
18 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Modeling sleep mode gains in energy-aware networks / Luca, Chiaraviglio; Delia, Ciullo; Mellia, Marco; Meo, Michela. -
In: COMPUTER NETWORKS. - ISSN 1389-1286. - STAMPA. - 57:(2013), pp. 3051-3066.
[10.1016/j.comnet.2013.07.011]

Original

Modeling sleep mode gains in energy-aware networks

Publisher:

Published
DOI:10.1016/j.comnet.2013.07.011

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2519103 since:

Elsevier



Modeling Sleep Mode Gains in Energy-Aware Networks I

Luca Chiaraviglioa , Delia Ciullob , Marco Melliac , Michela Meoc

a) University of Rome La Sapienza, Italy
b) EURECOM Sophia-Antipolis, France

c) Electronics and Telecommunications Department, Politecnico di Torino, Italy

Abstract

Nowadays two main approaches are being pursued to reduce energy consumption of networks: the use of sleep modes in which
devices enter a low-power state during inactivity periods, and the adoption of energy proportional mechanisms where the device
architecture is designed to make energy consumption proportional to the actual load. Common to all the proposals is the evalu-
ation of energy saving performance by means of simulation or experimental evidence, which typically consider a limited set of
benchmarking scenarios.

In this paper, we do not focus on a particular algorithm or procedure to offer energy saving capabilities in networks, but rather
we formulate a theoretical model based on random graph theory that allows to estimate the potential gains achievable by adopting
sleep modes in networks where energy proportional devices are deployed. Intuitively, when some devices enter sleep modes some
energy is saved. However, this saving could vanish because of the additional load (and power consumption) induced onto the active
devices. The impact of this effect changes based on the degree of load proportionality. As such, it is not simple to foresee which
are the scenarios that make sleep mode or energy proportionality more convenient.

Instead of conducting detailed simulations, we consider simple models of networks in which devices (i.e., nodes and links)
consume energy proportionally to the handled traffic, and in which a given fraction of nodes are put into sleep mode. Our model
allows to predict how much energy can be saved in different scenarios. The results show that sleep modes can be successfully
combined with load proportional solutions. However, if the static power consumption component is one order of magnitude less
than the load proportional component, then sleep modes become not convenient anymore. Thanks to random graph theory, our
model gauges the impact of different properties of the network topology. For instance, highly connected networks tend to make the
use of sleep modes more convenient.

Keywords: Energy-efficient networks, sleep modes, random graph models

1. Introduction

In networking, one of the main causes of energy waste is the
fact that most of the devices do not consume energy propor-
tionally to the work they sustain, but they consume much even
when they are under-utilized [1]. On the contrary, network us-
age and traffic follow the typical human being activity patterns,
with significant differences between peak and off-peak values
and typical daily periodicities. Therefore, network devices re-
sult highly under-utilized for long periods of time during which
they are mostly idle but consume a high amount of power. Many
solutions are being studied to reduce this waste, or, equiva-
lently, to make the network consumption proportional to the
traffic load [2]. The proposed approaches can be divided into
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two main categories: i) Energy proportional approaches work
on the individual devices and try to achieve energy consump-
tion proportionality by adapting the speed (and capacity) of the
devices to the actual load, over relatively short time-scales [3];
ii) Sleep mode approaches involve the network as a whole and
approximate load proportionality by carefully distributing the
traffic in the network so that some devices are highly utilized
while others become idle and are put in sleep modes [4]. The
two solutions can be merged so that energy proportional de-
vices are present and sleep mode can be leveraged to possibly
save additional energy.

In this context, several solutions have been proposed in the
literature, including network management algorithms that opti-
mize traffic routing so as to maximize the energy saving offered
by sleep mode enabled devices (see Sec. 7 for more details).
However, to the best of our knowledge, all previous works adopt
simulation or actual testbed experiments as main means to as-
sess energy saving performance, and typically few benchmark-
ing scenarios have been considered. Furthermore, either energy
proportionality or sleep modes approach is assumed, with few
works only considering the combination of the two. In this pa-
per, we instead aim at: i) comparing and combining the two ap-
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proaches, and ii) proposing an analytical methodology to esti-
mate their benefits. In particular, we aim at considering classes
of topologies that we model as random graphs. This allows to
generalizing results, and to gauging the impact of simple net-
work properties such as node number and degree.

Given a family of network topologies, and given a model of
the energy consumed by a device as a function of its load, is it
better to purely rely on device energy proportionality capability,
or, on the contrary, is it better to couple it with sleep mode solu-
tions? And, also, which is the minimum energy proportionality
that would make sleep mode ineffective? What is the impact of
the network size, or topological properties on the benefits of en-
ergy saving feature? The answer to these questions is the goal
of this paper.

When a device is switched-off the traffic passing through it
has to be rerouted on different, typically longer, paths; thus, the
beneficial saving achieved by switching off the device is mit-
igated by the increase of the consumption of the devices that
remain on, due to the higher load they have to sustain. To
investigate this trade-off, we consider a general model to rep-
resent network topologies ranging from backbone networks to
metropolitan networks, and a general model for device power
consumption.

Several power consumption models for devices have been
proposed [5], [6], [7], [8]. Basically, all these models assume
that the energy consumption of network devices, i.e., nodes and
links, is composed by a constant amount and a variable part that
is an increasing function of the traffic that flows through the de-
vices. We compute the total network energy cost as the sum of
the fixed and variable cost of network devices which depends
on the traffic they have to carry. In our previous work [9] this
problem has been faced considering that only links offer energy
saving capabilities. In this work we go a step further by consid-
ering a more general model that includes also the cost of nodes.
We start considering the variable cost of devices scales linearly
with the load. Then, we extend the model to generic cost func-
tions which include linear and super-linear costs. The network
and its topological characteristics are represented by random
graphs; leveraging then on random graph theory, the load on
network devices is computed from the knowledge of the short-
est path between node pairs. Thus, the energy consumption of
the whole network is easily derived.

Since we are not interested in proposing a novel algorithm to
select which link and node can be put into sleep mode, we con-
sider a generic policy, according to which some elements are
turned off. This results in a change in the topological character-
istics of the network, which is modeled as a new graph, whose
energy consumption is evaluated using graph theory again. To
the best of our knowledge, the only previous work that is similar
to ours is [8]. Yet, only simple simulations have been used, so
that the set and generality of presented results is limited. In our
work, we present modeling results that corroborate the intuition
of [8] and derive more general insights.

We present an extensive sensitivity analysis to show the im-
pact of model parameters. We include both small-world and
power-law graph models that are claimed to reflect actual net-
work topology properties [10]. Our results show that:

• when the variable part of the cost model is small with respect
to the constant part, as is typical of today devices, sleep modes
are convenient;
• for future devices, whose consumption will probably be more
load proportional, sleep modes might not be convenient any-
more provided the static cost would be one order of magnitude
smaller than the variable part;
• network topology characteristics have limited impact on en-
ergy saving. Yet, well-connected topologies show larger bene-
fits in terms of energy saving margins when sleep-mode policies
are in place.

This suggests that, given the today technological constraints
that make the constant energy consumption of devices quite
large, sleep mode enabled networks will allow to save more en-
ergy than purely energy proportional approaches for long time.
Finally, we emphasize that, despite being simple, our model
gives general insights of sleep modes effectiveness in actual
telecommunication networks.

The rest of the paper is organized as follows. The system
model and methodology is detailed in Section 2. The adopted
network models are reported in Section 3. We present the evalu-
ation of sleep modes in Section 4. The comparison of different
switching off policies is reported in Section 5. A discussion
about model assumptions is reported in Section 6. Section 7
reviews related work. Finally, Section 8 concludes the paper.

2. System Model and Methodology

In this section we provide a general overview of the method-
ology we use to evaluate sleep mode gains.

Throughout this paper, we assume the network is composed
by access and transport devices. Access devices are the sources
and destinations of traffic, and therefore they can never be pow-
ered off. On the contrary, transport devices are never source or
destination of traffic, and as such they can be turned off to save
energy.

We adopt the following assumptions: i) traffic is uniformly
exchanged among all access nodes; ii) traffic is routed on the
shortest paths among nodes1; iii) the set of transport devices
to be switched off is given a-priori, e.g., it has been previously
chosen based on collection of traffic measurements and predic-
tions so as to guaranteeing the minimum required Quality of
Service (QoS); iv) node/link power consumption is composed
by a fixed amount of power, and a variable part that is an in-
creasing function of the current traffic flowing on the link; v) the
same power consumption model is applied to all the links/nodes
in the network.

Modeling the power consumption of today’s networks is still
an open issue, since it mainly depends on the technology of net-
work devices. Current network devices consume a large amount
of static power and a limited amount of power that depends
on the current load [1]. However, future devices will instead

1An energy-aware routing protocol could be adopted here rather than a
shortest path routing. For example, traffic could be routed over the paths con-
suming the lowest power. However, this issue is outside the scope of this paper.
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be more energy-proportional [2], with a predominant term of
power scaling with load. To capture the effectiveness of sleep
modes in both the aforementioned scenarios, we first assume a
linear power consumption model, in accordance with [8]. Then,
as a second step, we extend our model to super-linear power
functions, focusing on the case in which power scales quadrati-
cally with load. The latter is representative of devices exploiting
Dynamic Voltage Scaling (DVS) techniques [7]. This allows us
to investigate the impact of sleep modes when extremely op-
timized devices are deployed. The extension of the model to
consider other power consumption models would be possible,
e.g., by approximating it with a polynomial expansion.

2.1. Basic formulation and metrics

We are interested in the energy saving that can be achieved in
the transport portion of the network, i.e., the transport topology.
We model it by an undirected graph G(N ,L), with N the set
of transport nodes, with cardinality N = |N |, and L the set of
links, with cardinality L = |L|. The average node degree is
K̄ = 2L

N . The link rate is denoted by R, while T is the total
traffic2 flowing in the transport network from access nodes at a
given time.

The j − th link power consumption, A(j), is modeled by a
fixed amount F and a variable term that is a function f(·) of the
link load, ρ(j):

A(j) = F + f(ρ(j)) (1)

For the sake of simplicity, we assume the same fixed power F
and function of the load f(·) for all links. Similarly, the i− th
node power consumption AN (i) is modeled by a fixed amount
FN and a variable term that is a function g(·) of the node load
ρN (i):

AN (i) = FN + g(ρN (i)) (2)

Again, the same fixed power FN and function g(·) is assumed
for all the nodes3. The total network consumption, C, can be
computed as

C =
∑

j∈L
(F + f(ρ(j))) +

∑

i∈N
(FN + g(ρN (i))) =

LF +
∑

j∈L
f(ρ(j)) + NFN +

∑

i∈N
g(ρN (i))

(3)

Let us consider the case where the variable part of the cost
model increases linearly with the load. For links we have:

f(ρ(j)) = αρ(j) (4)

thus,
∑

j∈L
f(ρ(j)) =

∑

j∈L
αρ(j) = LαE[ρ] = Lαρ̄ (5)

2We assume values for R and T such that the network is not overloaded,
i.e., the link load ρ is smaller than one.

3Note that this model can be easily extended to integrate different classes of
links (nodes), each of them with a different value of the parameters F (FN ).

ρ

A

1

F

F
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α

Figure 1: Linear power consumption model for a link.

where ρ̄ is the mean link load and α is a scaling coefficient.
Similarly, for nodes we assume:

g(ρN (i)) = βρN (i) (6)

By assuming that the node variable power consumption de-
pends on the total amount of traffic passing through the node
and that the link load is independent on the node degree, we
define the average load on a node ρ̄N as the sum of the average
load carried by the K̄ links connected on average to a node:
ρ̄N = K̄ρ̄. 4

Under these assumptions, the total network consumption is

C = N K̄
2 (F + αρ̄) + N

(
FN + βK̄ρ̄

)
(7)

As an index of the relative importance of variable and fixed
costs, we define the constant cost equivalent load,

ν =
F

α
; νN =

FN

β
(8)

where ν (νN ) is the amount of load that, added to a link (node),
makes its energy consumption increase of a quantity F (FN ).
Or, in other terms, whenever the load increases by an amount ν
(νN ), the part of the energy consumption due to links (nodes)
increases by F (FN ). The parameters ν, νN and their ratio play
a crucial role in the evaluation of sleep mode schemes, as we
show in Section 4. Fig.1 shows a graphical representation of a
link power consumption A.

The average link load can be computed as:

ρ̄ =
T d̄

LR
(9)

where d̄ is the average shortest path length and LR is the to-
tal capacity offered by the network. We call C the all-on net-
work consumption and we take this value as a reference for the
nominal consumption of the network. Table 1 summarizes the
notation introduced so far.

4Note that while ρ̄ is normalized to 1, ρ̄N is normalized to K.
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Table 1: Notation
Symbol Definition

N number of transport nodes
L number of links
K̄ average node degree
T traffic
R link rate

F (FN ) link (node) fixed cost
A (AN ) link (node) total cost
ρ̄ (ρ̄N ) average link (node) load

d̄ average shortest path length
α (β) link (node) scaling coefficient

C network consumption
ν(νN ) link (node) constant cost equivalent load

2.2. Node Switch-off Policy
We now compute the network consumption when some

nodes enter sleep mode. We assume that the scheme accord-
ing to which the nodes enter sleep mode has been preliminarily
planned so that, when the nodes are removed (powered off), the
resulting network still meets the QoS constraints, e.g., the graph
is connected and maximum link load is below the admissible
value. Clearly, when a node is powered off, all links connected
to it are switched off too.

Let p ∈ (0, 1) be the fraction of nodes that are switched
off. We model the network resulting from the sleep mode
scheme through the new graph in which we randomly remove
a fraction p of the nodes; we take p smaller than the criti-
cal probability after which the network becomes disconnected,
and such that the maximum link load is not exceeded. In this
regime, random node elimination makes the new graph main-
tain the same structure of the original graph; refer to [11] for
details. The number of nodes after the random node removal
becomes N ′ = N(1−p), and the new average degree becomes
K̄ ′ = K̄(1 − p). To obtain the new average degree expression
we follow the procedure of [11]. In particular, we start con-
sidering a node with initial degree k from a distribution P (k).
When p nodes are removed, the probability that the degree of
the node becomes k′ is W k′

k (1 − p)k′p(k−k′), being W k′
k the

number of ways to choose k′ in k. The new degree distribution
is then P (k′) =

∑∞
k=k′ W

k′
k (1 − p)k′p(k−k′). Hence, we get

K̄ ′ = K̄(1− p).
From (7), the average network consumption in sleep mode C ′

is now:
C ′ = N K̄

2 (1− p)2 (F + αρ̄′)+
N(1− p)

(
FN + βK̄(1− p)ρ̄′

) (10)

with

ρ̄′ = T
d̄′

N ′ K̄′
2 R

= T
d̄′

N K̄
2 (1− p)2R

(11)

where d̄′ is the average shortest path length in the new graph.
Our aim now is to compare the energy consumption of the

all-on network consumption, C, to the one of the network in
sleep modes, C ′. To this purpose, we define the ratio E =
C ′/C as the energy reduction ratio. Intuitively, the use of sleep
modes for network devices saves energy when E < 1.

By computing E and comparing C and C ′ in (7) and (10), it
is possible to evaluate when sleep modes are convenient:

C > C ′ iff N K̄
2 (F + αρ̄) + N(FN + βK̄ρ̄) >

N K̄
2 (1− p)2 (F + αρ̄′) + N(1− p)

(
FN + βK̄(1− p)ρ̄′

)
(12)

Then, we have

C > C ′ iff
F+ 2

K̄(2−p) FN

α+2β > T

(2p−p2)N K̄
2 R

(d̄′ − d̄) (13)

This equation defines the region in which the sleep mode ap-
proach is convenient.

Note that, if the network technology is such that the link cost
is negligible with respect to the node cost, i.e., F << FN and
α << β, we can disregard the link cost and we have

C > C ′ iff νN >
2T

pNR
(d̄′ − d̄) (14)

Similarly, if the node cost is negligible with respect to the
link cost, i.e., FN << F and β << α, we obtain

C > C ′ iff ν >
T

(2p− p2)N K̄
2 R

(d̄′ − d̄) (15)

Lemma 1: If devices do not implement load proportionality
(α = β = 0), sleep mode is always convenient, i.e., C ′ < C
and E < 1.

PROOF. With α = β = 0, (12) simplifies to N K̄
2 F + NFN >

N K̄
2 (1 − p)2F + N(1 − p)FN , which is verified for any p ∈

(0, 1).

Lemma 2: If the fixed power consumption is zero (F =
FN = 0), sleep mode is never convenient, i.e., E ≥ 1.

PROOF. If F = FN = 0, (12) becomes: d̄ > d̄′, i.e., it is
verified if the average shortest path after some node switch off,
d̄′ is smaller than the initial average shortest path d̄, which is
never true5. Consequently, E ≥ 1.

2.3. Generalization of the cost function

We now extend our analysis to a generic cost model, in which
the variable part of the cost increases according to a polynomial
function of the load. For simplicity, we first consider the cost
due to links and then compute the total cost due to nodes too.
For each link j, we can write the cost function as:

A(j) = F +
∞∑

z=1

αz(ρ(j))z (16)

5Note that, in our context, d̄′ ≥ d̄ is always verified since we are
considering only connected graphs, and we assume we cannot remove
source/destination nodes.
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The total cost C becomes:

C =
X
j∈L

 
F +

∞X
z=1

αz(ρ(j))z

!
+
X
i∈N

 
FN +

∞X
z=1

βz(ρN (i))z

!
=

LF +
X
j∈L

∞X
z=1

αz(ρ(j))z + NFN +
X
i∈N

∞X
z=1

βz(ρN (i))z =

LF + L

∞X
z=1

αzE[ρz] + NFN + N

∞X
z=1

βzE[ρz
N ]

(17)
where the last term E[ρz

N ] can be computed as:

E[ρz
N ] =

∞∑

k=1

E[ρz
N |K = k]P(K = k) =

∞∑

k=1

E

[(
k∑

q=1

ρ(q)

)z]
P(K = k),

(18)

where K is the random variable representing the degree distri-
bution. The last result follows from the node load computation:
we assume that the load of a node is given by the sum of the
load carried by the links connected to it.

Observe that, given all the moments of the link load distri-
bution and the degree distribution up to the z − th moment,
(17) allows the computation of the total cost for any type of
polynomial cost function. Moreover, we can extend the previ-
ous analysis to any other cost functions, e.g., logarithmic or any
sub-linear functions, by using the Maclaurin series to approx-
imate the cost function, so that cost can still be expressed by
(16). Note that, in the following we will consider an example
of a super-linear profile since we find this is more interest-
ing to study with respect to a sub-linear one. Indeed, the
sub-linear profile is more similar to the step profile that has
been already well studied in the literature, and is more rep-
resentative of old devices power consumption.

Quadratic Cost Model As a special case of (16), among
the possible power consumption profiles described in [7], we
choose the super-linear one, i.e., we assume that the variable
part of the cost model increases quadratically with the load.
Thus, the j − th link cost can be modeled as: F + α(ρ(j))2

and (3) becomes:

C = LF + α
∑

j∈L
(ρ(j))2 + NFN + β

∑

i∈N
(ρN (i))2 =

L(F + αE[ρ2]) + N(FN + βE[ρ2
N ])

(19)
Considering the node load distribution, we have: E[ρ2

N ] =
σ2

ρN
+ E[ρN ]2 = σ2

ρN
+ (ρ̄K̄)2, where σ2

ρN
is the variance

of the node load distribution. Note that, being the node load
given by the sum of the load of the node’s links, the node load
distribution is a compound distribution that depends on the link
load and the degree distributions. Assuming that link load ρ
is independent on the node degree K, and that the load on the
links are i.i.d. random variables, we obtain: σ2

ρN
= K̄σ2

ρ +
ρ̄2σ2

K . Thus,

E[ρ2
N ] = (ρ̄K̄)2 + K̄σ2

ρ + ρ̄2σ2
K = ρ̄2E[K2] + σ2

ρK̄
(20)

Considering the link load distribution we have: E[ρ2] =
E[ρ]2 + σ2

ρ = ρ̄2 + σ2
ρ, where σ2

ρ is the variance of the link
load distribution. From (9), we can observe that ρ̄ is a linear
function of the average shortest path d̄. Thus, ρ̄ = E[ρ] =
E[(T/LR)d] = (T/LR)E[d], and the link load variance is:

σ2
ρ =

(
T

LR

)2

σ2
d, (21)

where σ2
d is the variance of the shortest path distribution.

Therefore, by knowing the first and the second moments of
the shortest path and the degree distribution, we can compute
the total cost given by (19). Note that to compute the net-
work cost after the random node removal, we need to evaluate
the second moment of the degree distribution in the new graph
E[(K ′)2]. From [11] we know that: E[(K ′)2] = E[K2](1 −
p)2 + p(1 − p)K̄, where E[K2] is the second moment of the
degree distribution in the original graph. We will show the anal-
ysis referred to the quadratic cost model in Section 4.4.

3. Network Models

Many network topologies and the Internet, in particular, sat-
isfy the following properties: (i) small-world property, accord-
ing to which the average number of hops between each node
pair is quite limited, (ii) local clustering, according to which
the topology has highly connected zones, (iii) heavy-tailed dis-
tributions of the node degree, meaning that, in general, most of
the nodes have few links while a few nodes have a large number
of links. In the literature, several random graph models have
been proposed to generate topologies matching the properties
of the real ones. However, deciding which model better fits the
real topology is an open problem [12]. Therefore, instead of
focusing on a single model, we consider a few among the most
popular models, showing that common properties regarding en-
ergy consumption can be inferred in all cases. In particular,
we consider three well-known graph models: Erdös and Rényi,
Power Law and Watts-Strogatz models.

In the Erdös and Rényi (ER) model [13] nodes are connected
by links according to a given probability, and the resulting de-
gree distribution follows a Poisson distribution. The proper-
ties of this model are well-known in the literature and have
been extensively studied. In particular, the ER model exhibits
the small-world property, according to which the diameter of
the graph scales as log(N). However, the local clustering and
heavy-tailed properties are not met.

In the Power Law (PL) model [11] the distribution PK(k)
of the node degree K follows a power-law distribution, i.e.,
PK(k) ∼ k−γ . The intuition is that some nodes behave like
hubs, and have many more connections than others.

The Watts-Strogatz (WS) model [14] is built starting from
a regular lattice in which each node is linked to a fixed num-
ber of neighbors. Then, additional edges are inserted between
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randomly chosen pairs of nodes6. The resulting graph is an in-
terpolation between ordered lattices and purely random graphs.
This model matches both small-world and the local clustering
properties, but the degree distribution is not heavy-tailed.

In the next sections, we discuss more in detail the proper-
ties of the considered models focusing, in particular, on the first
and second moments of the shortest path and the degree distri-
butions that we need in order to compute the first and second
moments of the load distribution and, hence, the energy con-
sumption.

3.1. The Erdös-Rényi model

We first compute the network consumption C in the case of
linear cost models, i.e., the variable part of the cost model in-
creases linearly with the load. To compute C we need the ex-
pression of the average shortest path that, for an Erdös-Rényi
graph, is given by [10]:

d̄ ' log(N)
log(K̄)

(22)

Using (7), (9) and (22), we can compute the all-on consumption
of the network as:

C = N K̄
2 F + αT

R
log(N)
log(K̄)

+ NFN + 2βT
R

log(N)
log(K̄)

(23)

After randomly removing a fraction p of the nodes, the average
shortest path becomes: d̄′ = log(N(1−p))

log(K̄(1−p))
and, from (10), the

network consumption becomes:

C ′ = N K̄
2 (1− p)2F + αT

R
log(N(1−p))
log(K̄(1−p))

+

N(1− p)FN + 2βT
R

log(N(1−p))
log(K̄(1−p))

(24)

To compute the network consumption when the quadratic
cost model is used, we need to know the second moments
of both the degree and shortest path distributions, as shown
in the previous section. The degree distribution in an ER
graph follows a Poisson distribution, thus: K̄ = σ2

K and
E[K2] = K̄2 + K̄. For what concerns the variance of the
shortest path distribution σ2

d, it can be shown that it tends to
zero when the number of transport nodes N is high (see [16]
for details). Thus, we assume that σ2

d = 0 and we obtain

E[d2] = d̄2 + σ2
d = d̄2 ≈

(
log(N)
log(K̄)

)2

. Finally, we can com-
pute the network consumption using (19), (20) and (21).

3.2. Power-law model

We consider a graph in which the distribution of the degree
K follows a power law, i.e., PK(k) ∼ k−γ . In this case, the
average shortest path can be computed as in [10]:

6In the original WS model presented in [15] shortcuts are rewired from the
lattice. However, the resulting graph is affected by a not negligible probability
to be disconnected. Therefore, we adopt the modification of the WS model
proposed by [14], in which shortcuts are additionally inserted as new links. In
this way, the resulting graph is always connected.

d̄ ≈ 1 +
log(N/K̄)

log[(E[K2]− K̄)/K̄]
(25)

In particular, we consider a Pareto distribution for the degree
since it is one of the most widely used and studied power laws
in the literature. The Pareto distribution is described by the
parameters (a, km), where km is the minimum possible value
of K, and a is a positive parameter. For this distribution we
have: K̄ = akm/(a− 1) and E[K2] = ak2

m/(a− 2).
Using the linear cost model, the all on network consumption

C can be computed similarly to what done for the ER model
using (7), (9) and (25). As reported in [11], a power law graph
remains power law even after a random removal of nodes. Thus,
the average shortest path of the network with sleep modes is:

d̄′ ≈ 1 +
log(N/K̄)

log
[(

E[K2]−K̄
K̄

)
(1− p)

] (26)

from which the network consumption with sleep mode C ′ can
be computed.

To compute C in the case of quadratic cost model, we need
also to estimate the second moment of the shortest path distri-
bution. For the PL graph we have: σ2

d ' 2
9

log(N)
log(3) (see [18]).

Thus, the second moment of the shortest path distribution is:

E[d2] ≈
0
@1 +

log(N/K̄)

log
h“

E[K2]−K̄

K̄

”
(1− p)

i
1
A

2

+
2

9

log(N)

log(3)
(27)

3.3. The Watts-Strogatz model
The Watts-Strogatz (WS) model interpolates between or-

dered lattices and purely random graphs [17]. Starting from a
lattice of N vertices in which each node is symmetrically con-
nected to its KL nearest neighbors, randomness is introduced
by independently adding x shortcuts between randomly chosen
pairs of nodes [14]. The mean node degree, K̄, is given by
K̄ = KL + 2x/N .

We first focus on the computation of the network consump-
tion when a linear cost model is used. In the literature, there
are some models for the estimation of the average shortest path
length when a WS model with rewiring is considered. For ex-
ample, for small values of x, i.e., x << N/KL, approximation
of [17] holds,

d̄ ' N

KL/2
log(2x)

4x
(28)

In this case, d̄ is similar to the shortest path of a lattice, scaled
by a factor that takes into account the number of random links.
For large values of x, i.e., x >> N/KL, the WS graph with
rewiring is similar to a purely random graph [14] and the aver-
age shortest path can be approximated as,

d̄ ' log(N)
log(K̄)

(29)

However, both approximations do not hold in our case, since
we are using the WS model without rewiring, i.e., we add the
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Figure 2: Validation of the proposed model to compute d̄ for WS graphs: (top)
average shortest path for different models and by simulation, considering N =
10, 000, KL = 4, x ∈ [5, 000 − 20, 000], (bottom) energy reduction ratio
versus p for the proposed model and the simulation, considering N = 10, 000,
KL = 4, x = 10, 000.

random links to the graph, and the number of random links is
quite large. We therefore propose a model that fits the scenarios
we are interested in. By considering a large number of simula-
tion results for cases of interest to this study, we have derived
the following expression to compute d̄:

d̄ ≈ N

KL/2
log(2x)

4x
+

log(N)
log(K̄)

(30)

Intuitively, we have found that in our scenarios d̄ scales like a
random graph plus the corrective term of (28).

During the sleep mode regime, the average shortest path be-
comes:

d̄′ ≈ N

KL/2
log(2x(1− p)2)

4x(1− p)2
+

log(N(1− p))
log(K̄(1− p))

(31)

Similarly to the previous graph models, using (12), (30) and
(31), we derive the cost C and C ′ for the WS graph in this
regime.

To evaluate the total cost with a quadratic cost model we also
need the second moment of the shortest path and the degree
distributions of a WS graph. We propose the following new
model for E[d2] that is derived by interpolation from simulation
results:

E[d2] ≈
(

log(N)
φτ log(KL) + log

(
2x
N

)
)2

+ χ (32)
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Figure 3: Validation of the proposed model for the quadratic load function for
WS graphs: (top) E[d2] for different models and by simulation, considering
N = 10, 000, KL = 4, x ∈ [5, 000 − 20, 000], (bottom) energy reduction
ratio versus p of different models considering N = 10, 000, KL = 4, x =
10, 000.

with φ = 2x/N
KL

, τ = 0.08 and χ = 15.
For what concerns the degree distribution, we use E[K2] ≈

K̄2 + KL, assuming a behavior similar to a ER graph.

3.3.1. Model Validation
We validated the proposed WS model by comparison against

simulation results in a large number of scenarios. We consider
transport networks with a given value of N and of the constant
part of the neighbor degree, KL, but different values of x. By
varying x we make the random component of the degree vary.
In simulation, we add 30% of additional access nodes that are
randomly connected to transport nodes. The former are instru-
mental to inject and to sink traffic. Since access nodes cannot
enter into sleep mode, we exclude them (and all links they are
connected with) in the computation of energy saving.

Top plot of Fig. 2 reports the average shortest path d̄ for the
case N = 10, 000, KL = 4, and x ∈ [5, 000 − 20, 000]. For
each value of x, the results are averaged over 20 independent
runs in which different random seeds are used for adding the
shortcuts. The figure reports d̄ computed from: (28) that corre-
sponds to the model of a scaled lattice (SL label in the figure),
(29) that is the ER model, our proposed model (30), and simula-
tion results. Clearly, the SL model does not match the measured
d̄ for the considered scenarios; the ER model underestimates d̄,
since it does not consider the presence of many links to neigh-
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Figure 4: E versus p for ER, PL and WS graph models.

bors. Our model presents a good matching, since it is fitted for
these scenarios. We have also validated the model in other sce-
narios, including scenarios with sleep modes, obtaining similar
results.

Bottom plot of Fig. 2 shows the energy reduction ratio, E,
computed by simulation and with the proposed model, for the
case of a network with sleep modes, N = 10, 000 nodes,
KL = 4, x = 10, 000, ν = νN and F = FN ; the fraction
of nodes that are switched off varies between 0 and 0.4. Bars
indicate minimum and maximum values of the energy reduction
ratio. Moreover, we have also computed the confidence inter-
vals of E, finding that they never exceed 1% of the estimated
value at 95% confidence level. Again, observe how accurate the
proposed model is.

We then validate the WS model also for the case of quadratic
cost function. Top plot of Fig. 3 reports E[d2] for N = 10, 000,
KL = 4 and x ∈ [5, 000− 20, 000], considering the ER model,
the simulations, and the proposed model of (32). The lattice
model (not reported in the figure) highly overestimates E[d2],
with values in the order of 106. Our model presents a very good
matching with the simulation results.

Bottom plot of Fig. 3 reports the energy reduction ratio E for
N = 10, 000 nodes, K̄ = 6, x = 10, 000, p ∈ [0, 0.4], ν = νN

and F = FN . In this case the confidence intervals of E never
exceed 5% of the estimated value at 95% confidence level. Our
proposed model matches the simulated E considering different
values of ν. In the following we therefore adopt our models for
computing C and C ′.

4. Performance Evaluation

In this section, we compare the effectiveness of the ap-
proaches based on sleep modes under the different network
models proposed in the previous section.

For the numerical results, unless otherwise specified, we set
N = 10, 000 and the link rate R = 100 Gbps. The link and
node linear power model of (4) and (6) is used. Unless other-
wise specified, we have assumed F = FN in our experiments.
The average degree K̄ is set to 6. This reflects the results of re-
cent measurement studies about actual network topologies like
the Internet (see [19] for an overview), according to which K̄
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Figure 5: Equivalent link load ν (top) and equivalent node load νN (bottom)
versus the switch-off probability p for the ER, PL and WS model.

ranges between 4 and 8. We assume that the total traffic scales
with the number of nodes N and the degree K̄. Notice also
that we impose an amount of traffic that does not overload the
network when the maximum amount of devices is switched off,
i.e., ρ̄′ < 1 for p = 0.4.7

For the PL model, we choose a Pareto distribution of the node
degree, setting a = 3 and km = 4, so that K̄ = 6; for the WS
model, we set KL = 4 and x = 10, 000 and the average node
degree is K̄ = KL + 2x/N = 6.

4.1. Impact of Sleep Modes
We first evaluate the impact of sleep modes on energy con-

sumption for different graph models. Fig. 4 reports the energy
reduction ratio versus p for two distinct cases: high equivalent
load (ν = νN = 10) and low equivalent load (ν = νN = 0.01).
When the constant part of power is predominant (ν = 10) the
introduction of sleep modes saves energy in the network, i.e.,
E < 1, for all the graph models. Moreover, the energy reduc-
tion ratio decreases as p increases, suggesting that the saving
increases with the number of devices that are switched off. No-
tice also that the curves of WS, PL and ER are overlapping
since the constant part of power is the same for the three graph
models, while the impact of the variable power is negligible.
On the contrary, when highly energy-proportional networks are

7Note that p has also to guarantee that the maximum link load is not ex-
ceeded.

8



10
−2

10
−1

10
0

10
1

10
2

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

E
ne

rg
y 

R
ed

uc
tio

n 
R

at
io

Equivalent load

p=0.1
p=0.2
p=0.3

10
−2

10
−1

10
0

10
1

10
2

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

E
ne

rg
y 

R
ed

uc
tio

n 
R

at
io

Equivalent load

p=0.1
p=0.2
p=0.3

10
−2

10
−1

10
0

10
1

10
2

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

E
ne

rg
y 

R
ed

uc
tio

n 
R

at
io

Equivalent load

p=0.1
p=0.2
p=0.3

Figure 6: Energy reduction ratio E versus equivalent load ν for different values of p, from left to right: ER, PL, WS model.

considered (ν = 0.01), the network consumes a higher amount
of energy when devices are switched off and E > 1. Thus, in
this scenario, sleep modes are not convenient. In particular, E
is higher for WS than for ER and PL models, due to the fact
that, in the WS graph model, node removal has an important
impact on the shortest paths.

We then analyze the impact of sleep modes by separately an-
alyzing the impact of links and nodes power consumption. In
particular, from (14) and (15) we compute the minimum values
of ν and νN for which E becomes smaller than 1; these values
represent breakeven points for which sleep mode saves energy.
The top (bottom) plot of Fig. 5 reports the breakeven curve for
links (nodes). If the value of ν falls above the breakeven curve,
sleep mode is convenient; otherwise, the network consumes a
higher amount of energy when devices are switched off. In all
cases, as p increases the minimum value of ν increases too,
meaning that for large values of p a sleep mode approach is con-
venient only when the constant part of the energy cost is high
with respect to the variable part. In particular, from the top plot
of Fig. 5, it can be observed that the breakeven curve of the ER
model ranges between 0.06 and 0.14. The WS breakeven curve
is above the other two curves, due to the fact that the average
shortest path length increases faster for WS (and load increase
is thus more significant) than in the other models; or, in other
terms, even with devices that present quite significant load pro-
portionality, sleep modes are convenient. From bottom plot of
Fig. 5, it can be observed that the breakeven curves of nodes
are one order of magnitude larger than the corresponding ones
of links. This is due to the fact that the variable term of nodes
power grows much faster than the links one, since ρN depends
on K. Thus, higher fixed costs are required to balance the in-
crease in the node load.

4.2. Impact of Technology Constraints

We now evaluate the impact of the equivalent load. Fig. 6
reports the values of E versus ν for the three proposed models;
the different curves correspond to different values of p where
for simplicity we set ν = νN . In all cases, the breakeven point
for which E = 1 occurs when the fixed cost F (FN ) is one
order of magnitude lower than α (β) (ν ≈ 0.3). Two different
regimes are possible: i) sleep mode is not convenient (E > 1),
and ii) sleep mode is convenient (E < 1). In the first regime,

the higher the probability to switch off devices is, the higher
the additional energy is, being WS the worst case. In the sec-
ond regime, instead, sleep mode leads to high energy saving
for all models, and the saving strongly increases with p. No-
tice that with today technology, we are in the right part of the
figures (sleep mode is always convenient, with saving up to 30-
40%), while in the future, the values of ν will probably de-
crease, meaning that sleep mode will become less convenient.

In the following, we consider the impact of varying the rela-
tive cost of nodes and links. In particular, we introduce a scaling
factor r for the cost of nodes, so that the total network cost C
becomes:

C =
∑

j∈L
A(j) +

1
r

∑

i∈N
AN (i)

In this way, we find the tradeoffs that emerge as the costs of
nodes and links are weighted differently. For example, the cost
of links is normally marginal for wireless technologies: the
largest amount of power is needed to keep powered on Base
Stations in UMTS or Access Points in WiFi networks [26]. On
the contrary, for backbone networks the cost of links is not neg-
ligible, due to the presence of multiple amplifiers for optical
networks or DSL lines for home access networks [27].

Left plot of Fig. 7 reports the breakeven curves for which
E = 1 varying both ν and νN , considering different values of
the parameter r. In this case, we are considering an ER graph
model and p = 0.3. Points below a breakeven curve correspond
to conditions in which sleep modes are not convenient. For low
values of ν and νN sleep modes are not convenient, i.e., E > 1
(bottom left corner of the plot). Conversely, for high fixed costs
(top right corner of the plot) sleep modes are convenient, E <
1. As r increases, the network becomes almost insensitive to
nodes equivalent load. For example, for r = 100, sleep modes
are convenient if ν > 0.12 or νN > 40. On the contrary, for
r = 10−2 sleep modes are convenient if ν > 20 or νN > 1.

To give more insights, central and right plots of Fig. 7 detail
the energy reduction ratio for r = 102 and r = 10−2, respec-
tively. The vertical colorbars report the values of the energy
reduction ratio. As expected, for r = 102 the energy reduction
ratio mainly depends on the value of ν. Notice that for ν >> 1
(i.e., F >> α), the energy reduction ratio of the network ap-
proaches the limit (1 − p)2 = 0.49 obtained when α = 0.
Interestingly, for r = 10−2 (right plot) the energy reduction

9



10
−2

10
−1

10
0

10
1

10
2

10
−2

10
−1

10
0

10
1

10
2

Equivalent link load

E
qu

iv
al

en
t n

od
e 

lo
ad

 

 
r = 1/100
r = 1/10
r = 1
r = 10
r = 100

10
−2

10
−1

10
0

10
1

10
2

10
−2

10
−1

10
0

10
1

10
2

Equivalent link load

E
qu

iv
al

en
t n

od
e 

lo
ad

 

 

0.5

0.6

0.7

0.8

0.9

1

1.1

10
−2

10
−1

10
0

10
1

10
2

10
−2

10
−1

10
0

10
1

10
2

Equivalent link load

E
qu

iv
al

en
t n

od
e 

lo
ad

 

 

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15
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Figure 8: Energy reduction ratio E versus the number of nodes N for ν = 0.5
and p = 0.3.

ratio still depends on the cost of the links, so that the network
saves up to 25% of energy when ν = 100, independently of νN .
This is due to the fact that, for a given p, the fraction of links
powered off is always larger than the fraction of nodes.

4.3. Impact of Network Properties
We now consider the impact of the network properties on

the possible energy saving. In particular, we start by setting
K̄ = 6, while we vary N in [102, 105]. For the WS model we
set x = N . Fig. 8 reports the energy reduction ratio E for the
considered models, for ν = νN = 0.5 and p = 0.3. The highest
saving is obtained by the PL model. In all the cases, E increases
(sleep mode effectiveness reduces) with the number of nodes;
this is due to the fact that we increase N while letting the node
degree unchanged, so that the set of alternative paths does not
scale with N and the impact of switching off some devices on
the path length increases. This is particularly visible under the
WS model.

Now we consider the impact of the average node degree K̄
and select values of K̄ that mimic those used in [19] to rep-
resent the average node degree of large topologies. We set
ν = νN = 0.5 and p = 0.3. Moreover, for the WS model
we fix x = 10, 000 and we vary KL ∈ [2, 8]. Fig. 9 shows E
versus K̄. For all the models, the energy reduction ratio is de-
creasing as K̄ is increasing. Indeed, for large values of K̄, the
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Figure 9: Energy reduction ratio E versus average node degree K̄ for ν = 0.5
and p = 0.3.

number of possible paths between any two nodes is large and,
once some nodes are powered off, it is easy for the network to
find alternative paths; or, in other terms, the increase of the aver-
age shortest path due to sleep modes is limited if K̄ is large. For
low values of K̄, sleep modes are not convenient. For example,
for the WS model E is around 1.27 when K̄ = 4, meaning that
the sleep mode wastes an additional 27% of power with respect
to an always on solution. Conversely, when K̄ increases, the
additional cost due to the increase of the path length is smaller,
so that sleep modes are more efficient. Finally, notice that the
energy reduction ratio of the ER and PL models is consistently
lower than the WS one. This is due to the better path length
properties the former two graphs have.

4.4. Impact of Power Consumption Model
We consider here the impact of the power consumption

model. In particular, we compare the linear power consumption
model of (7) and the quadratic model of (19). Fig. 10 details the
breakeven curves for which E = 1, comparing the two models
for different values of r under the ER network model. Inter-
estingly, the area for which E > 1 steadily increases with the
quadratic model, since the weight of the variable term is higher
than the linear case.

We then consider the impact of the quadratic cost function
when the fraction of switched off nodes varies. Fig. 11 shows
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the energy reduction ratio versus the probability to remove
nodes p, for the ER and PL graph models (refer to Fig. 3 for
the WS model). In this case, we consider ν = νN = 0.005
and ν = νN = 50. The figures report also the average results
obtained by simulation, assuming a number of access nodes in-
jecting traffic equal to 30% of the number of transport nodes.
Bars indicate minimum and maximum values. Interestingly,
when ν = 0.005 the variable term of power is predominant and
E > 3 for p = 0.4 considering the ER model. This means that
a strongly energy proportional network with sleep modes can
consume up to three times an all-on network. Notice also that,
with the same parameters, the WS model performs consistently
worse, while the PL performs quite better. On the contrary, as
high fixed costs are considered, all the models save energy, be-
ing E < 1 for all values of p. Finally, all the models present
a good matching with the simulations, indicating that the intro-
duced approximations do not impact on the variation of E.

5. Comparison of Switching Policies

In this section we investigate the impact of different strate-
gies for switching off devices. We first consider the case in
which the nodes to be switched off are chosen according to
another strategy than a simple random removal policy. Note
that, the choice of the node removal strategy is out of the main
scope of this paper. Nevertheless, in the following we com-
pare the simple random removal strategy with the least-flow
policy of [4] to assess the effectiveness of sleep modes under
a smart switch-off policy. Specifically, the least-flow strategy
consists in switching off the devices with the least amount of
traffic flowing through them, where the total amount of flow
crossing a node is computed as the sum of the traffic flowing
through its incident links. This strategy could be particularly
effective in reducing the rerouted traffic in the network when a
node is powered off, in order to maintain an adequate QoS for
users. Note that our models apply only to random strategy, thus,
the results of the least-flow policy are derived by simulation.

Fig. 12 shows the comparison between the random (R) and
least-flow (LF) policies considering the ER graph model (r =
1/10), and a number of access nodes injecting traffic equal to
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Figure 11: Energy reduction ratio versus p with the quadratic cost model: ER
model (top) and PL model (bottom).

30% of the number of transport nodes. When the constant cost
is predominant (Fig. 12(a)) the energy reduction ratio of the
least-flow policy is higher than the random one. Indeed, for a
given percentage of nodes that are put in sleep mode, the num-
ber of links powered off is lower in the least-flow policy com-
pared to the random one. Intuitively, the least loaded devices
are the ones with lower degree and are traversed by a low num-
ber of paths. On the contrary, the random policy is more ag-
gressive in turning off the links, and hence the resulting energy
reduction ratio is lower compared to the least-flow.

When the variable cost becomes predominant (Fig. 12(b)),
the energy reduction ratio of the least-flow policy is substan-
tially lower than the one of the random policy. To give more
insight, we report the average path distance in Fig. 12(c) and
the average link load in Fig. 12(d) for the same scenario. When
devices enter sleep mode, the average path length of the least-
flow policy results shorter than the one observed using the ran-
dom policy. This because the least loaded devices are traversed
by few paths and so their removal has a limited impact on the
average path length. This is also beneficial for the average link
load, which shows a moderate increase as p increases, and is
lower than the one of the random policy.

At last, under the random removal policy, we compare the
node switch-off policy (that we consider throughout the paper)
with the link switch-off policy, in which only links are switched
off. The comparison is done by considering the same number of
powered off links. The energy reduction ratio, E, is computed
considering both link and node power consumption. We use
ν = νN , F = FN , and an ER graph model with N = 10, 000
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Figure 12: Least-Flow (LF) versus Random (R) policy comparison for the ER graph model.

and K = 6. Fig. 13 shows E versus the number of off links
considering both policies. For high fixed costs, the energy re-
duction ratio of the node switch-off policy is slightly lower than
the link one. Indeed, for a given number of powered off links,
the node switch-off policy has two advantages over the link off
policy: i) it puts in sleep mode also some nodes and, hence, the
gain in terms of energy is higher; ii) the average path length,
and the average load, increase less with respect to the pure link
switch-off policy. When high energy-proportional devices are
considered, sleep modes are not convenient for both the poli-
cies. Note that, the energy reduction ratio of the link-policy
(black curve) is higher than the one of the node-policy (red
curve).

6. Discussion

In this section we briefly discuss the main assumptions of our
model and how much the results are impacted by these assump-
tions.

Network Topology. In the literature, the effectiveness of
sleep modes has been evaluated on benchmarking topologies
(see for example [4] and [22]). However, the obtained results
are tailored to specific reference topologies, and are difficult to
be generalized. In this work, we follow a different approach:
we exploit graph theory to model network topologies, and we
derive general insights, showing what happens when network
parameters, such as the number of nodes and the average node
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Figure 13: Energy reduction ratio versus the number of off links for the node
and link switch-off policies.

degree, are varied. In this way, we are able to overcome the
limitations derived from the analysis over a specific topology.
However, we recognize that actual topologies can be more com-
plex than a single graph model, and we leave the topology
modeling issue for future work. To partially cope with this
issue, rather then showing results for a single model, in this
work we have considered different graph models, showing that
common properties can be inferred in all cases.

Set of Devices in Sleep Mode Another crucial aspect is how
to choose the set of devices to be put in sleep mode. In the lit-
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erature, several algorithms have been proposed to select the set
of devices to be powered off (see for example [4, 22, 23, 24]).
In this work, we assume that the set of devices in sleep mode is
given and is such that the minimum required QoS is guaranteed
to all the users. For analytical tractability, we adopt the conser-
vative assumption that the devices in sleep mode are randomly
chosen. We recognize that the actual savings may be even larger
if smarter algorithms are considered. However the most inter-
esting finding of the paper, i.e., the fact that sleep mode is effec-
tive even when load proportional devices are deployed, is still
valid and general. To further support this insight, in this paper
we compare the random policy with the least-flow policy of [4],
which is more effective in choosing the set of devices in sleep
mode. We show that the general message still holds even when
the this advanced policy is adopted.

Traffic Variation. In a telecommunication network traffic
varies over time following a typical daily pattern, suggesting
that sleep mode can be dynamically applied to follow the traf-
fic pattern. This includes the application of sleep mode to long
time scales (the main scope of this paper), but also the possi-
bility to power off transmission facilities when there is no in-
formation (or very little one) to be sent as proposed in [28, 29].
In our approach, we consider a snapshot of the network at a
given time, and evaluate the effectiveness of sleep mode for the
selected snapshot. Our model gives indications for the consid-
ered scenario. Finally, note that transient behavior of devices
and of the whole network has to be considered. This includes
the latency introduced to recover from a sleep mode state, and
how to react to sudden load fluctuations. These aspects are out
of the scope of this paper.

Traffic Distribution. Our framework takes as input the total
amount of traffic exchanged in the network, which we assume
to be uniformly distributed among all nodes. If a real traffic
matrix shows unbalanced traffic demands, e.g., a peering point
collecting most of the traffic in the network [4], a uniform ma-
trix is a conservative scenario, since many devices are required
to be at full power. This intuition has been confirmed in previ-
ous work too [4].

Power and Capacity Distribution. We assume that all the
devices (nodes or links) consume the same power. This as-
sumption can be considered representative of current core net-
works, in which all devices have a similar capacity [4]. Exten-
sions to classes of devices are possible, and we leave it for fu-
ture work. Considering power consumption model of devices,
several measurements corroborate the simple linear relation-
ship with offered traffic. More advanced scaling mechanisms
(such as DVS) are also modeled by quadratic functions. Exten-
sions to higher degree polynomial functions are possible, but
not straightforward.

7. Related Work

The study of power-saving network devices has been intro-
duced in recent years, starting from the pioneering work of [30].
Rate adaptation and sleep mode techniques have recently at-
tracted the attention of the research community (see [33, 34]

for an overview). In [35] authors focus on two power man-
agement schemes for power saving, based either on sleeping or
rate adaption. Moreover, in [36] an analytical model of sleep
modes for Ethernet devices is presented. Differently from our
work, these papers consider to put into standby mode network
elements during idle times, e.g., among subsequent packet ar-
rivals. In our work, instead, we assume that devices are put in
sleep mode over coarser time scales, i.e., of the order of min-
utes and hours. Moreover, they consider the impact of the two
techniques in isolation, while in our work we assess the impact
of sleep mode over a variety of scenarios, including energy-
proportional networks.

Moreover, in the last years, Dynamic Voltage Scaling
techniques that dynamically adjust the frequency and volt-
age of links have been shown to reduce power consumption
[31]. However, these techniques require sophisticated hardware
mechanisms to ensure correct link operation during scaling, and
the potential power savings can be smaller than the ones achiev-
able with sleep modes since links are still powered on even
when they are in an idle state. Furthermore, the authors of [32]
investigated the savings achievable dynamically turning links
on/off in response to traffic variation. However, their work is
targeted to a rather different field, i.e., the interconnection net-
work fabrics. In particular, the topology of an interconnection
network is represented by a grid, while an ISP network has a
less regular structure. Moreover, the authors of [32] consider
only the case in which links only are put in sleep mode and their
analysis is limited to a simple power model on/off, whithout in-
vestigating the case in which energy-proportional devices are
used.

In [37] authors estimate the total power consumption of a
telecommunication network, given the power requirements of
network devices and the traffic from users. In particular, they
consider all the network portions of a telecom operator, fore-
seeing that the highest energy consumption growth rates will
be in the data centers and IP backbone networks. Basing their
assumptions on technology forecasts, they claim that future net-
works with enabled sleep modes and load adaptation will save
a consistent amount of energy, i.e., typically larger than 56%.
While this intuition is inline with our results, our model is
able to derive more general insights, being able to highlight the
breakeven points that emerge adopting different power models
and technology assumptions.

Power consumption of current network devices is mostly in-
dependent of the current load, considering backbone [1, 5] and
access networks [26]. Moreover, the power consumption of
links is not negligible, and can be of the same order of magni-
tude of nodes [27]: this is especially true for long-haul optical
links, in which several amplifiers are needed to regenerate the
signal. Step functions are adopted to model power consumption
of such devices. Several works have therefore targeted the min-
imization of network devices powered on while satisfying QoS
[25, 33, 34]. Our work confirms that, in this scenario, networks
with sleep nodes are the best solution in terms of power saving.

Researchers from universities and industries are now study-
ing solutions to adapt power with current load. In particular, in
[7] the authors exploit the idea of exchanging energy profiles

13



among devices to reduce the overall power consumption during
routing and traffic-engineering operations. They consider dif-
ferent models to represent device power consumption, includ-
ing linear and super-linear models. In [8] authors evaluate the
impact of sleep modes over different network topologies. They
consider different power models, evaluating the total power
consumption when some elements are put into sleep modes.
All these works are mainly focussed on specific case-studies,
while our framework is able to produce more general insights
over a variety of network graphs, showing that the gain adopting
sleep modes can be consistent even when energy-proportional
devices are deployed.

Overall, the consciousness of power-aware telecommunica-
tion networks is growing. Several projects are investigating
the impact of power adaptive technologies for network devices
[38, 39, 40, 41]. Indeed, this work is undertaken under the
project TREND (Towards Real Energy-efficient Network De-
sign) [42], a Network of Excellence funded by the European
Commission through the FP7 Program.

8. Conclusions

In this paper, we have proposed an analytical framework
for the evaluation of the potential energy saving that can be
achieved by applying sleep modes to the devices of a complex
network, like the Internet. We have modeled the network de-
vice (nodes and links) power consumption by means of a simple
function composed of a constant cost and a variable cost pro-
portional to the device load. Leveraging on random graph the-
ory, we have then computed the overall power consumption of
networks with different topological properties. Random graph
theory results are used to evaluate the total power consumption
of a network with all the devices powered on, or a fraction of
devices only. The comparison of these figures has enlightened
when the sleep mode adoption is convenient.

Our results suggest that with today technology, with device
consumption that varies very little with the load, the use of
sleep modes is very effective in reducing the network energy
consumption. In the future, with devices whose consump-
tion will likely be more load proportional, the effectiveness of
sleep mode approaches will reduce. However, we have found
that sleep modes reduce power consumption even when device
power scales quadratically with load. Our results indicate also
that highly connected networks, with large node degree and
high randomness, tend to make the use of sleep modes more
convenient.
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