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Abstract: Here we discuss the free energy of nematic liquid crystals using two vectors and the 

helicity, with the aim of having a compact form of its density. The two vectors are due to the 

splay and bend distortions of the director field. They have a polar nature, whereas the helicity is 

a pseudoscalar.    

 
1. Introduction 

The free energy density of the bulk of nematics is a 

well-known object, fundamental for continuous 

theories of liquid crystals [1]. Here we propose an 

elementary approach to the free energy density 
mainly based on the role of scalars and 

pseudoscalars. Let us remember that pseudoscalars 

have odd parity upon spatial inversion, whereas 

scalars have even parity. 

 

We will see that we can use two vectors, coming 

from the splay and bend distortion of the director 

field, vectors that we can define as distortional 

Lifshitz vectors. It is better to use the adjective 

“distortional” because Lifshitz vectors are specific 

vectors of the relativistic gravitational field. These 

distortional vectors have a polar nature. In addition 
them we need a pseudoscalar, the helicity, to write 

the nematic free energy density. The helicity squared 

gives rise to the twist contribution. Note that the 

distortional vectors that we will use do not depend on 

a polar or axial nature of the director field of nematic 

liquid crystals. Even if this choice does not influence 

the final result, we will see that the director behaves 

like a vector potential. 

 

2. The free energy of nematics  
Let as consider the bulk free energy as discussed in 

the book by Landau and Lifshitz [2]. The free energy 

of a nematic liquid crystal can have only scalar terms 

of the director field n


 and its derivatives.  The true 

scalars can be obtained from the following product of 

derivatives: 
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where  xi  are the coordinates of the frame. Moreover: 
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because 12 n


. After contraction of indices or multiplying by n


, we find the invariants: 
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The last two terms differ by a divergence. Since the 
divergence goes into a surface term, we do not 

consider among the bulk terms. Therefore we can 

keep only the divergence squared  2n

 .  The 

second term is the sum of the divergence squared and 

nn


  nnn

 , and we have also that 

   22
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 . Therefore the free 

energy density is given by Landau and Lifshitz as: 
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The first term is a contribution that does not depend on the director field. As [2] is telling,  nn


  is 

  2 . Another possible contribution is 
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a pseudovector. The second term in (4) must have a 

coefficient b which is a pseudoscalar. As a 

consequence, this term exists in cholesteric nematic. 

The last tem is equal to zero, because in nematics we 

require the symmetry nn


 . The nematic bulk 

free energy density is: 
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    (5) 

 

In his book [3], S.A. Pikin is starting the discussion 

of free energy density from the order parameter 

tensorial field, which is given by: 
 









 ikkiik rnrnrQrQ

3

1
)()()()(


         (6) 

 

In the isotropic phase Q = 0. The orientation order 

parameter Q, which is a function of temperature, far 

from phase transition points is not subjected to strong 

thermal fluctuations. For this reason, Q can be 

viewed as a constant which is characterizing the 
features of the anisotropic medium at a fixed 

temperature. At the same time, the director n


 is 

subjected to appreciable thermal fluctuations and 
changes relatively easily under the action of external 

fields [3]. This circumstance is one and the most 

important reason for the instabilities of the 

orientational structures, appearing in the liquid 

crystal both as a result of temperature changes and 

under external action. 

Under the condition that function )(rn


 is slowly 

varying along the bulk, i.e., the derivatives of this 
function with respect to the coordinates are small, the 

orientational free energy density F of the deformed 

nematic can be expanded in powers of the derivatives 

of function )(rn


. Such an expansion of a scalar 

quantity must contain scalar combinations of the 

vector  )(rn


  and its derivatives. As previously told, 

n


 is a unit vector, which can enter only in even 

combinations due to the equivalence nn


 . In 

addition, the total derivatives that make a 

contribution to the surface energy and not to the 

volume energy of the body must be dropped in the 

expression of F. 

n

  is odd in n


 , moreover it is a surface term, 

and nn


  is a pseudoscalar. We use these terms 

as squared, 
2)( n


 and 

2)( nn


 , as well as 

the scalar products of the vectors formed by the 

vector n


 and its first derivatives. There are three 

such independent vectors: 
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Additional scalar invariants are: 
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Since the combination   nnn

  is odd with respect to n


 and a pseudoscalar, we do not use it. Moreover, 

as a result of the relation (see Appendix A):  
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We have again: 

 

     232221

222
nn

a
nn

a
n

a
FF o


    (10) 

 

It is a combination of these three terms that can be 

used to represent an arbitrary deformation in a 

nematic liquid crystal. The coefficients of this 

combination are the elastic constant of splay, twist 

and bend respectively. It is often the case that all 
these three constants are of the same order of 

magnitude: the combination is commonly 

approximated to have 321 aaaK  . This 

approximation is commonly referred to as the one-

constant approximation and is used predominantly 

because the free energy density simplifies to the 

compact form: 
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For computation, this form is quite easy but it is 

mixing the distortional contributions. 

We could imagine the uniform state as energetically 

favored, but this state is unstable relative to spatial 

modulations of the director. The presence of a 

macroscopic inhomogeneity of the director in the 

cholesteric liquid crystals at distances that are large 

compared to molecular dimensions is related with the 

existence of an invariant of the form: 
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in the free energy density. Let us note that q has the 

dimensions of a wave number. Pikin is remarking 

that this expression contains the pseudoscalar 

 nn


  which is giving the helical structure. 

In Eq.4, the term appears as nnb


 , requiring b 

as a pseudoscalar, according to the chiral nature of 

molecules. In (12), we have the contribution 

nnqK


2 : since 2K  is a scalar, this means 

that q  is a pseudoscalar (the microscopic origin of 

the chiral term had been discussed in Ref.4). 

 

As we have seen, the free energy density is assumed 

as a true scalar. Or, as it is told in [5], the 

contributions to the free energy density “of course, 

have to be true invariant scalar”. Let me open a 

discussion on the densities, as proposed by Dalton 

Schnack, in his paper published in the Lectures Notes 

in Physics [6]. In this paper, it is told that since the 

volume is a scalar triple product, that is, the scalar 
product of a vector by a surface vector, according to 

a parity transformation it is more properly described 

as a pseudoscalar. As a consequence of the 

pseudoscalar nature of the volume, the mass density 

and the pressure, the ratio of the internal energy and 

volume, behave like pseudoscalars. That is, these 

quantities have an odd parity. The reference is 

concluding telling that the resulting expressions that 

we are using must have a consistent parity. The 

volume discussed in [6] is of course the oriented 

volume, which averages out to zero. However, we 
can use the modulus of the oriented volume and 

therefore assume the energy density like a scalar. 

 

After this general review of the bulk free energy 

density, let us try to obtain its terms using two 

vectors that we can define as the distortional Lifshitz 

vectors, and the helicity. In fact, the distortional 

vectors are contained in some Lifshitz invariants. 

Therefore, before discussing these vectors, let us 

shortly review the Lifshitz invariants and their role in 

the appearance on modulated structures.  

 

3. Lifshitz invariants and modulated structures 
According to Lifshitz [7], near a phase transition 

point, the system may be unstable with respect to 

distortions of the appropriate order parameter. This 

instability may develop if the irreducible 

representation allows a quadratic anti-symmetric 

combination, linear both in the order parameter 
components and in their gradients. Therefore the 

contributions to the free-energy density of terms in 

the derivatives of the order parameter are governing 

the appearance of spatially modulated structure in 

magnetic materials and liquid crystals. And in fact, it 

is possible to see the same invariant in the free 

energy, the Lifshitz invariant, as the responsible of 

undulated patterns.  

 

A specific formulation by vectors of the Lifshitz 

invariants was first proposed for some magnetic 

structures characterized by a modulation of the spin 
arrangements [8,9]. Within a continuum 

approximation of magnetic properties, the 

interactions responsible for these modulations are 

expressed by inhomogeneous invariants. These 

contributions to the free magnetic energy, involving 

first derivatives of magnetization with respect to 

spatial coordinates, are defined as the 

inhomogeneous Dzyaloshinskii-Moriya interactions 

[10,11]. These interactions are linear with respect to 

the first spatial derivatives of the magnetization M


 
in an anti-symmetric mathematical form.  

The structure of the Lifshitz invariant is, in the case 

of the inhomogeneous Dzyaloshinskii-Moriya 

interaction, a product of three vectors. The three 

vectors are: a vector D


 representing an internal or 

external field, a vector M


 representing the local 

order parameter, and   operating on the order 

parameter components. The product has the 

following form:  

    MMMMDFL


   (13) 

 

We used the Dzyaloshinskii-Moriya interactions in 

1996, to study the field-induced phase transition of 

BiFeO3 [12]. An antiferromagnetic vector L


 

characterizes the BiFeO3 spin structure. A Landau-
Ginzburg energy density of the spin structure was 

given in Ref.12, using the following vector: 

 

   LLLLA


   (14) 

 

One term of the free energy density is the Lifshitz 

invariant given as: 
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    (15) 

 

In (15),   is the inhomogeneous relativistic constant and 

SP


  the spontaneous polarization. 

In Ref.12, we investigated the influence of an electric 

field on the spatially modulated spin structure (SDW 

state), using the analogy with nematic liquid crystals 
to study magnetic materials.  

 

4. The flexoelectric vectors in nematics 

Let us consider a nematic liquid crystal and assume 

the order parameter described by the director field 

n


, which is giving the local mean orientation of the 

molecules. Vector A


  in Eq.14 can then be written 

in the following form: 

 

    nnnnnnnnA


rotdiv   

  (16) 

 

This vector is well known in the physics of liquid 

crystals. It is encountered in the structure of the 

flexoelectric contribution to the free energy which is 

EPf flexo


 . Flexoelectricity is a property of 

liquid crystals similar to the piezoelectric effect [13]. 

A distortion of the director field can induce a 

macroscopic polarization within the material [11,13]. 

The polarization vector P


, a polar vector, in the 
flexoelectric term is then described with a distortion 

in the nematic director field: 

 

    nnennennenneP BSBS


rotdiv     (17) 

 

The two terms in the polarization vector are due to 

the splay and the bend contribution. 

The coupling of the flexoelectric polarization P


 

with an external electric field results in the 

appearance of a periodic distortion, as the term 

shown by Eq.(15) in the free energy density of 

BiFeO3, where we have the coupling of vector A


 

with a spontaneous polarization.  

In the flexoelectricity, the polarization is induced by 

a not uniform deformation. If we consider the 

flexoelectric coupling, the electric field E


 is a polar 

vector, the polarization is a polar vector, and then the 

additional term in the free energy density is a scalar. 

A


 has the nature of a vector, independently of the 

choice of  n


 as a vector or a pseudovector. 

 

5. The distortional Lifshitz vectors and the free 

energy density 

As we have previously discussed, the Lifshitz 

invariant can be defined using the vector: 

 

nnnnA


rotdiv  nnnn


       (18) 

 

Let us note that assuming n


 a vector, A


 is a vector. 

Behaving n


 like a pseudovector A


 is a vector. Let 

us consider the first term in A


: the divergence of a 
pseudovector is a pseudoscalar, which multiplied by 

the pseudovector, gives a vector (the gradient 

operator transforms like a polar vector). The second 

term is the cross product of a pseudovector and a 

vector, therefore it is a vector. The fact that the 
Lifshitz vector is a true vector is in agreement with 

its appearance in the polarization of the flexoelectric 

effect, which is coupled with the electric field. The 

scalar product of the electric field, a true vector, and 

A


 vector gives a scalar term for the bulk free energy 
density. 

Therefore, let us consider some scalars that we can 

have after this vector: 

 

22 )()( nnnnAA


    

(19) 

 

because )( nnn


  is equal to zero for the 

properties of the cross product. The two terms are the 

splay and the bend contributions to the free energy.   

Let us try: 
 

nnnnnnnnnnnnAn

 )()(    (20) 

 

This term does not appears because it does not satisfy symmetry nn


 . The term squared is a correction of the 

free energy density. 

Let us consider: 
 

)()()( nnnnnnnnnnnnnnAn


  (21) 
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Again this term does not appears because of the required symmetry nn


 . The term squared: 
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We have that:   222
)()( nnnnn


  (see Appendix A), and then: 
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          (23) 

 

From the previous equation, we see that we can obtain only two terms of the free energy density:  
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Splitting  A


 vector in two vectors: 

 

nnAnnAAAA


 3131 ;;     (25) 

 

We see that 031  AA


 and
2
3

2
1 AAAA


 . 

These are the two distortional Lifshitz vectors, which 

are polar orthogonal vectors, able to provide two 

terms of the free energy (splay and bend), but not the 

twist term   2nn


 . In fact, this is a helicity 

term, which has a pseudoscalar nature, squared to be 
consistent with the true scalar nature of the free 

energy density. 

Let us therefore define 31, AA


 as the distortion 

vectors in general and add to them a pseudoscalar to 

obtain all the contributions of the bulk free energy.  
 

6. The helicity density 

In studying fluids, the helicity density is defined as: 

 

vvh


    (26) 

 

where v


 is the velocity. The helicity density is a 

pseudoscalar, having the same form of  nn


 , 

that we have squared in the free energy density. And 

this is the pseudoscalar, that we are not able to obtain 

using the Lifshitz vectors. The pseudo nature of this 

term is forbidding its creation from the two 

orthogonal Lifshitz vectors. In particle physics, the 

helicity is the projection of the spin onto the direction 

of momentum. For massless particles, such as the 
photon, the particle appears to spin in the same 

direction along its axis of motion regardless of point 

of view of the observer. That is, the helicity is a 

relativistic invariant.  

In electromagnetism, the magnetic helicity density is 

given by: 

 

AAh


     (27) 

 

Polar vector A


 is the vector potential. It is a vector 

field and its curl is the magnetic field: AB


  If 

a vector field admits a vector potential A


, then the 

equality 0)(  A


 implies that B


 must be a 

solenoid vector field. The vector potential is not 

unique: if A


 is a vector potential, so is 

fA 


    (28) 

 

In (28),   f  is any continuously differentiable scalar 

function. This follows from the fact that the curl of 

the gradient is zero. This non-uniqueness leads to a 

degree of freedom in the formulation of 

electrodynamics which implies the choice of a gauge.  

In the case of the nematic liquid crystals, the 

director n


 behaves like A


 . And imposing n


  as a 

unit vector, we are fixing the gauge.  
The free energy density of a nematic can be written 

in the following form: 

 

222
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222
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Here I used a helicity different from the conserved 

quantity in nematic liquid crystal flows, which is 

given in Ref.14. In the case of a cholesteric: 
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Equation (29) is a quite compact form of linear 

combinations of scalars. This form of the free energy 

density has been obtained using the triplet 

( hAA ,, 31


), of two polar vectors and a 

pseudoscalar.  A motivation for the use of such a 

triplet is to increase the analogy of the distortional 

energy density with field theories. Second-order 

elasticity and surface terms are under investigation to 

obtain some similar results from terms already 

proposed in [15]. 

 

Appendix A 

Let us show that:      222
nnnnn


 . Let us use:   xx Rn 


,   yy Rn 


 

and   zz Rn 


. We have: 
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