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A Fast Time Domain Travelling Wave method for simulation of
Quantum Dot Lasers and Amplifiers

M. Gioannini®, P. Bardella’, I. Montrosset*
1. Department of Electronics and Telecommunication, Politecnico di Torino, Corso Duca degli Abruzz, 24, 10129, Torino,ltaly

The Time Domain Travelling Wave (TDTW) model hagbepplied to a large number of Quantum Well
lasers with complex multi-section structure. Evem fthe Quantum Dot lasers and amplifiers, the TDTW
approach reveals to ke very powerful tool, because it can be used toodyre with good accuracy several
experiments performed in the lab (eg: pump-prolbgesments in SOA [1]) or to simulate and interpife
performance of various QD lasers [2,3]. Howeverewlwe move to the QD case and we need to include
peculiar properties of the QDs (e.g: wide emissipactrum due to ground and excited states emissiatii-
population rate equation, phase dynamics...) the TD®W becomes practically useless because it reguir
huge simulation times (see Fig.1). This simulatiome is unacceptable particularly when we needutolarge
number of simulations planned to reproduce for glaraeveral different characteristics of the saenaad (ie:
optical emission spectra, power versus currentacharistics, small and large signal modulation veitctrical
or external optical signals etc...) or when we needdsign or optimize a new device.

We have developed a Fast TDTW simulator applyiagtHe first time to the QD case, the method predos
in [4] for the QW lasers. In the standard TDTW a@mh we must guarantee the constrénv, At between the
spatial and temporal discretization intervalsdifmust be small (less than 100fs) the number ofitadgal
spatial nodes becomes too large. The fast mettambped in [5konsists in reducing of an integer factor M the
number of longitudinal grid pointglg=vy A4tM) while keeping the same time samplifig We demonstrate that
the method can be applied also to the QD caseiglrlRve present the comparison between the stddarw
approach [2,3] and the new fast approach simuldtiegpropagation of one narrow high power pulsa fhimm
long QD-SOA. As shown, using a factor M=30 the eoo the pulse shape is negligible respect todference
solution and the error on the small signal chipngai about 0.7%. As two examples of applicationthe
simulator, we show in Fig.2 the calculated emissgpectra of the QD-SOA (including comparison with
experimental results) and in Fig. 3 the resultshef simulation of the output from a 1 mm long singkction
QD-FP laser after optical fibre compensation [She3e two examples where chosen as representatitres of
need of a fast simulation tool. In the QD-SOA ctmesimulation of the wide ASE bandwidth (160nequires
indeed a very small time step (<10fs) necessargvid numerical aliasing effects in the solutiorheT
simulation of the QD-FP mode-locked laser requiagain a small time step to simulate correctly thie F
bandwidth as well as a long simulation time windtowassure that the pulses have formed and reached a
stationary behaviour. Further details on the twpliaption examples will be given at the conference.
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