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We demonstrate that hidden long-range order is always present in the gapped phases of interacting fermionic
systems on one dimensional lattices. It is captured by correlation functions of appropriate nonlocal charge and/or
spin operators, which remain asymptotically finite. The corresponding microscopic orders are classified. The
results are confirmed by DMRG numerical simulation of the phase diagram of the extended Hubbard model, and
of a Haldane insulator phase.
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The behavior of strongly correlated electron systems has
been widely investigated to understand the physics of several
phenomena in condensed matter, ranging from the insulating
regime to high-Tc superconductivity. Due to the many degrees
of freedom involved, many aspects of the micro- and macro-
scopic behavior of these systems remain unclear. Recently
their simulation by means of ultracold gases of two-component
fermionic atoms trapped onto optical lattices has opened new
possibilities, leading for instance to the direct observation of
the predicted magnetic1 and Mott insulating (MI) phases.2

The latter is efficiently modeled by the Hubbard Hamiltonian.
In this case, it has been noticed quite recently3 that in one
dimension (1D) it is possible to identify a nonlocal order
parameter in the MI phase, which displays long-range order
(LRO); a result that is in agreement with Coleman-Hohenberg-
Mermin-Wagner theorem4 since no continuous symmetry
of the system has been broken. The discovery envisaged
a description of the underlying parity charge order, whose
microscopic configurations are depicted below in the second
cartoon of Fig. 1: The Mott phase consists of a chain of single
fermions with up and down spin, where fluctuations of pairs
of empty and doubly occupied sites (holons and doublons)
are bounded. The behavior is reminiscent of that observed
in the insulating regime of a degenerate gas of bosonic
atoms.5

In general, the observation of gapped phases in 1D systems
is not believed to be necessarily related to the presence of
some type of LRO, since the strong quantum fluctuations
are expected to destroy any such order. In this paper we
show that LRO is instead hidden in every gapped phase of
one-dimensional correlated fermionic systems. The result is
achieved by means of a general analysis of the bosonization
treatment applied on a prototype lattice model Hamiltonian
for these systems. We identify in the lattice the nonlocal parity
and string operators responsible for the different types of LRO.
As a byproduct, both charge and spin excitations turn out to
be independently ordered, while local operators intrinsically
generate both. It is tempting to conclude that nonlocal oper-
ators are “more fundamental” with respect to the usual local
ones, at least for the description of the possible orders in the
ground state phase diagram of these systems. To test our results
we perform a density matrix renormalization group (DMRG)
analysis at half filling and zero temperature of the standard
extended Hubbard case, focusing on the insulating phases.

We start from the general class of lattice model Hamilto-
nians introduced in Ref. 6 to describe the effects of Coulomb
repulsion among electrons on their behavior, the standard
Hubbard model being the most familiar example. The low
energy behavior of these models is described by an effective
Hamiltonian H obtained by bosonization treatment (see Ref. 7
and references therein). Upon neglecting terms of higher
scaling dimension (see also Ref. 8), H turns out to be the sum
of two decoupled sine-Gordon models. Explicitly, we have

H =
∑

ν=c,s

(
H

(ν)
0 + 2gν

(2πα)2

∫
dx cos[qν

√
8 $ν(x)]

)
, (1)

with H
(ν)
0 = vν

2π

∫
dx[Kν(π%ν)2 + K−1

ν (∂x$ν)2]. Here $ν is
the compactified boson describing the charge (ν = c) and
spin (ν = s) excitations, with velocity vν , Gaussian coupling
Kν , and conjugate momentum %ν = ∂x'ν/π ; α is a cutoff.
Moreover, in terms of the standard notation gc ≡ g3⊥δn,q−1

c
, the

corresponding term generated from Umklapp processes being
nonvanishing only at commensurate fillings n = p/q (p,q
integer; we assume p = 1); gs ≡ g1⊥, and qc = q, qs = 1.

The cosine terms in Eq. (1) become irrelevant in the
renormalization group (RG) flow equations unless the fields
$ν are pinned to fixed values;9 in this case, the energy is
minimized by the choices

√
2$ν = π

2qν

(2l + 1), gν > 0 (2)

√
2$ν = π

2qν

2l, gν < 0 (3)

with l ∈ N ∪ {0}. Inspection of the RG equations shows that
both choices of locked values for $c amount to the opening
of a charge gap )c, whereas a spin gap )s can open only
for gs < 0, due to the SU(2) spin symmetry of the Hubbard
class of Hamiltonians. To resume, in all systems described
by H it is possible to observe up to six phases (shown in
Table I). In most phases the known dominant correlations
of two-point local operators decay to zero with distance
following a power law, in agreement with bosonization
predictions. Only in charge-density and bond-ordered wave
(CDW and BOW, respectively) phases—appearing when just
onsite and nearest neighbors diagonal Coulomb interactions
are present—LRO was identified with the nonvanishing in
the asymptotic limit of appropriate two-point correlators of
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TABLE I. Correspondence between ground state quantum phases
and nonlocal operators that manifest LRO. We indicate with u when
fields are unlocked.

q
√

2$c

√
2$s )c )s LRO

LL u u 0 0 none
LE u 0 0 open O

(s)
P

MI 0 u open 0 O
(c)
P

HI π/2 u open 0 O
(c)
S

BOW 0 0 open open O
(c)
P , O

(s)
P

CDW π/2 0 open open O
(c)
S , O

(s)
P

local operators.7 Quite recently it was noticed that for the
standard Hubbard model LRO in MI and Luther Emery (LE)
liquid phases is described instead by two-points correlators of
suitable nonlocal operators.3 In the present work we extend the
idea of nonlocal order to all possible gapped phases of Table I
for the general Hamiltonian H.

First of all, we define for the lattice model the parity and
string operators at a given site j as

O
(ν)
P (j ) =

j∏

l=1

eiπS
(ν)
l , O

(ν)
S (j ) = S

(ν)
j

j−1∏

l=1

eiπS
(ν)
l , (4)

respectively, with ν = c,s, and S
(c)
j = (nj − 1), S

(s)
j = (nj↑ −

nj↓). Here njσ is the number operator counting the electrons
with spin σ (σ = ↑,↓) at site j , namely njσ ≡ c

†
jσ cjσ , cjσ

being the operator which annihilates one electron of this type
and c

†
jσ its Hermitian conjugate; moreover nj ≡ nj↑ + nj↓.

The related two-point correlators C
(ν)
P (r) ≡ 〈O(ν)

P (j )O(ν)†
P (j +

r)〉 (parity correlator), and C
(ν)
S (r) ≡ 〈O(ν)

S (j )O (ν)†
S (j + r)〉

(string correlator) can be approximated in the continuum
limit according to the analysis outlined in Refs. 3 and 9,
exploiting symmetry or antisymmetry under a particle-hole
transformation. This gives

C
(ν)
P (x) = 〈cos

√
2$ν(0) cos

√
2$ν(x)〉 (5)

C
(ν)
S (x) = 〈sin

√
2$ν(0) sin

√
2$ν(x)〉, (6)

where 〈 〉 stands for the average evaluated in the ground state.
From the above result one can realize that at least one of the
parity or string correlators is nonvanishing for x → ∞ in every
gapped phase. Indeed these take place when some $ν is pinned
to a fixed value, as shown in Table I. In that case we observe

lim
x→∞

C(ν)
α (x) = 〈O(ν)

α 〉2 ≡ C(ν)
α , α = P,S,

and an order parameter 〈O(ν)
α 〉 emerges.

In Table I, LL stands for the gapless Luttinger Liquid phase,
which is the only case without LRO, as both the bosonic fields
$ν are unlocked. LE is the conducting phase with open spin
gap which takes place for $s = 0, and is characterized by a
nonzero 〈O(s)

P 〉. Charge-gapped phase with )s = 0 can open
for (i) $c = 0 (MI), in which case 〈O(c)

P 〉 -= 03; (ii) for $c =
π/

√
8, which case we indicate as Haldane insulator (HI) since

the Haldane-like string order 〈O(c)
S 〉 is nonvanishing. Finally,

BOW and CDW phases are fully gapped phases with two

FIG. 1. (Color online) Cartoon illustrating the possible orders in
presence of fluctuations. The blue continuous (dashed) lines show
the correlated pairs of up-down spin (holon-doublon) allowing 〈O (s)

P 〉
(〈O (c)

P 〉) to remain nonvanishing. The green and red circles show the
alternation of sites occupied by doublons and holons in the chain of
single fermions preserving 〈O (c)

S 〉 -= 0.

finite 〈O(ν)
α 〉’s. Only in these latter cases, the two nonlocal

order parameters combine to form a local LRO, namely the
BOW and CDW orders mentioned above.7,9

The nonvanishing of the parity and/or string correlators
gives further physical insight about the kind of microscopic
orders underlying the phases. These are illustrated schemati-
cally in Fig. 1. At half filling a nonzero value of the charge
(spin) parity correlator implies the formation of bound pairs of
holons and doublons (up and down spins) in a background
of single electrons (holons and doublons) as it occurs in
the MI (LE) phase.3 Whereas a finite value of the charge
(spin) string correlator amounts to a holon (spin up) always
followed by a doublon (spin down) site on the holon-doublon
(single electrons) sublattice created in a background of up
and down electrons (holons and doublons). The microscopic
configurations in the different phases unveil the mechanisms
at the basis of the formation of charge and spin gaps. With
respect to the perfect MI of singly occupied sites, the Mott
charge gap at half filling is maintained by adding localized
pairs formed by a doublon and a holon, whereas a HI charge
gap takes place when the added doublons and holons do
alternate into the sublattice they occupy. The LE case illustrates
how an open spin gap, ideally amounting to a configuration
with holons and doublons only, is preserved when single
electrons are arranged in localized pairs with up and down
spins; the observation giving a microscopic interpretation to
the fact that superconducting correlations are dominant in
such phase. Finally, combinations of the above possibilities
determine the structures of the two fully gapped phases (CDW
and BOW).

In order to support our predictions, we present below a
numerical analysis of LRO parameters given by Eqs. (5) and
(6) for the insulating phases of the extended Hubbard model
at half filling in case of repulsive interactions. In this case the
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lattice Hamiltonian reads

H = −t
∑

jσ

(c†jσ cj+1,σ + H.c.)

+ U
∑

j

nj↑nj↓ + V
∑

j

njnj+1, (7)

where U and V represent the diagonal on-site and neighboring
sites contribution of the interaction potential; we fix the energy
scale t = 1. Such a model is of fundamental relevance in
condensed matter (see Refs. 7, 10, and 11, and references
therein) and in the younger field of ultracold systems. Indeed,
recent experiments with Fermi gas of magnetic atoms12 or
polar molecules13 allow us to quantitatively simulate the
Hamiltonian (7); both the interaction parameters can be tuned
independently, by changing the direction of the dipoles with
external fields, or by means of the transverse frequency of the
laser used to create the lattice. In particular, we explore at half
filling the regime of positive values of U and V , for which the
phase diagram amounts to three insulating phases.

The analysis is performed using a DMRG algorithm on
finite size chains with periodic boundary conditions. We have
chosen to consider small system sizes, from L = 12 to 48,
with up to 1600 DMRG states and six sweeps in order to have
a good precision on our quantities.

The parity and string operators introduced above are
expected to behave as order parameters for the three insulating
phases. In details (see Table I), the asymptotic value of
〈O(c)

P 〉 should be the only nonvanishing parameter for the MI
phase, whereas in the BOW phase also 〈O(s)

P 〉 should become
different from zero at the MI-BOW transition. Finally, at
the BOW-CDW transition 〈O(c)

s 〉 should become finite, while
〈O(c)

P 〉 becomes vanishing.
We have calculated C

(ν)
P (r) = 〈exp(iπ

∑j+r
l=j S

(ν)
l )〉 and

C
(ν)
S (r) = 〈S(ν)

j exp(iπ
∑j+r−1

l=j+1 S
(ν)
l )S(ν)

j+r〉; their asymptotic
values have been evaluated at the midpoint r = L/2, upon
an extrapolation in the thermodynamic limit (TDL) L → ∞.
Special care must be payed in separating the uniform and
staggered parts of the parity operator, since the relation
C

(c)
P (r) = (−1)rC(s)

P (r) holds. Figure 2 collects our numerical
results, showing a clear evidence of the expected behavior.
Our findings can be compared with those obtained in Ref. 14
by considering the expectation value of a different nonlocal
operator, namely the exponential position operator zL. Since
in bosonization analysis such value takes the form 〈cos

√
8$c〉,

it is different from zero for both pinned values of $c allowed
in an insulating phase, hence vanishing only at the conducting
point where the BOW-CDW transition takes place.15

To enforce our analysis we also computed the Luttinger
constants Kν defined as Kν ∼ limq→0 πSν(q)/q, withSν(q) =
1
L

∑
kl e

iq(k−l)(〈Sν
k,zS

ν
l,z〉 − 〈Sν

k,z〉〈Sν
l,z〉) in the TDL. These give

precise information regarding the presence of gaps.9 In par-
ticular the SDW-BOW belongs to the Berezinskii-Kosterlitz-
Thouless universality class since a spin gap takes place
entering in the fully gapped BOW phase, while maintaining a
full rotational spin symmetry. The Luttinger theory predicts
Ks = 1 in the gapless and Ks = 0 in the gapped phase.
Numerically it is a hard task to get exactly these values
since in the gapless phase logarithmic corrections affect the
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(s)
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(c)

10*CS
(c)

MI BOW CDW

FIG. 2. (Color online) Lower panel: Nonlocal order parameters
C(ν)

α (L/2) for L → ∞ in the insulating phases of the extended
Hubbard model (7) at U = 3. The dashed lines locate the critical
points with uncertainty determined from the numerical analysis
shown in the upper panels. Upper-left panel: Ks vs V at various
L and in thermodynamic limit (TDL), the latter obtained by using
a second order polynomial function. Continuous lines are guides for
the eye. Upper-right panel: Kc vs V at various L. Numerical errors
on the finite size data are of the order 10−6, so the error magnitudes
in the TDL turn out to be smaller than the symbol size.

results, while in the gapped region really large system sizes
are necessary in order to get Ks = 0. It is customary to locate
the transition point where Ks takes values smaller than 1 in the
TDL. As shown in Fig. 2, the transition point obtained in this
way is in good agreement with the one predicted by O

(s)
P . The

BOW-CDW transition requires particular care since its nature
can be either second or first order, depending on the value of
U . Here we consider the region U < 4 where the transition
is known to be second order. As shown in Ref. 11, while the
two phases are fully gapped, due to the competition between
the onsite and nearest-neighbor interactions the charge gap
is minimal at the transition point, where it takes the value
0. Hence the theory predicts a Luttinger parameter Kc -= 0
only at the gapless point and Kc = 0 elsewhere. In Fig. 2 we
see that Kc develops a peak slightly dependent on the system
size, where we locate the gapless point. Extrapolations in the
TDL confirm the transition in the order parameters 〈O(c)

P 〉 and
〈O(c)

S 〉.
The scenario of Table I is completed by identifying the HI

phase, where only O
(c)
S is predicted to have finite LRO. The

ground state phase diagram of the model (7) does not show
such a phase.16 Nevertheless, in Refs. 7 and 17 a charge gapped
phase corresponding to the pinned value $c = π/

√
8 was

identified by adding to the Hamiltonian (7) further correlated
hopping terms of the form X

∑
〈ij〉σ (c†iσ cjσ + H.c.)(niσ̄ −

nj σ̄ )2 for an appropriate range of values of U and V . Such a
phase was denoted as bond-spin-density wave (BSDW), albeit
the spin order cannot show LRO due to the unbroken SU(2)
symmetry. On the basis of our analysis, since $s is unpinned,
we expect such a phase to exhibit the searched HI order. We
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FIG. 3. (Color online) Nonlocal LRO in the Haldane insulator
phase, at U = 1, V = 0.5 for the model (7) plus a correlated
hopping term with X = 0.25 (see text). As predicted from Table I all
correlation functions C(ν)

α (L) vanish asymptotically except for C
(c)
S .

Continuous lines represent nonlinear fits for estimating the asymptotic
limit.

have numerically estimated the nonlocal correlators C(ν)
α (L/2)

at various L in a single point inside the phase (X = 0.25,
U = 1, V = 0.5). The results shown in Fig. 3 demonstrate
that, within the numerical errors, in the asymptotic limit (and
in the TDL) the only operator that supports LRO is O

(c)
S , as

expected.
Further nonlocal orders may appear in fermionic systems as

a consequence of reduced symmetries. For instance, relaxing
the SU(2) spin symmetry to U(1) ×Z2, may allow for the
appearance of the value $s = π/

√
8 in Eq.(1), giving rise

to Haldane-like correlations in the z component of the spin.
Further breaking of the two U(1) symmetries related to particle
number conservation and spin rotation in the xy plane open
the way to a pinning of the dual fields 'c and 's , respectively.
As a consequence the correlators related to the operators
cos(

√
2'ν) and sin(

√
2'ν) are also finite, thus generating

a transverse Haldane-type order, similarly to what happens
in spin-1 chains18 or in the bosonic case.19,20 This simple
argument suggests that, in order to observe a Haldane order in
all directions in fermionic systems, one must extend interacting
models like Eq. (7) by including pair creation terms of the kind

∑
jσ (c†jσ c

†
j+1,−σ + H.c.). In addition, the partial particle-hole

transformation cj↓ → (−1)j c†j↓ (that changes U → −U in the
ordinary Hubbard model) establishes a link between spin and
charge sectors.3 Such analyses represents an intriguing topic
that goes beyond the scope of the present work and will be
addressed elsewhere.

In this paper, we have proven that nonlocal LRO underlies
all the gapped phases of a large class of lattice model Hamil-
tonians, describing 1D correlated fermionic systems. Our
results give precise indications for detecting LRO, outlining
the appropriate two-points nonlocal correlators to seek for in
experiments with trapped dipolar atoms.21 These are directly
accessible to experimental detection in optical lattices via
single site resolution imaging.5,22

The generality of the analysis here described suggests the
presence of a universal mechanism extendable to any system
in 1D, stating the presence of appropriate LRO in every phase
that shows a gap in the excitation spectrum. The property of
nonlocality is instead restricted to fermions and is not readily
extendable to spin models, where a LRO may become local,
for instance, after a Jordan-Wigner transformation. A related
interesting topic still under debate concerns the relationship
of nonlocality with topological phases,23 duality,24 and long
distance entanglement.25

The possible presence of the discussed types of nonlocal
orders in higher dimension could be addressed with the help
of the cartoons in Fig. 1. In principle, the parity LRO can be
extended from strings to membranes in arbitrary dimension.
At variance, O

(ν)
S seems more difficult to generalize to higher

dimension. With this in mind, it is reasonable to expect that
phases with parity order parameters (MI, LE, and BOW) could
be present also in two dimensions. The conjecture is consistent
with recent results on the relevance of parity correlator in the
MI phase of the 2D Bose-Hubbard model,26 as well as with
findings on backflow correlations in the 2D Hubbard model,27

which emphasize the role of holon-doublon attraction in the
MI phase.
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