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Abstract

In the process of design and fabrication of electronic products, numerical simulation plays a fun-
damental role for a preliminary electromagnetic compatibility (EMC) assessment of devices in
the early design phase. Direct EMC measurements impact both cost and time-to-market as they
require purchase and/or hiring of facilities and instruments, as well as fabrication of prototype
devices, and need therefore to be minimized. Nowadays, designers can rely on several sophis-
ticated modeling tools, helping them to perform right-the-first-time designs. Nonetheless, these
simulation models are accurate as long as we are able to assign accurate values to each system
parameter. In modern high-speed and high-density designs, process variations and uncertainties in
operating conditions result in parameters which are hard to control or partially unavailable. The
device response is thus no longer regarded as deterministic, but is more suitably interpreted as a
random process. In this framework, the assessment of signal integrity requires a statistical analy-
sis, which is traditionally based on the so-called Monte Carlo or other sampling-based methods.
Yet, for practical applications, these approaches are often too time-consuming, as they are known
to require a large number of samples to converge. In this thesis, we extend available literature
results to the efficient analysis of high-speed interconnects, such as avionic and industrial cables
or printed circuit board traces, affected by uncertainties, like process variations or unavailable op-
erating conditions. Specifically, the framework of polynomial chaos theory is adopted to create
stochastic models for transmission lines which are faster to be simulated compared to repeated
Monte Carlo simulations. Such methodology is based on the expansion of random quantities in
series of orthogonal polynomials, and has been already and successfully applied to the analysis of
lumped circuits. In this work, the modeling of distributed components, which are key elements for
modern high-frequency designs, is addressed. The advocated approach is general and overcomes
the limitations of available literature models for the statistical analysis of the signal propagation
over interconnects, which are based on simplified structures and approximate assumptions. Also,
a SPICE-compatible implementation is presented, thus allowing the convenient use of SPICE-like
circuit analysis tools for the simulation of complex stochastic network topologies, avoiding the
creation of customized, ad hoc implementations. This thesis provides a comprehensive theoretical
discussion together with several tutorial application examples, thus complementing the published
material.
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Sommario

La simulazione numerica riveste un ruolo fondamentale nel processo di progetto e fabbricazione
di prodotti elettronici, per avere nelle preme fasi del progetto un riscontro preliminare circa la
compatibilità elettromagnetica. Le misure dirette di compatibilità hanno impatto sia sul costo
che sulle tempistiche di lancio sul mercato, dato che richiedono l’acquisto o il noleggio di strut-
ture e strumenti, cosı̀ come la fabbricazione di prototipi, e devono quindi essere minimizzate.
Al giorno d’oggi, i progettisti dispongono di svariati e sofisticati strumenti di modellazione, che
li aiutano a creare fin da subito progetti correttamente funzionanti. Tuttavia, questi modelli di
simulazione sono accurati solo nel momento in cui siamo in grado di assegnare valori accurati
ad ogni parametro del sistema. Nei moderni progetti ad elevata velocità e densità, le variazioni
dovute al processo di fabbricazione e le incertezze riguardanti le reali condizioni di funziona-
mento comportano la presenza di parametri difficili da controllare o parzialmente sconosciuti. Le
risposta di un dispositivo non è più quindi considerata come deterministica, ma è più propria-
mente descritta come un processo casuale. In questo contesto, l’analisi dell’integrità dei segnali
richiede un approcio statistico, il quale è tradizionalmente basato sul cosiddetto metodo Monte
Carlo o altri metodi basati sul campionamento. Tuttavia, per applicazioni pratiche, questi approci
sono spesso eccessivamente dispendiosi in termini di tempo di simulazione, in quanto è noto che
richiedono un numero elevato di campioni per convergere. In questa tesi, estendiamo dei risultati
disponibili in letteratura all’analisi efficiente di interconnessioni ad alta velocità, come ad esem-
pio cavi di utilizzo avionico o industriale, o circuiti stampati affetti da incertezze come tolleranze
di fabbricazione o condizioni di funzionamento non note a priori. Nello specifico, viene adot-
tata la teoria del caos polinomiale al fine di creare modelli stocastici per linee di trasmissione,
che siano più veloci da simulare rispetto ad un ripetuto campionamento con tecnica Monte Carlo.
Questa metodologia si basa sull’espansione di grandezze stocastiche in serie di polinomi ortog-
onali, ed è già stata applicata con successo all’analisi di circuiti concentrati. Questo lavoro si
occupa della modellazione di componenti distribuiti, che sono elementi fondamentali dei mod-
erni progetti ad alta frequenza. L’approcio proposto è generale e supera le limitazioni dei modelli
disponibili in letteratura per l’analisi statistica della propagazione dei segnali sulle interconnes-
sioni, i quali sono basati su strutture semplificate e ipotesi approssimate. Inoltre, viene presen-
tata un’implementazione compatibile con SPICE, che permette quindi, per la similazione di reti
stocastiche con topologie complesse, il conveniente utilizzo di strumenti di analisi circuitale di
tipo SPICE, senza richiedere quindi lo sviluppo di implementazioni specifiche e personalizzate.
Questa tesi fornisce una discussione completa e teorica combinata con esempi illustrativi, in modo
da complementare il materiale pubblicato.
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Chapter 1

Introduction

The numerical simulation of electromagnetic systems [1] is commonly adopted by engineers in the
early design phase of a product. As national and international laws require strict electromagnetic
compatibility (EMC) compliance tests prior to marketing [2], simulations allow to perform right-
the-first-time designs, thus limiting the need for expensive measurements and/or refabrications
of prototype devices. This speeds up the design process and improves its economical impact
on the whole production flow. So far, accurate models and reliable tools have been developed
for the circuit simulation at system level, provided that accurate numerical values are assigned
to each system parameter, and this is a still very active research topic. Nevertheless, the growing
demand for large-scale integration, miniaturization and stringent design specifications, are making
the impact of variability inside circuits and their interconnections increasingly relevant and hard to
control [3]–[9]. Specifically, designers have to cope with complex electronic circuits that involve
parameters that are partially unknown, uncontrolled or unavailable, and therefore more suitably
described in terms of random variables with proper distributions. Signal integrity, electromagnetic
interference or immunity issues may be significantly affected by random variations of the system
parameters. In order to set realistic design margins, their correct assessment is unavoidably bound
to the availability of accurate models that also account for possible uncertainties [10], [11].

Different sources of variability are usually present. Perhaps the major cause of randomness
are the tolerances that unavoidably characterize the fabrication process. This means that different
produced devices, which are designed to nominally be the same, differ from one to another as a
result of the manufacturing process. Other sources are represented by routing or layout uncertain-
ties, as well as the unpredictability of the operating conditions (e.g., chip temperature or loading).
Besides these, inherent variations, the source of uncertainty may be external. A relevant example
is provided by an electromagnetic structure illuminated by a random impinging field, acting as a
noise source.

1.1 Stochastic Simulation

In this framework, the EMC community has recently faced a growing demand for stochastic
simulation tools allowing for an efficient, uncertainty-aware analysis of electronic systems (see,
e.g., [12] and [13]). The common tools, typically exploited to extract statistical information, are

1



2 Introduction

based on the design of experiments [14], like the Latin hypercube sampling [15], or blind and
brute-force random sampling methods such as Monte Carlo (MC) [16] or its enhanced variants,
like the quasi-Monte Carlo method [17]. However, these methods suffer from several limitations,
arising from the large computational time they require and/or the restrictions in their applicabil-
ity. Other kinds of non-statistical analysis, also known as “what-if scenarios”, are sometimes
performed, like the estimation of the worst-case behavior or the corner analysis, which considers
the responses corresponding to the extreme values that the parameters can assume [18]. However,
such approaches do not benefit of the advantage of having a statistical knowledge, as they might
provide unnecessarily strict margins, which are very unlikely to occur.

On the other hand, there exist techniques which take advantage of a possible smoothness of
the random parameters. In the recent literature, the polynomial chaos (PC) approach [19]–[21],
turned out to be extremely appealing and has been used for the stochastic simulation of systems in
many domains of physics and engineering, such as mechanics [22]–[24], fluid dynamics [25], [26],
aerodynamics [27], acoustics [28]–[30], control theory [31], bioelectromagnetics [32], [33], and
computational electromagnetics [34]–[39], with the inclusion of the simulation of electrical net-
works and electronic circuits affected by random variability [40]. Briefly speaking, the technique
is based on the expansion of stochastic processes in terms of suitable orthogonal polynomials [41]
and is therefore effective as long as the random parameters can be well approximated in terms
of polynomial functions. Moreover, it often results to significantly outperform other traditional
methods in terms of computational speed.
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6nH

1pF
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25Ω 5nH
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Figure 1.1. Example of an interconnect network.



1.2 – Goal of the Thesis 3

1.2 Goal of the Thesis

This thesis focuses in particular on the efficient stochastic simulation of high-speed interconnects,
composed by a combination of lumped and distributed transmission-line elements, like the one
illustrated in Fig. 1.1 and inspired by [42]. Briefly speaking, in this context the word “distributed”
means that the behavior of the interconnect strongly depends on its electrical length, i.e. the ratio
between the conductor length and the signal wavelength. This is especially true for high-speed
links, where the high frequencies give rise to unwanted and detrimental phenomena such as de-
lay, slow-wave and skin effects, reflections, ringing and crosstalk (i.e., the interference between
adjacent conductors).

Many parameters affect the response of an interconnect structure. First of all, any inherent
interconnect property, i.e. its geometrical dimensions and the characteristics of the embedding
material. Second, properties which are external to the interconnect but internal to the transmission
structure, like operating temperature or loading condition. Finally, external causes like incident
fields also impact of the interconnect behavior. Depending on the specific application, any of these
parameters can be somehow unknown or uncontrollable, therefore needing a probabilistic descrip-
tion in terms of random variables. The impact of such variations becomes critical, especially in
high-speed applications, where the influence of each parameter is enhanced.

The goal is then to develop probabilistic models for the electrical output quantities (typically,
voltages and currents) in a circuit affected by random variations of its parameters. The main
contribution in this thesis is to provide a comprehensive and general framework for the stochastic
simulation of arbitrary interconnect structures by extending the PC approach to multiconductor
lines governed by transmission-line equations. A SPICE implementation is also proposed, in order
to facilitate the analysis of more complex circuit topologies. A complete tool for the analysis
of transmission links consisting of a combination of many lumped and distributed elements is
therefore provided.

1.3 State of the Art

The traditional approach that is used for stochastic analyses is based on MC simulations, and this
feature is included in many circuit simulation tools (e.g., PSPICE, HSPICE or Agilent’s ADS).
A MC-based statistical modeling of signal propagation on transmission lines has been addressed
for instance in [43]–[47]. However, the accuracy of the MC prediction is known to have a low
convergence rate with respect to the number of simulations considered, thus making it unfeasible
whenever the computational cost of a single simulation is large. In [48]–[50], analytical proba-
bilistic models were developed, but limited to low-frequency approximations as well as basic and
simplified structures.

On the other hand, the PC approach has been successfully applied to the simulation of elec-
trical networks consisting of lumped circuit elements and described by modified nodal analysis
(MNA) equations [51], [52]. The methodology was applied to the statistical analysis of RC/RLC
interconnects and power grid networks, respectively. However, ad hoc MATLAB implementations
or customized software needed to be developed for the analysis. To improve design flexibility and
facilitate the analysis of arbitrary circuit topologies, an integration into standard circuit analsysis



4 Introduction

tools, such as SPICE, is imperative. In this regard, a SPICE-like code for the stochastic analy-
sis of lumped circuit elements was developed in [53], although still based on the creation of a
customized solution engine.

Nevertheless, all the above applications lacked of the inclusion of a key component in the
modeling of high-performance and high-speed links: the distributed interconnect, intended as a
structure that conveys electric signals from a component to a distance apart and whose behavior is
governed by the so-called transmission-line or telegrapher’s equations [54]. Although a stochastic
line can be in principle analyzed as a cascade of equivalent lumped sections (see, e.g., [51], [55]
and [56]), this approach is not suitable to accurately model such high-frequency effects. Examples
of distributed interconnects include cable bundles inside avionic equipment or industrial plants,
power lines, and printed circuit board (PCB) traces inside microwave components or integrated
circuits.

1.4 Organization of the Text

This text aims at providing a self-contained discussion about the application of the PC technique to
the stochastic analysis of interconnect structures. In the first part, theoretical sections are combined
with a tutorial approach, thus giving the reader all the information required to fully understand the
general methodology, as well as its specific application and implementation. In the remaining
of the text, the main applications and achievements are summarized. Therefore, this thesis is
organized as follows: in Chapter 2, the simulation procedure for deterministic transmission lines
is presented. In Chapter 3, the basic idea of stochastic analysis is introduced, together with the
illustration of the traditional MC method. Chapter 4 introduces the PC framework, while Chapter 5
provides a tutorial description of its application to transmission-line structures. Chapter 6 provides
more realistic application examples, thus highlighting the strength of the proposed methodology.
Then, in Chapter 7, a SPICE implementation is presented together with the analysis of more
complex interconnect topologies. Finally, in Chapter 8, the technique is extended to the analysis
of a random field incidence.



Chapter 2

Analysis of Transmission Lines

This chapter represents the starting point of the work proposed in this thesis, i.e. the governing
equations for the signal propagation along a multiconductor transmission line (MTL), which is the
basic element for high-speed interconnects, in their deterministic formulation.

v1(t, z = L)

. . .

1

N

z

v1(t, z = 0)

vN (t, z = 0)

i1(t, z = 0)

iN(t, z = 0)

vN (t, z = L)

i1(t, z = L)

iN (t, z = L)

L

reference conductor

Figure 2.1. Illustration of a uniform multiconductor transmission line withN conductors of length
L. The definition of voltages and currents is also shown.

2.1 The Multiconductor Transmission-Line Equations

Under suitable assumptions, the signal propagation along N coupled conductors plus one ref-
erence conductor (see Fig. 2.1), all uniform along the direction z, is described by the MTL or
telegrapher’s equations [54]:

∂

∂z
v(z, t) = −Ri(z, t)− L

∂

∂t
i(z, t), (2.1a)

∂

∂z
i(z, t) = −Gv(z, t)−C

∂

∂t
v(z, t), (2.1b)

5



6 Analysis of Transmission Lines

where v = [v1, . . . , vN ]
T and i = [i1, . . . , iN ]

T are vectors of size N , collecting the voltages
between each signal conductor and the reference as well as the currents flowing into them, respec-
tively. The N ×N matrices R (resistance), L (inductance), G (conductance), C (capacitance) are
the per-unit-length (p.u.l.) parameters and contain all the information on the electromagnetic field
and the coupling among the conductors. The knowledge of such parameters is the key point in the
solution of the MTL equations.

2.1.1 The Quasi-TEM Assumption

According to the above transmission-line formulation, the structure is assumed to be distributed
along the direction of propagation z but lumped, i.e., electrically small, in its cross-section. As
such, the validity of the above equations is restricted to the case of transverse electromagnetic
(TEM) field propagation, which means that both the electric and magnetic fields surrounding the
conductors are perpendicular to the line axis z. Electrically large cross-sectional dimensions give
rise to additional modes of propagation, thus invalidating the TEM assumption. Another circum-
stance that invalidates the TEM assumption is the presence of lossy conductors and inhomoge-
neous surrounding media. However, as long as such violations are not extreme, the transmission-
line formulation can still be considered as representative, although approximated. This situation
is referred to as the quasi-TEM assumption. Finally, the transmission-line formulation inherently
assumes that all the currents sum to zero at any cross-section. In other words, the reference con-
ductor is the return for all the otherN currents. But this might not be true, for instance in presence
of nearby metallic structures that are not included in the analysis. In order to obtain a complete
solution, also accounting for other modes of propagation, one has to carry-out a full-wave solution
of Maxwell’s equations.

2.1.2 The Per-Unit-Length Parameters

As already remarked, the p.u.l. parameters R, L, G, C contain all the key information about the
propagation along each conductor as well as the coupling among different conductors. Specifi-
cally,

• the p.u.l. inductance matrix L relates the currents flowing into the conductors to the p.u.l. mag-
netic fluxes penetrating the paths defined between each signal conductor and the reference.
It has the following shape:

L =


l11 l12 · · · l1N
l21 l22 · · · l2N
...

...
. . .

...
lN1 lN2 · · · lNN

 , (2.2)

where lii is the p.u.l. self-inductance of conductor i and lij is the p.u.l. mutual inductance
between conductors i and j.

• The p.u.l. capacitance matrix C relates the total p.u.l. charges on the conductors to the line
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voltages producing them. Its entries are defined as

C =



N∑
k=1

c1k −c12 · · · −c1N

−c21
N∑
k=1

c2k · · · −c2N

...
...

. . .
...

−cN1 −cN2 · · ·
N∑
k=1

cNk


, (2.3)

with cii the p.u.l. capacitance between the ith conductor and the reference and cij the p.u.l.
capacitance between conductors i and j.

• The p.u.l. conductance matrix G relates the total p.u.l. transverse conduction currents pass-
ing between the conductors to the line voltages producing them. Its elements are organized
similarly to those of the capacitance matrix:

G =



N∑
k=1

g1k −g12 · · · −g1N

−g21
N∑
k=1

g2k · · · −g2N

...
...

. . .
...

−gN1 −gN2 · · ·
N∑
k=1

gNk


, (2.4)

with gii and gij the p.u.l. conductances between the different conductors or the reference,
respectively.

• The entries of the p.u.l. resistance matrix R can be related to the p.u.l. resistance of the iso-
lated conductors to a reasonable degree of accuracy, although in general one should account
for the fact that the fields exterior and interior to the imperfect conductors interact. It has
therefore the following shape

R =


r1 + r0 r0 · · · r0
r0 r2 + r0 · · · r0
...

...
. . .

...
r0 r0 · · · rN + r0

 , (2.5)

where ri is the p.u.l. resistance of the ith conductor (i = 0 denoting the reference conductor).

One important property of the p.u.l. matrices is that they are symmetric (in presence of reciprocal
materials). Under the TEM assumption, the entries of the p.u.l. inductance matrix L, conductance
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matrix G and of the capacitance matrix C are related to the fields external to the conductors and
are determined as the static field solutions in the transverse plane assuming perfect conductors.
The entries of the p.u.l. resistance matrix R are instead governed by the fields interior to the
imperfect conductors.

The ease of determination of the p.u.l. parameters is related to the cross-sectional structure.
For cylindrical conductors in a homogeneous medium, closed-form analytical formulas for the
entries of the p.u.l. inductance are available. We limit ourselves to mention those for wires above
a perfectly-conducting ground plane:

lii =
µ

2π
cosh−1

(
hi
rwi

)
, (2.6a)

lij =
µ

4π
ln

(
1 + 4

hihj
d2ij

)
, (2.6b)

where hi and rwi are the height and the radius of wire i, respectively, dij is the distance between
wire i and wire j, and µ is the permeability of the embedding medium. The capacitance and in-
ductance matrices can be obtained through the following relations, valid for homogeneous media:

C = µεL−1 (2.7)

and
G =

σd
ε
C = σdµL

−1, (2.8)

where µ, ε and σd are the permeability, permittivity and conductivity of the embedding mate-
rial, respectively. When the conductors have different shapes and/or the surrounding medium is
inhomogeneous, numerical computations are required [57].

2.1.3 Dispersive Lines

The material properties, as well as the distribution of the currents inside the imperfect conductors,
depend on the frequency of the excitation signals. Hence, the p.u.l. parameters are generally
dispersive (i.e., frequency dependent), and therefore more correctly indicated as R(ω), L(ω),
G(ω) and C(ω), with ω = 2πf the angular frequency. As we will see, the dispersive behavior
is hard to characterize directly in time domain, but can be readily incorporated by writing the
MTL equations in the frequency domain. In particular, because of the skin effect, the currents
flowing into the imperfect conductors migrate towards the conductor surfaces and, as a result,
their p.u.l. resistances increase proportionally to

√
f . Also, these internal currents give rise to

internal magnetic fluxes, that in turn yield an additional component to the p.u.l. inductance matrix,
with entries decreasing as 1/

√
f . The p.u.l. conductance matrix increases with frequency because

of the loss due to the incomplete alignment of the bound charges. Finally, the p.u.l. capacitance
matrix (mildly) depends on frequency because the relative permittivity of dielectrics is (mildly)
frequency dependent.

Approximate relations exist for the total p.u.l. internal impedance of imperfect conductors [54]:

zi(ω) = ri(ω) + jωli(ω) =

{
rdc(1 + jω/ωc) ω ≤ ωc,

rdc
√
ω/ωc(1 + j) ω ≥ ωc,

(2.9)
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where ri is the p.u.l. resistance, li the p.u.l. internal inductance, and rdc the p.u.l. DC resistance,
given by the Ohm’s law

rdc =
1

σcS
, (2.10)

with σc the metal conductivity and S the conductor section. Moreover, ωc = 2πfc is a transition
angular frequency, that for wires corresponds to the frequency at which the wire radius equals two
skin depths, i.e.

fc =
4

πσcµ0r2w
, (2.11)

rw denoting the wire radius. With the above definitions, the total p.u.l. impedance matrix is given
by

Z(ω) = R(ω) + jωL(ω) =


z1(ω) + z0(ω) z0(ω) · · · z0(ω)

z0(ω) z2(ω) + z0(ω) · · · z0(ω)
...

...
. . .

...
z0(ω) z0(ω) · · · zN (ω) + z0(ω)

+ jωLe,

(2.12)
where Le is the classical “external” p.u.l. inductance, defined by (2.2).

Sometimes, the lines can be assumed as lossless, i.e. with R = G = 0, and/or dispersion-
free, whereas in the most general case, the accurate computation of the frequency-dependent p.u.l.
parameters is highly nontrivial and requires complex numerical calculations [58].

2.2 Solution of the Multiconductor Transmission-Line Equations

The system (2.1) describes the behavior of the signals in the MTL. Its solution allows the analysis
of the signal propagation along the line as well as of the unintentional interaction (crosstalk) due
to the electromagnetic coupling among different conductors. The solution of the MTL equations
usually follows the following three-step procedure [54]:

1. Determination, either analytically or numerically, of the p.u.l. parameters for the given line
geometry.

2. Computation of the general solution of the line, consisting of N forward- and N backward-
traveling waves, with 2N unknown coefficients.

3. Incorporation of the terminal (boundary) conditions to determine the unknown coefficients.

The final step allows to fully characterize the system and to solve a given line for a given config-
uration of its terminations (that typically include independent sources, lumped elements, diodes,
etc.). Nevertheless, the time-domain computation of the general solution is challenging whenever
the line is lossy and/or the p.u.l. parameters are frequency dependent, as these behaviors are more
suitably characterized in the frequency domain. Because of this, we will mainly consider and
present first the frequency-domain solution of the MTL equations. However, such a solution can
take only linear terminations into account.
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2.2.1 Frequency-Domain Equations

When considering the frequency domain, the excitations sources are supposed to be sinusoids
which have been applied for a sufficiently long time so that all transients have decayed to zero, i.e.
the line is in steady state. Therefore, the line voltages and currents are also sinusoids. Using the
phasor notation, we have

v(z, t) = Re
{
V(z)ejωt

}
, (2.13a)

i(z, t) = Re
{
I(z)ejωt

}
, (2.13b)

where Re {·} denotes the real part of the enclosed complex quantity. From now on, capital letters
will denote frequency-domain voltages and currents, while the corresponding time-domain quan-
tities will be expressed with small letters. According to Fourier theory, the time derivatives are
replaced by jω. Therefore, the frequency-domain MTL equations become

d

dz
V(z, ω) = −Z(ω)I(z, ω), (2.14a)

d

dz
I(z, ω) = −Y(ω)V(z, ω), (2.14b)

with

Z(ω) = R(ω) + jωL(ω), (2.15a)

Y(ω) = G(ω) + jωC(ω). (2.15b)

As already remarked, in this case there is no limitation about the p.u.l. parameters being frequency
dependent.

2.2.2 General Solution

The second step in the solution procedure consists in the computation of the general solution of
the MTL for a given frequency and length, the latter denoted with L. This is given by the chain
parameter matrix (CPM) [54], i.e.

Φ(L) = expm

([
0 −Z

−Y 0

]
L
)
, (2.16)

where expm denotes the matrix exponential and the frequency dependence has been dropped for
notational convenience. The CPM relates the line voltages and currents at the left (z = 0, or
near-end) termination to those at the right (z = L, or far-end) termination, i.e.[

V(z = L)
I(z = L)

]
=

[
Φ11(L) Φ12(L)
Φ21(L) Φ22(L)

] [
V(z = 0)
I(z = 0)

]
. (2.17)
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Besides the use of the matrix exponential, the entries of the CPM can be computed as

Φ11 =
1

2
Y−1T(eγL + e−γL)T−1Y, (2.18a)

Φ12 = −1

2
Y−1Tγ(eγL − e−γL)T−1, (2.18b)

Φ21 = −1

2
T(eγL − e−γL)γ−1T−1Y, (2.18c)

Φ22 =
1

2
T(eγL + e−γL)T−1, (2.18d)

where T and γ are such that diagonalize the product YZ, i.e.

T−1YZT = γ2. (2.19)

Clearly, this solution is general in the sense that the information about the specific excitations and
terminations is still missing and must be included in order to fully determine the signals along the
line.

2.2.3 Incorporation of the Terminal Conditions

The CPM does not explicitly determine the N voltages and N currents at the line terminations.
Therefore, we need 2N relations to determine such voltages and currents from the CPM relation.
We suppose that the terminal constraints are given in terms of Thévenin or Norton equivalents,
which for linear networks always exist (at least one of the two) [59].

In the case in which both the near-end (source) and far-end (load) configurations are given as
Thévenin equivalents, we have

V(z = 0) = VS − ZSI(z = 0), (2.20a)

V(z = L) = VL + ZLI(z = L), (2.20b)

where the VS and VL are vectors of size N and contain the effects of the independent voltage
and current sources in the near- and far-end termination networks, respectively, while the N ×N
matrices ZS and ZL contain the effects of the impedances and controlled sources. Given the CPM
and the Thévenin representation, the terminal currents can be computed as follows

I(z = 0) = [Φ12 − Φ11ZS − ZLΦ22 + ZLΦ21ZS ]
−1 [VL − (Φ11 − ZLΦ21)VS ] , (2.21a)

I(z = L) = Φ21VS + (Φ22 −Φ21ZS)I(z = 0), (2.21b)

whereas the terminal voltages are obtained from (2.20).
When Norton representations are used, the terminal conditions are expressed as

I(z = 0) = IS −YSV(z = 0), (2.22a)

I(z = L) = −IL +YLV(z = L), (2.22b)
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where, with respect to (2.20), equivalent current sources IS,L replace the voltage sources and
equivalent admittance matrices YS,L replace the impedance matrices. With these new definitions,
the terminal voltages are given by

V(z = 0) = [Φ21 − Φ22YS − YLΦ11 +YLΦ12YS ]
−1 [−IL − (Φ22 −YLΦ12)IS ] ,

(2.23a)

V(z = L) = Φ12IS + (Φ11 −Φ12YS)V(z = 0). (2.23b)

Other ways can be used to relate voltages and currents at the terminals of a N -port linear
network, such as mixed representations. For instance, when the near-end constraint is given in
terms of a Thévenin equivalent and the far-end termination is described with a Norton equivalent,
we have

V(z = 0) = VS − ZSI(z = 0), (2.24a)

I(z = L) = −IL +YLV(z = L), (2.24b)

The current at the near-end termination and the voltage at the far-end termination are obtainable
as

I(z = 0) = [Φ22 − Φ21ZS − YLΦ12 +YLΦ11ZS ]
−1 [−IL − (Φ21 −YLΦ11)VS ] ,

(2.25a)

V(z = L) = Φ11VS + (Φ12 −Φ11ZS)I(z = 0). (2.25b)

This last representation is useful when the source contains voltage generators, possibly with zero
internal impedance, whereas the loads are better described in terms of admittances, like in the case
of open circuits or capacitors.

Clearly, the solution at each frequency is independent from the others. If the behavior at
more than one frequency is desired, one simply needs to repeat the computations outlined in this
section for every frequency point, starting from the corresponding values of the p.u.l. parameters.
Moreover, numerical solution can be easily carried out by means of, e.g., MATLAB, since it only
involves standard matrix operations.

2.2.4 Time-Domain Solution

The frequency-domain solution of a MTL is a straightforward process, as one simply needs to
iterate for every frequency of interest a solution procedure which can be easily implemented nu-
merically. This is not readily the case for time-domain simulations, as in general the inclusion
of losses and/or dispersive parameters is a challenging task. A possible approach, which exploits
the convenient frequency-domain solution procedure, is the Fourier analysis. The basic idea is
to decompose a time-domain waveform into sinusoidal components (harmonics), which define its
spectrum. Thanks to the superposition principle, the overall effect is the sum of the responses due
to each harmonic. If the signal is periodic, the harmonics appear only at discrete points, which are
multiples of the fundamental repetition frequency f0 = 1/T , with T the period of the waveform.
In the case of non-periodic waveforms, the spectrum appears as a continuum, but in practice it is
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usually discretized by suitably periodizing the waveform. This can be done by choosing a suffi-
ciently long period to guarantee that, for each pulse, the response reaches its steady-state before
the onset of the next pulse. This criterion applies also to the output waveform, which is longer,
and not only to the inputs. Of course this method, being based on the frequency domain solution,
only allows to deal with linear terminations. Examples of time-domain simulations via Fourier
analysis will be given in Chapter 6. The description of other available techniques for time-domain
analysis is out of the scope of this work, and the reader is referred to [54].

2.3 Numerical Examples

We consider a single bare wire of radius rw = 0.5 mm, placed at a height h = 5 cm above a
perfectly-conducting ground plane, as illustrated in Fig. 2.2. According to (2.6a) and (2.7), the
p.u.l. inductance and capacitance are

L =
µ0
2π

cosh−1
(
5×10−2

5×10−4

)
= 1.1 µH/m

and
C =

2πε0

cosh−1
(
5×10−2

5×10−4

) = 10.5 pF/m

respectively. The surrounding medium is vacuum, with permeability µ0 = 400π nH/m and per-
mittivity ε0 = 8.854 pF/m. Vacuum can be regarded to be lossless, thus the the p.u.l. conductance
is G = 0 and the p.u.l. capacitance is frequency-independent. Moreover, in contrast to on-board
structures, for these wire structures the effect of conductor losses is usually negligible, i.e. it can
be assumed R = 0 and a frequency-independent L as well (this assumption is justified next).
The wire is L = 80-cm long and is driven at the near-end side by a voltage source of amplitude

RS

E CLV (L)5 cm

80 cm

Figure 2.2. Transmission line consisting of a single wire above a ground plane, driven by a voltage
source and terminated by a capacitor.

E = 1 V (constant with frequency) and with an internal impedance of RS = 75 Ω, whereas
the far-end side is terminated by a capacitance of CL = 5 pF. The terminal conditions can be
expressed by a mixed representation having the following parameters:

VS = E, ZS = RS ,

IL = 0, YL = jωCL.
(2.26)
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Figure 2.3. Magnitude (left panel) and phase (right panel) of the far-end transmitted voltage.

Fig. 2.3 shows the magnitude and phase of the voltage transmitted to the far-end termination,
i.e. V (z = L), computed at 401 frequency points from 6 GHz to 9 GHz. The black line has been
computed with the lossless assumption, whereas the dashed gray line is obtained by including
losses according to (2.9) and (2.12), considering a wire conductivity of 58 MS/m (copper). The
perfect agreement between the two curves justifies the neglect of losses.

5 cm

RS

RS

E CL

CLV2(0) V2(L)

1.5 cm

1

2

80 cm

Figure 2.4. Multiconductor transmission line consisting of two coupled wires above a ground
plane. One wire is active and driven by a voltage source.

We consider next the coupled line depicted in Fig. 2.4. The wire radii and height above ground
are again rw1 = rw2 = 0.5 mm and h1 = h2 = 5 cm, respectively, whilst their separation is
d = 1.5 cm. We now have the following p.u.l. inductance and capacitance matrices:

L =

[
1059.7 381.6
381.6 1059.7

]
nH/m
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and

C = µ0ε0L
−1 =

[
12.06 −4.35
−4.35 12.06

]
pF/m.

The source-line-load configuration is also shown in Fig. 2.4, with one active line fed by a voltage
generator having an amplitude of VS = E = 1 V, constant with frequency, and a quiet line termi-
nated by a 75-Ω impedance at its near-end. Both conductors are terminated with 5-pF capacitances
at the far-end side. The Thévenin and Norton equivalents of such terminations are

VS =

[
E
0

]
, ZS =

[
RS 0
0 RS

]
,

IL =

[
0
0

]
, YL = jω

[
CL 0
0 CL

]
,

respectively. Fig. 2.5 shows the magnitudes of the near- and far-end crosstalk voltages, i.e. V2(z =
0) and V2(z = L), respectively, computed by considering again a length of L = 80 cm.

10
6

10
7

10
8

10
9−80

−60

−40

−20

0

Frequency, Hz

Magnitude of V2(0), dBV

10
6

10
7

10
8

10
9−60

−50

−40

−30

−20

−10

0

10

Frequency, Hz

Magnitude of V2(L), dBV

Figure 2.5. Magnitude of the near-end (left panel) and far-end (right panel) crosstalk voltage.
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Chapter 3

Stochastic Analysis

The previous chapter introduced the equations which govern the signal propagation along a MTL
system. With the outlined solution procedure, it is possible to carry out the full analysis of a MTL
whose cross-section and termination networks are deterministically known: one simply needs to
determine the corresponding p.u.l. parameters and solve the pertinent MTL equations. Nonethe-
less, there exist many situations in which some parameters are unknown or hard to control and,
therefore, more appropriately represented in terms of random variables with suitable distributions.
This is the case, for instance, of the outcomes of a fabrication process, where the manufactur-
ing tolerances introduce differences in each produced device, although they should nominally be
the same. Such tolerances are usually indicated in the datasheet provided by the vendors to their
customers, but sometimes they are hard to quantify. In the case of high-speed interconnects, a rel-
evant example is provided by the random trapezoidal shape of PCB trace cross-sections resulting
from the etching process [60]. Also, the positioning of cables within large bundles is unavoidably
random [46]. Another example is that of a single device, whose characteristics are well-known,
but which is subject to uncertain operating conditions, like temperature fluctuations or variable
loading conditions [18]. As a result, the system response becomes a stochastic process itself and
needs to be characterized from a statistical standpoint. Such a statistical analysis allows to predict,
for instance, the confidence bounds for the behavior of the majority of devices or the probability
that a single device meets the design specifications, thus working correctly in the environment it
is placed (yield analysis). Typical characterizations of such random quantities include the estima-
tion of their expected (average) value, standard deviation and probability density function (PDF).
This chapter introduces the basic concepts of stochastic analysis and illustrates the so-called MC
method, perhaps the most widely adopted for statistical assessments in the design phase. This
will be used as a reference tool throughout this text. Its computational limitations will be also
highlighted, thus emphasizing the need for alternative approaches.

3.1 Statistical Background

This section introduces the basic statistical concepts that will be used in this text.

17
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β1 β2 · · · β
n

SYSTEM

random parameters

source
y(β)

random output

Figure 3.1. Pictorial illustration of the response of a system affected by uncertain parameters. In
presence of random variations, the response to a deterministic stimulus becomes a random variable.
The black line denotes the nominal response, whilst the gray area indicates its spread or fluctuation.

3.1.1 Probabilistic Framework

First of all, we adopt a probabilistic framework and introduce a n-variate random vector β =
[β1, . . . , βn], with statistically independent components. Specifically, in our applications, β will
collect all the random input parameters affecting the system behavior. Fig. 3.1 illustrates the
situation: the system has multiple parameters β, which are possibly random. The output response
y depends on these system parameters and, as a result, is a random quantity itself. Thence, it is
more appropriately described in statistical terms, e.g. with an associated confidence bound.

Let us define fβi(β) : Γi → R+ as the PDF of the random variable βi. Then

fβ(β) =
N∏
i=1

fβi(βi) (3.1)

is the joint PDF of the random vector β with the support

Γ =

n∏
i=1

Γi ⊂ Rn. (3.2)

Typically, the random variables in β are assumed to have standard distributions with well-known
properties, such as the Gaussian or uniform distribution.

It should be remarked that this parameterization of the variability into a finite set of indepen-
dent random variables β is a fundamental step to be accomplished before carrying out numerical
simulations of stochastic systems. The task is relatively easy when the random inputs are the phys-
ical parameters of the system, as it is quite straighforward to identify the independent parameters
to be modeled as random variables, based on experiments or reasonable and intuitive assumptions.
When a random process is continuous, or correlation among several random parameters exists,
techniques for the decomposition into a finite set of uncorrelated variables, like the Karhunen-
Loève (KL) expansion, can be used [61]. The KL expansion consists on the spectral expansion of
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the covariance matrix of a n-variate random process β and takes the following form

β = µ+

n∑
k=1

√
λkΥkξk, (3.3)

where µ is a vector of size n collecting the mean values of β, λk are the eigenvalues of the
covariance matrix, Υk the corresponding eigenvectors, and ξk are normalized and independent
random variables. The variables ξk become the fundamental building blocks which parameterize
the variations via (3.3)1. In presence of a continuous random process β(x),2 characterizaed by a
covariance function ζ(x1, x2), the KL expansion become an infinite series [62]

β(x) = µ(x) +

∞∑
k=1

√
λkΥk(x)ξk (3.4)

with decaying coefficients λk, which is thus in practice truncated to n terms. In the above expres-
sion, Υk(x) are the eigenfunctions associated to the eigenvalues λk, i.e., satisfying the integral
relation ∫

ζ(x1, x2)Υk(x2)dx2 = λkΥk(x2). (3.5)

Nevertheless, a through discussion about the existing techniques for such decomposition is out of
the scope of this work work. For the sake of simplicity, we will consider only random system
parameters which are already mutually independent.

3.1.2 Random Variable Transformation

It is useful to recall here some rules for the transformation of random variables, which can be
applied for instance when there is a known and explicit relationship between the output and the
random input parameters [63]. The PDF of any function y = g(β) of a single random variable β,
having known distribution fβ(β), is given by

fy(y) =

K∑
k=1

fβ(βk)

|g′(βk)|
, (3.6)

where, for a specific value y, the βk are the K real roots of y = g(β), while g′(β) denotes the
derivative of g(β). The above expression allows to readily obtain the distribution of an arbitrary
random variable, provided it has an analytical relationship with another random variable of known
distribution. When the inverse of g(β) is not available in closed form, the roots of y = g(β) can
be determined numerically.

The derivation of the PDF for a function of more than one random variable is less trivial.
Nonetheless, the mean value of a generic multivariate function g(β) is obtainable as

E{g(β)} =

∫
Γ
g(β)fβ(β)dβ, (3.7)

1Although there exist random number genators for correlated random variables, they are usually based on such
decorrelation methods, which are therefore simply hidden to the user.

2The process β(x) could be, for instance, a coefficient with a given spatial dependence and a decaying correlation
between values at more distant points.
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while its variance is given by

Var{g(β)} =

∫
Γ
g2(β)fβ(β)dβ − E2{g(β)}. (3.8)

To provide an example, we select a Gaussian random variable β with mean µ = 3 and standard
deviation σ = 0.6 (we denote it as β ∼ N (3, 0.6), where N indicates the normal distribution).
We now define a random variable y such that

y = g(β) = 3β2 − 2β − 1. (3.9)

The inverse and derivative of g are

β = g−1(y) =
1±

√
4 + 3y

3
(3.10)

and
g′(β) = 6β − 2, (3.11)

respectively. We can observe that there are two real roots when y > −4/3. Then, from (3.6),

fy(y) = − 1

2
√
4 + 3y

1√
2πσ

exp

(
−((1−

√
4 + 3y)/3− µ)2

2σ2

)
+

+
1

2
√
4 + 3y

1√
2πσ

exp

(
−((1 +

√
4 + 3y)/3− µ)2

2σ2

)
.

(3.12)

The mean value and variance of y can be computed by numerically integrating (3.7) and (3.8) and
are µ = 21.08 and σ2 = 94.49, respectively.

3.2 The Monte Carlo Method

The MC method is perhaps the most common algorithm employed for the stochastic simulation
of arbitrary systems affected by random variations, due to its robustness, as well as the relative
simplicity, intuitiveness and versatility. Because of this, MC is very often used for design purposes
and in this text will play the role of a reference tool for the generation of results against which
to compare and validate the proposed methodology. In this section, we limit ourselves to briefly
introduce the algorithm and highlight its main features. A comprehensive and thorough discussion
about the MC method and its properties is out of the scope of this work.

Although an unambiguous definition does not exist, we consider the MC method as a compu-
tational algorithm that relies on repeated random sampling to obtain statistical information. It can
be summarized by the following four-step procedure:

1. Determine the random parameters of interest and their distribution.

2. Generate a set of (pseudo-)random samples of such parameters according to their distribu-
tion (note that each sample can be a vector of values in case of multiple random variables).
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3. Perform a deterministic computation for each sample. This means repeatedly solving the
problem for the scenarios associated to the different samples.

4. Aggregate and analyze the results to obtain statistical information.3

The generation of the random samples is actually a key point in the application of a MC analy-
sis [64]. However, truly random numbers are not always required for this method to be useful.
Deterministic, pseudorandom sequences are adopted instead. In this work, we will rely on the
samples generated by some software such as MATLAB or SPICE, and we assume that these sam-
ples are good (random) enough to our purpose. The following sections address the issue of the
estimation of the statistical parameters by means of MC simulations and, when possible, the asso-
ciated error.

3.2.1 Monte Carlo Estimator of the Mean Value

Suppose to run a MC simulation consisting of M simulations and producing a corresponding set
{yk}Mk=1 of samples of the output quantity y. The mean value of y can be estimated as the expected
value of the discrete set of random variables {yk}, i.e.

µY = E{y} ≈ µ̂ =
1

M

M∑
k=1

yk. (3.13)

It should be noted that µ̂ itself is a random variable, as different MC simulations on the same
system and with the same number of samplesM would produce different values of µ̂. The estima-
tor (3.13) can be proven to be unbiased, meaning that its mean value coincides with the quantity
it estimates. In fact, it is easy to show that E{µ̂} ≡ E{y}. The variance of the estimator (3.13) is

Var{µ̂} =
Var{y}
M

=
σ2Y
M
. (3.14)

The above result implies that the variance of the estimator µ̂ can be made arbitrarily small by
increasing the number of samples, i.e. simulations, M . In fact, using the Čebyšev inequality, the
probability of having an estimation error above an arbitrary ϵ is

P{|µ̂− µY | ≥ ϵ} ≤ Var{µ̂}
ϵ2

=
σ2Y
Mϵ2

. (3.15)

The Čebyšev inequality basically tells that we can get an arbitrarily small error by choosing a
large enough value of M . The estimator (3.13) is then also said to be consistent. Furthermore,
according to the central limit theorem, a linear combination of random variables, such as (3.13),
approaches the Gaussian distribution. Therefore, we can conclude that, for M large, µ̂ has a

3It should be noted that, sometimes, the MC method is considered as the solution by probabilistic methods of non-
stochastic problems, like the computation of deterministic (multidimensional) integrals by random sampling of the
integrand function. In this case, the outlined procedure is then simply referred to as a computer implementation of a
stochastic simulation [64].



22 Stochastic Analysis

Gaussian distribution with mean µY and standard deviation σY /
√
M , i.e. µ̂ ∼ N (µY , σY /

√
M).

Therefore, by defining

Pk = p

{
|µ̂− µY | ≤ k

σY√
M

}
, (3.16)

we can state that, when M is large, P1 = 68.3%, P2 = 95.4%, P3 = 99.7%. However, in general
the variance of y is not a-priori known.

3.2.2 Monte Carlo Estimator of the Variance

A consistent and unbiased estimator of the variance of y is

σ2Y = Var{y} ≈ σ̂2 =
1

M − 1

M∑
k=1

(yk − µ̂)2. (3.17)

In this case, there is no explicit expression for the variance of the estimator (3.17), apart from
some specific situations. For instance, when y is normally distributed, we have

Var{σ̂2} =
2σ4Y {y}
M − 1

. (3.18)

Nevertheless, the above expression allows to draw the general, qualitative conclusion that the
convergence rate of the variance estimator is similar to the convergence rate of the mean estimator,
but the fluctuation of the former will be in general larger due to the presence of the scale factor
2σ4Y compared to σ2Y . The estimator σ̂2 can in turn be used to predict the variance of µ̂, i.e.

V̂ar{µ̂} =
1

M(M − 1)

M∑
k=1

(yk − µ̂)2. (3.19)

This expression can be used for the estimation of Pk in (3.16).

3.2.3 Estimation of the Distribution by Means of Monte Carlo Simulations

We now want to construct the PDF fy(y) at a discrete set of points {yj}Bj=1, starting from the
outcomes {yk}Mk=1 of the MC simulation. For simplicity, the points yj are assumed to be equally
spaced by ∆y = (yB − y1)/(B − 1). The value of the PDF at the point yj can be estimated as

f̂y(yj) =
mj

M∆y
(3.20)

where mj is the number of samples yk ∈ [yj − ∆y/2, yj + ∆y/2]. Therefore, the PDF of y
is approximated by a staircase function, or histogram, where a bin is associated to each point
yj . Intuitively, for an accurate prediction of fy(y), we both need a large number of bins B (or,
equivalently, a small ∆y) and a large number of samples M . In fact, a large B ensures that
fy(y) is finely discretized by the staircase function and, consequently, the corresponding values
are representative, and not just an average value over the interval ∆y. At the same time, a large
M allows a sufficiently large and representative number of samples to fall in each bin.
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3.2.4 Example of Monte Carlo Simulation

As a trivial and illustrative example, a MC simulation is performed to estimate the mean value,
standard deviation and PDF for the transformed random variable (3.9), analyzed in Section 3.1.2.
Assuming of course β as the random parameter, we can perform the remaining three steps of the
MC approach: we generate (with MATLAB) a set of M random samples {βk}; for each sample
βk, we deterministically compute the corresponding sample of y as yk = g(βk); finally, we obtain
statistical information by means of the introduced estimators. We recall that the exact values are
21.08 for the average value and 94.49 for the variance. Tab. 3.1 collects the results computed with
an increasing number of samples and confirms that, for a given number of samples, the error of the
variance estimator is larger than the error of the mean estimator. In addition, Fig. 3.2 compares the

Table 3.1. Monte Carlo estimation of the mean and variance of y in (3.9).

Number of samples M Estimated mean µ̂ error Estimated variance σ̂2 error
10 29.46 39.8% 402.20 325.7%

100 21.95 4.1% 109.58 16.0%

1000 20.66 2.0% 92.19 2.4%

10000 21.10 0.1% 92.56 2.0%

100000 21.08 < 0.1% 94.30 0.2%

exact PDF of y computed at 100 points with (3.12) (solid line) and by means of MC method using
107 samples (circles). This simple example shows that an accurate estimation of the statistical
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Figure 3.2. Probability density function of y. Solid line: exact analytical result; circles
(◦): MC estimation from 107 samples.
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information and, in particular, an accurate reproduction of the PDF are possible only upon the
consideration of a very large number of simulations. Whenever the simulation involves numerical
solutions, the computational burden of MC rapidly becomes prohibitive.

3.3 Stochastic Analysis of Transmission Lines

In this section, we apply the concepts of MC simulations to the stochastic analysis of the two line
structures introduced in Section 2.3. For this purpose, we consider first the line of Fig. 2.2, where
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Figure 3.3. Stochastic simulation of the far-end voltage V (L) in the line of Fig. 2.2, in presence of
random variations in the conductor height above ground. Black line: nominal response; gray lines:
100 samples of the random response.

now the wire height above ground is a normally distributed random variable with mean 5 cm and
standard deviation 1 cm, i.e. h ∼ N (5, 1) cm. All the remaining parameters are left unchanged.
A MC simulation is performed within MATLAB, by generating random samples for the height
above ground and repeating the solution procedure for each sample. Fig. 3.3 shows a close-up of
the resulting stochastic behavior of the far-end voltage V (L). Specifically, the gray area results
from the superposition of 100 samples of the response while, for comparison, the black line is
the deterministic response already shown in Fig. 2.3. Indeed, the variability in the height above
ground causes a random spread in the response.

In order to statistically quantify such fluctuations, Fig. 3.4 shows the average response (black
line) and the standard deviation (gray line), which have been estimated with (3.13) and (3.17),
respectively, based on 10000 runs. It should be noted that the average response is different, al-
though ofter similar, from the nominal response, which is the response computed by considering
the nominal value of the random parameters. The local maxima of the standard deviation indicate
points in which the spread is larger, and this fluctuation vanishes at low frequencies. Concern-
ing the phase, the variability is larger where the angle has rapid transitions. However, although
the random input parameter is normally distributed, the distribution of the resulting response is



3.3 – Stochastic Analysis of Transmission Lines 25

10
7

10
8

10
9

−60

−40

−20

0

Frequency, Hz

Magnitude of far-end voltage V (L), dBV

10
7

10
8

10
9−200

−100

0

100

200

Frequency, Hz

Phase of far-end voltage V (L), deg

 

 
average response
standard deviation

Figure 3.4. Statistical description of the far-end voltage V (L). Black line: average response; gray
line: standard deviation. Both quantities are computed after 10000 MC simulations.
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Figure 3.5. Probability density functions of the magnitude and phase of V (L), computed at
60 MHz after 10000 MC simulations.

not necessarily Gaussian. Therefore, mean value and standard deviation are not sufficient to com-
pletely characterize it and its distribution needs to be numerically calculated. For instance, Fig. 3.5
displays the distributions of the magnitude and phase of the far-end voltage V (L), computed at
60 MHz. This frequency corresponds to the first resonance in the response. The 10000 samples
are sorted into 30 bins. The PDF of the magnitude is rather asymmetric and then differs from a
Gaussian distribution.

As far as the simulation time is concerned, the MC simulation over the entire frequency range
required 5 min and 6 s. This computational time is expected to significantly grow when deal-
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ing with multiconductor lines having a large number of conductors and/or requiring numerical
calculations for the computation of their p.u.l. parameters.
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Figure 3.6. Stochastic simulation of the near-end (left panel) and far-end (right panel)
crosstalk voltages in the line of Fig. 2.4, in presence of random variations in the height
above ground and wire-to-wire separation. Black line: nominal response; gray lines: 100
samples of the random response.
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Figure 3.7. Statistical description of the near-end (left panel) and far-end (right panel)
crosstalk voltages. Black line: average response; gray line: standard deviation. Both quantities
are computed from 10000 MC simulations.

Analogously, for the second example in Fig. 2.4, we consider variations in the height above
ground and wire-to-wire separation. This time we assume that the height is uniformly distributed
in the range [4, 6] cm (h ∼ U(4, 6) cm), whilst the distance is uniformly distributed within
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[1, 2] cm (d ∼ U(1, 2) cm). Again, a MC analysis is run within MATLAB by generating inde-
pendent samples for the height and separation and iterating the solution. Fig. 3.6 shows the effect
of these variations on the near- and far-end crosstalk voltages, i.e. V2(0) and V2(L), respectively.
Fig. 3.7 illustrates the average (black line) and the standard deviation (gray line) of the magnitudes
of the two crosstalk voltages, computed after 10000 MC runs. The total amount of time required
by these frequency sweeps is 12 min and 12 s. Also, the probability distribution of these stochas-
tic responses is computed at two different frequencies and is displayed in Fig. 3.8. This example
again demonstrates how the resulting distributions can greatly differ from the uniform distribution
of the original input parameters.
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Figure 3.8. Probability density function of V0(L) (left panel) and V2(L) (right panel) computed at
100 and 60 MHz, respectively, by means of 10000 MC simulations.

Finally, we consider a third example, in which a 10% relative (Gaussian) standard deviation
(= 0.5 pF) is ascribed to the load capacitance of the line in Fig. 2.2, in addition to the height
variation. Fig. 3.9 shows the magnitude of the resulting stochastic far-end voltage as well as its
average value and standard deviation.
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Figure 3.9. Stochastic simulation of the far-end transmitted voltage V (L) in the line of Fig. 2.2,
in presence of variations in the conductor height above ground and load capacitance. Left panel:
nominal response (black line) and samples of the random response (gray lines); right panel: average
response (black line) and standard deviation (gray line).



Chapter 4

The Polynomial Chaos Theory

The previous chapter discussed the main statistical tools as well as the concept of MC analysis.
The main drawback of MC is that it requires a large number of samples to converge, and this
number generally increases when looking at higher statistical moments or distribution functions.
Therefore, this approach becomes unfeasible when the time required by a single simulation is
large, like in the case of lines with many conductors and/or more complex circuit topologies, such
as interconnect networks. Hence, the goal of this thesis is to provide an alternative and more
efficient strategy for this kind of analysis. When the solution of the transmission-line equations
is analytically known, one may attempt to apply rules of random variable transformation in order
to retrieve the statistical information pertaining to the random response. This has been done,
via approximate analytical relations valid under low-frequency and weak-coupling assumptions,
for the case of crosstalk between two wires with random positioning [48], [49]. However, these
closed-form results only apply to pre-determined and simplified (e.g., lossless, non-dispersive and
homogeneous) wire structures with one or two signal conductors. In many practical applications
involving high-speed interconnects, none of the above assumptions is usually met. First of all,
high-speed interconnects are inherently “high-frequency”, thus invalidating any low-frequency
approximation. Moreover, cable bundles in avionic applications as well as PCB interconnects
have complex multiconductor geometries which also contain dielectric materials, being therefore
inhomogeneous. Also, in the case of PCB lines, losses and dispersion play a fundamental role [65].
A more general approach is then mandatory and can be achieved by means of the PC technique,
which is outlined in this chapter. Its application to the development of a general framework for the
stochastic simulation of multiconductor transmission lines is provided in the next chapter instead.

4.1 Polynomial Chaos Overview

The underlying idea of PC1 is to represent stochastic solutions in terms of orthogonal polynomial
expansions of the random input parameters. In the first applications of PC [19], Hermite polynomi-
als were employed as an orthogonal basis to represent random processes [66], [67]. However, for

1The word “chaos” is here used in the sense originally defined by Wiener [66], i.e. as an approximation of a Gaussian
random process by means of Hermite polynomials.

29
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non-Gaussian problems, more suitable polynomial bases can be chosen, according to the probabil-
ity distribution of the random inputs [20]. The choice, yielding optimal convergence, follows the
so-called Askey scheme [68], and defines the generalized polynomial chaos framework. Tab. 4.1
illustrates the optimal polynomial bases corresponding to the most common distributions. The ap-
plications in this work will only consider Gaussian or uniform variations, and therefore will make
exclusively use of Hermite and Legendre polynomials. However, the procedure is general and
can be readily extended to other distributions, including non-standard ones, for which customized
polynomial bases can be constructed [69]. For the discussion, we will again refer to a n-variate

Table 4.1. Wiener-Askey Polynomial Chaos.

Distribution of ξ Class of orthogonal polynomials Support Γ
Gaussian Hermite (−∞,+∞)
gamma Laguerre [0,+∞)

beta Jacobi [−1, 1]
uniform Legendre [−1, 1]

random variable, but with the additional assumption that its components are “standard”, i.e. nor-
malized by proper translation and scaling. Therefore, we denote it as ξ, in order to distinguish it
from the non-normalized variable β. Also, we will denote the normalized joint PDF of ξ as w(ξ).

4.1.1 The Polynomial Chaos Expansion

The PC seeks to approximate a random system output variable y(ξ), like the situation depicted in
Fig. 3.1, in terms of the following truncated expansion of the random inputs ξ:

y(ξ) ≈ ŷ(ξ) =

P∑
k=0

ckϕk(ξ), (4.1)

where {ϕk} is a suitable multivariate basis of polynomial functions, orthogonal with respect to the
following inner product in the Hilbert space of the variables ξ:

⟨f, g⟩ =
∫
Γ
f(ξ)g(ξ)w(ξ)dξ. (4.2)

Specifically, the univariate basis {ϕk(ξ)} is represented by the space of the polynomials orthogonal
to the measure w(ξ)dξ in Γ, i.e. satisfying the orthogonality condition

⟨ϕk, ϕj⟩ =
∫
Γ
ϕk(ξ)ϕj(ξ)w(ξ)dξ = α2

kδkj , (4.3)

where δkj denotes the Kronecker’s delta function and

α2
k = ⟨ϕk, ϕk⟩ =

∫
Γ
ϕ2k(ξ)w(ξ)dξ (4.4)
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is a normalization factor. Although not necessarily useful, one can always normalize the polyno-
mials such that α2

k ≡ 1, ∀k. The degree of the polynomials is

deg(ϕk) = k. (4.5)

It should be noted that w(ξ) in (4.3) corresponds to the PDF of ξ and plays the role of a weighting
function for the integration. As such, it defines the type of polynomials that must be used in (4.1).

Chosen a maximum degree p, the elements of the multivariate basis {ϕk(ξ)} can be readily ob-
tained as products of a sequence of univariate polynomials in each direction ξi, i = 1, . . . , n [70],
i.e.

ϕk(ξ) =

n∏
i=1

ϕki(ξi),

n∑
i=1

ki ≤ p, (4.6)

where there is a one-to-one correspondence between the index k and the multidimensional index
k = [k1, . . . , kn], ki being the degree of the univariate polynomial in the direction ξi. This basis
defines the space of the n-variate orthogonal polynomials of total degree at most p. For example,
the bivariate basis is given by the following series of functions

ϕ0(ξ1)ϕ0(ξ2)

ϕ1(ξ1)ϕ0(ξ2) ϕ0(ξ1)ϕ1(ξ2)

ϕ2(ξ1)ϕ0(ξ2) ϕ1(ξ1)ϕ1(ξ2) ϕ0(ξ1)ϕ2(ξ2)

ϕ3(ξ1)ϕ0(ξ2) ϕ2(ξ1)ϕ1(ξ2) ϕ1(ξ1)ϕ2(ξ2) ϕ0(ξ1)ϕ3(ξ2)

ϕ4(ξ1)ϕ0(ξ2) ϕ3(ξ1)ϕ1(ξ2) ϕ2(ξ1)ϕ2(ξ2) ϕ1(ξ1)ϕ3(ξ2) ϕ0(ξ1)ϕ4(ξ2)

· · ·

Recalling (4.5), it is readily shown that the total degree of the bivariate polynomials in each row
of the above scheme is constant, and is incremented row by row. In practice, the series is truncated
by taking a finite number of p + 1 rows into consideration, and the total number of terms in the
expansion (4.1), for a generic number n of random variables, results to be [70]2

P + 1 =

(
n+ p
p

)
=

(p+ n)!

p!n!
. (4.7)

Owing to its definition, the orthogonality condition (4.3) readily extends to the multivariate basis.
In fact, we have

⟨ϕk, ϕj⟩ =
∫
Γ
ϕk(ξ)ϕj(ξ)w(ξ)dξ =

n∏
i=1

∫
Γ
ϕki(ξi)ϕji(ξi)w(ξi)dξi =

n∏
i=1

⟨ϕkiϕji⟩, (4.8)

where we used (4.6), (3.2), and we exploited the separation of variables. The above expression
differs from zero only if ki = ji ∀i = 1, . . . , n, which in turn only happens when the two
multivariate polynomials are identical.

2Alternatively to this “total degree” choice, the full tensor product combination of univariate polynomials is some-
times used, where each index ki in (4.6) can be less or equal to p [71]. This choice is usually avoided as it involves a
much larger number of terms, i.e. (p+ 1)n.
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Since the polynomials from the Wiener-Askey scheme form a complete basis in the Hilbert
space determined by the corresponding support Γ, the expansion is the best approximation in the
linear polynomial space spanned by {ϕk}, and converges in the L2 sense as p is increased. In other
words,

lim
p→∞

∥y(ξ)− ŷ(ξ)∥L2
= lim

p→∞

√∫
Γ
(y(ξ)− ŷ(ξ))2w(ξ)dξ ≡

√
E{(y(ξ)− ŷ(ξ))2} = 0 (4.9)

i.e. the root-mean-square error tends to zero when the number of functions in the expansion is
increased. The convergence is then defined in a statistical sense [72].

4.1.2 Statistical Information

The expansion (4.1) provides a convenient, analytical relationship between the random output y
and the random system parameters ξ. As such, when the expansion is sufficiently accurate, statis-
tical information on the random variable y(ξ) can be readily obtained from ŷ(ξ). For instance, the
expected value of y(ξ) is estimated as

E{y(ξ)} ≈ E{ŷ(ξ)} =

∫
Γ
ŷ(ξ)w(ξ)dξ =

P∑
k=0

ck

∫
Γ
ϕk(ξ)w(ξ)dξ ≡

P∑
k=0

ck
1
α0
⟨ϕk, ϕ0⟩ = c0α0.

(4.10)
Moreover, the variance is given by

Var{y(ξ)} ≈ Var{ŷ(ξ)} =

∫
Γ
ŷ2(ξ)w(ξ)dξ − E{ŷ(ξ)}2 =

P∑
k=0

P∑
j=0

ckcj

∫
Γ
ϕk(ξ)ϕj(ξ)w(ξ)dξ

−c20α2
0 =

P∑
k=0

P∑
j=0

ckcj⟨ϕk, ϕj⟩ − c20α
2
0 =

P∑
k=0

c2kα
2
k − c20α

2
0 =

P∑
k=1

c2kα
2
k.

(4.11)
For the calculation of the PDF of y(ξ), one can rely on the rule of random variable transforma-
tion (3.6) or, in the multivariate case, on a MC sampling of (4.1), as described in Section 3.2.
We stress here that this is not detrimental for the PC technique, as the evaluation of a polynomial
function like (4.1) is usually orders of magnitude faster than the computation of an actual sample
of the system output y(ξ).

4.1.3 Projection

The key point in the use of PC expansions (4.1) is then the calculation of the coefficients ck. With
the definitions introduced, the coefficients ck can be readily computed by means of the classical
projection theorem, i.e. as an orthogonal projection onto the polynomial basis:

ck =
⟨y, ϕk⟩
⟨ϕk, ϕk⟩

=

∫
Γ y(ξ)ϕk(ξ)w(ξ)dξ

α2
k

(4.12)
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However, the above definition is of little use, as it involves the unknown output quantity y(ξ).
In practice, the strategy is to approximate the integral in (4.12) by means of either collocation
or Galerkin methods [70]. In the former case, the integral is numerically evaluated by using a
limited, discrete set of samples of the variable y [73]. In principle, the MC integration [64] is itself
a collocation method, but requires again a large number of samples. More clever approaches take
again advantage of polynomials and of the smoothness of the integrand, and define the class of
stochastic collocation methods.

Nevertheless, when the governing equations that describe the behavior of y are relatively sim-
ple to manipulate, a Galerkin approach can be used. The result is a set of coupled and deterministic
equations, whose solution provides the sought-for expansion coefficients. This strategy is called
stochastic Galerkin method (SGM) and will be adopted in this work. However, when the gov-
erning equations take complicated forms, the derivation of Galerkin equations can become highly
nontrivial.

4.2 Gaussian and Uniform Distributions

So far, we introduced the general concepts of the PC framework, which are common to every
polynomial basis. From now on, we focus on problems that involve Gaussian or uniform random
variables and, therefore, Hermite and Legendre bases [74] are introduced in this section.

4.2.1 Hermite Polynomials

The Hermite polynomials are a class of polynomial functions orthogonal to the weighting function

w(ξ) =
1√
2π
e−ξ

2/2, (4.13)

which corresponds to the PDF of a standard normal random variable N (0, 1).3 Therefore, they
can be proven to form the optimal basis to represent a random process in terms of (4.1) when ξ
is normally distributed [20]. The Hermite polynomials can be obtained by using the following
generating function

Hk(ξ) = (−1)keξ
2/2 d

k

dξk
e−ξ

2/2 (4.14)

or, alternatively, the three-term recurrence relation

Hk+1(ξ) = ξHk(ξ)− kHk−1(ξ) (4.15)

with k > 1, given, from (4.14), that H0 = 1 and H1 = ξ. It is easy to show that the Hermite
polynomials satisfy

⟨Hk, Hj⟩ =
1√
2π

∫ +∞

−∞
Hk(ξ)Hj(ξ)e

−ξ2/2 = α2
kδkj (4.16)

3These polynomials are sometimes called the “probabilists’ Hermite polynomials”, to distinguish them from the
“physicists’ Hermite polynomials”, which are orthogonal with respect to w(ξ) = e−ξ2 .
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Table 4.2. Hermite polynomials.

Index k Hermite polynomials ⟨Hk,Hk⟩

0 H0(ξ) = 1 1

1 H1(ξ) = ξ 1

2 H2(ξ) = ξ2 − 1 2

3 H3(ξ) = ξ3 − 3ξ 6

4 H4(ξ) = ξ4 − 6ξ2 + 3 24

5 H5(ξ) = ξ5 − 10ξ3 + 15ξ 120

with
α2
k = ⟨Hk,Hk⟩ = k!. (4.17)

Tab. 4.2 lists the first six Hermite polynomials. Also, a useful property is [75]

⟨HkHj ,Hi⟩ =
1√
2π

∫ +∞

−∞
Hk(ξ)Hj(ξ)Hi(ξ)e

−ξ2/2dξ =
k!j!i!

(m− k)!(m− j)!(m− i)!
(4.18)

with 2m = k + j + i. The above equation holds when m is integer and the argument of the
factorials is non-negative, being zero otherwise.

The multivariate basis can be constructed according to (4.6), i.e. using product combinations
of univariate polynomials. For illustration purposes, Tab. 4.3 lists the polynomials forming the
bivariate basis (n = 2) with total degree p = 3. According to (4.8) and (4.17), the norm of each
multivariate function can be straightforwardly computed:

α2
k = ⟨ϕk, ϕk⟩ =

n∏
i=1

⟨Hki ,Hki⟩ =
n∏
i=1

ki!. (4.19)

Also, the result in (4.18) can be analogously generalized.

4.2.2 Legendre Polynomials

The discussion for Legendre polynomials parallels the one for Hermite polynomials. The Legen-
dre polynomials are orthogonal to a weighting function coinciding with the PDF of U(−1, 1), i.e.
a uniform random variable normalized into the support Γ = [−1, 1]:

w(ξ) =

{
1
2 −1 ≤ ξ ≤ 1

0 otherwise
. (4.20)
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Table 4.3. Bivariate Hermite basis (ξ = [ξ1, ξ2]).

Index k Total degree Index k Basis function ϕk(ξ) = Hk1(ξ1)Hk2(ξ2) ⟨ϕk, ϕk⟩

0 0 [0,0] ϕ0(ξ) = H0(ξ1)H0(ξ2) = 1 1

1
1

[1,0] ϕ1(ξ) = H1(ξ1)H0(ξ2) = ξ1 1

2 [0,1] ϕ2(ξ) = H0(ξ1)H1(ξ2) = ξ2 1

3

2

[2,0] ϕ3(ξ) = H2(ξ1)H0(ξ2) = ξ21 − 1 2

4 [1,1] ϕ4(ξ) = H1(ξ1)H1(ξ2) = ξ1ξ2 1

5 [0,2] ϕ5(ξ) = H0(ξ1)H2(ξ2) = ξ22 − 1 2

6

3

[3,0] ϕ6(ξ) = H3(ξ1)H0(ξ2) = ξ31 − 3ξ1 6

7 [2,1] ϕ7(ξ) = H2(ξ1)H1(ξ2) = ξ21ξ2 − ξ2 2

8 [1,2] ϕ8(ξ) = H1(ξ1)H2(ξ2) = ξ1ξ
2
2 − ξ1 2

9 [0,3] ϕ9(ξ) = H0(ξ1)H3(ξ2) = ξ32 − 3ξ2 6

The generating function for Legendre polynomials is

Pk(ξ) =
1

2kk!

dk

dξk
(ξ2 − 1)k, (4.21)

while the three-term recurrence relation is

Pk+1(ξ) =
2k + 1

k + 1
ξPk(ξ)−

k

k + 1
Pk−1(ξ) (4.22)

with k > 1, P0 = 1 and P1 = ξ. The Legendre polynomials are orthogonal with respect to the
following inner product:

⟨Pk, Pj⟩ =
1

2

∫ 1

−1
Pk(ξ)Pj(ξ)dξ = α2

kδkj , (4.23)

where

α2
k =

1

2

∫ 1

−1
P 2
k (ξ)dξ =

1

2k + 1
. (4.24)
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Table 4.4. Legendre polynomials.

Index k Legendre polynomials ⟨Pk, Pk⟩

0 P0(ξ) = 1 1

1 P1(ξ) = ξ 1
3

2 P2(ξ) =
3
2ξ

2 − 1
2

1
5

3 P3(ξ) =
5
2ξ

3 − 3
2ξ

1
7

4 P4(ξ) =
35
8 ξ

4 − 30
8 ξ

2 + 3
8

1
9

5 P5(ξ) =
63
8 ξ

5 − 70
8 ξ

3 + 15
8 ξ

1
11

Tab. 4.4 lists the first six Legendre polynomials. Like for the case of Hermite polynomials, it is
useful to provide the following relation, derived from the Gaunt’s formula [76]:

⟨PkPj , Pi⟩ =
1

2

∫ 1

−1
Pk(ξ)Pj(ξ)Pi(ξ)dξ =

(−1)s−j
i!(2s− 2i)!s!

(s− k)!(s− j)!(s− i)!(2s+ 1)!

q∑
t=p

(−1)t
(k + t)!(j + i− t)!

t!(k − t)!(j − i+ t)!(i− t)!

(4.25)

with s = (k+ j + i)/2, p = max(0, i− j), and q = min(j + i, k, i). The above expression holds
when s is even and the arguments of the factorials are non-negative, being null otherwise. The
multivariate Legendre basis is once again constructed using product combinations of univariate
Legendre polynomials. As a result,

α2
k = ⟨ϕk, ϕk⟩ =

n∏
i=1

1

2ki + 1
. (4.26)

4.2.3 Analytical Example

For a simple illustration of the PC properties, we recall the function (3.9):

y(β) = 3β2 − 2β − 1,

where β ∼ N (3, 0.6). We can express β in terms of the normalized random variable ξ ∼ N (0, 1)
as follows:

β = 3 + 0.6ξ. (4.27)
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Using the above expression and recasting the polynomials, we can rewrite (3.9) as

y(ξ) = 1.08ξ2 + 9.6ξ + 20. (4.28)

The above function being already polynomial, it can be exactly written as a second-order Hermite
expansion:

y(ξ) = 21.08H0(ξ) + 9.60H1(ξ) + 1.08H2(ξ). (4.29)

Using (4.10) and (4.11), we have E{y} = 0! × 21.08 = 21.08 and Var{y} = 1! × 9.62 + 2! ×
1.082 = 94.49, coinciding with the results already obtained in Section 3.1.2.

4.3 Gaussian Quadratures

Gaussian quadratures are rules providing an approximation of a weighted integral of a function
z(ξ) and are tightly related to orthogonal polynomials [77]. As such, they provide a simple
and expedite tool for the evaluation of the inner product (4.2). The approximation is in terms
of a weighted sum of function values computed at specific points (nodes) within the domain of
integration. The general form is∫

Γ
z(ξ)w(ξ)dξ ≈

p∑
k=0

z(ξ(k))wk, (4.30)

where w(ξ) is a weighting function andwk are corresponding discrete weights. The above integral
is exact when z(ξ) is a polynomial of degree 2p+1 or lower. With a direct analogy to the Wiener-
Askey scheme, the nodes ξ(k) correspond to the roots of the (p+1)th polynomial orthogonal to the
weighting function w(ξ) [77]. The quadrature rules can be readily extended to multidimensional
integrals via tensor product summations along each dimension, i.e.∫

Γ
z(ξ)w(ξ)dξ ≈

K∑
k=0

z(ξ(k))ŵk (4.31)

with K + 1 = (p + 1)n, the nodes ξ(k) the tensor product combination of the univariate nodes
ξ(k) and the weights ŵk the product of the tensor product combinations of weights wk. In the
following, we will indicate p as the “order” of the quadrature. The above integral is indeed similar
to the inner product (4.2), with z(ξ) = f(ξ)g(ξ), and the quadrature rule can be used for its
convenient evaluation.

4.3.1 Gauss-Hermite Quadrature

Specifically, the Gauss-Hermite quadrature provides the following approximation∫ +∞

−∞
f(ξ)

e−ξ
2/2

√
2π

dξ ≈
p∑

k=0

f(ξ(k))wk, (4.32)

where the nodes ξ(k) are the roots of the (p + 1)th Hermite polynomial. Since the Hermite poly-
nomials are monic (i.e., the highest degree coefficient is equal to one), the nodes and weights
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can be obtained by means of the Golub-Welsch algorithm [78], i.e. as a solution of an eigenvalue
problem:

W−1JW = Λ, (4.33)

where, for this specfic case, J is a (p + 1) × (p + 1) triangular matrix with entries Jii = 0, i =
0, . . . , p and Ji,i−1 = Ji−1,i =

√
i, i = 1, . . . , p.4 The nodes ξ(k) coincide with the eigenvalues

of J, i.e. ξ(k) = Λkk, while the corresponding weights are the squares of the first element of each
eigenvector, i.e. wk =W 2

0k.

4.3.2 Gauss-Legendre Quadrature

The Gauss-Legendre quadrature is an approximation of the integral of a function f(ξ) over the
interval [−1, 1]:

1

2

∫ 1

−1
f(ξ)dξ ≈

p∑
k=0

f(ξ(k))wk. (4.34)

In this case, the nodes ξ(k) are the roots of the (p+1)th Legendre polynomial. The corresponding
weights can be obtained as [74]

wk =
1

[1− (ξ(k))2][P ′
p+1(ξ

(k))]2
, (4.35)

where P ′
p+1 is the derivative of the (p+ 1)th Legendre polynomial.

4We here point out that, for notation convenience, the indexing of matrices and vectors is sometimes considered as
zero-based. However, it will always be clear from the context whether zero- or one-based indexes are used.



Chapter 5

Application of Polynomial Chaos to
Transmission-Line Equations

This chapter outlines the procedure for the application of PC and the SGM to the stochastic anal-
ysis of MTLs, and represents therefore the core of this thesis. As we will see, thanks to the SGM,
the original stochastic problem is rewritten in terms of a larger but deterministic one [79]–[81].
Its solution provides the PC coefficients, which allow to retrieve the statistical information per-
tinent to the random response, and is generally much faster than running a large number of MC
simulations, like it was done in Chapter 3.

5.1 Stochastic Multiconductor Transmission-Line Equations

In Chapter 2, we introduced the MTL equations and highlighted the relationship between the p.u.l.
parameters and the geometric and material properties of the line. In presence of uncertainty in the
cross-sectional characteristics, the p.u.l. parameters become random variables and, consequently,
the voltages and currents along the line are also stochastic. We can therefore define ξ as the
random vector that collects all the random parameters affecting the interconnect properties and
rewrite the pertinent frequency-domain MTL equations in a stochastic fashion:

d

dz
V(z, ω, ξ) = −Z(ω, ξ)I(z, ω, ξ), (5.1a)

d

dz
I(z, ω, ξ) = −Y(ω, ξ)V(z, ω, ξ), (5.1b)

with

Z(ω, ξ) = R(ω, ξ) + jωL(ω, ξ), (5.2a)

Y(ω, ξ) = G(ω, ξ) + jωC(ω, ξ). (5.2b)

The dependence on ξ is emphasized to highlight the quantities that exhibit variability.

39
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5.2 The Stochastic Galerkin Method

The stochastic p.u.l. parameters are functions of the random input parameters ξ. As such, they can
be expanded according to (4.1)

Z(ω, ξ) ≈ Ẑ(ω, ξ) =
P∑
k=0

Zk(ω)ϕk(ξ), (5.3a)

Y(ω, ξ) ≈ Ŷ(ω, ξ) =
P∑
k=0

Yk(ω)ϕk(ξ), (5.3b)

with

Zk(ω) = Rk(ω) + jωLk(ω), (5.4a)

Yk(ω) = Gk(ω) + jωCk(ω). (5.4b)

In the above expansions, the coefficients are obtained according to the projection theorem (4.12),
i.e.

Zk(ω) =
⟨Z, ϕk⟩
⟨ϕk, ϕk⟩

=

∫
Γ Z(ω, ξ)ϕk(ξ)w(ξ)dξ∫

Γ ϕ
2
k(ξ)w(ξ)dξ

, (5.5a)

Yk(ω) =
⟨Y, ϕk⟩
⟨ϕk, ϕk⟩

=

∫
ΓY(ω, ξ)ϕk(ξ)w(ξ)dξ∫

Γ ϕ
2
k(ξ)w(ξ)dξ

, (5.5b)

which are computed via analytical or numerical integration. If necessary, the real and imaginary
parts appearing in (5.4) can be obtained through the separate projection of the corresponding
stochastic p.u.l. parameter. The unknown voltages and currents can also be expanded in a similar
fashion:

V(z, ω, ξ) ≈ V̂(z, ω, ξ) =

P∑
k=0

Vk(z, ω)ϕk(ξ), (5.6a)

I(z, ω, ξ) ≈ Î(z, ω, ξ) =
P∑
k=0

Ik(z, ω)ϕk(ξ). (5.6b)

However, the computation of Vk and Ik by means of projection would imply the knowledge of
unknown line responses V and I. Here, the coefficients Vk and Ik become the new unknowns of
the problem. Substitution of (5.3) and (5.6) into (5.1) yields

d

dz

P∑
k=0

Vk(z, ω)ϕk(ξ) = −
P∑
k=0

P∑
j=0

Zk(ω)Ij(z, ω)ϕk(ξ)ϕj(ξ), (5.7a)

d

dz

P∑
k=0

Ik(z, ω)ϕk(ξ) = −
P∑
k=0

P∑
j=0

Yk(ω)Vj(z, ω)ϕk(ξ)ϕj(ξ). (5.7b)
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It should be observed that (5.7), like (5.1), is still a stochastic problem, albeit approximated in
terms of (5.3) and (5.6). Furthermore, the dependence on the random vector ξ has been confined
into the polynomial basis functions. The second step involves the application of Galerkin projec-
tion, i.e. (5.7) is weighted with the same set of polynomials {ϕi}, i = 0, . . . , P , using the inner
product (4.2): ⟨

d

dz

P∑
k=0

Vkϕk, ϕi

⟩
= −

⟨
P∑
k=0

P∑
j=0

ZkIjϕkϕj , ϕi

⟩
, (5.8a)

⟨
d

dz

P∑
k=0

Ikϕk, ϕi

⟩
= −

⟨
P∑
k=0

P∑
j=0

YkVjϕkϕj , ϕi

⟩
. (5.8b)

Thanks to the linearity of the inner product, the above system reduces to

d

dz

P∑
k=0

Vk ⟨ϕk, ϕi⟩︸ ︷︷ ︸
=0 ∀k ̸=i

=
d

dz
Vi⟨ϕi, ϕi⟩ = −

P∑
k=0

P∑
j=0

ZkIj ⟨ϕkϕj , ϕi⟩ , (5.9a)

d

dz

P∑
k=0

Ik ⟨ϕk, ϕi⟩︸ ︷︷ ︸
=0 ∀k ̸=i

=
d

dz
Ii⟨ϕi, ϕi⟩ = −

P∑
k=0

P∑
j=0

YkVj ⟨ϕkϕj , ϕi⟩ , (5.9b)

for i = 0, . . . , P , where the orthogonality condition has been used to simplify the left-hand side.
It is worthwhile to note that the remaining terms ⟨ϕi, ϕi⟩ and ⟨ϕkϕj , ϕi⟩ in the left- and right-
hand sides, respectively, are mere real numbers, for which there usually exist specific analytical
expressions, at least for the most common classes of orthogonaly polynomials.

The above result defines 2(P +1) equations relating the coefficients of the voltage and current
variables through the coefficients of the p.u.l. parameters. By dividing both sides by ⟨ϕi, ϕi⟩, the
equations can be recast in order to still resemble telegrapher’s equations:

...
d

dz
Vi

...

= −

[
· · ·

P∑
k=0

Zk
⟨ϕkϕj , ϕi⟩
⟨ϕi, ϕi⟩

· · ·

]
...
Ij
...

 , (5.10a)

...
d

dz
Ii

...

= −

[
· · ·

P∑
k=0

Yk
⟨ϕkϕj , ϕi⟩
⟨ϕi, ϕi⟩

· · ·

]
...

Vj
...

 . (5.10b)

After defining

αkji =
⟨ϕkϕj , ϕi⟩
⟨ϕi, ϕi⟩

, (5.11)

as well as Ṽ = [V0, . . . ,VP ]
T and Ĩ = [I0, . . . , IP ]

T , the above equations can be written in a
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single and larger matrix form, thus leading to the following augmented set of MTL-like equations

d

dz
Ṽ(z, ω) = −Z̃(ω)Ĩ(z, ω), (5.12a)

d

dz
Ĩ(z, ω) = −Ỹ(ω)Ṽ(z, ω), (5.12b)

where Z̃ and Ỹ are N(P + 1)×N(P + 1) p.u.l. matrices, organized into (P + 1)× (P + 1)
blocks, each block given by

Z̃ij(ω) =

P∑
k=0

Zk(ω)αkji, (5.13a)

Ỹij(ω) =

P∑
k=0

Yk(ω)αkji, (5.13b)

i, j = 0, . . . , P . Such matrices can be still split into their real and imaginary parts

Z̃(ω) = R̃(ω) + jωL̃(ω), (5.14a)

Ỹ(ω) = G̃(ω) + jωC̃(ω), (5.14b)

where each augmented component is constructed from the corresponding expansion coefficients
as in (5.13).

It is important noting that (5.12) amounts to a deterministic system of differential equations,
thanks to the Galerkin projection that eliminates the functions {ϕk} and, consequently, the random
vector ξ from (5.7). Thus, (5.12) requires a single solution, which is generally much faster than
running a large number of MC simulations. The unique solution of the augmented problem (5.12)
provides the sought-for coefficients for the voltage and current variables, to be used in (5.6) and
which are now collected into the new unknowns Ṽ and Ĩ. The knowledge of the coefficients for the
voltage and current variables allows to quickly extract their statistical information from (5.6), by
using the relations in Section 4.1.2, as well as by means of rules of random variable transformation
(cfr. Section 3.1.2) or numerical techniques.

From a practical point of view, the application of the PC approach to the MTL equations can
be summarized as follows:

1. Project the p.u.l. matrices Z and Y onto a basis of orthogonal polynomials according
to (5.3), thus finding the expansion coefficients Zk and Yk.

2. Use the above coefficients to build the augmented MTL system matrices Z̃ and Ỹ via (5.13).
Fig. 5.1 visualizes this procedure in the caseN = 2 and P = 2: the original, stochastic line,
described by the p.u.l. matrices Z and Y, is “expanded” into a deterministic one, having a
larger number of terminals, and described by equivalent p.u.l. matrices Z̃ and Ỹ. Of course,
the augmented line has no physical description.
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Z(ω, ξ) , Y(ω, ξ)

Z̃(ω) , Ỹ(ω)

Figure 5.1. Pictorial illustration of the augmentation procedure: the original, stochastic line is
replaced by a deterministic line having a larger number of conductors.

3. Solve (once, then faster) the obtained deterministic system (5.12) for a specific source-load
configuration, thus finding the coefficients Vk and Ik. In order to solve (5.12), augmented
terminal constraints for this new deterministic problem must be imposed, and this point will
be addressed in Section 5.5.

4. Use the PC expansion (5.6) in place of the actual V and I to extract statistical information.

It is relevant to point out that the PC model, generated after steps 1 and 2, does not need to be
re-computed when the same transmission line with the given variations is to be simulated in a
different circuit. The examples in the following sections clarify the above procedure, which can
be easily automated in a computer code.

5.3 Tutorial Example — Single Line and One Random Variable

The PC-SGM is here applied to generate augmented models for the single line of Fig. 2.2. In this
case, the variability considered for the MC analysis in Chapter 3 was provided by the height above
the ground plane, which was a Gaussian random variable with mean 5 cm and standard deviation
1 cm. Therefore, the height can be expressed in terms of a standard normal random variable ξ as
follows:

h(ξ) = 0.05 + 0.01ξ [m].

The p.u.l. inductance and capacitance can then be written as

L(ξ) =
µ0
2π

cosh−1
(
0.05+0.01ξ

0.0005

)
(5.15)

and

C(ξ) =
2πε0

cosh−1
(
0.05+0.01ξ

0.0005

) , (5.16)

respectively. As already discussed, losses and dispersion are in this case negligible and for illustra-
tion purposes they are not considered. Since the random variable ξ has a Gaussian distribution, the
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above parameters can be expressed in terms of Hermite expansions. For instance, the expression
for the p.u.l. inductance with order p = 2 writes

L(ξ) ≈ L0 + L1 · ξ + L2 · (ξ2 − 1), (5.17)

with

L0 =
1

0!

∫ +∞

−∞
L(ξ) · 1 · w(ξ)dξ = µ0

2π

∫ +∞

−∞
cosh−1

(
0.05+0.01ξ

0.0005

)
e−ξ2/2
√
2π

dξ, (5.18a)

L1 =
1

1!

∫ +∞

−∞
L(ξ) · ξ · w(ξ)dξ = µ0

2π

∫ +∞

−∞
cosh−1

(
0.05+0.01ξ

0.0005

)
· ξ · e−ξ2/2

√
2π

dξ, (5.18b)

L2 =
1

2!

∫ +∞

−∞
L(ξ) · (ξ2 − 1) · w(ξ)dξ = µ0

4π

∫ +∞

−∞
cosh−1

(
0.05+0.01ξ

0.0005

)
· (ξ2 − 1) · e−ξ2/2

√
2π

dξ.

(5.18c)

It is possible to numerically compute the above integrals with the MATLAB function quadgk.
The results are L0 = 1055.4 nH/m, L1 = 41.9 nH/m, and L2 = −4.6 nH/m. The coefficients
decrease thanks to the convergence properties of the PC expansions. Similarly, the PC-expansion
coefficients for the p.u.l. capacitance can be computed as

C0 =

∫ +∞

−∞

2πε0

cosh−1
(
0.05+0.01ξ

0.0005

) e−ξ2/2√
2π

dξ, (5.19a)

C1 =

∫ +∞

−∞

2πε0

cosh−1
(
0.05+0.01ξ

0.0005

) · ξ · e
−ξ2/2
√
2π

dξ, (5.19b)

C2 =
1

2

∫ +∞

−∞

2πε0

cosh−1
(
0.05+0.01ξ

0.0005

) · (ξ2 − 1) · e
−ξ2/2
√
2π

dξ, (5.19c)

yielding C0 = 10.560 pF/m, C1 = −0.429 pF/m, and C2 = 0.068 pF/m.
Fig. 5.2 visualizes the projection procedure. The solid black lines in the top left panels are the

p.u.l. inductance and the p.u.l. capacitance plotted as deterministic functions of ξ, while the dashed
gray lines are the corresponding approximations given by the PC expansions. The bottom panels
depict the PDF of ξ, whereas the right panels show the resulting PDF of the p.u.l. parameter, both
for the exact case and for the expansion. It is worth noting one key step in the PC approach: the
expansions become less accurate when |ξ| assumes larger values, which however have a lower
probability to occur (cfr. the PDF of ξ in the bottom panels). Therefore, the expansions are overall
accurate from a statistical standpoint, as confirmed by their capability of reproducing (see the
dashed gray lines in the right panel) the actual probability distributions of L(ξ) and C(ξ) (solid
black lines).

5.3.1 Projection via Gaussian Quadratures

An alternative and convenient way to compute the projection integrals (5.18) and (5.19) is to use
a Gauss-Hermite quadrature with 3 nodes. In fact, such a quadrature is accurate for integrands
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Figure 5.2. Illustration of the projection of the p.u.l. inductance (left plot) and capacitance (right
plot). In each plot, the top left panel shows the p.u.l. parameter as a function of ξ The bottom panel
is the (standard normal) distribution of ξ, whilst the right panel is the resulting distribution of the
p.u.l. parameter. The exact result (solid black line) is compared with the approxation given by the
PC expansion (dashed gray line).

which are similar to polynomials of degree 5. In our case, the integrand is the product of L(ξ) (or
C(ξ)) and ϕk(ξ). Recalling (4.5), with k here at most 2, the use of Gaussian quadratures provides
accurate values as long as L(ξ) (or C(ξ)) is well-approximated by a polynomial of degree 3.
Also, the accuracy is expected to decrease for the computation of higher-order coefficients, as the
integrand include a polynomial of increasing order. It is worth noting that the use of a second-order
polynomial expansion inherently implies that the function is well-approximated by a polynomial
of degree 2, thus corroborating the idea of using Gaussian quadratures. In general, for a p-order
expansion, a quadrature of order p can be used.

The nodes and weights for a Gauss-Hermite quadrature with 3 nodes are ξ={−1.732, 0, 1.732}
and w = {0.167, 0.667, 0.167}, respectively. Therefore, the PC coefficients for the p.u.l. induc-
tance can be computed as

L0 ≈ L(−1.732) · 0.167 + L(0) · 0.667 + L(1.732) · 0.167, (5.20)

L1 ≈ L(−1.732) · (−1.732) · 0.167 + L(0) · 0 · 0.667 + L(1.732) · 1.732 · 0.167, (5.21)

L2 ≈ L(−1.732) · 2 · 0.167 + L(0) · (−1) · 0.667 + L(1.732) · 2 · 0.167, (5.22)

yielding L0 ≈ 1055.4 nH/m, L1 ≈ 41.7 nH/m, and L2 ≈ −4.3 nH/m. The PC-expansion
coefficients for the p.u.l. capacitance can be analogously computed to be C0 ≈ 10.560 pF/m,
C1 ≈ −0.426 pF/m, and C2 ≈ 0.060 pF/m. These new results confirm that the accuracy of the
quadrature decreases with the computation of higher-order coefficients. Clearly, the use of Gaus-
sian quadratures for the integration introduces an additional error in the PC expansions, besides
the truncation error, since now the coefficients are computed via approximate numerical rules.
However, this approach turns out to be particularly convenient, as we will explain with the next
example.
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5.3.2 The Augmented Per-Unit-Length Matrices

According to (5.13), the augmented p.u.l. inductance matrix L̃ is given by

L̃ =

 L0 L1 2L2

L1 L0 + 2L2 2L1

L2 L1 L0 + 4L2

 =

 1055.4 41.7 −8.5
41.7 1046.9 83.5
−4.3 41.7 1038.3

 nH/m (5.23)

and, similarly,

C̃ =

 C0 C1 2C2

C1 C0 + 2C2 2C1

C2 C1 C0 + 4C2

 =

 10.560 −0.426 0.119
−0.426 10.679 −0.851
0.060 −0.426 10.798

 pF/m, (5.24)

where the coefficients computed via the Gauss-Hermite quadrature have been used. The for-
mula (4.18) is used to compute the terms ⟨ϕkϕj , ϕi⟩ in (5.11).

It should be noted that the PC-augmented p.u.l. matrices are no longer symmetric. This is
due to the fact that classical orthogonal polynomials [74] are not orthonormal, i.e. they do not
have unitary L2 norm ∥ϕk∥L2 = ⟨ϕk, ϕk⟩, which appears at the denominator of (5.11). Although
this does not affect numerical implementation, it is sometimes useful (see Chapter 7) to preserve
the symmetry belonging to the original p.u.l. matrices. This can be achieved [82] by adopting a
normalized polynomial basis {φk} for the expansions, with

φk(ξ) = ϕk(ξ)/
√

⟨ϕk, ϕk⟩. (5.25)

For instance, the normalized Hermite polynomials are φk(ξ) = Hk(ξ)/
√
k!, the first three being

φ0 = 1, φ1 = ξ, and φ2 = (ξ2−1)/
√
2. With the above definitions, the resulting p.u.l. augmented

inductance and capacitance matrices are

L̃ =

 L0 L1 L2

L1 L0 +
√
2L2

√
2L1

L2

√
2L1 L0 + 2

√
2L2

 =

 1055.4 41.7 −6.0
41.7 1046.9 59.0
−6.0 59.0 1038.3

 nH/m (5.26)

and

C̃ =

 C0 C1 C2

C1 C0 +
√
2C2

√
2C1

C2

√
2C1 C0 + 2

√
2C2

 =

 10.560 −0.426 0.084
−0.426 10.679 −0.602
0.084 −0.602 10.798

 pF/m, (5.27)

respectively, which are indeed symmetric. It is relevant to note that different coefficients L0,1,2 and
C0,1,2, given by the projection onto the new normalized basis, must be used. It is easy to show that
the coefficients for the normalized basis are obtainable from those of the classical, non-normalized
basis as

√
⟨ϕk, ϕk⟩ck. The multivariate basis can be obtained as usual according to (4.6), and this

preserves the orthonormality. In the following, the PC basis is always selected to be orthonormal
and, consequently, the matrices are symmetric.
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5.4 Tutorial Example — Multiconductor Line and Multiple Random
Variables

Concerning the MC analysis of the coupled line of Fig. 2.4, the variability was provided by the
height above ground, uniform within [4, 6] cm, and the wire separation, uniform within [1, 2] cm.
The random parameters can be expressed in terms of two uniform random variables ξ = [ξ1, ξ2]
in the support [−1, 1], as follows:

h(ξ1) = 0.05 + 0.01ξ1 [m],

d(ξ2) = 0.015 + 0.005ξ2 [m].

The entries of the p.u.l. inductance matrix can be written as

L11(ξ) = L22(ξ) =
µ0
2π

cosh−1

(
0.05 + 0.01ξ1

0.0005

)
, (5.28a)

L12(ξ) = L22(ξ) =
µ0
4π

ln

[
1 + 4

(0.05 + 0.01ξ1)
2

(0.015 + 0.005ξ2)2

]
, (5.28b)

whereas the entries of the p.u.l. capacitance matrix are

C11(ξ) = C22(ξ) = µ0ε0
L11(ξ)

L2
11(ξ)− L2

12(ξ)
, (5.29a)

C12(ξ) = C21(ξ) = µ0ε0
−L12(ξ)

L2
11(ξ)− L2

12(ξ)
. (5.29b)

The p.u.l. inductance matrix can be expanded according to a second-order, bivariate series of
normalized Legendre polynomials, which are constructed using the rule (4.6) and the normaliza-
tion (5.25):

L(ξ) ≈ L0 ·1+L1 ·
√
3ξ1+L2 ·

√
3ξ2+L3 ·

√
5

2
(3ξ21−1)+L4 ·3ξ1ξ2+L5 ·

√
5

2
(3ξ22−1). (5.30)

According to the projection theorem, the entries of the expansion coefficients are given by

Lk,ij =
1

4

∫ 1

−1

∫ 1

−1
Lij(ξ1, ξ2)φk(ξ1, ξ2)dξ1dξ2 (5.31)

(notice that now ⟨φk, φk⟩ = 1). Similar expressions hold of course for the p.u.l. capacitance ma-
trix. The calculations are performed by using MATLAB dblquad function for double integrals
and produce

L0 =

[
1058.3 384.3
384.3 1058.3

]
, L1 =

[
23.3 22.7
22.7 23.3

]
, L2 =

[
0 −38.5

−38.5 0

]
,

L3 =

[
−1.2 −1.1
−1.1 −1.2

]
, L4 =

[
0 −0.2

−0.2 0

]
, L5 =

[
0 3.6
3.6 0

]
,

[nH/m]
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where some diagonal elements are null since the diagonal elements of the inductance matrix do
not depend on ξ2.

It is worth noting that the multidimensional integration becomes inefficient as the number of
dimension is increased. Moreover, a separate call to the integration function must be performed
for the projection of each matrix entry. This makes the standard integration approach inefficient
in case of multiconductor structures having a large number of lines and/or requiring a complex
and time-consuming numerical computation of the p.u.l. parameters. Again, the projection can
be carried out more efficiently by means of Gaussian quadratures, which now provide a twofold
advantage: 1) they can be readily generalized to arbitrary multiple dimensions by using a tensor
product grid of evaluation points; 2) the integration can be vectorized, since the same nodes and
weights are used for the computation of every entry of the matrix coefficients.

The nodes for a second-order Gauss-Legendre quadrature are ξ = {−0.775, 0, 0.775}, while
the corresponding weights are w = {0.278, 0.444, 0.278}. The expansion coefficients for the
L-matrix can be then computed as

Lk =
2∑
i=0

2∑
j=0

L(ξ
(i)
1 , ξ

(j)
2 )φk(ξ

(i)
1 , ξ

(j)
2 )wiwj , (5.32)

and are

L0 ≈
[
1058.3 384.3
384.3 1058.3

]
, L1 ≈

[
23.3 22.7
22.7 23.3

]
, L2 ≈

[
0 −38.5

−38.5 0

]
,

L3 ≈
[
−1.2 −1.1
−1.1 −1.2

]
, L4 ≈

[
0 −0.2

−0.2 0

]
, L5 ≈

[
0 3.5
3.5 0

]
.

[nH/m]

The coefficients for the C-matrix expansion are

C0 ≈
[
12.145 −4.419
−4.419 12.145

]
, C1 ≈

[
−0.130 −0.117
−0.117 −0.130

]
, C2 ≈

[
−0.376 0.582
0.582 −0.376

]
,

C3 ≈
[
0.011 0.009
0.009 0.011

]
, C4 ≈

[
−0.008 −0.004
−0.004 −0.008

]
, C5 ≈

[
0.060 −0.074
−0.074 0.060

] [pF/m]
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instead. The augmented p.u.l. matrices write

L̃=



1058.3 384.3 23.3 22.7 0.0 −38.5 −1.2 −1.1 0.0 −0.2 0.0 3.5
384.3 1058.3 22.7 23.3 −38.5 0.0 −1.1 −1.2 −0.2 0.0 3.5 0.0
23.3 22.7 1057.2 383.3 0.0 −0.2 20.8 20.3 0.0 −38.5 0.0 0.0
22.7 23.3 383.3 1057.2 −0.2 0.0 20.3 20.8 −38.5 0.0 0.0 0.0
0.0 −38.5 0.0 −0.2 1058.3 387.4 0.0 0.0 23.3 22.7 0.0 −34.4

−38.5 0.0 −0.2 0.0 387.4 1058.3 0.0 0.0 22.7 23.3 −34.4 0.0
−1.2 −1.1 20.8 20.3 0.0 0.0 1057.5 383.6 0.0 −0.2 0.0 0.0
−1.1 −1.2 20.3 20.8 0.0 0.0 383.6 1057.5 −0.2 0.0 0.0 0.0
0.0 −0.2 0.0 −38.5 23.3 22.7 0.0 −0.2 1057.2 386.4 0.0 −0.2

−0.2 0.0 −38.5 0.0 22.7 23.3 −0.2 0.0 386.4 1057.2 −0.2 0.0
0.0 3.5 0.0 0.0 0.0 −34.4 0.0 0.0 0.0 −0.2 1058.3 386.5
3.5 0.0 0.0 0.0 −34.4 0.0 0.0 0.0 −0.2 0.0 386.5 1058.3


(5.33)

[nH/m] and

C̃=



12.14 −4.42 −0.13 −0.12 −0.38 0.58 0.00 0.00 −0.01 −0.00 0.06 −0.07
−4.42 12.14 −0.12 −0.13 0.58 −0.38 0.00 0.00 −0.00 −0.01 −0.07 0.06
−0.13 −0.12 12.14 −4.42 −0.01 −0.00 −0.12 −0.10 −0.38 0.58 0.00 0.00
−0.12 −0.13 −4.42 12.14 −0.00 −0.01 −0.10 −0.12 0.58 −0.38 0.00 0.00
−0.38 0.58 −0.01 −0.00 12.20 −4.49 0.00 0.00 −0.13 −0.12 −0.34 0.52
0.58 −0.38 −0.00 −0.01 −4.49 12.20 0.00 0.00 −0.12 −0.13 0.52 −0.34
0.00 0.00 −0.12 −0.10 0.00 0.00 12.14 −4.42 −0.01 −0.00 0.00 0.00
0.00 0.00 −0.10 −0.12 0.00 0.00 −4.42 12.14 −0.00 −0.01 0.00 0.00

−0.01 −0.00 −0.38 0.58 −0.13 −0.12 −0.01 −0.00 12.20 −4.49 −0.01 −0.00
−0.00 −0.01 0.58 −0.38 −0.12 −0.13 −0.00 −0.01 −4.49 12.20 −0.00 −0.01
0.06 −0.07 0.00 0.00 −0.34 0.52 0.00 0.00 −0.01 −0.00 12.18 −4.47

−0.07 0.06 0.00 0.00 0.52 −0.34 0.00 0.00 −0.00 −0.01 −4.47 12.18


(5.34)

[pF/m].
In this section we outlined, by means of tutorial examples, how to build the augmented, de-

terministic PC-based MTL models starting from the original, stochastic p.u.l. parameters. In the
considered cases, Z̃(ω) = jωL̃ and Ỹ(ω) = jωC̃. In the most general situation, in which the
p.u.l. parameters are lossy and frequency-dependent, the projection and augmentation procedures
must be iterated for every frequency point. However, thanks to Gaussian quadratures, the compu-
tational cost is limited. Upon interpretation of (5.12) as a classical (deterministic) transmission-
line system, described by the new p.u.l. matrices Z̃ and Ỹ, the general solution is readily given
by (2.16), i.e.

Φ̃(L) = expm

([
0 −Z̃

−Ỹ 0

]
L
)
. (5.35)

The last step in the development of the proposed methodology is to derive new, consistent terminal
conditions for the complete solution of the augmented problem.
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5.5 Augmented Terminal Conditions

The solution of the augmented transmission-line equations provides the sough-for coefficients
for the unknown voltage and current variables to be used in (5.6). Nonetheless, the solution
of transmission-line equations require to combine the general solution with terminal constraints.
Therefore, proper terminal equations need to be derived.

5.5.1 Stochastic Terminations

We start from the most general case in which the line terminations are also random. By consid-
ering for the discussion a Thévenin representation, the equivalent voltage sources and termination
impedances are also stochastic

V(z = 0, ξ) = VS(ξ)− ZS(ξ)I(z = 0, ξ), (5.36a)

V(z = L, ξ) = VL(ξ) + ZL(ξ)I(z = L, ξ), (5.36b)

and therefore expressable in terms of PC expansions. This leads to

P∑
k=0

Vk(0)ϕk(ξ) =

P∑
k=0

VS,kϕk(ξ)−
P∑
k=0

P∑
j=0

ZS,kIj(0)ϕk(ξ)ϕj(ξ), (5.37a)

P∑
k=0

Vk(L)ϕk(ξ) =
P∑
k=0

VL,kϕk(ξ) +
P∑
k=0

P∑
j=0

ZL,kIj(L)ϕk(ξ)ϕj(ξ). (5.37b)

Again, Galerkin projection, i.e.

P∑
k=0

Vk(0) ⟨ϕk, ϕi⟩︸ ︷︷ ︸
=0 ∀k ̸=i

=

P∑
k=0

VS,k ⟨ϕk, ϕi⟩︸ ︷︷ ︸
=0 ∀k ̸=i

−
P∑
k=0

P∑
j=0

ZS,kIj(0)⟨ϕkϕj , ϕi⟩, (5.38a)

P∑
k=0

Vk(L) ⟨ϕk, ϕi⟩︸ ︷︷ ︸
=0 ∀k ̸=i

=

P∑
k=0

VL,k ⟨ϕk, ϕi⟩︸ ︷︷ ︸
=0 ∀k ̸=i

+

P∑
k=0

P∑
j=0

ZL,kIj(L)⟨ϕkϕj , ϕi⟩, (5.38b)

is applied, thus yielding

Vi(0)⟨ϕi, ϕi⟩ = VS,i⟨ϕi, ϕi⟩ −
P∑
k=0

P∑
j=0

ZS,kIj(0)⟨ϕkϕj , ϕi⟩, (5.39a)

Vi(L)⟨ϕi, ϕi⟩ = VL,i⟨ϕi, ϕi⟩+
P∑
k=0

P∑
j=0

ZL,kIj(L)⟨ϕkϕj , ϕi⟩. (5.39b)

for i = 0, . . . , P . In matrix form, the above equations become

Ṽ(z = 0) = ṼS − Z̃S Ĩ(z = 0), (5.40a)

Ṽ(z = L) = ṼL + Z̃LĨ(z = L), (5.40b)
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where ṼS = [VS,0, . . . ,VS,P ]
T collects the PC-expansion coefficients of the equivalent sources,

whereas the entries of Z̃S are obtained analogously to (5.13). Similar relations hold for ṼL and
Z̃L. Again, such augmented matrices are symmetric only after adoption of a normalized basis.

It relevant to here point out that, in general, the variations affecting the line are independent
from those affecting its terminations, and therefore parameterized by different subsets of elements
of ξ. However, for consistency with the line voltages and currents, which are affected by all the
random parameters, every expansion must be carried out according to the full random vector ξ, and
this may result in a sparse structure of the augmented matrices (cfr. the example in Section 5.6).

A similar procedure allows to obtain analogous expressions for the augmented terminal con-
ditions given as Norton equivalents, i.e.

Ĩ(z = 0) = ĨS − ỸSṼ(z = 0), (5.41a)

Ĩ(z = L) = −ĨL + ỸLṼ(z = L), (5.41b)

where the structures of vectors ĨS,L and matrices ỸS,L coincide with those in (5.40).

5.5.2 Deterministic Terminations

A specific, though relevant, case is the one in which the terminal constraints are deterministic, i.e.
the equivalent voltage sources and termination impedances do not vary. It should be noted that,
although the terminations are not random, terminal voltages and currents are still stochastic due
to the variability affecting the line. Given that non-stochastic quantities can be represented as a
zero-order expansion, the structure of (5.40) greatly simplifies, leading to

ṼS,L = [VS,L, 0, . . . , 0]
T , (5.42a)

Z̃S,L = blkdiag([ZS,L, . . . ,ZS,L]), (5.42b)

where blkdiag operator denotes the block diagonal concatenation of matrix input arguments.
Of course, a similar reasoning yields

ĨS,L = [IS,L, 0, . . . , 0]
T , (5.43a)

ỸS,L = blkdiag([YS,L, . . . ,YS,L]). (5.43b)

With the introduced terminal conditions, the solution of the augmented transmission-line prob-
lem (5.12) is carried out as a standard, deterministic analysis of a MTL (cfr. Section 2.2) described
by larger p.u.l. matrices.

5.6 Polynomial Chaos-Based Stochastic Simulation

We now have all the ingredients to perform a full stochastic simulation of random transmission-
line structures without resorting to the time-consuming MC method. For example, the augmented
p.u.l. inductance and capacitance matrix for the single transmission line of Fig. 2.2, in presence of
Gaussian variations in the height above ground, were given in (5.26) and (5.27), respectively. Due
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Figure 5.3. PC-expansion coefficients for the far-end transmitted voltage. Circles (◦): V0;
diamonds (♢): V1; triangles (△): V2.

to the deterministic nature of the source and load, the augmented terminal conditions in the mixed
representation are

VS =

 E
0
0

 , ZS =

 RS 0 0
0 RS 0
0 0 RS

 ,
IL =

 0
0
0

 , YL = jω

 CL 0 0
0 CL 0
0 0 CL

 ,
(5.44)

The combination of the CPM, computed via (5.35), with the above contraints allows to compute
the PC-expansion coefficients for the terminal voltages and currents. Fig. 5.3 shows the three
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coefficients for the voltage at the far-end termination z = L = 80 cm, namely V0(L), V1(L)
and V2(L). These coefficients define an explicit relation between the stochastic terminal voltage
and the random input parameters in terms of a second-order expansion of normalized Hermite
polynomials:

V (L, ω, ξ) ≈ V0(L, ω) · 1 + V1(L, ω) · ξ + V2(L, ω) · (ξ2 − 1)/
√
2. (5.45)

A MC sampling of (5.45) allows to quickly extract the average value, standard deviation and
probability distribution for the magnitude and phase of the far-end voltage, like shown in Sec-
tion 3.2. This is fast thanks to the analyticity of (5.45). Furthermore, the time required by this
post-processing step is independent from the complexity of the original problem. It is relevant to
note that the computation of the magnitude and phase of (5.45) introduces a transformation which
does not permit to use relations (4.10) and (4.11) to determine the average value and standard
deviation of (5.45). Fig. 5.4 compares the average response and standard deviation obtained from
the PC expansion (indicated with markers) with those previously computed by means of the MC
analysis (solid lines) and already shown in Fig. 3.4. The comparison reveals excellent agreement
between the two approaches. The time required to compute the solution of the augmented line
over the entire frequency sweep is 0.1 s. For the estimation of the average response and stan-
dard deviation, the PC expansion (5.45) has been sampled 10000 times and this step took 0.2 s.
Compared to the MC analysis, which required 5 min and 6 s, there is a 1020× speed-up.

Finally, Fig. 5.5 compares the PDFs at 60 MHz, obtained after the MC analysis (see Fig. 3.5),
with those extracted from the PC expansion. In order to obtain a smooth function, the PC ex-
pansion has been sampled 107 times and the outcomes have been collected into 200 bins. This
evaluation only took 1.6 s. Nonetheless, a more accurate prediction is achieved. In conclusion to
this first example, we can state that a second-order PC expansion is already accurate enough to
reproduce the statistical behavior of the far-end voltage, nevertheless yielding a large speed-up in
computational time.

The second example was that of the coupled line in Fig. 2.4, with uniform variations in the
height above ground and wire-to-wire separation. The pertinent PC-augmented p.u.l. parameters
are given in (5.33) and (5.34). Also for this case, to perform the PC-based simulation, we need the
augmented terminal conditions, which assume a diagonal 12 × 12 structure due to the determin-
istic nature of the terminations. Fig. 5.6 reports the comparison on the estimation of the average
and standard deviation of the near- and far-end crosstalk voltages (in Fig. 3.7), revealing again
excellent agreement. For the PC simulation, the expansions have been sampled 10000 times. The
computation of the PC coefficients in the entire frequency range required 0.3 s, whereas the sam-
pling for the extraction of the statistical parameters required 0.5 s. The speed-up with respect to
the MC analysis, which took 12 min and 12 s, is thus 915×. Fig. 5.7 displays the PDFs extracted
from the PC expansions, which match very well with those in Fig. 3.5, obtained from the MC
analysis. It is again possible to appreciate the smoother reproduction, made possible by the PC
approach, of distribution functions, which often differ greatly from the distribution of the random
input parameters (see the right panel).

The last example is the simulation of the single line with variations in both the height above
ground and load capacitance. In addition to the random variable parameterizing the height varia-
tion, now denoted with ξ1, we introduce another random variable ξ2, associated to the uncertainty
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Figure 5.4. Comparison between the statistical information obtained by means of PC expan-
sions (denoted with crosses × and asterisks ∗) and MC (solid lines). Black curves: average
response; gray curves: standard deviation.

of the load capacitance. Since the cross-sectional characteristics are not affected by the variations
of the load, i.e. they do not depend on ξ2, we can re-use for the expansions of the p.u.l. parameters
the coefficients computed in the previous example. However, we have to keep in mind that, for
a consistent representation, all the PC expansions must now include the new random variable as
well. For instance, the expansion of the p.u.l. inductance becomes a bivariate series of normalized
Hermite polynomials:

L(ξ) ≈ L0 · 1 + L1 · ξ1 + L2 · ξ2 + L3 ·
1√
2
(ξ21 − 1) + L4 · ξ1ξ2 + L5 ·

1√
2
(ξ22 − 1), (5.46)

where L0 = 1055.4 nH/m, L1 = 41.7 nH/m and L3 = −6.0 nH/m, whilst L2, L4 and L5 are
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Figure 5.5. Comparison between the probability density functions of the magnitude and phase of
V (L), computed at 60 MHz by means of MC simulations and PC.

null because they are related to the load variable ξ2. A similar expression holds for the p.u.l.
capacitance expansion, with C0 = 10.560 pF/m, C1 = −0.426 pF/m and C3 = 0.084 pF/m. As
to the load admittance, the expansion is merely

YL(ξ) = jωCL(ξ) = jωCL(1 + 0.1ξ2). (5.47)

Thence, CL,0 = jω · 5× 10−12 Ω, CL,2 = jω · 0.5× 10−12 Ω, and the remaining terms are null
because related to ξ1, i.e. to the cross-sectional variation. The corresponding augmented matrices
are

L̃ =



1055.4 41.7 0.0 −6.0 0.0 0.0
41.7 1046.9 0.0 59.0 0.0 0.0
0.0 0.0 1055.4 0.0 41.7 0.0
−6.0 59.0 0.0 1038.3 0.0 0.0
0.0 0.0 41.7 0.0 1046.9 0.0
0.0 0.0 0.0 0.0 0.0 1055.4

 nH/m, (5.48)

C̃ =



10.560 −0.426 0.0 0.084 0.0 0.0
−0.426 10.679 0.0 −0.602 0.0 0.0
0.0 0.0 10.560 0.0 −0.426 0.0

0.084 −0.602 0.0 10.798 0.0 0.0
0.0 0.0 −0.426 0.0 10.679 0.0
0.0 0.0 0.0 0.0 0.0 10.560

 pF/m, (5.49)



56 Application of Polynomial Chaos to Transmission-Line Equations

10
6

10
7

10
8

10
9

−80

−60

−40

−20

0
Magnitude of V2(0), dBV

10
6

10
7

10
8

10
9

−80

−60

−40

−20

0

Frequency, Hz

Magnitude of V2(L), dBV

 

 
Avg (MC)
Std (MC)
Avg (PC)
Std (PC)

Figure 5.6. Comparison between the statistical information obtained by means of PC expan-
sions (denoted with crosses × and asterisks ∗) and MC (solid lines). Black curves: average
response; gray curves: standard deviation.

and

ỸL = jω



5.0 0.5 0 0 0
0 5.0 0 0 0.5 0

0.5 0 5.0 0 0
√
2/2

0 0 0 5.0 0 0
0 0.5 0 0 5.0 0

0 0
√
2/2 0 0 5.0

× 10−12 Ω. (5.50)

The above augmented matrices have a sparse structure because their stochastic counterparts only
depend on one of the two random variables. Finally, the augmented impedance matrix for the
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Figure 5.7. Comparison between the probability density functions of the magnitudes of V0(0) and
V2(L) computed at 100 MHz and 60 MHz, respectively, by means of MC simulations and PC.

near-end termination is diagonal due to the absence of variability in the source resistance.
Fig. 5.8 reports the comparison of the statistical information pertinent to the stochastic re-

sponse of this line configuration, computed by means of 10000 MC simulations and the PC ap-
proach. The left panel shows the average (in black) and standard deviation (in gray) of the magni-
tude of the far-end voltage. The solid lines are the result of the MC analysis, while the superposed
markers indicate the same statistical information obtained from the PC expansions. The right panel
compares the PDF computed at 60 MHz instead. The gray bars illustrate the distribution of the
samples of the MC simulation, whereas the solid black line is the probability function extracted
from the magnitude of the PC expansion of the far-end voltage.



58 Application of Polynomial Chaos to Transmission-Line Equations

10
7

10
8

10
9

−60

−50

−40

−30

−20

−10

0

10

Frequency, Hz

Magnitude of far-end voltage V (L), dBV

 

 

Avg (MC)
Std (MC)
Avg (PC)
Std (PC)

8 9 10 11 12
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Magnitude of V (L), dBV

PDF of the magnitude of V (L) at 60 MHz

 

 

Monte Carlo
polynomial chaos

Figure 5.8. Comparison between MC and PC simulations. Top panel: average value (in black) and
standard deviation (in gray) of the magnitude of the far-end voltage computed by means of 10000
MC runs (solid lines) and PC (markers). Bottom panel: probability density function of the far-end
voltage at 60 MHz, computed via MC analysis (gray bars) and PC (black line).



Chapter 6

Applications

For the sake of a better understanding, the application of PC to the stochastic analysis of MTLs
has been introduced by means of basic and tutorial examples. More realistic and meaningful
application examples are provided in this chapter, in which the PC technique is applied to the
analysis of cable bundles and PCB lines. Also, time-domain computations are presented, based on
Fourier analysis. The proposed examples consist of a revised and more comprehensive discussion
of published results.

d

1 2 3 9

h

dc

2rw

Figure 6.1. Cross-section of a commercial flex cable lying above a ground plane.

6.1 Example #1 — Flex Cable

We consider first the stochastic analysis of the commercial 3MTM .050” High Flex Life Cable
(28 AWG stranded), shown in Fig. 6.1 in a standard 9-wire configuration and lying at a height of
h = 8 cm above a perfectly-conducting ground plane. The wire radius is rw = 7.5 mils and the
dielectric coating is made by polyvynil chloride (PVC), with relative permittivity of 3.5. A cable
length of 80 cm is assumed. According to the vendor’s datasheet, the tolerances on the wire-to-
wire distance and dielectric coating diameter result in the above geometric variables to lie in the
ranges d ∈ [48, 50] mils and dc ∈ [32, 38] mils, respectively. Therefore, such parameters are con-
sidered as two independent uniform random variables inside those ranges. For the computation of

59
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the p.u.l. parameters of such an inhomogeneous line, there are no closed-form formulas available.
A numerical routine, based on the application of the method of moments (MoM) to cylindrical
geometries, is then used [54]. As far as the terminal conditions are concerned, conductor #4 is
energized by a 1-V voltage source with a 50 Ω resistance, whilst the other conductors are kept in
a low state by 50 Ω resistors. The far-end terminations are loaded with 10 pF capacitors.
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Figure 6.2. Stochastic simulation of the 9-wire flex cable of Fig. 6.1: magnitude of near-end (top
panel) and far-end (bottom panel) crosstalk voltages. Light gray lines: samples from MC simula-
tion; black and dark gray lines: average response and standard deviation computed by means of
10000 MC simulations. Markers (crosses × and asterisks ∗) denote the same statistical information
obtained from third-order PC expansions.

Fig. 6.2 shows the stochastic simulation of the near-end (left panel) and far-end (right panel)
crosstalk voltages on conductor #3, namely V3(0) and V3(L), respectively, from 1 MHz to 1 GHz.
The light gray lines are a subset of samples from the MC simulation, whereas the black and dark
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gray lines are the average responses and the standard deviations, obtained after 10000 MC runs.
Furthermore, the markers (asterisks) indicate the same quantities estimated from a third-order PC
simulation and are in very good agreement. Fig. 6.3 displays the PDFs computed at three different
frequencies, indicated by the dashed vertical lines in Fig. 6.2, with both the PC and MC methods.
In this case, in order to better compare the two approaches, an equal number of 10000 random
values is used to sample the PC expansions, and the results are collected into the same bins.
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Figure 6.3. Probability density functions of the magnitudes of the near- and far-end crosstalk
voltages, computed at three different frequencies by means of both MC simulations (gray bars)
and PC expansions (dotted black lines).

As far as the simulation times are concerned, the MC analysis required 27 min 57 s, while
the PC solution of the augmented transmission-line equations took 9.6 s. The computation of the
PC expansions of the p.u.l. parameters and the creation of the corresponding augmented matrices
took only 0.9 s. Finally, the evaluation of the statistical information required 1.7 s. The achieved
speed-up is thence about 130×. This application example confirms the strength, efficiency and
accuracy of the proposed technique.

100µm 35µm80µm100µm

εr = 3.7 60µm

Figure 6.4. Cross-section of the coupled microstrip line.

6.2 Example #2 — Microstrip Line with Temperature Variations

Fig. 6.4 shows the cross-section of a microstrip line with two coupled traces. This is a common
configuration for on-board lines. We consider a source resistance of 25 Ω, a load capacitance
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of 10 pF, and a line length of 5 cm. In this case, such values are referred to a temperature of
Tref = 25 oC. In order to analyze the effects of possible fluctuations in the operating temperature,
we consider a uniform temperature variation in the range [0, 125] oC. A temperature coefficient
of αR = αC = 200 ppm/oC is considered for the source resistors and load capacitors, whereas
a coefficient of αϵ = 500 ppm/oC is considered for the substrate permittivity. Hence, the above
parameters can be expressed in terms of a normalized uniform random variable ξ1, which param-
eterizes temperature variations, as follows

RS = RS |Tref [1 + αR(T̄ +∆Tξ1 − Tref)],
CL = CL|Tref [1 + αC(T̄ +∆Tξ1 − Tref)],
εr = εr|Tref [1 + αϵ(T̄ +∆Tξ1 − Tref)],

(6.1)

where T̄ = ∆T = 62.5 oC are the average temperature and its semi-interval of variation. More-
over, an additional, statistically independent uncertainty, due to the manufacturing process, is
ascribed to the nominal permittivity at the reference temperature, which is then supposed to lie in
the range [3.5, 4]. The complete parametrization of the relative permittivity is thence

εr = (ε̄r +∆εrξ2)[1 + αϵ(T̄ +∆Tξ1 − Tref)], (6.2)

with ε̄r = 3.75, ∆εr = 0.25, and where ξ2 parameterizes the process variations.
Fig. 6.5 collects the results of a stochastic simulation of this structure, in which one conductor

is excited by 1-V source whilst the adjacent conductor is kept quiet. The left panel shows the volt-
age transmitted to the far-end side of the active conductor, V1(L), whereas the right panel shows
the far-end crosstalk on the neighboring line, V2(L). Again, the statistical information obtained
via MC simulations (solid black and dark gray lines) is compared with the approximations given
by the PC expansions of the terminal voltages (markers). PC expansions of order four are used
in this case. Like in the previous example, the PDFs at different frequencies are computed both
with MC and PC and are shown in Fig. 6.6, again revealing excellent agreement. The computa-
tional time is here 11 min 34 s for the MC analysis and 5.3 s for the PC simulation, including the
time required for the expansion (0.2 s) and augmentation (1.9 s) of the p.u.l. parameters, as well
as the post-processing evaluation (0.2 s) of the expansions. The p.u.l. parameters of the coupled
microstrip line are computed by means of empirical formulas available in [83]–[85]. The speed-up
for this example is thence 130×.

6.3 Example #3 — Transient Analysis of a Microstrip Line

We next consider a time-domain, transient analysis of the coupled microstrip line of Fig. 6.4,
where now the loads are deterministic and equal to 50 Ω (near end) and 10 pF (far end). The
voltage generator has a Gaussian waveform with a peak amplitude of 1 V and a width of about
0.35 ns at half amplitude. The variability is here provided by the trace separation and the substrate
permittivity, assumed as two independent Gaussian random variables with a 10% relative standard
deviation. As anticipated in Chapter 2, it is possible to compute time-domain results via Fourier
analysis. The procedure amounts to the following steps:

1. Compute the frequency components of the time-domain waveform via Fourier transform.
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Figure 6.5. Stochastic simulation of the coupled microstrip line of Fig. 6.4 in presence of
temperature and process variations: magnitude of transmitted voltage (top panel) and of the
crosstalk voltage (bottom panel). Light gray lines: samples from MC simulation; black and
dark gray lines: average response and standard deviation computed via 10000 MC simulations.
For comparison, the markers (crosses × and asterisks ∗) denote the same statistical information
obtained from fourth-order PC expansions.

2. Use such components as phasor values of the voltage source for a frequency-domain analy-
sis, thus obtaining the frequency components of the output waveform.

3. Retrieve the output time-domain waveform through inverse Fourier transform.

We recall here that the Fourier transform of a waveform x(t) is defined as

X(ω) = F{x(t)} =

∫ +∞

−∞
x(t)e−jωtdt, (6.3)
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Figure 6.6. Probability density functions of the magnitudes of far-end voltages, com-
puted at three different frequencies by means of both MC simulations (gray bars) and PC
expansions (dotted black lines).

whereas the inverse Fourier transform is simply

x(t) = F−1{X(ω)} =
1

2π

∫ +∞

−∞
X(ω)ejωtdω. (6.4)

The quantity X(ω) is referred to as the spectrum of the signal x(t).
The aforementioned Gaussian voltage waveform can be analytically expressed as

x(t) = e
− (t−t0)

2

2ζ2 , (6.5)

where ζ = 0.15 ns plays the role of “standard deviation” and parameterizes the pulse width,
whilst t0 is a delay factor indicating the time at which the pulse reaches its maximum. A delay of
t0 = 1 ns is assumed here. The Fourier transform of a Gaussian function is analytically available,
and is a Gaussian itself with inverse “variance” 1/ζ2, while the delay factor merely corresponds
to a phase shift. More precisely, the spectrum of the voltage source is

X(ω) = ζ
√
2πe−

ω2ζ2

2 e−jωt0 . (6.6)

For the practical simulation, waveforms need to be discretized into a finite number of time and
frequency points. Suppose we want to observe the line response up to Tmax = 10 ns, evaluated at
Nt+1 = 1001 time points. The Fourier transform then becomes a discrete Fourier transform, and
this also implies that the waveform is treated as periodic with period equal to Tmax. Therefore, in
order to avoid aliasing in the Fourier analysis, the observation time Tmax must be large enough to
allow all the responses to decay to zero. The number of frequency points to simulate is equal to the
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Figure 6.7. Gaussian voltage pulse: Time-domain waveform (left panel) and magnitude
of its spectrum (right-panel).

number of time points, i.e.Nt+1. According to the reverse interpretation of the Nyquist-Shannon
theorem, the maximum frequency to be considered is

fmax =
Nt

2Tmax
=

1

2∆t
(6.7)

and is thence 50 GHz, whereas the spacing between the points is

∆f =
1

Tmax
. (6.8)

Fig. 6.7 displays both x(t) (left panel) and the magnitude of its spectrum X(ω) (right panel). It
should be noted that also negative frequencies must be considered in the analysis.

It is now possible to perform a transient simulation of the near- and far-end crosstalk voltages.
We need to evaluate the frequency-domain solution at a total of Nt + 1 frequency points: Nt

negative frequencies down to −fmax, Nt positive frequencies up to fmax, plus the DC solution for
f = 0. Expression (6.6) provides the values of the phasor voltage source at a given frequency, and
the spectra of the crosstalk voltages is given by the corresponding frequency-domain solutions.
Alternatively, thanks to the properties of linear time-invariant systems, the spectrum of an output
waveform is obtainable as

Xout(ω) = H(ω) ·X(ω), (6.9)

where H(ω) is the frequency-domain response computed by considering a constant 1-V source.
This property is useful when different excitation signals are considered. Also, an actual computa-
tion of the response for negative frequencies is not needed, thanks to the property

H(−ω) = H∗(ω), (6.10)
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where operator ∗ denotes the complex conjugate. Finally, the DC solution for f = 0 is not
obtainable from the classical solution of the telegrapher’s equations. Nonetheless, it is easy to
show with an analysis of the DC circuit, where the line conductors are replaced by short circuits
and the load capacitors are open circuits, that the DC components of crosstalk voltages are null.
Once the spectra of the output crosstalk voltages are known, the time-domain waveforms are
calculated with the IFFT function, available in MATLAB for the calculation of the inverse Fourier
transform.
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Figure 6.8. Stochastic simulation of the transient near-end (top panel) and far-end (bottom panel)
crosstalk voltages on the coupled microstrip line of Fig. 6.4. Light gray lines: spread in the response
due to process variability; black and dark gray lines: average responses and standard deviations
computed via MC simulations. The markers (crosses × and asterisks ∗) display the same information
obtained via second-order PC expansions.

As to the PC simulation, a single frequency-domain solution of the corresponding augmented
line allows to obtain the spectra of the PC-expansion coefficients [86]. The time-domain coeffi-
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cients are then computed again via inverse Fourier transform. It is relevant to point out that, thanks
to the linearity of the Fourier transform, the structure of the PC expansions is preserved also in
time domain:

v(t, ξ) =
1

2π

∫ ∞

−∞
V (ω, ξ)ejωtdω ≈ 1

2π

∫ ∞

−∞

P∑
k=0

Vk(ω)ϕk(ξ)e
jωtdω =

P∑
k=0

(
1

2π

∫ ∞

−∞
Vk(ω)e

jωtdω

)
ϕk(ξ) =

P∑
k=0

vk(t)ϕk(ξ).

(6.11)

Fig. 6.8 shows the near- and far-end time-domain crosstalk voltages. The light gray lines are
once again a subset of samples from the MC simulation. The solid black and dark gray lines are the
average response and the standard deviation estimated from 10000 MC runs. For comparison, the
asterisks indicate the same quantities provided by the PC simulation. In this case, relations (4.10)
and (4.11) can be used to readily obtain this statistical information. The above comparison demon-
strates how the accuracy of PC is preserved when considering transient analyses as well. Finally,
Fig. 6.9 shows the PDFs computed at different time points with both MC and PC, showing excel-
lent agreement as well. The simulation times are 14 min and 3.3 s for the MC and PC analyses,
respectively, thus yielding a speed-up of 250×.
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Figure 6.9. Probability density functions of the near-end (left panel) and far-end (right
panel) transient crosstalk voltages, computed at three different time points. Gray bars indi-
cate the distribution of the MC samples, whereas the dotted black lines are the distribution
obtained from the PC expansions.

6.4 Example #4 — Time-Domain Simulation of a Cascaded Struc-
ture

For the sake of implementational simplicity into a MATLAB environment, so far we limited our-
selves to consider only basic source-line-load circuits. In this section, we extend the formulation
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Figure 6.10. Illustration of a cascade connection of stochastic blocks.

to the analysis of a more general situation, in which there is a certain number K of stochastic
blocks in a cascade connection, as shown in Fig. 6.10. If each block is described by its own CPM
Tk, k = 1, . . . ,K, the total CPM relating voltages and currents at the two external terminations
is readily given by the product of the single CPMs:[

VK

IK

]
=

[
TK,11 TK,12

TK,21 TK,22

] [
VK−1

IK−1

]
= TKTK−1 · · ·T1

[
V0

I0

]
. (6.12)

For transmission-line sections, the CPM is readily given by (2.16), whereas for blocks composed
by lumped elements, it can be derived in accordance to its definition and by means of classical
circuit laws. The complete solution can be obtained by combining the overall CPM with the
terminal constraints defining the source and load configurations, exactly as shown in Section 2.2.3.
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Figure 6.11. Cascaded interconnect structure.

When the blocks are stochastic, the application of the PC approach allows to derive an aug-
mented deterministic counterpart for the CPM of each block [87]. The simulation is then carried
out as in the case of single MTLs, i.e. by considering the overall augmented CPM, resulting from
the product of the augmented matrices of each block, and combining it with the augmeted terminal
conditions. For stochastic MTLs, the augmented CPM is readily given by (5.35). For blocks with
random lumped elements instead, it is possible to expand the CPM matrix entries as follows

Tmn(ξ) ≈
P∑
k=0

Tmn,kϕk(ξ), (6.13)

with m,n = 1, 2. The augmented CPM is then

T̃ =

[
T̃11 T̃12

T̃21 T̃22

]
, (6.14)
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with

T̃mn,ij =
P∑
k=0

Tmn,k⟨ϕkϕj , ϕi⟩. (6.15)

As an illustrative example, we consider the structure of Fig. 6.11, consisting of two coupled
microstrip lines, having the same cross-section displayed in Fig. 6.4, connected by means of a
simple LC circuit, which represents a short connector. The source resistances are RS = 25 Ω and
the load capacitors are CL = 10 pF. The connector parameters are L = 3 nH and C = 0.4 pF
instead. The variability is provided by the substrate parameters h and εr, which are shared by
both the transmission-line segments, and by the connector parameters L and C. Every parameter
is considered as an independent Gaussian random variable with 10% relative standard deviation
from its nominal value. It is easily shown that the CPM of the intermediate, lumped section is

TC =


1 0 −jωL 0
0 1 0 −jωL

−jωC 0 1− ω2LC 0
0 −jωC 0 1− ω2LC

 . (6.16)

Finally, the voltage source is a digital signal: a periodic, trapezoidal wave with peak amplitude of
1 V, rise and fall times of 100 ps, total period of T = 5 ns and duty cycle of 50%. The signal being
periodic, its spectrum consists of discrete components hn (harmonics) appearing at frequencies
fn = nf0 = n/T . Therefore, the time-domain waveform can be expressed in terms of a Fourier
series, i.e.

x(t) =
∞∑

n=−∞
hne

jnt = h0+
∞∑
n=1

(
hne

jnt + h∗ne
−jnt) = h0+

∞∑
n=1

2|hn| cos(ωnt+∠hn), (6.17)

where property h−n = h∗n has been used. The output waveforms can be expressed in a similar
fashion, where the corresponding harmonics are obtained from the frequency-domain solution.

For the analysis, a finite number of 100 harmonics, computed via the FFT MATLAB routine,
is considered. For the PC-based simulation, the augmented CPM of the line sections is computed
according to (5.35), after the usual augmentation of the p.u.l. parameters. As to the lumped section
instead, the PC expansion is readily obtained by replacing L and C in (6.16) with L + σLξ3 and
C+σCξ4, respectively, where σL = 0.1·L and σC = 0.1·C are the standard deviations of the con-
nector parameters, whilst ξ3 and ξ4 are the two standard normal random variables parameterizing
their variations.

Fig. 6.12 shows the result of the stochastic simulation of the time-domain crosstalk at the right-
end termination, indicated with vL2(t). The left panel shows the spread in the response due to the
variability in the circuit parameters (light gray lines) and the resulting average response (black
line) and standard deviation (dark gray line). The superposed markers denote the same statistical
information obtained from a second-order PC expansion. It is worth mentioning that this time-
domain simulation, carried out via frequency-domain analysis by considering a periodic source,
provides the steady-state solution, as if the digital wave has been applied for a time long enough
for the transients having decayed to zero. Because of this, the response appears not be causal, i.e.
non-zero for time t = 0. Finally, the right panel compares the PDFs computed at three different



70 Applications

0 1 2 3 4 5 6 7 8 9 10
−0.2

−0.1

0

0.1

0.2

Time, ns

Far-end crosstalk, V

 

 

Rnd (MC)

Avg (MC)

Std (MC)

Avg (PC)

Std (PC)

0 0.05 0.1 0.15 0.2 0.25
0

10
PDF @ 3.2 ns

 

 

−0.02 −0.01 0 0.01 0.02 0.03 0.04 0.05 0.06
0

20

40
PDF @ 3.9 ns

−0.25 −0.2 −0.15 −0.1 −0.05 0
0

10

20

PDF @ 5.7 ns

Far-end crosstalk, V

MC
PC

Figure 6.12. Stochastic simulation of the time-domain crosstalk at the far-end termination of the
cascaded structure of Fig. 6.11. In the top panel, light gray lines: subset of MC samples showing
the fluctuation of the response; solid black and dark gray lines: average response and its standard
deviation obtain after running 10000 MC simulations. The crosses (×) and asterisks (∗) denote
the average and standard deviation given by third-order PC expansions. In the bottom panel, three
probability density functions, computed at different time points from both MC simulations (gray
bars) and PC expansions (dotted black lines).

time points. As far as the computational times are concerned, the MC analysis took 6 min 23 s,
whereas the PC simulation required 3.3 s, thus leading to a 110× speed-up. This example once
again shows the strength of the proposed technique both in terms of accuracy and efficiency gain.



Chapter 7

SPICE Implementation

The previous chapter showed how the proposed technique is general and can be applied to arbitrary
transmission-line geometries. Moreover, the methodology confirmed to be very efficient in terms
of both accuracy and computational time with respect to the standard MC method. However, there
are two considerable limitations in the present formulation:

1. The approach is in essence a frequency-domain method. Although time-domain result can
be obtained via Fourier analysis, the correct choice of the frequency points may be critical.
Moreover, this precludes any possibility of including non-linear circuit elements.

2. Only source-line-load configurations, or slightly more general cascaded structures, can be
easily analyzed. The simulation of more complex interconnect topologies (e.g., interconnect
trees) requires cumbersome and ad hoc implementations.

In this context, we identify as a “complex topology” a circuit which contains many nodes and
a combination of several distributed and lumped elements. A clear example is the transmission-
line network illustrated in Fig. 1.1. When at least one of the network elements is stochastic, the
voltage and current waveforms in the circuit become random variables and require a statistical
description. Therefore, the methodology would benefit of the integration into standard and well-
consolidated circuit analysis tools, such as SPICE. To this end, a SPICE-compatible formulation
and implementation is presented in this chapter.

7.1 A Topological Rule for the Integration of Transmission Lines

The engine of SPICE-type tools for circuit analysis is based on the solution of the corresponding
MNA equations, where the unknowns are the node voltages (defined with respect to a reference
node) and the branch currents of voltage-defined components [88]. The MNA equations are cre-
ated by considering the specific branch constitutive equations of each element in the network. As
described in Chapter 4, the application of PC and SGM to the governing equations of MTLs leads
to an augmented set of equations, which relate the voltage and current PC coefficients and can
be interpreted as the constitutive equations pertaining to a MTL of larger dimension. Upon this
interpretation, it is reasonable to associate a node to each additional terminal of this augmented
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MTL. The corresponding node voltages are then the expansion coefficients of the stochastic ter-
minal voltages of the original line. This procedure, already illustrated in Fig. 5.1, is repeated in
Fig. 7.1 with emphasis on the modification of the circuit nodes. One the left is a stochastic line
with two signal conductors (N = 2), described by random p.u.l. parameters R, L, G, C, and
connecting four nodes denoted with letters A, B, C, D. After application of the SGM with P = 2
terms, the original line is expanded into a line with six conductors, which is described by deter-
ministic p.u.l. parameters R̃, L̃, G̃, C̃, and connecting twelve nodes. These new nodes are denoted
using the previous letters, and numbers indicating the expansion coefficient. In fact, each of the
four original node voltages is now associated to three nodes, whose voltages are the corresponding
PC-expansion coefficients.

A

B

C

D

R(ω, ξ) , L(ω, ξ)

G(ω, ξ) , C(ω, ξ)

A0

B0

A1

B1

A2

B2

C0

D0

C1

D1

C2

D2

R̃(ω) , L̃(ω)

G̃(ω) , C̃(ω)

Figure 7.1. Illustration of the conversion of stochastic transmission lines into the
augmented circuit instance.

The above illustration suggests a topological rule for the creation of a deterministic, augmented
instance of a circuit containing several stochastic MTLs:

1. Expand the stochastic node voltages and currents in the original circuit into PC series.1

2. Associate each voltage coefficient to a node of the augmented circuit instance.

3. Connect the resulting nodes by means of augmented MTLs, whose pertinent p.u.l. parame-
ters are obtained via the application of the SGM as described in Chapter 4.

More practical details about the inclusion of the augmented line models into standard SPICE-type
circuit solvers are given in Section 7.3. For the determination of the PC coefficients of the un-
known, stochastic waveforms, the problem then amounts to performing a single circuit simulation
of this deterministic, augmented circuit network, rather than running a large number of MC sim-
ulations of the original, stochastic network. However, a realistic network, like the one in Fig. 1.1,
unavoidably includes also non-distributed components. The information about how to treat these
lumped elements is still missing and is given in the next section.

1It is important to remark that all the expansions must consider every random variable in the circuit, as in principle
every node voltage and branch current may be affected by it.
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7.2 Inclusion of Linear Lumped Elements

Concerning the inclusion in the simulation procedure of lumped circuit components, in this thesis
we limit ourselves to consider deterministic linear elements. This means that the variability in
the network is exclusively provided by the distributed parts, as this is the main topic of the work.
A preliminary assessment for the inclusion of stochastic linear lumped elements in SPICE-type
PC-based simulations is provided in [89]. Yet, a more general simulation framework, with the
additional inclusion of nonlinear circuit elements, is still under development at the time this text
is being written.

A(ω)

Y (ω)

C D

A(ω)

Y (ω)

Y (ω)

Y (ω)

C0

C1

C2

D0

D1

D2

Figure 7.2. Illustration of the conversion of deterministic lumped elements into the
augmented circuit instance.

For the discussion, we consider a linear lumped element connecting two nodes indicated as
C and D (see Fig. 7.2, left side), and whose constitutive equation is expressed in the frequency
domain in the form of a Norton equivalent:

I(ω, ξ) = Y (ω)[VC(ω, ξ)− VD(ω, ξ)]−A(ω). (7.1)

The above definition equivalently applies for any of the classical linear lumped circuit elements,
i.e. resistors (with Y (ω) = 1/R), capacitors (Y (ω) = jωC), and inductors (Y (ω) = 1/jωL).
Moreover, it can be readily converted to time domain by replacing the admittance Y with the
corresponding time-domain operator, obtained via inverse Fourier transform. It should be noted
that the element characteristics, defined by the equivalent admittance Y and the equivalent current
source A, are deterministic and therefore do not depend on the usual random vector ξ. Neverthe-
less, the node voltages and the branch current are still to be regarded as stochastic, because of the
presence in the network of other random circuit components.

Substitution of PC expansions for the voltage and current variables in (7.1), yields

P∑
k=0

Ik(ω)ϕk(ξ) = Y (ω)
P∑
k=0

VC,k(ω)ϕk(ξ)− Y (ω)
P∑
k=0

VD,k(ω)ϕk(ξ)−A(ω). (7.2)
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Once again, the application of the SGM, i.e.

P∑
k=0

Ik(ω) ⟨ϕk, ϕi⟩︸ ︷︷ ︸
=0 ∀k ̸=i

= Y (ω)

P∑
k=0

VC,k(ω) ⟨ϕk, ϕi⟩︸ ︷︷ ︸
=0 ∀k ̸=i

−Y (ω)

P∑
k=0

VD,k(ω) ⟨ϕk, ϕi⟩︸ ︷︷ ︸
=0 ∀k ̸=i

−⟨A(ω), ϕi⟩︸ ︷︷ ︸
=0 ∀k ̸=0

(7.3)
∀i = 0, . . . , P allows to derive the following deterministic equations relating the PC coefficients:

I0(ω) = Y (ω) [VC,0(ω)− VD,0(ω)]−A(ω),

I1(ω) = Y (ω) [VC,1(ω)− VD,1(ω)],
...

IP (ω) = Y (ω) [VC,P (ω)− VD,P (ω)].

(7.4)

The above equations are decoupled and define the behavior of the elements connecting the 2(P+1)
nodes associated to the expansion coefficients of node voltages VC and VD, as illustrated in the
right side of Fig. 7.2 for the case P = 2. The circuit interpretation simply implies the replication
of the deterministic elements on the additional branches. On the other hand, no replication is
required for the source. For elements shunted to ground, only one node voltage appears in (7.1).
The corresponding replicas are therefore all shunted to ground as well.

The overall augmented circuit is then obtained by direct construction and connection of the
new elements consistently with the original circuit topology. Stochastic lines are replaced by
their augmented counterparts, whereas deterministic lumped elements are replicated, as shown in
Figs. 7.1 and 7.2, respectively. For the PC simulation, a single solution of the resulting network
provides the PC coefficients for the stochastic circuit variables.

7.3 Description of the Augmented Transmission Lines

As far as the practical implementation is concerned, advanced SPICE-type circuit analysis tools,
such as HSPICE or Agilent’s ADS, include the “W-element” for the modeling of lossy and dis-
persive MTLs [90]. The W-element is a circuit component which provides a numerical solution
of the telegrapher’s equations. It generally accepts as inputs static p.u.l. parameter matrices or,
for dispersive lines, tabulated frequency data. This, in principle, allows to readily specify the aug-
mented line parameters as pertaining to a transmission line of larger dimension. However, due to
the symmetry of the p.u.l. parameters of physical (reciprocal) lines, only the lower triangular part
of the matrices is usually specified. This inherently implies that the augmented line is realizable
with a W-element only when orthonormal basis functions are used, as this guarantees the symme-
try of the augmented p.u.l. matrices. This is a crucial step for the SPICE-type implementation of
the PC-SGM methodology, since classical applications (see, e.g., [51], [52]) typically use standard
polynomials, which are only orthogonal.

In addition, HSPICE provides an internal field solver, which is capable of computing lossy and
dispersive p.u.l. parameters and simulating a transmission line upon the description of its cross-
section. The field solver can be combined with the available feature for MC simulations, thus
allowing to perform a statistical analysis of circuits containing transmission lines with stochas-
tic cross-sectional parameters entirely in the HSPICE environment. The field solver basically
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computes six frequency independent p.u.l. matrices: the DC inductance L0 [H/m], capacitance
C0 [F/m], resistance R0 [Ω/m], and conductance G0 [S/m] matrices, as well as the skin effect
resistance matrix Rs [Ω/(m

√
Hz)] and the dielectric loss conductance matrix Gd [S/(m ·Hz)].

These six matrices are combined in a frequency-dependent way to obtain the dispersive behavior.
Also, they are obtainable as an output or supplied as an input to a W-element (the “RLGC model”).
For the specification of the augmented transmission-line models, it is alternatively possible to sup-
ply the augmented counterpart of this RLGC model, defined by augmented matrices L̃0, C̃0, R̃0,
G̃0, R̃s and G̃d. These are obtainable according to the usual augmentation procedure (5.13).
Furthermore, a PC-based model which is consistent with the HSPICE field solver, and therefore
with the built-in MC analysis, can be created by projecting the RLGC-model matrices outputed by
parametric calls to the field solver.

7.4 Application Examples

In this section, the outlined SPICE-compatible PC formulation is implemented into HSPICE for
the statistical analysis of transmission-line networks. The results of the PC-based simulations are
compared with those from MC analyses, which are carried out by means of the available feature
in HSPICE. However, before continuing, a tutorial example of a HSPICE netlist for the PC-based
simulation of a simpler circuit is given.

7.4.1 Example of HSPICE Netlist for the Polynomial Chaos-Based Simulation

We consider the source-line-load configuration of Fig. 2.4. We denote the node of the voltage
generator as A, the near-end line terminations as nodes M and N, whilst the far-end terminations
as nodes P and Q. Of course, the reference node 0 corresponds to the ground plane. Therefore, the
HSPICE netlist for the circuit becomes:

Vsource A 0 E
Rsource1 A M RS
Rsource2 N 0 RS
Wtl M N 0 P Q 0 RLGCMODEL=two_wires N=2 l=80cm
Cload1 P 0 CL
Cload2 Q 0 CL

.MODEL two_wires W MODELTYPE=RLGC, N=2
+ Lo =
+ L11
+ L21 L22
+ Co =
+ C11
+ C21 C22

For this lossless line, only the DC p.u.l. inductance matrices need to supplied. The augmented
p.u.l. inductance and capacitance matrices, for a PC-based simulation in presence of variations in
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the height above ground and wire-to-wire distance, are given in (5.33) and (5.34), respectively.
With the rules outlined above, the HSPICE netlist for the corresponding deterministic simulation
is readily given:

Vsource A0 0 E

Rsource1_0 A0 M0 RS
Rsource1_1 M1 0 RS
Rsource1_2 M2 0 RS
Rsource1_3 M3 0 RS
Rsource1_4 M4 0 RS
Rsource1_5 M5 0 RS

Rsource2_0 N0 0 RS
Rsource2_1 N1 0 RS
Rsource2_2 N2 0 RS
Rsource2_3 N3 0 RS
Rsource2_4 N4 0 RS
Rsource2_5 N5 0 RS

Waugm_tl M0 N0 M1 N1 M2 N2 M3 N3 M4 N4 M5 N5 0
+ P0 Q0 P1 Q1 P2 Q2 P3 Q3 P4 Q4 P5 Q5 0
+ RLGCMODEL=augmented_line N=12 l=80cm

Cload1_0 P0 0 CL
Cload1_1 P1 0 CL
Cload1_2 P2 0 CL
Cload1_3 P3 0 CL
Cload1_4 P4 0 CL
Cload1_5 P5 0 CL

Cload2_0 Q0 0 CL
Cload2_1 Q1 0 CL
Cload2_2 Q2 0 CL
Cload2_3 Q3 0 CL
Cload2_4 Q4 0 CL
Cload2_5 Q5 0 CL

.MODEL augmented_line W MODELTYPE=RLGC, N=12
+ Lo =
+ Ltilde00
+ Ltilde10 Ltilde11
+ Ltilde20 Ltilde21 Ltilde22
...
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+ Co =
+ Ctilde00
+ Ctilde10 Ctilde11
+ Ctilde20 Ctilde21 Ctilde22
...

It is worth noting that nodes M1...M5 are shunted to ground, because no replication of the voltage
source is required.

7.4.2 Transmission-Line Network with Single Microstrip Lines

The first example deals with the interconnect network illustrated in Fig. 1.1. In this case, the
voltage source is a 1-V pulse with rise/fall times of 200 ps and width of 2.6 ns. The lines have
a microstrip cross-section (cfr. Fig. 6.4) with copper traces (conductivity of 58 MS/m), having
a thickness of 20 µm and a width of 150 µm. The board substrate has a thickness of 100 µm,
permittivity of 4.1 and loss tangent of 0.02. These substrate parameters, which are shared by all
the lines, assume independent random Gaussian variations of 10%. The HSPICE field solver is
used for the characterization of the transmission-line segments, which are then implemented as
W-elements characterized by the description of their cross-section.
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Figure 7.3. Stochastic transient analysis of the voltage vout(t). Ligh gray lines: samples of the
random response; black and dark gray lines: average response and standard deviation obtained via
1000 MC simulations; markers: average response (crosses ×) and standard deviation (asterisks ∗)
obtained from the PC expansions.

A MC simulation with 1000 samples is run using the available HSPICE feature. The plot
in Fig. 7.3 shows the stochastic transient response (ligh gray lines) of the voltage transmitted to
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the far-end side of the network, indicated as vout(t) in Fig. 1.1, together with its average (black
line) and standard deviation (dark gray line). These statistical parameters are also obtained from a
second-order PC-based simulation (cfr. the markers), which reveals perfect agreement. The circuit
simulation of the augmented network required 7.5 s instead, whereas the MC simulation took
38 min 25 s. For this first example, the speed-up in circuit simulation is then 310×, even though a
very small number of samples is considered for the MC analysis. For the PC simulation, a RLGC
model, described by augmented matrices L̃0, C̃0, R̃0, R̃s, G̃0 and G̃d, is computed. This step
took 22.2 s. It is relevant to remark that the created model can be stored and re-used for other
circuit simulations involving the same stochastic line structure. Hence, the time required by its
computation is not considered for the speed-up.
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Figure 7.4. Probability distribution of vout(t), computed at t = 2.9 ns from the MC samples (bars)
and PC expansions (solid black line). Dashed gray line: corresponding Gaussian distribution.

As we already know, despite the normal distribution of the random input parameters, the dis-
tribution of the response is in general not Gaussian, and therefore average value and standard
deviation are not sufficient for a complete statistical characterization. For instance, Fig. 7.4 dis-
plays the PDF at t = 2.9 ns, computed from the MC samples (bars) and from the PC expansion
(solid black line). For comparison, the dashed gray line is the Gaussian distribution corresponding
to the estimated mean value and standard deviation.

7.4.3 Transmission-Line Network with Coupled Microstrip Lines

We now consider the transmission-line network displayed in Fig. 7.5. The coupled lines again
have a microstrip cross-section, with random geometrical parameters. The copper trace width,
trace-to-trace separation, trace thickness, and substrate thickness have 10% independent relative
standard deviations with respected to the nominal values indicated in the figure. Furthermore, the
substrate has a permittivity of 3.7 and a loss tangent of 0.02. The voltage source is a Gaussian
pulse of peak amplitude of 1 V and a width of about 0.177 ns at half amplitude.

Fig. 7.6 shows the results obtained with the HSPICE MC analysis (1000 samples) of the far-
end crosstalk voltage vFX(t), which required 14 min 15 s. The comparison with a PC simulation,
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Figure 7.5. Transmission-line network with coupled microstrip traces and correspond-
ing line cross-section.
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Figure 7.6. Stochastic transient analysis of the far-end crosstalk voltage vFX(t). Curves
identification as in the inset of Fig. 7.3.

taking 14.2 s and based on a second-order augmented RLGC model, confirms the accuracy of the
proposed technique and shows a 60× speed-up. The generation of the augmented model required
55 s. Finally, Fig. 7.7 displays the PDF for the crosstalk peak, occurring at t = 0.9 ns. Again, it is
possible to appreciate the better reproduction of the distribution provided by the PC result.
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Figure 7.7. Probability distribution of the maximum crosstalk at t = 0.9 ns, computed from the
MC samples (bars) and PC expansions (solid black line).

This chapter concludes the illustration of the proposed framework for the stochastic circuit
simulation of high-speed interconnects. The strength and accuracy of the proposed PC technique
is preserved for SPICE-based simulations, whereas the efficiency turns out to be even better, with
speed-ups of about two orders of magnitude even when considering a smaller number of MC sam-
ples. It is relevant to point out that this time-domain analysis, achieved via the transient simulation
of an augmented circuit instance, raises the critical question as to whether the passivity of the
circuit is preserved [91]. This issue has been addressed in [92], leading to the conclusion that
the passivity depends on the accuracy of the PC expansions of the p.u.l. parameters and that, for
practical applications, the answer is always positive. The next chapter concludes this thesis with
the illustration of a further application of PC in the transmission-line analysis: the assessment of
the effects of a random electromagnetic wave incidence. This means that the response variabil-
ity is not due to variations in the transmission-line properties or terminations, but to an external
stochastic field.



Chapter 8

Random Field Incidence

Another relevant and possible source of variability is the incidence on a transmission line of ran-
dom electromagnetic fields [93]. A typical example of a random field is a plane wave with arbitrary
parameters like amplitude, polarization or direction of incidence. This kind of study is of great
importance, for instance in the modeling of the fields coupling to transmission lines inside rever-
beration chambers [94], [95]. In [50], closed-form probabilistic models for the random plane-wave
field coupling to a single transmission line were developed. However, these simplified results are
still based on low-frequency approximations and pre-defined structures, in this case a single loss-
less wire above a perfect ground. Moreover, only certain kinds of random field parameters can be
accounted for, and the generalization of the approach is highly non-trivial. The work in [96] ex-
tends the results to high frequencies, but retains all the other limitations. A more general approach
to tackle this issue can be again formulated based on the PC theory.

8.1 Transmission-Line Equations for Incident Field Excitation

In presence of an impinging electromagnetic field, equivalent source terms add to the telegrapher’s
equations (2.14) [54]:

d

dz
V(z, ω) = −Z(ω)I(z, ω) +VF (ω, z), (8.1a)

d

dz
I(z, ω) = −Y(ω)V(z, ω) + IF (ω, z). (8.1b)

The distributed source terms VF and IF can be conveniently expressed as functions of the sole
incident electric field:

VF (ω, z) =


...

− ∂

∂z

∫
Ci
E⃗t(ω) · d⃗l + Ez,i(ω, z)− Ez,0(ω, z)

...

 , (8.2a)
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IF,i(ω, z) = −Y(ω)


...∫

Ci
E⃗t(ω) · d⃗l

...

 , (8.2b)

where
∫
Ci E⃗t · d⃗l is the line integral of the transverse electric field on the circuit between conductor

i and the reference, whereas Ez,i is the longitudinal field parallel to the ith conductor. From now
on and for notational convenience, we neglect the dependence on the angular frequency ω.

8.1.1 Solution of the Forced Transmission-Line Equations

The general solution of (8.1) is[
V(z = L)
I(z = L)

]
=

[
Φ11(L) Φ12(L)
Φ21(L) Φ22(L)

] [
V(z = 0)
I(z = 0)

]
+

[
VFT (z = L)
IFT (z = L)

]
, (8.3)

where forcing terms VFT and IFT appear, with respect to (2.17), because of the field excitation.
These are convolutions between the source terms and the CPM:

VFT (L) =
∫ L

0
[Φ11(L − τ)VF (τ) +Φ12(L − τ)IF (τ)] dτ, (8.4a)

IFT (L) =
∫ L

0
[Φ21(L − τ)VF (τ) +Φ22(L − τ)IF (τ)] dτ. (8.4b)

The new general solution can still be combined with terminal relations defining the source and
load configurations. We limit ourselves to mention the case in which both the source and load
constraints are expressed as Thévenin equivalents. The currents at the line extremities are obtain-
able as

I(z = 0) = [Φ12 − Φ11ZS − ZLΦ22 + ZLΦ21ZS ]
−1 [VL+

−(Φ11 − ZLΦ21)VS ]−VFT (L) + ZLIFT (L),
(8.5a)

I(z = L) = IFT (L+Φ21VS + (Φ22 −Φ21ZS)I(z = 0), (8.5b)

whilst the voltages are still computed according to (2.20). This solution procedure provides the
terminal voltages and currents at a given frequency, and is iterated for every frequency point of
interest.

8.1.2 Uniform Plane-Wave Incidence

When the incident field is a uniform plane wave, the situation greatly simplifies. Nonetheless, the
case is still relevant, because for example the field radiated by a distant source is a spherical wave
which can locally be considered as a plane wave. Furthermore, in reverberation chambers, the
total electric field can be represented as a superposition of (random) plane waves [97], [98].

Fig. 8.1 illustrates a plane-wave field impinging on a MTL. The field is characterized by its
polarization η and direction of incidence, which is in turn expressed by polar coordinates via the
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Figure 8.1. Illustration of a plane-wave field incising on a transmission line.

colatitute θ (the complimentary angle of the elevation) and azimuth ψ. With the above definitions,
the explicit expression of the electric field in a point with Cartesian coordinates (x, y, z) is

E⃗ = E0(exa⃗x + eya⃗y + eza⃗z)e
−jβxxe−jβyye−jβzz, (8.6)

where a⃗x,y,z are the axis versors, E0 is the field amplitude,
ex = sin η sin θ
ey = − sin η cos θ cosψ − cos η sinψ
ez = − sin η cos θ sinψ + cos η cosψ

(8.7)

and 
βx = −β cos θ
βy = −β sin θ cosψ
βz = −β sin θ sinψ,

(8.8)

with β = ω/c0 being the phase constant for the incident wave (c0 = 299792458 m/s is the speed
of light in vacuum). In this case, the convolution terms take closed forms [54]:

VFT (L) =
1

2
Y−1TM+ −


...

ETm(L)
...

+
1

2
Y−1TN+, (8.9a)

IFT (L) = −1

2
Tγ−1M− − 1

2
Tγ−1N−, (8.9b)
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with T and γ defined in (2.19). The entries of the remaining vector terms are related to the incident
electric field. In the specific case of a line lying above a perfect ground plane, and by denoting the
cross-sectional coordinates of the center of conductor m as (xm, ym), they are as follows:

M±
i = −2jE0ez

[
eγiL

1− e−(γi+jβz)L

γi + jβz
± e−γiL

e(γi−jβz)L − 1

γi − jβz

]

×
N∑
m=1

[
βxxm

sin(βxxm)

βxxm
e−jβyym

] [
T−1Y

]
im
,

(8.10)

N±
i = E0

[
eγiL ± e−γiL

]
×

N∑
m=1

[
(exxm + eyym)

sin(ψ+
m)

ψ+
m

e−jψ
+
k

+(exxm + eyym)
sin(ψ−

m)

ψ−
m

e−jψ
−
m

] [
T−1Y

]
im
,

(8.11)

with
ψ±
m = βxxm ± βyym, (8.12)

and finally

ETm(L) = E0(exxm+eyym)
sin(ψ+

m)

ψ+
m

e−jψ
+
me−jβzL+E0(exxm−eyym)

sin(ψ−
m)

ψ−
m

e−jψ
−
me−jβzL.

(8.13)

8.2 Application of Polynomial Chaos

When the impinging field is random, the distributed source terms VF and IF in (8.1) become
stochastic and can be in principle expanded into a PC representation. However, in this thesis
we limit ourselves to consider the case in which the incident field is a plane wave and it is the
sole source of variability (i.e., the inherent, cross-sectional line properties and its terminations
are deterministic). The availability of closed-form relations for the forcing terms in this situation
suggests to expand VFT and IFT in (8.3), rather than VF and IF in (8.1). In this way, the solution
procedure will not involve further integrations like those in (8.2) or (8.4).

The randomness of the field implies that the wave parameters E0, η, θ, ψ are possibly stochas-
tic and parameterizable by pertinent normalized variables collected into a random vector ξ. This
variability of the wave parameters leads to a variability of the terms ex,y,z and βx,y,z in (8.10)–
(8.13). As a result, the forcing terms in (8.9) in turn depend on the random vector ξ and can
therefore be expressed as PC expansions:

VFT (ξ) ≈
P∑
k=0

VFT,kϕk(ξ), (8.14a)

IFT (ξ) ≈
P∑
k=0

IFT,kϕk(ξ), (8.14b)
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where the coefficients VFT,k and IFT,k are computed according to (4.12) via the numerical inte-
gration of relations (8.9). Substitution of (8.14) and of the corresponding expansions of the voltage
and current variables (5.6) into (8.3) produces

P∑
k=0

[
Vk(L)
Ik(L)

]
ϕk(ξ) =

[
Φ11(L) Φ12(L)
Φ21(L) Φ22(L)

] P∑
k=0

[
Vk(0)
Ik(0)

]
ϕk(ξ) +

P∑
k=0

[
VFT,k(L)
IFT,k(L)

]
ϕk(ξ).

(8.15)
It is worth noting that the deterministic nature of the line characteristics does not require any
modification in the CPM. Application of Galerkin weighting ∀ϕi, i = 0, . . . , P , to the left- and
right-hand sides of (8.15), leads to the following set of P + 1 uncoupled equations [99]:

...[
Vi(L)
Ii(L)

]
=

[
Φ11(L) Φ12(L)
Φ21(L) Φ22(L)

] [
Vi(0)
Ii(0)

]
+

[
VFT,i(L)
IFT,i(L)

]
...

(8.16)

∀i = 0, . . . , P . The above equations imply that the expansion coefficients Vk and Ik, for the
voltages and currents at the line terminations, are merely related by the general solution of the
original, deterministic line configuration, and are affected by the kth coefficient of the forcing
functions only. This is due to the assumption that the variability is solely provided by the inci-
dent field and does not affect the line parameters. If the terminations are also deterministic, the
problem is totally decoupled, and the sought-for expansion coefficients are readily obtained via
the iterative solution of (8.16), ∀k = 0, . . . , P , by means of (8.5) and (2.20). In contrast to the
case of variations in the line properties, the PC coefficients of the stochastic voltages and currents
at the line terminations are not given by the solution of a (P +1)-time larger system of equations,
but by the iterative solution of P + 1 uncoupled problems, having the original size and where
the excitation is provided by the sequence of the coefficients VFT,k and IFT,k. This results in a
faster computational time, although for this kind of analysis a larger number of expansion terms is
usually also required (see the application example below).

It is worth noting that the PC-based simulation can be interpreted in this case as a superposition
of analyses, carried out by considering the expansion coefficients of VFT and IFT as excitations,
thus being completely analogous to a Fourier analysis. The stochastic problem is then determined
by a collection of deterministic simulations of the original problem. However, contrary to the MC
analysis, for each iteration the forcing functions are not chosen at random, but are given by the
sequence of the PC-expansion coefficients of the forcing terms.

8.3 Application Example

A thourough comparison between the PC approach and the available closed-form probabilistic
models [50] for the study of the excitation of a single lossless line by a random plane-wave field
is provided in [100]. In this section, we propose a more general and realistic application example,
which cannot be analyzed with the previous methods.

We consider again the flex cable in Fig. 6.1. The geometric parameters were rw = 7.5 mils,
dc = 35 mils, d = 50 mils, h = 8 cm, and are now all regarded as deterministic. The terminations
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Figure 8.2. Probability distribution of the amplitude of the incident electric field.

were RS = 25 Ω and CL = 10 pF. A cable length of 1 m is considered here. We analyze two
different situations: 1) field incidence with random amplitude and polarization; 2) field incidence
with random colatitude and azimuth. The second situation is of particular interest, as it refers to
the case of completely random direction of incidence in the whole solid angle, and because no
closed-form results are available in [50], even for single transmission lines.

8.3.1 Random Field Amplitude and Polarization

In this first example, the wave amplitude E0 has a beta distribution with parameters ν1 = 2 and
ν2 = 3 in the range [0, 1] V/m (see Fig. 8.2) [50]. The polarization angle η is assumed to be
uniform in the range [−π, π] instead. The remaining wave parameters, i.e. colatitude and azimuth,
have fixed values of θ = π/6 and ψ = π/4, respectively.

Fig. 8.3 shows (top plot) the statistical assessment of the current induced at the far-end termi-
nation of the third conductor of the cable. The plot displays both the average response (black line)
and the standard deviation (dark gray line), computed with the MC method (10000 samples), to-
gether with a reduced set of samples of the random response (light gray lines). It is relevant to note
that the variability is here indeed high, the standard deviation being on the same order of magni-
tude as the average response. For comparison, the markers indicate the average response (circles)
and standard deviation (asterisks) obtained by means of PC, showing excellent agreement. The PC
simulation is based on the six-order expansion of the forcing terms into 28 Legendre polynomi-
als. It should be remarked that, the field amplitude having a beta distribution, the converge of the
Legendre-type PC expansions is here non-optimal. Nevertheless, there is no limitation concerning
the effective use of this class of basis functions for the expansions (8.14) [20].
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Figure 8.3. Stochastic simulation of the current induced on a flex cable illuminated by a plane
wave with random field amplitude and polarization. Top plot: average response (black line) and
standard deviation (dark gray line) obtained after 10000 MC simulations; circles (◦) and asterisks
(∗) indicate the average response and standard deviation obtained from the PC expansions; the light
gray lines are different samples of the induced current. Bottom plot: distributions computed at two
different frequencies with both MC (gray bars) and PC (dotted line).
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Fig. 8.3 also shows (bottom plot) the probability distribution computed at two different fre-
quencies by means of both the MC and PC methods. These frequencies are indicated by the
dashed vertical lines in Fig. 8.3. The comparison reveals excellent agreement also at high fre-
quencies, where approximate solutions are no longer valid even for basic line structures. The
computational time for the MC simulation is 1 h and 4 min. The PC simulation required an overall
time of 12.1 s instead: 10.4 s for the expansion of the forcing terms, 1.5 s for the iterative solution
of the forced transmission-line equations, and 0.2 s for the post-processing extraction of the statis-
tical information. It is worth observing that most of the time is required by the calculation of the
forcing terms. In the PC simulation, this step is carried out in the pre-processing projection pro-
cedure, thus making the iterative solution of the forced equations faster than in the MC analysis.
For this example, the speed-up is over 300×.

8.3.2 Random Direction of Incidence (Colatitude and Azimuth)

In the second example, the direction of incidence, which is parameterized by colatitude and az-
imuth, is completely arbitrary and uniformly distributed in the whole solid angle. The random
parameters are thus sin θ ∈ [0, 1] and ψ ∈ [0, 2π]. The wave amplitude and polarization angle are
instead fixed to E0 = 1 V/m and η = π/2. It should be noted that:

1. In order to obtain a uniform distribution over the spherical surface, the sine of the colatitude
is assumed as uniformly distributed, rather than colatitude itself.

2. The cable cross-section being symmetric, the actual range of variation of the azimuth can
be halved into the range ψ ∈ [0, π].

Fig. 8.4 shows the results of the statistical analysis of the induced current for this second case,
confirming the accuracy of the PC approach when compared to a MC analysis based on 10000
runs. However, for this situation, the convergence of the PC expansions is much slower, and up to
351 expansion terms (order p = 25) are required for the higher frequencies!! This is due to the
highly non-smooth behavior of the forcing functions, which partially invalidates the fundamental
assumption of the PC approach, i.e. that there is a mild impact of the random variables on the
response. Since a much smaller number of terms is sufficient at lower frequencies, the expansion
order is here increased only for higher frequencies, therefore speeding-up the overall projection
procedure.

Although for a given number of expansion terms, as already discussed, the simulation proce-
dure is faster with respect to the case of cross-sectional variations, the above considerations may
appear detrimental for the PC technique. In fact, a fine and apparently unpredictable tuning of the
expansion order seems to be necessary, thus limiting the practical applicability of the approach to
the analysis of random field incidences. Nevertheless, it should be observed that the variability is
here related to the external field, whose parameters are not affected by the line structure which is
illuminated, and the amount of randomness is thence nearly independent from the specific config-
uration being considered, although the coupling effects of course change from one case to another.
Experimental verifications leaded to the conclusion that the optimal number of expansion terms to
be included does not actually change when different line geometries are considered.

For the this second example, the MC simulation still required 1 h and 4 min, since it is in-
dependent from the kind of random variable being considered. The PC-based analysis required
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Figure 8.4. Stochastic simulation of the current induced on a flex cable illuminated by a plane
wave with random direction of incidence. Curves identification as in the inset of Fig. 8.3.
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62.2 s for the expansions, 18.2 s for the solution, and 0.9 s for the estimation of the statistical
information. A still impressive speed-up of about 50× is thence obtained.



Conclusions

Due to the increasing miniaturization and large-scale integration, the impact of uncertainties aris-
ing from manufacturing tolerances, partially unavailable layout/positioning constraints, operating
conditions, or interference, is becoming more and more important for modern electronic devices.
This results in system responses which are more suitably described from a statistical, rather than
deterministic, viewpoint, i.e. as stochastic processes. Instead of predicting nominal response, a sta-
tistical assessment via numerical simulation is then required in the early design phase, in order to
estimate the response fluctuation and set realistic design margins. This is traditionally achieved by
means of brute-force and time-comsuming sampling-based methods such as Monte Carlo, which
require a large number of deterministic runs. In this regard, efficient simulation techniques have
been investigated and proposed in the recent literature.

Nevertheless, in the framework of circuit simulation, a general and comprehensive approach
for the statistical assessment of high-speed interconnects with the inclusion of random transmis-
sion lines, was still missing. This thesis presents an efficient stochastic modeling strategy for
high-speed links affected by an inherent variability in their physical parameters, such as geometry,
material properties, and temperature. The technique is based on the so-called polynomial chaos
theory, whose underlying idea is the expansion of stochastic circuit responses in terms of orthogo-
nal polynomial bases. This representation enables a fast extraction of statistical information upon
determination of the expansion coefficients, which is carried out by means of a single simulation
of a deterministic, though augmented, instance of the original system. Despite the increased sys-
tem size, the overall simulation time is usually much lower than running a large number of Monte
Carlo simulations. The new system equations are obtained through the application of a stochastic
Galerkin method to the original (stochastic) governing equations.

The original contribution of this work lies in the extension of existing polynomial chaos-based
modeling techniques, which had been previously applied to the analysis of lumped circuits, to dis-
tributed interconnects, consisting of transmission-line elements described by telegrapher’s equa-
tions. The approach is general and applies to arbitrary multiconductor line geometries and is not
affected by low-frequency approximations. It has been first applied to the frequency-domain anal-
ysis of basic multiconductor transmission-line configurations, i.e. source-line-load circuits or their
cascade connection. Time-domain analysis has been then achieved via Fourier analysis.

Afterwards, a SPICE-compatible formulation was proposed, which made possible the con-
venient description and simulation of the augmented system instance into standard and well-
consolidated SPICE-type commercial circuit analysis tools. The formulation is based on an mod-
ified (orthonormalized) discretization scheme for the stochastic Galerkin method, and allows the
circuit interpretation of the augmented constitutive equations by means of standard electrical com-
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ponents. This permits to take advantage of available circuit solvers for a more accurate simulation
of complex circuit topologies, which previously required cumbersome, ad-hoc implementations or
the development of customized software.

Finally, a different application scenario, where the variability of transmission-line responses is
induced by random external fields, is successfully addressed via the polynomial chaos approach.
In this case, the limitations of existing, closed-form probabilistic models for the field coupling onto
basic line structures under low-frequency and weak-coupling assumptions, are by far overcome.

As far as the computational time is concerned, the proposed methodology provides a more
efficient alternative with respect to traditional sampling-based methods, like Monte Carlo, with
achieved speed-ups of about two orders of magnitude and excellent agreement on the accuracy.
A large number of application examples is presented, thus showing the feasibility, flexibility and
strength of the advocated approach. The accuracy of the polynomial chaos representation is con-
trolled by the order of the polynomial expansions, which in turn affects the overall number of
terms and therefore the size of the augmented problem that has to be solved for the determination
of the expansion coefficients. For practical situations, choosing an order between two and four
already provides comparable accuracy with respect to the Monte Carlo method. The number of
terms also grows with the number of random parameters considered. This suggests that the effi-
ciency is decreased when the number of variables is incremented, and this represents so far one
of the main limitations of the proposed method. One of the plans for future work is therefore the
investigation of possible alternative formulations, which might mitigate the overhead arising when
a large number of random parameters is considered.

Further plans concern the modeling of random cables or cables illumiated by random fields,
which is still in its infancy. In this regard, there is an increasing demand for models accounting
for the unavoidable random wrapping and twisting of cable bundles. Finally, the SPICE imple-
mentation has been so far limited to linear transmission-line networks where the variability is
exclusively due to the distributed elements. An enhanced tool, which also includes equivalent
circuit descriptions for stochastic linear lumped elements, as well as for nonlinear terminations, is
currently under development.
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[61] M. Loève, Probability Theory. 4th edition, New York: Springer-Verlag, 1977.

[62] D. Lucor, C.-H. Su, and G. E. Karniadakis, “Karhunen-Loeve representation of peri-
odic second-order autoregressive processes,” Lecture Notes in Computer Science, vol. 3038,
pp. 827–834, 2004.

[63] A. Papoulis, Probability, Random Variables and Stochastic Processes. 3rd edition, New
York: McGraw-Hill, 1991.

[64] M. H. Kalos and P. A. Whitlock, The Monte Carlo Methods. 2nd edition, Hoboken, NJ:
Wiley, 2008.



98 BIBLIOGRAPHY

[65] W. Kim and M. Swaminathan, “Characterization of co-planar silicon transmission lines with
and without slow-wave effect,” IEEE Transactions on Advanced Packaging, vol. 30, no. 3,
pp. 526–532, Aug. 2007.

[66] N. Wiener, “The homogeneous chaos,” American Journal of Mathematics, vol. 60, pp. 897–
936, 1938.

[67] R. Cameron and W. Martin, “The orthogonal development of nonlinear functionals in series
of Fourier-Hermite functionals,” The Annals of Mathematics, vol. 48, no. 2, pp. 385–392,
1947.

[68] R. Askey and J. Wilson, “Some basic hypergeometric polynomials that generalize Jacobi
polynomials,” Memoirs of the American Mathematical Society, vol. 54, no. 319, Mar. 1985.

[69] X. Wan, G. E. Karniadakis, “Multi-element generalized polynomial chaos for arbitrary prob-
ability measures,” SIAM Journal on Scientific Computing, vol. 28, no. 3, pp. 901–928, 2006.

[70] D. Xiu, “Fast numerical methods for stochastic computations: a review,” Communications in
Computational Physics, vol. 5, no. 2–4, pp. 242–272, Feb. 2009.
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