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Abstract: 

The present paper investigates the application of the stochastic approach when the commonly adopted 
Miner’s linear damage rule is implemented, both in its traditional form and in its modified form to include 
the presence of a random stress threshold (random fatigue limit), below which the rate of damage 
accumulation is reduced. 
Main steps are provided to obtain the simulated distribution of the accumulated damage under variable 
amplitude loading. When the stochastic approach is applied in presence of a random fatigue limit, an 
additional correlation structure, which takes into account the fatigue limit value, must be introduced in the 
analysis. If the number of cycles to failure under constant amplitude loading is Weibull (Log-Normal) 
distributed, then the corresponding accumulated damage is Fréchet (Log-Normal) distributed. 

The effects of the correlation structure on reliability prediction under variable amplitude loading are also 
investigated. To this aim, several experimental datasets are taken from the literature, covering various 
metallic materials and variable amplitude block sequences. 
The results show that the choice of the damage accumulation model is a key factor to value the improvement 
in the accuracy of reliability predictions introduced by the stochastic approach. 
Comparison of the predicted number of cycles to failure with experimental data shows that larger errors are 
nonconservative, regardless of the adopted correlation structure. When the analysis is limited to reliability 
levels above 80%, for these large nonconservative errors it is the quantile approach to be closer to actual 
experimental data, thus limiting the overestimation of component’s life. For the experimental datasets 
considered in the paper, adoption of a stochastic approach would improve the accuracy of Miner’s 
predictions in 10% of cases. 

Keywords: 

Variable amplitude loading; Correlation structure; Fatigue life prediction; Random fatigue limit; Monte 
Carlo simulations 
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Nomenclature 

 indicator function of the subvector 1  of the vector  

,  vectors with each element equal to one 

, , , , , , , , ,  parameters to be estimated 

, , , , , , ,  estimates of the parameters 

, , ,  accumulated damages 

,  pseudorandom matrix and vector of accumulated damages 

 pseudorandom vector of total damage at  

,  errors in the prediction of the number of cycles to failure, in a variable amplitude test 
· , | ·  probability density functions 

· , · , | ·  cumulative distribution functions 

Φ ·  standard Normal cumulative distribution function 
·  Likelihood function 
·  Log-Likelihood function 
 positive parameter in correlation coefficients 
 total number of blocks 

 mean vector of a conditional multivariate Normal distribution 
 number of runouts 

, , , … , , , , , , … , , , ,  values of number of cycles 

 number of failures 

 number of cycles to failure at  

, , , , , , , , , ,  total number of cycles, in a variable amplitude test 

 number of different stress amplitudes 
 number of simulations 

 number of cycles to failure at s , when Haibach’s hypothesis is used 

 total number of cycles to failure, in a variable amplitude test 
·  probability of an event 

 reliability at  

, , ,  Spearman’s rank correlation coefficients 

 Spearman’s rank correlation matrix 

, , , , … , , , , , , , … , , ,  values of stress amplitudes 

s  value of fatigue limit 
 random fatigue limit 

Σ , , Σ ,  Pearson’s correlation coefficients 

 Pearson’s correlation matrix of a conditional multivariate Normal distribution 

,  pseudorandom matrix and vector drawn from a multivariate Uniform distribution 
z  -th quantile of the standard Normal distribution 

 pseudorandom vector drawn from a Normal distribution with mean  and correlation matrix  

|·|  absolute value 
·  matrix 
·  vector 
·  transpose of a vector 
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1. Introduction 

It is generally acknowledged that prediction of fatigue reliability is critical for the design and maintainability 
of many structural components. Due to this criticality, extensive literature is dedicated to the problem. 
Nevertheless, life prediction and reliability evaluation remain a challenging issue, especially when service 
loading or variable amplitude loading is considered. 

Several damage accumulation models have been proposed in the literature1. Though many models have been 
postulated, none of them has the benefit of widespread acceptance and the Miner’s damage rule still remains 
the most commonly adopted in practice. 
Under variable amplitude loading, fatigue lives at different stress amplitudes are commonly assumed to be 
uncorrelated (e.g., [2]) or, rather, fully correlated (e.g., [3]) Log-Normal or Weibull random variables. More 
recently, Liu and Mahadevan4,5 postulated a model that includes actual correlation of fatigue lives across 
different stress amplitudes, based on the physical evidence that under variable amplitude loading it is the 
behavior of a given specimen at different stress amplitudes to generate the randomness of the distribution. 
Therefore, it is reasonable to assume that fatigue properties at different stress amplitudes may be correlated. 

In [4], Liu and Mahadevan proposed to treat the fatigue lives as correlated Log-Normal random fields 
(stochastic approach) which depend on the value of the stress amplitude. Compared to traditional fatigue life 
prediction methods, the stochastic approach requires one additional variable amplitude loading test. In their 
works4,5, Liu and Mahadevan proposed a nonlinear model to account for damage accumulation under 
variable amplitude loading. Consistently with the traditional form of Miner’s rule, their model does not take 
into account the existence of a fatigue limit. Based on this nonlinear damage accumulation model, they 
concluded that the stochastic approach improves accuracy of reliability predictions. 

The present paper proposes a general statistical procedure that allows to implement the stochastic approach 
in a general framework, making use only of Monte Carlo simulations with no need of expansion techniques. 
The analysis is performed by taking into consideration the possible presence of a random fatigue limit, below 
which the rate of damage accumulation is reduced, and by assuming that the number of cycles to failure 
under constant amplitude loading can be Log-Normal or Weibull distributed. 

In order to investigate whether the stochastic approach can improve the accuracy of reliability predictions 
with damage accumulation models different from the one proposed in [4,5], the Miner’s linear damage rule 
is adopted in the present paper and tested over several experimental datasets taken from the literature, 
including data considered in [4,5]. 
As a final purpose, the paper attempts to answer the question whether, in spite of the higher complexity, by 
adopting a stochastic approach, it is possible to improve the accuracy of Miner’s predictions, especially in 
the most critical cases of nonconservative estimates (i.e., overestimation of component’s life). 
 

2. Damage rule and reliability definition 

Consider a fatigue test with specimens subject to a variable amplitude block loading. Let  be the total 
number of blocks and the pair ,  the stress amplitude and the number of cycles of the -th block 
( 1, … , ), respectively. 

Different damage accumulation models have been proposed in the literature to predict the total number of 
cycles to failure in case of variable amplitude block loading. Among them, the linear damage rule postulated 
by Miner plays a major role.  
Miner supposed that the total damage  sustained by a specimen can be computed as: 

∑ , (1) 
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where  is the number of cycles to failure at , in a constant amplitude test. 
Failure occurs when  reaches unity. 

In spite of its simplistic hypotheses (linearity, stress amplitude independence, stress sequence independence 
and stress interaction independence1), the Miner’s rule is commonly adopted due to its ease of application 
and will be used in the following. 

Let  be the total number of cycles in a variable amplitude fatigue test. Let  be the number of different 
stress amplitudes experienced in the test. Due to the hypotheses of the Miner’s rule, all cycles at the same 
stress level can be grouped together and considered as a single block even though they are applied at 
different times, so that ,  denotes the total number of cycles at . In this respect,  can be smaller than 

the total number of blocks, , and the total damage due to the  cycles, , can be written as: 

∑ , ∑ , (2) 

where ,  (i.e.,  represents the damage accumulated in ,  cycles at ). 

According to the Miner’s rule, if the specimen fails at , then 1, otherwise  is smaller than 

1. The total number of cycles to failure, , is a random variable and its distribution is strictly related to 
the distribution of . In particular, the probability that  is smaller or equal than a given value  

(i.e the probability of reaching specimen failure before  cycles) is equal to the probability that  is 

larger or equal to 1: 

1 . (3) 

In many engineering applications, it is requested to compute the reliability for a given total number of cycles. 
Since the reliability at , , is the probability of having no failure (runout) in  cycles, by 

considering Equations (2) and (3), the reliability at  can be computed as: 

∑ 1 .  (4) 

Therefore,  can be computed only if the distribution of  is known. 

3. Stochastic approach: introduction 

If the following assumptions apply to fatigue data: 

 the number of cycles to failure at  follows either a Log-Normal or a Weibull distribution 
(according to the literature (e.g., [6]), this is a quite common assumption for constant amplitude 
data); 

 a simple Basquin’s model with constant standard deviation7,8 well fits constant amplitude data; 

 under variable amplitude loading, the damage at  is correlated with the damage at 4,5; 

then the random variables  ( 1, … , ) in Equation (4) are correlated variables and are either Log-
Normal or Fréchet distributed9, if the number of cycles to failure follows a Log-Normal or a Weibull 
distribution, respectively. 

For sake of clarity, the different steps that must be taken to determine the reliability  will be first 

discussed with reference to the case of the Log-Normal distribution. The case of Weibull distributed number 
of cycles to failure will be briefly addressed in Section 3.4. 
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In the Log-Normal case, the logarithm of the number of cycles to failure at  is Normal distributed with 
mean, , and standard deviation, . 

According to Basquin’s model,  and , can be expressed as: 

ln
, (5) 

where ,  and  are constant parameters that can be estimated through constant amplitude experimental 
data. 

By applying the well-known formulas for the transformation of a random variable9, the distribution of the 
random variables  is shown to be Log-Normal with parameters: 

ln , ln
. (6) 

According to Equation (2), the total damage  corresponds to the sum of  correlated Log-Normal 

random variables with parameters given in Equation (6). The correlation between  and  (being ,

1, … , ) can be modeled as a function of the stress amplitude distance4,5: 

, , (7) 

where  is a positive parameter and |·| denotes the absolute value. If 0, then , 1, (i.e.,  and  

are fully correlated); while, if ∞, then , 0 (i.e.,  and  are uncorrelated). In [4,5], the case of 

0 is defined as quantile S-N curve, while the case of ∞ is defined as statistical S-N curve; when 
0 ∞, the S-N curve is defined stochastic S-N curve. The above definitions of quantile, statistical and 
stochastic S-N curve will also be used in this paper. 
In Equation (7), ,  measures the strength of association between  and  and it is represented by the 

Spearman’s rank correlation coefficient, which is the nonparametric version of the Pearson’s correlation 
coefficient . A monotonic relationship is an important underlying assumption of the Spearman’s rank 
correlation coefficient, which is less restrictive than the linear relationship that has to be met by the 
Pearson’s correlation coefficient. A monotonic function links the two coefficients and it permits to compute 
one, knowing the other9. 

To the authors’ best knowledge, no exact distribution for the sum of correlated Log-Normal random 
variables can be found in the literature. In [10], the sum was approximated by a Log-Normal distribution. In 
this paper, Monte-Carlo simulations, based on a multivariate Copula9, are adopted to obtain a quasi-exact 
distribution. It is worth noting that, in case of a Log-Normal distribution, a multivariate Gaussian Copula 
allows to obtain simulated damage values which correspond to the values obtainable by randomly drawing 
from a multivariate Log-Normal distribution. For this reason, the Gaussian Copula is adopted in this paper. 

3.2. Stochastic approach: S-N curve without fatigue limit 

Let us first consider the simplest S-N curve, where an unique straight line describes the entire fatigue 
domain. 

Let ,  and  be the estimates of the parameters ,  and  obtained from experimental data acquired 
through constant amplitude tests. The sequence of steps to be followed in order to obtain the simulated 

reliability  for given values of , ,  and  are: 
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1. Compute the  matrix, , containing pseudorandom values drawn from a multivariate 

Gaussian copula9 with correlation matrix ,  ( ,  is given in Equation (7)): 

, 

where the 1  vector  denotes the -th column of matrix  (i.e., 
U , U , , being ·  the transpose of vector · ). 

2. Compute the  matrix, , containing pseudorandom values of fatigue damage with 
correlation matrix : 

, 

where the 1  vector  denotes the -th column of matrix  and ·  denotes the 
inverse cumulative distribution function (cdf) of the fatigue damage: 

 , 

where Φ ·  is the standard Normal cdf and  and  are the estimates of  and  obtained by 

taking into account Equation (6): 

ln , ln
. 

3. Evaluate the 1  vector, , of pseudorandom values of total damage at : 

· ∑ , 

where  denotes the 1  vector with each element equal to one. 

4. Finally, evaluate the pseudorandom value, , of reliability at : 

·
, 

where  denotes the 1  vector with each element equal to one and the 1  

vector  denotes the indicator function of the sub-vector 1  of the vector 

. 

3.3. Stochastic approach: S-N curve with fatigue limit 

It is possible to extend the above methodology to include S-N curves that show a stress threshold s , called 
the fatigue limit. In the simplest form, it is assumed that stress amplitudes below the fatigue limit do not lead 
to failure; consequently specimens are supposed to survive an infinite number of cycles. 

When computing the total damage, blocks with stress amplitudes below or equal to the fatigue limit ( s ) 
do not induce any damage and it is therefore necessary to distinguish between blocks with stress amplitudes 
above the fatigue limit and blocks with stress amplitudes below the fatigue limit. In this respect, a bilinear 
model can be adopted. With a bilinear model, the parameters of the -th damage random variable, , are 
equal to: 
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ln , , , ln if s

ln , , , ln if s . (8) 

In real service conditions, constant amplitude fatigue is quite rare, since, in general, components are subject 
to different stress amplitudes. Under this condition, to allot zero damage to blocks below the fatigue limit 
was shown to lead to nonconservative estimates of component’s life, since fatigue cracks, once nucleated, 
can propagate even for stress amplitudes below the fatigue limit11-13. 

In order to reduce nonconservative life estimates, the bilinear model proposed by Haibach14 may be used. 

Then, in Equation (8), ,  depends on ,  and it can be assumed to be equal to 2 , 1 . To fulfill 

continuity of  at  equal to s , it is necessary that  when s . As a consequence, 

, , , 1 ln s  and Equation (8) can be rewritten as: 

ln , ln if s

ln , 1 ln s 2 1 ln if s . (9) 

Parameters in Equation (9) depend on the value s . The value of the fatigue limit may vary from one 
specimen to another and therefore, in a statistical framework, the fatigue limit must be considered a random 
variable. In the literature (see e.g., [6,15]), the random fatigue limit, , is often assumed to be Normal 
distributed with mean, , and standard deviation, . Therefore, any fatigue limit value, s , corresponds to a 
specific quantile of the Normal distribution and may be expressed as: 

s z , (10) 

where z  denotes the -th quantile of the standard Normal distribution. 

A fatigue model that is capable to take into account the existence of a random fatigue limit was proposed in 
[16]. According to this model, the S-N curve with fatigue limit s  is representative of the -th quantile. In this 
respect, the given s  value identifies the entire -th quantile S-N curve (Figure 1). 

When Haibach’s hypothesis is used, the stress amplitude s  corresponds to a finite number of cycles to 
failure,  (Figure 2). From Equation (5), considering that the logarithm of number of cycles to failure is 

Normal distributed, it can be written: 

ln ln s z . (11) 

Therefore, for a given specimen (i.e., for a given s  value), the point with coordinates , s  is completely 

defined and it is common to the quantile, stochastic and statistical S-N curves (Figure 2). As a consequence, 

the point , s  is a fundamental point in damage evaluation, regardless of the adopted correlation 

structure. 

Let us define  the fatigue damage caused by a given number of cycles, , at s . Since ⁄ , the 

fatigue damage caused by  cycles at s  does not depend on the adopted correlation structure. Therefore, 

for a given specimen, when s , the fatigue damage caused by ,  cycles at s , , must 

correspond to . This condition leads to an additional correlation structure between the generic damage  

and the damage  (dotted arrows in Figure 2). By adopting the same correlation function proposed in 

Equation (7), the additional correlation structure can be expressed as: 
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,
| |, (12) 

where, ,  measures the strength of association between  and  and it is represented by the 

Spearman’s rank correlation coefficient. 

Having completely defined the correlation structure for a linear S-N curve with random fatigue limit, it is 
then possible to evaluate the pseudorandom value of reliability, , similarly to what is illustrated in 

Section 3.2 for the simpler case of a linear S-N curve without fatigue limit. Main steps are: 

1. Generate a pseudorandom fatigue limit value, s , drawn from a Normal distribution with estimated 
mean equal to  and estimated standard deviation equal to  and compute the standard Normal 
fatigue limit, z , corresponding to s  as follows: 

z
 
. 

2. For any couple ,  ( , 1, … , ), compute the Pearson’s correlation coefficient 

corresponding to the Spearman’s rank correlation coefficient9 given in Equation (7): 

Σ , 2 · sin , 2 · sin , 

where Σ ,  denotes the Pearson’s correlation coefficient. 

3. For any stress amplitude  ( 1, … , ), compute the Pearson’s correlation coefficient between  
and  corresponding to the Spearman’s rank correlation coefficient given in Equation (12): 

Σ , 2 · sin , 2 · sin | | , 

where Σ ,  denotes the Pearson’s correlation coefficient between  and . 

4. Assemble the mean vector, , of the conditional multivariate Normal distribution9 of  (
1, … , ) given that s : 

z

Σ ,

Σ ,

µ , 

where the minus sign follows from the inverse function ⁄ . 

5. Assemble the Pearson’s correlation matrix, , of the conditional multivariate Normal distribution9 

of  ( 1, … , ) given that s : 

1 Σ ,

Σ , 1

Σ ,

Σ ,

Σ , Σ , Σ , . 

6. Compute  pseudorandom values, z , drawn from a multivariate Normal distribution 

with mean vector  and correlation matrix . 

7. Compute, from ,  pseudorandom values, , drawn from a standard Uniform distribution: 

Φ U . 
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It is worth noting that vector  contains  pseudorandom values drawn from a conditional 
( s ) multivariate Gaussian Copula with correlation matrix depending on the rank correlations 

,  ( , 1, … , ) and ,  ( 1, … , ). 

8. Compute  pseudorandom values, , of correlated fatigue damage: 

D , 

where ·  denotes the inverse cdf of the fatigue damage. If the fatigue lives  ( 1, … , ) are 
supposed to be Log-Normal distributed, then  is equal to: 

, 

where  and  are the estimates of  and  obtained by taking into account Haibach’s 

hypothesis (Equation (9)): 

ln , ln if s

ln , 1 ln s 2 1 ln if s . 

9. Evaluate the pseudorandom value, D , of total damage at : 

D · ∑ D . 

10. Compute  pseudorandom total damage values (i.e., D ,  with 1, … , ), by repeating 

 times points 1 to 9, and assemble the 1  vector of pseudorandom total damage values: 

D , . 

11. Finally, evaluate the pseudorandom value, , of reliability at : 

·
. 

3.4. Extension to Weibull distribution 

The illustrated procedure may be adopted also in the case of Weibull distributed number of cycles to failure. 
By applying the well-known formulas for the transformation of a random variable9, the damage variable  
is shown to be Fréchet distributed with parameters equal to: 

,

1⁄
. 

For brevity, only the more general case of S-N curve with fatigue limit will be discussed. The simpler case of 
S-N curve without fatigue limit can indeed be seen as a sub-case, where 0 and 0. 

Referring to Section 3.3, of all steps 1)-11), it is only in step 8) that the Fréchet distribution needs to be taken 
into account. In particular, step 8) must be rewritten as follows: 

8. Compute  pseudorandom values, , of correlated fatigue damage: 

D , 
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where ·  denotes the inverse cdf of the fatigue damage. If the fatigue lives  ( 1, … , ) are 
supposed to be Weibull distributed, then  is equal to: 

ln ⁄  , 

where  and  are the estimates of  and  obtained by taking into account Haibach’s 

hypothesis: 

, if s
, if s

1⁄

. 

4. Influence of the correlation structure: literature examples 

To investigate the influence of the correlation structure in predicting fatigue reliability, prediction results are 
compared with experimental data. The experimental data includes the datasets considered by Liu and 
Mahadevan4,5 as well as additional literature data. The complete experimental data, covering a wide range of 
metallic materials under different types of variable amplitude loadings, is summarized in Table 1. 

4.1. Influence of the correlation structure: constant amplitude loading data 

As an initial step, constant amplitude data are used to obtain estimates of the parameters , , , ,  
through the Maximum Likelihood (ML) Principle. Parametric estimation based on the ML Principle is a 
common practice, since it allows for censoring of experimental data and it provides estimators with good 
asymptotic properties (consistency, unbiasedness, efficiency and normality6). 

In case of  failure data, , , , … , , , at stress amplitudes , , , , … , ,  and  right-censored 

(runout) data, , , , … , , , at stress amplitudes , , , , … , , , the Log-Likelihood function16, , 

takes the form: 

ln ln , ; , , 1 , ; , ,  

∑ ln , ; , , ∑ ln 1 , ; , , , (13) 

where  is the Likelihood function, , , , , , while , ; , ,  and , ; , ,  

denote the probability density function (pdf) and the cdf of the logarithm of the number of cycle to failure, 

respectively. According to the ML Principle, the ML estimate  of  is the set of parameter values that 
maximizes  in Equation (13). 

For the more general case of S-N curve with fatigue limit, the pdf and the cdf of the logarithm of the number 
of cycle to failure are given by15,16,23: 

, ; , , |
, ,

Φ ,

, ; , , |
, ,

Φ ,

, (14) 

where | ·  and | ·  denote the standardized pdf and cdf of the Normal distribution, in the Log-

Normal case, or the standardized pdf and cdf of the Gumbel distribution, in the Weibull case9. 
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Table 2 reports the experimental stress amplitudes, the adopted distribution for the number of cycles to 
failure and the parameter estimates. For each experimental dataset, Weibull and Log-Normal distributions 
are considered. Parameter estimates reported in the Table refer to the distribution that best fits experimental 
data (bold character in the table). 

4.2. Influence of the correlation structure: variable amplitude loading data 

The procedure illustrated in Section 3 is valid for any value of . Thus, it is valid for a quantile S-N curve, a 
statistical S-N curve, and for any stochastic S-N curve based on the exponential correlation function in 
Equation (7). The reliability function which originates from the stochastic approach will always lie between 
the two extreme cases of 0 (quantile S-N curve) and ∞ (statistical S-N curve). Therefore, it is 
worthwhile analyzing how the two simulated reliability functions for the two extreme cases compare with 
the empirical reliability function. 

The empirical reliability function may be obtained through application of the Kaplan-Meier estimation 
method6, which is commonly adopted for dealing with lifetime data since it allows for including runouts. 
The empirical reliability function, which originates from the application of the method, is a stepped function; 
however, when the number of experimental data is large enough, the function tends to be continuous.  

For illustrative purpose, the empirical and simulated curves are shown in Figure 3 for one experimental 
dataset17. The horizontal distance between the empirical and each simulated reliability function is linked to 
the error that is committed in the estimation of the number of cycles to failure,  for the quantile approach 
and  for the statistical approach: 

, ,

,
100

, ,

,
100

, 

where ,  denotes the empirical number of cycles to failure and ,  and ,  are the 

estimates of the number of cycles to failure for the two extreme cases (Figure 3). 
Both  and ∞ are computed for each reliability level of the stepped empirical reliability function. 

Figure 4 synthesizes error computation for the complete experimental dataset. As it can be observed, the best 
fit line (black line) obtained through the Least Square Method is very close to the bisector (grey line). It is 
also worth noting that the majority of data points concentrate around the origin; however, the larger errors 
are on the positive side, meaning a nonconservative estimate of the number of cycles to failure, regardless of 
the adopted correlation structure. 

From an engineering point of view, high reliability levels are usually required. In this respect, Figure 5 plots 
error computation for reliability levels above 80%. As it can be observed, in this case the best fit line (black 
line) and the bisector (grey line) differ significantly, confirming what reported in [4]. It is also worth noting 
that the distance between the two lines increases with the error value and, in particular, that, for large error 
values,  is smaller than . In particular, of all data points in the first quadrant (non-conservative region) 
75% are below the bisector and the remaining 25% are very close to the bisector. Therefore, overestimation 
of component’s life is less critical when the quantile approach is adopted. 

As already pointed out, in Figure 4 the majority of data points are concentrated around the origin, confirming 
that, in spite of its simplistic hypotheses, the Miner’s rule is, with reason, the most commonly adopted 
damage rule. A further question arises: can the correlation structure (stochastic approach) improve the 
accuracy of Miner’s predictions? This would occur in the case where the experimental data points lie 
between the two extreme cases. In other words, when the two errors,  and , have opposite sign. 



13 
 

Of all the experimental datasets considered in this paper, only in 10% of cases did the two errors have 
opposite sign. About the same percentage is found when considering the high reliability levels of Figure 5. 
Therefore, it can be concluded that only in 10% of the analyzed cases, the stochastic approach would 
improve the accuracy of Miner’s predictions. In the remaining 90%, the higher complexity introduced in the 
analysis by the correlation structure does not seem to provide significant advantages. 

5. Conclusions 

The paper investigated the application of the stochastic approach when the commonly adopted Miner’s linear 
damage rule is applied in its traditional form (without fatigue limit) or in its modified form to include the 
presence of a random fatigue limit, below which the rate of damage accumulation is reduced. The steps that 
must be followed for the application of the stochastic approach showed that: 

 if the number of cycles to failure under constant amplitude loading is Weibull (Log-Normal) 
distributed, the corresponding accumulated damage is Fréchet (Log-Normal) distributed; 

 when the stochastic approach is applied in presence of a random fatigue limit, an additional 
correlation structure, which takes into account the fatigue limit value, must be introduced in the 
analysis. 

The effects of the correlation structure on reliability prediction under variable amplitude loading were also 
investigated. Comparison of the predicted number of cycles to failure with experimental data showed that: 

 larger errors are positive (i.e., nonconservative), regardless of the adopted correlation structure; 

 no significant statistical difference exists between the two extreme cases of quantile and statistical S-
N curve when all reliability levels are considered; 

 when the analysis is limited to reliability levels above 80%, for the larger errors in the 
nonconservative region, the quantile approach is closer to the experimental data (i.e., overestimation 
of component’s life is less critical); 

 for the experimental datasets considered in the paper, only in 10% of cases would adoption of a 
stochastic approach improve the accuracy of Miner’s predictions; 

 in summary, the choice of the damage accumulation rule is a key factor to value the improvement in 
the accuracy of reliability predictions introduced by the stochastic approach: indeed, the differing 
results obtained in the present paper and in [4,5] are due to the different damage accumulation 
models adopted for the analysis. 

 
It is worth recalling that the distribution of accumulated damage in the variable amplitude case cannot be 
described with an analytical statistical distribution but must be found by simulations. The steps described in 
the paper remain valid when damage accumulation models different from the Miner’s rule are adopted. In 
this respect, the described procedure could be the basis for the application of the nonlinear damage model 
proposed in [4,5] that has been proven to provide more accurate reliability predictions. The advantage of the 
described procedure would be in the more general framework of Log-Normal and Weibull distributed 
number of cycles to failure (Log-Normal and Fréchet distributed accumulated damage) and in the possibility 
to take into account the presence of a fatigue limit, below which the rate of damage accumulation is reduced. 
The numerical efficiency is guaranteed since the described procedure utilizes only Monte Carlo simulations 
with no need of the expansion techniques adopted in [4,5]. 
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Figure captions 

 

 

 

 

Figure 1: Random fatigue limit model and quantile S-N curves. 

 

 

Figure 2: Illustrative plot of the correlation structure in presence of a random fatigue limit. Dash-dotted 
arrow shows the correlation structure of Equation (7). Dotted arrows highlight correlation structure with 

point , s . 

 

 

Figure 3: Illustrative example of empirical and simulated reliability functions. Experimental data taken from 
[17]. 

 

 

Figure 4: Error computation plot for the complete experimental dataset (571 data points). Nonconservative 
estimates correspond to overestimation of component’s life. 

 

 

Figure 5: Error computation plot for reliability levels above 80% (97 data points). Highlighted data points 
are cases for which the quantile approach reduces overestimation of component’s life. 

 



 

 

 

 

 

 

Figure 1: Random fatigue limit model and quantile S-N curves. 
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Figure 2: Illustrative plot of the correlation structure in presence of a random fatigue limit. Dash-dotted 
arrow shows the correlation structure of Equation (7). Dotted arrows highlight correlation structure with 

point s , s . 
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Figure 3: Illustrative example of empirical and simulated reliability functions. Experimental data taken from 
[17]. 
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Figure 4: Error computation plot for the complete experimental dataset (571 data points). Non conservative 
estimates correspond to overestimation of component’s life. 
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Figure 5: Error computation plot for reliability levels above 80% (97 data points). Highlighted data points 
are cases for which the quantile approach reduces overestimation of component’s life. 
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Table 1: Experimental data taken from the literature 

Material Reference Fatigue Limit 
Number of specimens 

Constant Amplitude Variable Amplitude 

Nickel-silver Tanaka et al.17 No 200 50 

16Mn steel Xie18 No 15 10 

45 steel-1 Xie18 No 15-18 12-15 

45 steel-2 Yan et al.19 No 10 6 

45 steel-3 Yan et al.20 Yes 10 9 

45 steel-4 Zheng and Wei21 Yes 10 9 

Aluminum alloy 
319-T7 

Mayer et al.22 Yes 6 5-7 

 

   



 

 

 

 

 

Table 2: Constant amplitude tests and parameter estimates 

Material 
Stress amplitudes 
[MPa] 

Parameter estimates 
, , , ,  

Log-Likelihood values 

Nickel-silver 478,666 (51.54,-6.25,0.19,0,0) 99.93 Log‐Normal
93.49 Weibull

  

16Mn steel 344,373,394 (94.34,-13.85,0.20,0,0) 9.52 Log‐Normal
5.66 Weibull

  

45 steel-1 309,331,366 (104.62,-15.94,0.38,0,0) 
-18.61 Log‐Normal

-17.73 Weibull
  

45 steel-2 
45 steel-3 

520,590,630,650,750 (58.08,-7.21,0.35,409.73,19.43) 
-17.93 Log‐Normal

-24.32 Weibull
  

45 steel-4 400,450,475,500,525 (56.16,-7.01,0.68,332.86,27.43) 
-51.90 Log‐Normal

-52.80 Weibull
  

Aluminum alloy 
319-T7 

38,44,50,56,67,87,108 (42.24,-6.62,0.57,47.07,4.20) 
-33.65 Log‐Normal

-36.99 Weibull
  

 

 


