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The Time Domain Travelling Wave (TDTW) model has been applied to a large number of Quantum Well 

lasers with complex multi-section structure. Even for the Quantum Dot lasers and amplifiers, the TDTW 
approach reveals to be a very powerful tool, because it can be used to reproduce with good accuracy several 
experiments performed in the lab (eg: pump-probe experiments in SOA [1]) or to simulate and interpret the 
performance of various QD lasers [2,3]. However, when we move to the QD case and we need to include 
peculiar properties of the QDs (e.g: wide emission spectrum due to ground and excited states emission, multi-
population rate equation, phase dynamics…) the TDTW tool becomes practically useless because it requires 
huge simulation times (see Fig.1). This simulation time is unacceptable particularly when we need to run large 
number of simulations planned to reproduce for example several different characteristics of the same device (ie: 
optical emission spectra, power versus current characteristics, small and large signal modulation with electrical 
or external optical signals etc…) or when we need to design or optimize a new device. 

We have developed a Fast TDTW simulator applying, for the first time to the QD case, the method proposed 
in [4] for the QW lasers. In the standard TDTW approach we must guarantee the constrain ∆z=vg ∆t between the 
spatial and temporal discretization intervals. If ∆t must be small (less than 100fs) the number of longitudinal 
spatial nodes becomes too large.  The fast method proposed in [5] consists in reducing of an integer factor M the 
number of longitudinal grid points (∆z=vg ∆t⋅M) while keeping the same time sampling ∆t. We demonstrate that 
the method can be applied also to the QD case. In Fig. 1 we present the comparison between the standard TDTW 
approach [2,3] and the new fast approach simulating the propagation of one narrow high power pulse in a 4 mm 
long QD-SOA. As shown, using a factor M=30 the error on the pulse shape is negligible respect to the reference 
solution and the error on the small signal chip gain is about 0.7%. As two examples of application of the 
simulator, we show in Fig.2 the calculated emission spectra of the QD-SOA (including comparison with 
experimental results) and in Fig. 3 the results of the simulation of the output from a 1 mm long single section 
QD-FP laser after optical fibre compensation [5]. These two examples where chosen as representative of the 
need of a fast simulation tool.  In the QD-SOA case the simulation of the wide ASE bandwidth (160nm) requires 
indeed a very small time step (<10fs) necessary to avoid numerical aliasing effects in the solution. The 
simulation of the QD-FP mode-locked laser requires again a small time step to simulate correctly the FP 
bandwidth as well as a long simulation time window to assure that the pulses have formed and reached a 
stationary behaviour. Further details on the two application examples will be given at the conference. 
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Fig. 3: Autocorrelation trace of the pulses after group delay compensation. Inset: power 
versus time (right) and optical spectrum (left) out of the FP laser. 
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Fig. 1 SOA output pulse calculated for 

different M; S.D. is the simulation duration on 

2 Xeon CPUs at 2.5GHz; ε is the error on the 

small signal chip gain. 
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15 ns;    M=30 S.D. 5h, 30m 
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Fig. 2 Calculated (M=30) and measured SOA 

spectra with 1A current injection at different 

temperatures. 


