r on the data rate between

nodes are omitted because of the marginal impact that this pa-
rameter has on content downloading performance (see results
in Supplemental Material).

3.3 Model validation
To validate the fog-of-war model, we assume that the traffic
manager employs Markov techniques to generate the mobility
prediction. This choice is motivated by the fact that such
techniques combine limited complexity with good accuracy.

The traffic manager first collects the latest available infor-
mation on vehicle states (in our case corresponding to the data
in the mobility trace for the current step). This information is
then fed to a Markovian prediction technique so as to compile
a prediction of future vehicle positions. From the latter, the
inter-node contacts are forecast as described in Sec. 2.

We compute the accuracy of the Markovian prediction by
comparing it to the ground truth. Results are used to validate
some of our assumptions and to calibrate the fog-of-war
model, i.e., to set σ2

0,p, σ2
0,d and σ2

0,r. Finally, validation
tests show that the resulting fog-of-war instances can capture
the output of the Markov prediction techniques. A similar
validation procedure can be applied to match the outcome of
other prediction techniques as well.

To compile the Markovian prediction, we divide our road
topology into segments, each of which is a few meters long.
Let S be the set of such segments. At every time step k,
each vehicle vl in the trace is associated with exactly one
segment; we denote by rk

l the variable representing the road
segment to which vehicle vl is matched at step k. For
each vehicle we build a Markov chain whose state is given
by (rk

l , . . . , rk−q+1
l ) ∈ Sq , where q is the chain order.

By considering the trajectories of all vehicles in the trace,
we compute the transition probabilities P(rk+1

l = si|rk
l =

sj , . . . , r
k−q+1
l = sm), with si, sj , . . . , sm ∈ S.

Let u be the time step at which the traffic manager generates
its forecast. To obtain the mobility prediction of each vehicle
in the trace, we use its associated Markov chain, and compute
the probability that the vehicle is at a given position at time
step k ∈ [u, u + H). Clearly, the higher the order of the
Markov chain, the higher the prediction accuracy and model
complexity. Also, based on the distance between the segments
occupied by any two vehicles6, we determine whether there is
a V2V link between them, as well as the link data rate.

6. We map each segment onto its middle point. Since segments are much
shorter than the vehicle radio range, the resulting error is negligible.
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TABLE 1
Estimated values for the fog-of-war model parameters

Noise variance q = 1 q = 2 q = 3

σ2
0,p 1.68 1.22 0.87

σ2
0,d 4.04 3.07 2.99

σ2
0,r 1.47 1.33 1.31

By comparing the Markovian contact prediction to the
actual trace, we compute the flip probability as well as the
distribution of errors in estimating contact duration and con-
tact data rate. Then, using a maximum likelihood estimation
technique [19] on the flip probability and on the variance
of the estimation errors, we determine the values of σ2

0,p,
σ2

0,d, σ2
0,r that yield the best match between the Markovian

prediction and the output of our fog-of-war model. The values
are summarized in Table 1. Results clearly indicate that a more
accurate prediction is obtained (i.e., the values of σ2

0,p, σ2
0,d

and σ2
0,r decrease) as the chain order q increases.

Furthermore, we carry out the Kolmogorov-Smirnov test on
the distribution of estimation errors to verify that they are
Gaussian. As an example, in Table 2 we present the result of
the goodness-of-fit test for the error distribution in estimating
duration and data rate of V2V contacts, again for different
chain orders. In all cases, the p-value is higher than 0.1, which
indicates a good fit to the Gaussian distribution.

In Fig. 3, we show the accuracy of the Markovian prediction
with respect to the actual trace, as well as the effectiveness of
our fog-of-war model in matching the prediction. In particular,
Fig. 3(a) and Fig. 3(b) present the flip probability when a
third-order Markov chain (i.e., q = 3) is used, for V2V and
I2V links. The two curves match in the case of both V2V
and I2V contacts. Also, note that the values of the variance
affecting the contact presence, reported in the legend, justify
our assumption that the noise variance for V2V contacts is
twice that for I2V contacts. Figs. 3(c) and 3(d) depict the
cumulative distribution function (CDF) of, respectively, the
contact duration and the data rate in the case where a third-
order Markov chain is adopted. It can be seen that the fog-
of-war model closely matches the output of the Markovian
prediction, both when the latter deviates from the actual trace
(Fig. 3(c)) and when the two overlap (Fig. 3(d)). The results
in Fig. 3(d) confirm that σ2

0,r has a limited impact on the
prediction quality.

Finally, we validate the assumption on the noise variance
being linearly dependent on the time span (k−u). To this end,
we focus on the noise on the contact presence and consider
two alternative hypotheses about the time dependency of the
variance σ2

p , namely, logarithmic (i.e., σ2
p = σ2

0,p log(k − u))
and quadratic (i.e., σ2

p = σ2
0,p(k − u)2). For each hypothesis,

we compute the value of σ2
0,p that minimizes the mean square

error on the flip probability between the Markovian prediction
and the output of the fog-of-war model. The values of mean
square error attained in the linear, logarithmic and quadratic
cases are presented in Table 3, for different orders of the
Markovian model. Clearly, assuming a linear dependency
between σ2

p and the time span (k − u) provides the best
accuracy.

TABLE 2
Error on contact duration and rate: result of the

goodness-of-fit test for the Gaussian model

Error p-value
q = 1 q = 2 q = 3

Contact duration 0.18 0.22 0.25
Contact data rate 0.23 0.31 0.38

TABLE 3
Dependence between σ2

p and σ2
0,p: mean square error

under different assumptions

Hypothesis Mean square error
q = 1 q = 2 q = 3

Logarithmic 0.53 0.58 0.64
Linear 0.14 0.15 0.20

Quadratic 1.49 0.87 1.65

4 PREFETCHING AND SCHEDULING AT RSUS
Upon compiling the prediction P(u, H), the traffic manager
forwards it to each RSU. The RSU, in turn, updates it with
the I2V contacts with passing-by vehicles it has actually estab-
lished (whether they were predicted in advance or not). Such
contacts are assigned a probability equal to 1, while wrongly
predicted I2V contacts involving the RSU are assigned a
zero probability. Thus, each RSU Ri has its own prediction
Pi(u, H) and updates it as the time elapses, according to
the contacts it observes. The prediction is combined with
the information received from the query manager and used
to generate a directed time-expanded graph with probabilistic
weights (TEG-PW). Using such a graph, the RSU formulates a
non-integer LP problem that jointly optimizes data prefetching
and scheduling.

4.1 Building the TEG-PW
The prediction Pi(u, H) allows an RSU Ri to model the time
evolution of the contacts between network nodes through a
time-expanded graph. Since the prediction is based on discrete
time steps of duration δ, the same granularity is used in the
construction of the graph.

In the graph, each vehicle vl appearing in the prediction
Pi(u, H) at step k ∈ [u, u + H) is represented by a vertex
vk

l , whereas each RSU Ri is mapped at each step k onto
a vertex Rk

i . We denote by Vk and Rk the sets of vertices
representing, respectively, the vehicles and the RSUs at step k.
At every k, a directed edge connecting two vertices represents
the predicted contact between the corresponding pair of nodes.
Such edges are referred to as intra-step and correspond either
to I2V links, i.e., of the type (Rk

i , vk
l ), or to V2V links, i.e.,

of the type (vk
l , vk

m). The edge direction reflects the way data
flow over the network, i.e., I2V edges (Rk

i , vk
l ) point toward

vehicle vk
l while V2V edges (vk

l , vk
m) go from relay vk

l toward
downloader vk

m.
We denote the set of I2V edges during step k by Ek

R, and
that of V2V edges by Ek

v . Every intra-step edge in Ek
R and Ek

v

is assigned a finite weight, defined as follows. As previously
outlined, at the generic k ∈ [u, u + H), each contact in
Pi(u, H) is characterized by a probability of occurrence and
an estimated data rate. We thus include these two aspects in the
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Fig. 4. A sample set of contact events, left, and the corresponding TEG-PW, right, in presence of one RSU R1 and
three vehicles, the first of which (v1) is a downloader while the others (v2, v3) can act as relays. In the left plot, shadowed
areas represent halved transmission ranges, so that links exist when two shadowed areas touch or overlap, and break
when such areas become disjoint. The instants at which links are established or lost are indicated in the figure. Time
is fragmented into time steps of duration δ, and the network connectivity during each time step is represented by
a row of vertices in the TEG-PW, in the right plot. In the graph, we highlight paths that are representative of the
carry-and-forward (A), connected forwarding (B), and direct (C) transfer paradigms

weight of an intra-step edge. As an example, consider a V2V
contact between vehicles vl and vm at step k. We assign to
the edge (vk

l , vk
m) a weight w(vk

l , vk
m) = p(vk

l , vk
m)·b(vk

l , vk
m),

where p(vk
l , vk

m) is the estimated contact probability between
the two vehicles at k, and b(vk

l , vk
m) is the estimated maximum

amount of data that can flow over the link during that time
step. An identical discussion applies to I2V contacts.

Also, directed edges of the type (vk
l , vk+1

l ), or (Rk
i , Rk+1

i ),
connect vertices representing the same node at two consecu-
tive steps. Since they model the same node over time, they
represent the possibility that vehicles physically carry data
during their movement. We refer to these edges as intra-
nodal. Since we assume unlimited vehicle storage capabilities,
all intra-nodal edges are assigned an infinite weight. Note
that accounting for contact duration, rather than considering
them as atomic, allows to model critical aspects of real-world

communication, like channel contention.
Finally, the content server(s), from which RSUs retrieve

the data, are modeled as a vertex named α. The graph is
completed with edges (α, Rk

i ), from α to any vertex Rk
i ∈ Rk,

with weight equal to Bδ, i.e., the amount of data that can be
retrieved from the server in one time step.

A graphical example of the resulting TEG-PW is provided
in Fig. 4, in presence of one RSU R1 and three vehicles
v1, v2, v3, with v1 being a downloader and v2, v3 possibly
acting as relays. Fig. 4(a) depicts the spatio-temporal evolution
of vehicle movements, as foreseen by the traffic manager at
the first time step, for the following H = 10 steps. Such
a mobility prediction results in contacts between nodes; the
times at which links are established or lost are highlighted
in the figure. The TEG-PW built by the RSU R1 from the
presumed contacts is portrayed in Fig. 4(b), where time steps
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correspond to rows of vertices. Note that the graph, completed
by the vertex α that represents the Internet-based content
server(s), allows the modeling of all possible data transfer
paradigms. In the example, we observe that the RSU takes
scheduling decisions that lead to (i) direct download from the
RSU to the downloader, as in path C, (ii) connected forwarding
through 3-hops (time step u+3) and 2-hops (time step u+6),
as in path B, and (iii) carry-and-forward through the movement
in time of the relay v3, as in path A.

4.2 Making optimal decisions
At each step, RSU Ri takes its prefetching and scheduling
decisions. Specifically, each RSU determines: (i) which data,
not already stored, have to be prefetched, in order to be
transmitted to vehicles (accounting for the rate at which data
can be retrieved from the server); (ii) which data already
available7 at the RSU must be delivered via I2V current
contacts, i.e., to downloaders through direct transfers as well
to candidate relays deemed to meet downloaders later on.

RSUs take decisions with the aim to maximize the fraction
of content that users retrieve through ITS. The retrieval time
period is the minimum between the expiration of the timeout
T (after T , users fall back to cellular connectivity), and the
remaining steps for which a prediction is available. Thus, each
RSU formulates an optimization problem based on its TEG-
PW, as detailed next.

Let vm be a generic downloader that sends a request for
content c, and φk

m,c the fraction of the content that vm

downloads at step k through the vehicular network, i.e.,

φk
m,c =

1

Sc





∑

(vk
l

,vk
m)∈Ek

v

fc(v
k
l , vk

m) +
∑

(Rk
i ,vk

m)∈Ek
R

fc(R
k
i , vk

m)



 . (1)

In (1), Sc is the content size while fc(·, ·) is the expected flow
for content c over the edge between two vertices. Thus, φk

m,c

represents the fraction of data that can be transferred at step k
(the flow) over the edges of type (vk

l , vk
m) and (Rk

i , vk
m). Here,

vl and Ri denote, respectively, a relay and an RSU storing at
step k part of, or all, content c requested by vm.

Then, denoting by tm,c the step at which the generic
downloader vm sends the request for content c, each RSU
solves the following optimization problem:

max
∑

m

∑

c

min(tm,c+T,u+H)
∑

k=tm,c

φk
m,c , (2)

where u is the time step at which the RSU received the most
recent prediction. The three sums are over all downloaders
vm’s, all content c’s that vm has requested, and the time steps
k’s, respectively. The expected flows fc’s in φk

m,c that refer to
past time steps (i.e., since tm,c till the current step) have been
already determined, thus they are inputs to the problem. On
the contrary, fc’s referring to the current and future steps are
the problem decision variables.

Clearly, we have to ensure non-negative flows in the TEG-
PW. Beside that, from our definitions in Sec. 4.1, the following

7. Data cached at RSUs are modeled by the flow on intra-nodal edges.

b(Rk−1
i , vk−1

l ) = 10 Mbit

vk
m

p(Rk−1
i , vk−1

l ) = 0.7

p(vk
l , v

k
m) = 0.3

vk−1

l

vk
l

b(vk
l , v

k
m) = 10 Mbit

Rk−1
i

Fig. 5. Flow conservation: an example.

constraints hold:

fc(v
k
l , vk

m) ≤ w(vk
l , vk

m), fc(R
k
i , vk

m) ≤ w(Rk
i , vk

m) (3)

fc(α, Rk
i ) ≤ Bδ . (4)

Then, the evaluation of the expected flows must account for
the channel contention among network nodes as well as among
flows related to different content transfers. It follows that the
problem in (2) has to be solved under the additional constraints
listed below.
Flow conservation. If each downloader wants to fetch a
different content, the total flow for a content on outgoing
edges, scaled by the probability of contact occurrence, must
be equal to the total incoming flow for the same content. E.g.,
in the case of a relay vertex vl, we have:

∑

(Rk
i ,vk

l
)∈Ek

R

fc(R
k
i , vk

l ) =
∑

(vk
l

,vk
m)∈Ek

v

fc(vk
l , vk

m)

p(vk
l , vk

m)
+ fc(v

k
l , vk+1

l ) .

(5)
As an example, consider the 2-step evolution in Fig. 5, where
vm is a downloader for content c. Note that the transmissions
from Ri to vl and from vl to vm take place at different
steps, thus channel access has no effect here. Intuitively,
we can try to transfer 10 Mbit from Ri to vm, and we
will succeed with probability 0.7 · 0.3 = 0.21. Then, the
overall flow expected to be delivered to the downloader is
0.21 · 10 = 2.1 Mbit. However, if only the constraints in
(3) were applied on each of the two intra-step edges, the
expected flow should not exceed b times the edge probability.
Hence, we could incorrectly conclude that the expected flow
from Ri to vm is min{0.7 · 10, 0.3 · 10} = 3 Mbit. Instead,
imposing (5) for vertices vk−1

l and vk
l , it correctly results that

fc(R
k−1
i , vk−1

l ) = fc(vk
l , vk

m)/p(vk
l , vk

m), i.e., fc(vk
l , vk

m) =
2.1, which is consistent with our intuition.
Flow causality. If multiple downloaders request the same
piece of information, the flow conservation constraint in (5)
is replaced with the weaker constraint of causality. Indeed,
while flow conservation implies causality, the vice versa does
not hold.

In order for a node (be it a vehicle or an RSU) to transmit
some data (of any content) at step k, such data must have
been already downloaded from some other node at step h ≤ k.
In other words, we need to introduce a causality constraint,
imposing that, at each step k, the data downloaded by node
vm from node vl until k (as opposed to “during step k alone”)
are no more than the data vl obtained until k from other nodes.
Thus, for any edge (vk

l , vk
m) and content c, we have that:

k
∑

h=1

fc(vh
l , vh

m)

p(vh
l , vh

m)
≤

k
∑

h=1





∑

vh
n∈Vh\vh

m

fc(v
h
n, vh

l ) +
∑

Rh
i ∈Rh

fc(R
h
i , vh

l )



 .



8

Channel access. We assume that the nodes access the channel
using a IEEE 802.11p-based scheme with no hidden terminals,
since, as shown by our simulation results, their impact is
marginal. Thus, when vl transmits to vm, all neighbors of vl

and vm must be silent. Also, recall that V2V and I2V traffic do
not interfere, as they use different frequency channels. Then,
the channel access constraint for any vl at step k is:

∑

(vk
n,vk

o )∈Ek
v

c∈C

[vk
n,vk

l ]
fc(vk

n, vk
o )

b(vk
n, vk

o )
+

∑

(vk
p ,vk

o )∈Ek
v

c∈C

[vk
o ,vk

l ]

(

1 − [vk
p ,vk

l ]

)

·

fc(vk
p , vk

o )

b(vk
p , vk

o )
+

∑

(Rk
i

,vk
o )∈Ek

R
c∈C

[Rk
i ,vk

l ]
fc(Rk

i , vk
o )

b(Rk
i , vk

o )
≤ 1 ,

where C is the content set, while the indicator function is equal
to 1 if the specified vertices either are neighbors or coincide,
and it is 0 otherwise. The three sums on the left hand side of
the inequality account for the fact that the following events
cannot take place at the same time: (i) vl or a vehicle within
range of vl transmit, (ii) vl or a vehicle within range of vl

receive, (iii) an RSU that is a neighbor of vl transmits.
As far as RSUs are concerned, we still have to impose that

the total duration of the transmissions by a generic RSU Ri

cannot exceed one time step:
∑

(Rk
i ,vk

l
)∈Ek

R

∑

c∈C

fc(Rk
i , vk

l )

b(Rk
i , vk

l )
≤ 1 .

Summary and problem complexity. In conclusion, at every
time step, each RSU Ri formulates an optimization problem as
in (2), under the above constraints. The solution of the prob-
lem yields the optimal prefetching and scheduling decisions,
based on the prediction Pi(u, H). Since all constraints are
linear expressions with respect to the control variables fc’s,
which are continuous, the problem falls in the non-integer LP
category. Note that non-integer LP problems can be solved in
polynomial time and, in particular, our formulation is suitable
to be solved in real time [15].

The problem complexity is as follows. Denoting by R the
number of RSUs and by V the average number of vehicles in
the road layout at a given instant, the number of variables for
V2V and I2V flows is O

(

V 2H
)

and O(RV H), respectively.
The number of decision variables representing the intra-nodal
flows and the flows from and to the virtual vertices is O(V H).
The number of constraints is of the same order of magnitude
as the one of the number of variables.

5 CONTENT DELIVERY VIA V2V RELAYING
When the solution of the LP problem leads an RSU to schedule
transmissions to relays, the latter are in charge of delivering the
data to downloaders. We envision two approaches to manage
V2V data relaying, as detailed next.
RSU-driven relaying. The solution to the optimization prob-
lem formulated by each RSU, as described in Sec. 4.2, implic-
itly schedules relay-to-downloader data transfers in addition to
RSU-to-downloader and RSU-to-relay ones. Such a scheduling
is optimal with respect to the contact prediction available at

1 4 3

b(vk
l , v

k
n)vk

l vk
m vk

n
b(vk

l , v
k
m)

Mk
n,3

Mk
m,4

Mk
m,1

Fig. 6. Greedy relaying example. In phase 1, down-
loaders vm and vn have incomplete content 1, 4 and 3,
respectively, and announce the missing data. In phase 2,
relay vl, storing all missing data, allocates its airtime to
satisfy the requests by vm and vn, adopting a water-filling
approach.

each RSU and the requests it is aware of, and it can be
easily leveraged to drive V2V transfers. To that end, it is
sufficient that, based on the foreseen contacts, RSUs provide
relay vehicles with the identity of the downloaders the data are
intended for, as well as with the expected contact times. Relays
will then use this information to decide when to establish a
V2V connection with a given downloader.

Clearly, the performance of this approach highly depends
on the prediction accuracy. Uncertainty in contact estimation
can lead either to failure in delivering the data if a foreseen
V2V link turns out not to be established, or to a waste of
opportunities if an exploitable V2V contact is not predicted.
Also, the scheduling computed by different RSUs may result
to be incompatible since they are generated from different
TEG-PWs: this leads to unexpected channel contention and
consequent delays, or impossibility to deliver all data.
Greedy relaying. A dual approach to the RSU-driven relaying
consists in letting V2V transfers take place in a greedy fashion,
by exploiting any opportunity to make incomplete downloads
progress. In this case, the LP problem is only employed to
take prefetching and I2V transfer decisions at the RSUs, while
relays and downloaders autonomously manage V2V transfers.
The greedy relaying protocol we adopt involves three phases
and is repeated periodically.

In the first phase, each downloader advertises the list of
content it is currently downloading, detailing, for each of them,
the amount of data it needs to complete the transfer. As shown
in Fig. 6, a generic downloader vm will thus announce at
step k the quantity Mk

m,c = Sc ·
(

1 −
∑k−1

i=tm,c
φi

m,c

)

, for
each incomplete content c. The information on missing data
broadcast by downloaders is received by relays within range.
This phase requires loose synchronization (with accuracy of
the order of ms) among nearby vehicles. It can be easily
obtained through, e.g., GPS, and is already foreseen in the
current standards for vehicular networks.

In the second phase, each relay filters missing data re-
quests received from downloaders in its neighborhood, only
retaining those for content it actually stores. Then, based on
the Signal-to-Noise Ration (SNR) computed on the received
broadcast transmission, it estimates the link data rate b, hence
the time needed to complete each of the retained transfers.
For instance, in Fig. 6, the time computed by relay vl to
complete the transfer to downloader vm of a content c is
T k

m,c = Mk
m,c/b(vk

l , vk
m).

A relay then decides how to serve the requests by formu-
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lating and solving a max-min fairness problem. The rationale
behind such a choice is that a max-min fair allocation of the
airtime allows downloads to progress evenly, not favoring large
downloads over small ones or vice-versa, yet guaranteeing that
the medium is fully exploited. Note that, consistently with
our system assumptions, incomplete offloaded transfers do not
harm users, who can finish their download through the cellular
network. However the more content a user downloads through
the vehicular network, the lower the cost it incurs.

Denoting the total airtime to be used for data transfer by
∆, the relay assigns a portion of time 0 ≤ τk

m,c ≤ ∆ to each
downloader, such that the resulting allocation T = {τk

m,c}
solves the problem:

maxmin
T

(

[τk
m,c<T k

m,c]τ
k
m,c

)

, s.t.
∑

τk
m,c∈T

τk
m,c ≤ ∆ . (6)

A water-filling approach is employed to efficiently solve (6).
Once the locally-optimal allocation is obtained, in the third
phase relays start to transmit their data to target downloaders.
If multiple relays are neighbors, they will have to share the
medium according to the constraints on channel access defined
in the previous section.

6 PERFORMANCE EVALUATION
To evaluate the system performance, we first present the ref-
erence scenario in Sec. 6.1. We then discuss our model results
in Sec. 6.2, and assess the impact of our model assumptions
by comparing analytical and simulation results in Sec. 6.3.

6.1 Reference scenario
We now detail the mobility and communication scenario we
used to validate our fog-of-war model and we take as a refer-
ence to evaluate the performance of the content downloading
system. We consider a real-world road topology representing a
3×3 km2 section of the urban area of Turin, Italy, as portrayed
in Fig. 7. We focus on 30 minutes of road traffic, such
that, at any instant, the scenario includes about five hundred
vehicles simultaneously traveling over the area and taking part
in the vehicular network. The vehicular mobility has been
synthetically generated using the SUMO simulator, and it is
representative of average traffic conditions in the area [16].
The time granularity of the resulting mobility trace is 1 s,
hence we set the granularity of the traffic manager prediction
and the periodicity of the execution of the V2V data relaying
protocol to δ = 1 s. Results for a real-world vehicular trace
are included in the Supplemental Material.

Fig. 7 also depicts the default deployment that we assume
for the roadside infrastructure, with 10 RSUs located at the
most crowded intersections, represented by green dots. This
corresponds to a rather sparse RSU density of 1 RSU/km2. As
for the placement strategy, in [8] it is shown that deploying
RSUs at major intersections allows vehicular-based download-
ing to perform close to the optimum.

With regard to the communication technology, we assume
that nodes use the 802.11p protocol with data transmission
rate adaptation. It follows that the value of the achievable
network-layer rate between any two nodes is set according to
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Fig. 7. Road topology (left) and network-layer rate (right).

their distance. We refer to experimental results in [17, Fig. 5]
to derive the values shown in Fig. 7, and we use them as
samples of the achievable network-layer rate. Also, we limit
the maximum radio range of any node to 200 m since, as stated
in [17], this distance allows the establishment of a reliable
communication in 80% of the cases.

As for the cellular network, we assume that full cellular
coverage of the area is available. A user can always com-
plete its download through the cellular infrastructure if it
could not retrieve the whole content through the vehicular
network within T seconds. Unless otherwise specified, we set
T = 120 s, a value suitable for delay-tolerant applications.
Results for different T ’s, including values suitable for quasi
real-time services, are available in the Supplemental Material.

User content demand is modeled by assuming that 100
content items are available and have the same size Sc =
10 MBytes. The per-user request rate is Poisson distributed
with rate λ = 0.005. When location-specific content is
considered, we identify the vehicular flows8 in the mobility
trace and assign identical demands to cars in the same flow.

Finally, we assume that the traffic manager generates its
predictions every 30 s, forecasting contacts in the next 30
seconds. Since δ = 1 s, this implies H = 30 in the following.

6.2 Performance of content downloading
We evaluate the effectiveness of offloading content download
from cellular to vehicular networks, in the reference scenario
previously described.

We first assume (i) a content demand process where each
content is requested by vehicles with equal probability, (ii)
unlimited time validity for content, and (iii) B = 100 Mbit/s,
i.e., high-bandwidth links connecting the RSUs with the con-
tent servers. Note that this essentially implies ideal vehicular
network operation, as RSUs need to download content only
once, thanks to their unlimited cache size and the infinite
content validity. We refer to this system configuration as our
baseline scenario. The rationale is that it allows us to study
the wireless portion of the system, while avoiding bias due to
the demand distribution or to backbone limitations.

As a second step, we relax the assumptions on the RSU
content retrieval operation, content demand and validity, and

8. We run the κ-means clustering algorithm [18] on the mobility trace,
and consider clusters, detected in consecutive steps and having the closest
centroids, as snapshots of the same flow. We use κ = 5 so as to track the 5
largest vehicle groups (each turns out to include at least 10 vehicles).
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Fig. 8. Performance of cellular network offloading via vehicular communication, in the baseline system scenario.

investigate: (i) a constrained system configuration, where the
content validity is limited in time and the RSU backbone band-
width is reduced; (ii) a location-specific system configuration,
where the content requested by vehicles is influenced by the
traffic flow they belong to. The latter configuration allows us
to compare the offloading performance of a prediction-based
scheme to that of a push-based scheduling based on content
popularity only [20].

6.2.1 Baseline scenario
The performance of the offloading process in the baseline
scenario is presented in Fig. 8(a), which portrays the average
fraction of requested content that a vehicle can successfully
download through the vehicular network before the expiration
of the timeout T . In the following, unless otherwise specified,
the results have been obtained as σ2

0,p varies, under the greedy
relaying scheme and for σ2

0,d = σ2
0,r = 0.

The offload fraction is broken down into content retrieved
directly from RSUs and content obtained from relays through
V2V communication, and it is compared against the ideal
offload performance. The latter is derived by solving the
optimization problem for σ2

0,p = 0, a very large prediction
horizon (H = 300) and assuming that future user requests are
known a priori; this enables perfect I2V and V2V scheduling.

Firstly, we observe that vehicular networks can relieve
the cellular infrastructure of 70-80% of the cost of content
download. Secondly, a sizable contribution comes from V2V
relaying, bearing between 30 and 60% of the content transfer
effort. This confirms that opportunistic transfers are highly
beneficial in the offload process. Thirdly, the overall perfor-
mance is not too far from the ideal one, which would allow a
90% offload.

The impact of the accuracy of the contact prediction is
shown by varying σ2

0,p. Quite surprisingly, very accurate pre-
dictions (low values on the x axis) result in a performance that
is just slightly better than that scored by almost random contact
estimations (high values of σ2

0,p). Inaccurate predictions lead
however to a reduced contribution of V2V with respect to I2V
transfers, as the former drops from 60% to less than 30%.

The actual cost of an imprecise contact prediction is re-
vealed by Fig. 8(b), which shows the offload efficiency, i.e.,
the ratio of the amount of data delivered to a downloader
to that transmitted by the RSUs (to either downloaders or
relays). A low efficiency implies a waste of wireless resources
at the RSUs, while a high efficiency means that only useful
vehicular-based transfers are performed. The efficiency can be

higher than 1, since a relay can download some content (or part
of it) and then provide it to multiple downloaders interested in
the content. The plot clearly shows that, in order to maintain
high offload fractions, the less precise the information on
future contacts, the larger the amount of data the RSUs have
to transfer to relays.

Another interesting fact underscored by Fig. 8(b) is that
RSU-driven relaying consistently performs worse than the
greedy approach. The reason for such a behavior is that
the amount of data transmitted by RSUs is the same in
either case, but the former is unable to exploit data transfers
to future downloaders (of which RSUs are unaware). This
is an important contribution to the performance, unlike the
optimized RSU-driven scheduling that is beneficial only in the
rare case of multiple, simultaneous relay-downloader transfers.
As a consequence, the greedy approach is to be preferred and
we will focus only on it in the following.

Fig. 8(c) further details the offload performance, showing
the CDF of the fraction of content that each downloader can
retrieve through the vehicular network. Results are shown for
quite accurate (σ2

0,p = 0.1) and rather imprecise (σ2
0,p = 1)

predictions, and benchmarked against the ideal case. The
CDFs clearly identify two larger classes of downloaders: those
that can get a very small percentage (possibly zero) of the data
they request, and those (over 50% of the total) that can obtain
almost all (80% or more) of the data through the vehicular
network. These two categories correspond to users traveling,
respectively, on secondary roads and main thoroughfares. The
former are seldom under RSU coverage and experience fewer
contacts with (relay) vehicles. Interestingly, the latter do not
seem to be affected by σ2

0,p, as curves are very close for
high values on the x axis. On the contrary, the percentage of
downloaders unable to get any data is sensibly reduced as the
contact estimation precision grows. We can thus conclude that
an accurate prediction is most useful to offload traffic destined
to for hard-to-reach users.

Finally, Fig. 8(d) portrays the CDF of the delay in content
delivery through the vehicular network. A large data portion,
amounting to 70% of the content size, can be obtained within
a short time span (approximately 20 s). Results are similar
under ideal and precise contact predictions. However, in the
ideal case, the higher fraction of downloaded content leads
to an increased latency for users on unfavorable routes. An
inaccurate contact prediction, instead, yields higher delays.

Tab. 4 shows the offload fraction for varying σ2
0,p and num-

ber of deployed RSUs. As expected, increasing the number
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Fig. 9. Vehicular-based download performance in the
baseline and constrained scenarios.

of RSUs favors the offloading process. However, improving
future contacts estimation can compensate for a less perva-
sive RSU coverage. Indeed, by cross-checking similar offload
fractions over different columns, we note that an accurate
prediction requires between 20 and 30% fewer RSUs, while
maintaining similar performance.

The benefits of an accurate prediction are also shown in
Tab. 5, which reports the offload fraction for different values
of σ2

0,p and T (the time after which users start retrieving data
from the cellular network). Indeed, the higher the T , the larger
the amount of data downloaded through the vehicular network.
However, improving the forecast reliability pays significantly
more than delaying the use of the cellular network.

In conclusion, our results show that vehicular networks are
a viable alternative, or a complementary solution, to cellular
networks for content downloading by mobile users. In partic-
ular, if a relatively reliable mobility prediction is available,
the offload of the cellular infrastructure can be achieved by
sparing wireless resources, better serving downloaders on
secondary roads, reducing the download latency, and lowering
the RSU deployment cost. Furthermore, an imprecise mobility
prediction has a relatively small impact on the actual offload
fraction, but it significantly impairs the system efficiency.

6.2.2 Constrained scenario
Here, we focus on the case of RSU backbone links with
bandwidth limited to B = 10 Mbps and content expiring after
an exponentially distributed time with mean equal to 200 s.
The latter condition forces, upon expiration of a content, both
RSUs and downloaders to discard any portion of the content
they have obtained, and restart the download from scratch (if
they have not completed it).

TABLE 4
Offload fraction as the number of RSUs and σ

2
0,p vary

!
!

!
!

!
!

!
!!

σ
2
0,p

No. RSUs
6 8 10 12 14 16

0.1 0.55 0.67 0.76 0.79 0.92 0.94
1 0.48 0.57 0.66 0.71 0.82 0.84

TABLE 5
Offload fraction as the timeout T and σ

2
0,p vary

"
"

"
"

"
""

σ
2
0,p

T [s]
60 120 180 240

0.1 0.69 0.75 0.78 0.80
1 0.58 0.66 0.71 0.72
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Fig. 10. Impact of location-specific content on download
performance and comparison between prediction- and
content popularity-based approaches.

The offload fraction obtained in such a constrained config-
uration is presented and compared to our baseline in Fig. 9.
More precisely, the left plot shows the average offloading
fraction as σ2

0,p varies, while the right one details the per-
downloader CDF of the offload fraction. The first plot clearly
highlights that the introduction of the constraints leads to
an unchanged trend with respect to the contact prediction
accuracy, at the cost of a performance reduction. Interestingly,
the performance drop mainly concerns the download via V2V
relaying, since, upon expiration of the content, relays have
to discard the data and cannot help in the delivery any
longer. In the second plot, we can once more observe how
a constrained scenario affects downloaders on unfavorable
routes (e.g., traveling on secondary roads).

6.2.3 Location-specific content scenario
We now evaluate the offload performance in presence of
location-specific content. Users belonging to the same ve-
hicular flow request content according to the same Zipf’s
distribution with exponent 2, and users belonging to different
vehicular flows request items within disjoint sets of content.
Vehicles not belonging to any vehicular flow request all
content with equal probability.

Fig. 10 shows that, in presence of location-specific content,
the amount of data the downloaders can retrieve through the
vehicular network significantly increases, mostly due to V2V
relaying. Indeed, thanks to the tighter correlation between
vehicles’ routes and the content they request, it is likely that
the desired information is obtained from nearby vehicles. This
also explains the very high efficiency of relayed traffic in the
right plot of Fig. 10.

The plots also portray the performance of an approach based
on content popularity that exploits knowledge of popularity
distribution, instead of mobility forecast. Specifically, it lets
RSUs select the content to be pushed towards a relay, with
a probability proportional to the square root of the content
popularity [20]. For the sake of a fair comparison, we force
the amount of data sent by RSUs to match what is observed
in our prediction-based scheme with location-specific content.

Results show that predicting contacts yields significantly
better performance than the knowledge of content popularity.
This is due to the high mobility of our scenario: either the
content is delivered to the right vehicular flow, or retrieving the
content from a vehicle carrying the data becomes very hard.
Such an observation is confirmed by the curve referring to
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Fig. 11. Comparing simulation and optimization results:
offload fraction (left) and efficiency (right).

relayed traffic in the left plot, which is significantly lower for
the square root approach than in the prediction-based scheme.
As a last remark, the offload fraction in the square root case
grows with the increase of σ2

0,p, since, for fair comparison, the
RSUs inject more data in the network to match the amount
observed in the location-specific case. Nevertheless, such an
increase in the delivered data does not make up for the higher
radio resource consumption, thus leading to a lower efficiency.

6.3 Validation through simulation
Thanks to its limited computational complexity, solving the
optimization problem allows a comprehensive evaluation of
the performance of the vehicular download framework, as
detailed in the previous section.

However, the optimization problem formulation builds on
simplifying assumptions that grant its mathematical tractabil-
ity. More precisely, ideal physical (PHY) and Medium Access
Control (MAC) layers are considered, i.e., lossless channel and
perfect channel contention with no additional overhead.

In order to assess the impact of more realistic PHY and
MAC layer modeling on the system performance, we compare
the optimization problem outcome with that of a complete
network simulation of the framework.

To that end, we employ ns-2 as simulation environment
including the IEEE 802.11p PHY and MAC layers. At the
PHY layer, we adopt a log-distance propagation loss model
with exponent 3.0, and set the transmit output power to
16 dBm. Since no rate adaptation algorithm is specified in
the IEEE 802.11p standard, we use the Adaptive Auto Rate
Fallback to set data transmission rates at the MAC layer.

We solve the optimization problem by using either the
Markovian prediction or the fog-of-war model, and feed the
resulting scheduling to the simulator. We then simulate I2V
and V2V exchanges and record the download performance at
each user. Note that, within a time step, an RSU (relay) orders
data packet transfers based on the content identifier.

An overview of the comparison between optimization and
simulation results is provided in Fig. 11, where the vehicular
download performance is summarized in terms of offload
fraction and efficiency. The plots portray the outcome of ns-2
simulations for two values of the order q of the Markovian
prediction technique, i.e., 2 and 3, as well as the optimization
result for q = 3. For each of such cases, we show both
the performance obtained with the Markovian technique itself
(solid lines) and the fitted fog-of-war model (dotted lines). A
greedy V2V content delivery is adopted in all settings.
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Fig. 12. Simulation: CDF of the fraction of data delivered
to downloaders for q = 2 (left) and q = 3 (right).

We first comment on the impact of the PHY and MAC
layer simplifying assumptions we made in the optimization
problem. Compare the two curves for q = 3, which refer
to simulation and optimization, respectively. It is clear that
ideal signal propagation and channel access result in better
performance. While this was easily expected, we remark
that the relative performance difference is reasonable, as the
optimization framework overestimates the actual performance
by 20%. More importantly, the trend in either curve is the
same. The offload fraction grows as more RSUs are deployed,
although 10 RSUs are already enough to grant a good down-
load performance to most downloaders. The efficiency instead
is almost unaffected by the roadside infrastructure coverage. In
light of such results, the optimization problem solution appears
as a good indicator of the real-world performance of the
system. The latter observation is especially interesting when
considering that ns-2 simulations are very time consuming and
cannot be used for an extensive performance evaluation of
content download in large-scale vehicular networks.

As a second interesting aspect, we observe the impact that
the prediction accuracy has on download performance, when a
realistic simulation environment is employed. A higher-order
Markovian technique yields higher prediction accuracy: in
turn, more precise contact forecasts lead to slightly smaller
offload improvement but significantly higher efficiency. These
observations are consistent with those derived via the opti-
mization framework on the impact of the prediction accuracy
(Fig. 8(a) and Fig. 8(b)).

Finally, we stress that the Markov prediction technique
and the fitted fog-of-war model result in nearly identical
performance in all combinations of network settings and chain
order. This is a further proof of how our approach to modeling
the prediction accuracy can closely mimic different practical
forecast techniques.

Further details on simulation results are provided in Fig. 12,
depicting the CDF of the amount of content delivered to each
downloader, for a Markovian prediction of order q = 2 and
q = 3. Once around, solid lines refer to results obtained by
employing the actual Markovian prediction, while dotted lines
show the performance under the fitted fog-of-war model. Here,
colors correspond to different numbers of deployed RSUs.

The plots indicate how more pervasive deployments signif-
icantly help downloaders traveling on secondary roads, while
they have marginal impact on the experience of onboard users
already traveling along major traffic thoroughfares. This effect
is similar to that obtained with higher mobility prediction
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accuracy or less constrained backbone capacity (see Sec. 6.2),
and it confirms that a more efficient framework also tends to
behave more fairly toward users.

Finally, Fig. 12 shows once more the flexibility of the fog-
of-war model, faithfully reproducing the distributions obtained
with prediction techniques characterized by different accuracy.

7 RELATED WORK
A few works have studied scenarios where opportunistic
transfers and cellular technologies coexist, so as to offload the
infrastructure through user-to-user communication. However,
the problem that most of them address is not that of content
downloading, but the dissemination of some data items to
all mobile users. Thus, rather than scheduling the transfer
of heterogeneous content, the problem becomes that of de-
termining how many copies of an item shall be injected in
the network and which users are most suitable to receive
them. Clearly, solutions designed for dissemination offloading
cannot be applied to the concurrent downloading of different
content. Among these works, [2] considers vehicular users but
it significantly differs in scope from our work. Specifically,
[2] adopts a push approach and aims at injecting the right
amount of content copies in the network. Instead, we assume
a pull approach and we leverage mobility prediction for
optimal data prefetching and scheduling, in the case of content
downloading. As for [3], the scope is similar to the one in [2]
and different from ours; also it deals with generic smartphone
users rather than vehicular ones.

Content downloading is instead the target of [9], [12]. The
work in [12] explicitly takes into account the link between
vehicle location and requested content, considering that nearby
vehicles are more likely to request the same content item.
In [9], only I2V direct transfers are considered, and the focus
is on the prefetching of content at RSUs, which are assumed
to have high-latency, low-bandwidth links to the Internet. The
objective is then to optimize the usage of such links, by
estimating the amount of traffic the vehicles will be able
to download from each RSU. Moreover, in [9] the use of
the cellular infrastructure is limited to signaling purposes.
Prefetching is also exploited in [14], where experimental and
analytical results show the contribution of V2V and I2V
communications to the system performance. Unlike ours, the
study in [14] deals with interactive applications, such as Web
search and browsing, in a DTN composed of access points
and buses, and the focus is mainly on web page prioritization
and mobile-to-mobile routing.

Works such as [21] investigate content downloading through
publicly available WiFi hotspots, and the link between accept-
able delay and offloading fraction. Note that, unlike previous
works, we study content downloading in vehicular networks
accounting for all communication methodologies, i.e., I2V,
V2V, and cellular-based, at a time. This allows us to jointly
investigate the problems of content prefetching at RSUs,
scheduling of I2V transfers, and management of opportunistic
V2V transfers. We do that by formulating an optimization
problem and by accounting for inaccurate mobility prediction.
This makes our study different also from [22], where software

modules for content downloading and offloading are presented
and evaluated through trace-driven simulation.

The approach we adopt relates our work to the problem
of transmission scheduling in wireless networks, which has
been widely studied. However, most works address the case
of connected multi-hop networks, e.g., [23], or social delay-
tolerant networks, e.g., [24]. The vehicular environment mixes
elements of both, thus solutions that assume full reachability
or contacts periodicity [25] in the order of hours or days do not
apply to our context. In [26], vehicular movement prediction
is leveraged for data prefetching at RSUs and handoff between
them. The experimental results show the practical viability of
exploiting mobility prediction to take full advantage of I2V
contacts. Our work extends such a principle to a large-scale
architecture involving V2V contacts as well, and it investigates
the full potential of the system by formulating an optimization
problem. A scheduling and prefetching scheme for content
downloading in vehicular networks is presented in [7]. This
work, however, employs simplistic mobility models and does
not consider the presence of a cellular infrastructure. As
further additions to the literature on transmission scheduling
to vehicles, we take into account, for the first time, the role
that mobility-based communities have in the generation of
content demand, and evaluate the impact of uncertainty in the
estimation of future I2V and V2V contacts.

Concerning the latter aspect, there are several ongoing
efforts on inferring future vehicular contacts, given the current
position and past car trajectories [13], [27]. The two main
approaches consist in modeling the vehicle location through a
Markovian process, and in studying the time and duration of
contacts. Thanks to our fog-of-war model, our system can use
any of these techniques, or future ones, as an input.

Finally, the representation of a time-varying network as a
time-expanded graph has also been employed in our previous
work [8]. Beside the different scope, the time-expanded graph
we propose here significantly differs from the above repre-
sentation as we introduce probabilistic edge weights, so as to
model uncertainty in the prediction of inter-node contacts.

8 CONCLUSION
After arguing in favor of cellular network offloading through
vehicular network content download, we addressed content
prefetching and data transmissions scheduling to passing-
by vehicles in the realistic case of finite-horizon, inaccurate
mobility prediction.

Our first contribution consists in a fog-of-war model that
represents in a convenient, yet accurate, way the uncertainty
of mobility prediction. We validated such a model by showing
that it can closely match the output of widely-used Markovian
prediction techniques.

Then, we integrated our fog-of-war model in a time-
expanded graph representation of network dynamics. Through
such a graph-based model, we formulate a non-integer LP
problem that is solved at each RSU in order to make optimal
data prefetching and transmission scheduling decisions.The
amount of data offloaded from the cellular to the vehicular
network is thus maximized through the predicted mobility.
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Our results yield the following findings.
(i) Overall, vehicular networks are a viable, complementary
solution to cellular networks for content downloading. Indeed,
70% of the data can be offloaded to the vehicular network in
presence of moderate vehicular traffic conditions, and even
under a quite sparse RSU deployment.
(ii) Concerning the mobility prediction, its accuracy has a
surprisingly low impact on the fraction of offloaded data.
However, a more accurate prediction implies both a higher
offloading efficiency, i.e., a better utilization of radio resources,
and a higher throughput and lower delay for users traveling
on secondary roads. Finally, a better prediction can also make
up for a sparser RSU deployment.
(iii) As for the exploitation of V2V contacts, adopting a
simple, greedy approach leads to similar, or even better,
performance as that obtained when V2V relaying follows the
transmission scheduling provided by RSUs.
(iv) Limitations on the backhaul bandwidth and on the time
validity of the content cached at RSUs and vehicles only
impair the performance of users on secondary roads.
(v) The offload efficiency achieved through a prediction-
based approach is significantly better than that of a content
popularity-based solution. Additional benefits can be expected
for location-specific content, which can be locally cached
by RSUs and vehicles and subsequently requested by users
traveling on the same roads.
(vi) Simulation results derived through ns-2 show that the
qualitative performance behavior is the same as the one
obtained through our graph model, and even the quantita-
tive difference is limited. Simulations further prove that our
approach in modeling the prediction accuracy mimics well
different forecast techniques.
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