
19 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Fault mitigation strategies for CUDA GPUs / DI CARLO, Stefano; Gambardella, G.; Martella, I.; Prinetto, Paolo Ernesto;
Rolfo, D.; Trotta, P.. - ELETTRONICO. - (2013), pp. 1-8. (Intervento presentato al convegno IEEE International Test
Conference (ITC) tenutosi a Anaheim (CA), USA nel 6-13 Sept., 2013) [10.1109/TEST.2013.6651908].

Original

Fault mitigation strategies for CUDA GPUs

Publisher:

Published
DOI:10.1109/TEST.2013.6651908

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2519045 since: 2016-09-16T17:54:53Z

IEEE

Fault mitigation strategies for CUDA GPUs

Stefano Di Carlo, Giulio Gambardella, Ippazio Martella, Paolo Prinetto,
Daniele Rolfo, Pascal Trotta

Politecnico di Torino
Dipartimento di Automatica e Informatica

Corso Duca degli Abruzzi 24, I-10129, Torino, Italy
Email: {FirstName.LastName}@polito.it

Abstract

High computation is a predominant requirement in many
applications. In this field, Graphic Processing Units
(GPUs) are more and more adopted. Low prices and high
parallelism let GPUs be attractive, even in safety criti-
cal applications. Nonetheless, new methodologies must
be studied and developed to increase the dependability of
GPUs. This paper presents effective fault mitigation strate-
gies for CUDA-based GPUs against permanent faults. The
methodology to apply these strategies, on the software to be
executed, is fully described and verified. The graceful per-
formance degradation achieved by the proposed technique
outperforms multithreaded CPU implementation, even in
presence of multiple permanent faults.

1 Introduction

Nowadays, automotive [1], space [2] and medical [3] ap-
plications are characterized by an increasing reliance on in-
telligent control and safety. The robustness of a system,
i.e., its ability to continue to function despite the existence
of faults, even if system performance may be diminished or
altered, is often enhanced by fault-tolerance or fault miti-
gation techniques. Furthermore, dependable systems must
guarantee real-time responses, thus requiring high compu-
tation capability. Extensive data processing is usually as-
signed to highly parallel systems, like multi-cores proces-
sors or Graphical Processing Units (GPUs). In this field,
CUDA-based GPUs [4] are attractive devices, blending low
cost and high computation capability.
GPU usage is mostly limited to computer graphics en-
tertainment and, more recently to algorithm acceleration
for high-performance computing. Processing is performed
in parallel, exploiting a Single Instruction Multiple Data
(SIMD) architecture, that executes the same operations on
different data portions, simultaneously. Nonetheless, using

Commercial Off-The-Shelf (COTS) devices in safety criti-
cal systems comes at the cost of dependability. Developing
fault mitigation techniques is needed to tolerate hardware
defects and the related faults.
Several works targeting SIMD processors have been pub-
lished. Overall, they propose fault-tolerance and fault mit-
igation techniques [5] [6] [7] [8] [9]. Unfortunately, these
techniques are not applicable to modern GPU architectures,
since they rely on a deep knowledge of the processor inter-
nal architecture.
Different techniques completely independent from the
processor internal architecture, as, for instance, Check
pointing-based and Algorithm-based fault tolerance, are
available as well.
Check pointing-based methodologies allow to detect errors
in a device by inserting checkpoints into the executed pro-
gram. At each checkpoint the obtained results are compared
with the expected ones to detect errors. Detected errors can
then be corrected by re-executing the associated piece of
code. [10] proposes a check pointing technique that can
be applied to GPUs. It requires a hybrid GPU-CPU sys-
tem, where the GPU performs the computational task and
the CPU checks the correctness of the results at each check-
point. This approach guarantees a high error-detection ca-
pability, but the communication of the results between the
CPU and the GPU causes high performance overhead also
with a fault-free GPU.
Algorithm-based fault tolerance methodologies detect and
correct errors in the system under test by defining a soft-
ware approach customized and optimized for the target al-
gorithm. In this way, the test guarantees a high reliability of
the system and a low impact on performances.
Many of these techniques target matrix multiplication algo-
rithms [11], [12], [13]. The common basic idea is to add a
checksum to rows and columns of the result matrix, in order
to allow error-detection and, potentially, error-correction.
These approaches guarantee small performance overhead
and high error-detection capability. Their main drawback

Paper 8.3
978-1-4799-0859-2/13/$31.00 c�2013 IEEE

INTERNATIONAL TEST CONFERENCE 1

is the completely custom approach used to provide the fault
tolerance. The designer is forced to completely modify the
test procedure when changes are made in the original algo-
rithm. Moreover, these techniques are able to detect and
correct a fixed number of errors, only.
This paper aims at defining a novel strategy to mitigate mul-
tiple permanent faults in CUDA-based GPUs. A graceful
performance degradation is achieved by the proposed fault
mitigation techniques, based on program instrumentation,
providing correct results even in presence of faults. Such
modifications let the GPU programmer to easily change the
original CUDA software, to increase the dependability of
the target system.
The proposed methodology introduces three main advan-
tages w.r.t. the already presented methodologies:

1. the required instrumentation is completely indepen-
dent of the executed code;

2. it does not introduce any execution time penalties dur-
ing the GPU fault-free execution, thus the executed
code can reach the maximum performances provided
by the GPU;

3. it guarantees fault-free results also in presence of a
high number of permanent faults.

The paper is organized as follows: Section 2 briefly intro-
duces the CUDA-based GPU architecture. Section 3 de-
scribes the proposed approach. The fault mitigation tech-
niques are defined and explained in Section 4. Experimental
results are given in Section 5. Finally, Section 6 concludes
the paper.

2 CUDA Overview

Several GPUs produced by nVidia use CUDA R�[14].
CUDA supports a new software architecture that enables
CUDA-based GPUs to execute programs written in C, C++,
Fortran, OpenCL, DirectCompute, and other languages [4].
Programs executed by CUDA GPUs are called kernels. A
kernel is basically a set of parallel threads that ensures a
high-parallel computation. When a kernel is compiled, its
threads are grouped in thread blocks. The complete set of
thread blocks composes a grid.
A CUDA-based system is composed of a CPU and a CUDA
GPU. The CPU executes a program (CUDA program) in
order to both create inputs for the kernel and to start the
kernel execution. Starting the kernel execution means
providing a kernel grid to the GPU. The CUDA GPU
performs the execution of the kernel. At the end of a
kernel execution, the CPU can flush the content of the GPU
memory in order to acquire output data.
The software organization of a kernel is strictly related to

the GPU hardware architecture, since the threads hierarchy
is directly mapped into GPU internal components.
The basic building blocks of a CUDA GPU (Fig. 1) are:
(i) a Block dispatcher, that manages the scheduling of the
input grid by assigning each thread block to the internal
logic; (ii) a Global Memory, that stores intermediate and
final results of the executed kernel; (iii) a Shared Cache,
that speeds up read/write operations on the global memory;
(iv) several Streaming Multiprocessors (SMs). Each SM
includes many CUDA cores, that perform the computation
for each thread.

Figure 1: CUDA GPU internal architecture

When the CPU invokes a kernel grid, each thread block is
numbered (assigning it a Thread Block ID) and dispatched
to a SM that guarantees enough available resources. Each
thread of a thread block is executed on a CUDA core.
Considering the SIMD architecture of the GPU, the same
operation is performed on different input data portions,
addressed by the Thread Block ID. As thread blocks termi-
nate, new blocks are dispatched to idle SMs. The number
of thread blocks that can be processed concurrently on the
multiprocessor depends on the number of registers, on the
amount of shared memory available in the SM, and on the
resources required by the kernel to be executed. Anyway,
the number of thread blocks that can be assigned to a SM
never exceeds 8 in Tesla [15] and Fermi [4] architectures
and 16 in the Kepler [16] architecture, respectively.

3 Proposed Fault Mitigation Methodology

The methodology proposed in this paper enables
software-level fault mitigation in CUDA GPUs. The overall
approach requires the knowledge of the full map of faulty
SMs. Faulty SMs can be identified by periodically running
functional test procedures on the GPU, such as the one pro-
posed in [17]. This activity is out of the scope of this pa-
per that focuses on the mitigation of these faults. We will
therefore assume that a Faulty SM Map (FM), indicating

Paper 8.3 INTERNATIONAL TEST CONFERENCE 2

Figure 2: Proposed Approach

the healthiness of each SM, is available and exploitable to
perform fault mitigation. The proposed approach defines a
methodology to instrument the CUDA program and the ker-
nel, in order to correctly execute a kernel on a faulty GPU.
As shown in Fig. 2, the Instrumented CUDA Program (ICP)
informs each kernel about the status of each SM, provid-
ing it the FM, and runs the instrumented kernel (IK) on the
GPU.
The instrumented kernel avoids the execution of thread
blocks on faulty SMs. Since this task cannot be performed
by directly operating on the Block Dispatcher (the CUDA-
ISA does not provide this functionality), an ad-hoc pro-
cedure must be implemented. Exploiting the FM, the in-
strumented kernel can identify thread blocks dispatched on
faulty SMs (faulty blocks (FBs)) and stop their execution
(see Sec. 3.2). Moreover, IK is able to transmit to the in-
strumented CUDA program all FBs.
The instrumented CUDA program exploits this informa-
tion to identify whether the kernel execution completed cor-
rectly, or not. The execution can be considered correctly
completed if every thread block is executed on a fault-free
SM. If there is at least one FB, the instrumented CUDA
program creates several replicas of each FB. These replicas
are used to define a new grid (faulty grid, FG), that is exe-
cuted on the CUDA GPU. Activating more than one replica
ensures that each faulty block is executed on at least one
fault-free SM. The process is repeated until no FB is identi-
fied.
In the following subsections the proposed approach is
deeply analyzed proposing the instrumentations to be ap-
plied on the CUDA program and on the kernel.

3.1 CUDA program instrumentation

The ICP (left side of Fig. 2) implements Alg. 1.
First, the instrumented CUDA program provides the FM to

Algorithm 1 Instrumented CUDA Program
1: for each Kernel do
2: Execution Complete = FALSE
3: Provide FM to IK()
4: Run IK()
5: while Execution Complete = FALSE do
6: Extract FBs()
7: if #FB = 0 then
8: Execution Complete = TRUE
9: else

10: Compute Replicas()
11: Update BlockList()
12: Create Grid()
13: Run IK()
14: end if
15: end while
16: end for

the kernel (row 3 in Alg. 1), through the Execution Config-
uration structure. This structure contains the FM and addi-
tional information used to describe the status of each thread
block of the grid. In detail, this structure includes:

• faulty SM map: it contains the FM. It is a vector com-
posed of a cell for each SM in the GPU, asserted when
the corresponding cell is faulty.

• block list: it is a vector of structures describing the sta-
tus of each thread block. The size of the block list vec-
tor is equal to the overall number of thread blocks com-
posing the grid. Each structure contains three fields:
done, Logical block index (LBI), and Master Index.
The done field, indicates the execution status of a
thread block (i.e., if the thread block has been already
executed on a fault-free SM or not). LBI identifies an
input data portion on which operations are perfomed.

Paper 8.3 INTERNATIONAL TEST CONFERENCE 3

The Master Index can assume three different values:
Master (M), Replicated Master (RM) or the index of
the master associated with the considered thread block.
The meaning of this field is described later in this sec-
tion.
During the initialization phase, each Master Index is
set to M for every thread block.

• grid size: it specifies the dimension of the grid to be
executed on the GPU, in terms of thread blocks. Dur-
ing the initialization phase, the grid has a dimension
equal to the number of thread blocks composing the
kernel. After the first execution of the kernel, the grid
dimension becomes equal to the number of identified
faulty blocks.

With FM correctly delivered to the kernel, the IPC runs the
IK (see Sec. 3.2 for kernel instrumentation) on the GPU
(row 4 in Alg. 1), and it updates the Execution Configu-
ration structure (see Sec. 3.2).
At the end of the execution, the ICP analyzes the Execu-
tion Configuration structure to identify the thread blocks
dispatched to a faulty SM (row 6 in Alg. 1). This task is
performed by analyzing the done field in the block list vec-
tor (Fig. 3).

Figure 3: Example of FBs extraction

If there are no FBs (row 7 in Alg. 1), the execution of
the kernel is completed. Otherwise, each FB must be re-
executed. This task is performed by creating a new grid
composed of replicas of each FB. The number of replicas
(n replica) is computed (row 10 in Alg. 1) in a different
way depending on the adopted fault mitigation strategy (see
Sec. 4). Then, the block list vector is updated (row 11 in
Alg. 1), in order to insert all information items used to cre-
ate the faulty grid (FG). Fig. 4 shows an example of how
the block list is updated.
The Master Index field is set to RM only for the first replica
of each faulty block. In all other replicas, this field is equal
to the index of the block list cell associated with the first
replica.
The FG is then created (row 12 in Alg. 1) by inserting a
number of thread blocks (TB in Fig. 5) equal to the num-
ber of elements in the block list vector. Finally, the kernel
is executed on the GPU, providing the updated Execution
Configuration and the FG (row 13 in Alg. 1).

Figure 4: Example of block list vector update

Figure 5: Example of faulty grid creation

It is worth to note that, before the dispatch, TBs are num-
bered (i.e., the dispatcher of the CUDA GPU assigns them
a TB ID), and, in general, the TB ID is different from the
user-defined LBI.

3.2 Kernel instrumentation

The kernel, invoked by the ICP, must be instrumented,
as well. Alg. 2 summarizes the operations that the Instru-
mented Kernel has to perform.
First, it identifies the SM on which each thread block is run-
ning (row 1 in Alg. 2). This task is performed by reading
the %smid special register value using the CUDA PTX in-
line assembly [18]. This register stores the identifier of the
SM (SM ID) on which the thread block is running.
By reading the location of the faulty SM map pointed by the
SM ID, it is possible to check if a thread block is running
on a faulty SM (row 2 in Alg. 2). In this case, the execution
of the thread block must be stopped (row 3 in Alg. 2). The
approach to stop the execution changes depending on the
adopted fault mitigation strategy (analyzed in Sec. 4).
A faulty SM must be able to execute the first three state-
ments of Alg. 2, at least. Thus, this capability of faulty SMs
must be tested before starting the execution of the CUDA
program. This task can be performed with a simple starting
small approach.
To reduce the performance overhead introduced by the

Paper 8.3 INTERNATIONAL TEST CONFERENCE 4

Algorithm 2 Instrumented Kernel

1: Get SM ID()
2: if Exec on faulty SM() then
3: Avoid Execution()
4: else
5: if is M or RM() then
6: TB status read done(TB ID)
7: else
8: TB status read done(MI)
9: end if

10: if TB status = NOT EXECUTED then
11: ...
12: ...Original Kernel Code...
13: ...
14: Update done()
15: end if
16: end if

adopted fault-mitigation strategy, each faulty block must be
executed only once on a fault-free SM. Since the FG con-
tains replicas of each faulty block (see Sec. 3.1), more than
one replica of the same faulty block might be dispatched on
different fault-free SMs.
For this reason, when the SM on which the thread block
is running is fault-free (row 4 in Alg. 2), the IK checks
whether this thread block has been already executed on a
fault-free SM, or not. Such a check is performed by analyz-
ing the Master Index field in the block list vector (row 5 in
Alg. 2).
If the value of the Master Index field is equal to M, it means
that the current thread block has never been replicated in-
side the grid. If it is RM, the current thread block is a replica,
but it is the reference copy for its other replicas. In both
cases, the execution status of the current thread block can
be directly extracted from the done field, contained in the
block list vector, pointed by the current TB ID (row 6 in
Alg. 2).
Otherwise, if the Master Index field contains a number, the
current thread is not a reference replica. In this case, the ex-
ecution status is extracted by reading the done field and by
pointing the block list vector with the Master Index value
(row 8 in Alg. 2). It this way all replicas of the same thread
block point to the same execution status flag.
If the current thread block has never been executed on a
fault-free SM (TB status=NOT EXECUTED in Alg. 2), in-
structions of the original kernel are executed (row 12 in Alg.
2).
Obviously, these operations must be performed on the cor-
rect portion of input data. As mentioned in Sec. 3.1 and
shown in Fig. 5, after the creation of the faulty grid, the
TB ID, assigned by the dispatcher to each thread block in-
side the grid, may be different from the user-defined LBI.

The LBI indicates the data portion on which the operations
must be executed. Thus, before starting the original kernel
execution, the LBI associated with the current thread block
is extracted. The extraction is done selecting the block list
vector pointed by the TB ID, and reading the LBI field of
the pointed structure. Then, the input data set is indexed
using the extracted LBI. This ensures the execution of the
original kernel on the correct data portion.
Finally, the done field, in the block list vector, is updated
(row 14 in Alg. 2). Since the block list vector is shared
between all thread blocks, during writes of its values race
conditions must be avoided. Thus, the update operation is
done exploiting an atomic CUDA instruction called CAS
[18], which performs an atomic test-and-set operation.

4 Fault Mitigation Strategies

The proposed fault mitigation strategies allow to use a
CUDA GPU which includes faulty modules, in a safety
way. In the follow we present two fault mitigation strate-
gies, namely Sleep and Wait, highlighting their pro’s and
con’s.

4.1 Sleep

The Sleep fault mitigation strategy avoids the incorrect
execution of a thread block by performing a procedure that
sleeps the faulty SM. Whenever a thread block is dispatched
to a faulty SM, the Avoid Execution() (see Algorithm 2)
function is executed. The Sleep strategy is based on the
execution of a For loop to sleep the faulty SM.
The sleep time (i.e., the period of the For loop) depends on
the number of iterations executed in the loop, defined by
the programmer. Furthermore, it is possible to unroll the
For loop by using the #pragma unroll directive, generating
a sequence of NOP. This operation decreases the level of
required functionality on the faulty SM.
Clearly, if the sleep time is short, many thread blocks will be
dispatched to the faulty SM. Otherwise, less thread blocks
are allocated to the faulty SM.
With a short sleep time, the performance overhead intro-
duced by the Sleep procedure is low, since the SM is quickly
released from the loop procedure. Thus, the cost induced to
complete the execution of the current grid is low, even if
the number of blocks executed on the faulty SM increases,
leading to a bigger faulty grid. Thus, several blocks will
have to be re-executed.
With a long sleep time, the procedure introduces a perfor-
mance overhead to complete the execution of the grid, since
the SM is not released quickly (i.e., the faulty block sleeps
for more time). Nevertheless, the faulty grid is smaller, be-
cause few thread blocks are dispatched to the faulty SM and
have to be re-executed.

Paper 8.3 INTERNATIONAL TEST CONFERENCE 5

Thus, the optimal sleep time strictly depends on the dimen-
sion of the thread block. The best case is achieved when-
ever the sleep time equals the overall time required to ex-
ecute all thread blocks executed in the fault-free SMs. In
this case, both timing overhead and faulty grid size (i.e.,
thread blocks executed on faulty SMs) are minimized. An-
other key parameter, that must be carefully quantified, is
n replica. It strongly influences the number of faulty grids
(i.e., the number of kernel execution) required to perform
the error-free execution of the complete kernel. Mathemati-
cally, to ensure the complete error-free execution of a kernel
on a faulty CUDA GPU, (1) must be respected:

Grid size� (Faulty SM ⇤BpSM) > Faulty Block
(1)

where BpSM is the maximum number of thread blocks that
can be allocated on a SM (i.e., this number is fixed for each
CUDA GPU [19]), and Grid Size is equal to:

Grid Size = Faulty Block ⇤ n replica (2)

From (1) and (2), one deduces that:

n replica >
Faulty SM

Faulty Block
⇤BpSM + 1 (3)

Thus, in the worst case, n replica is:

n replica = Faulty SM ⇤BpSM + 1 (4)

Since the Sleep strategy cannot guarantee a fixed number of
faulty blocks, experimentally it is possible to demonstrate
that (4) is valid only if the number of faulty blocks is lower
than the number of faulty SMs. Otherwise, n replica must
be fixed to 2.

4.2 Wait

The Wait fault mitigation strategy adopts a different ap-
proach to implement the Avoid Execution() function (see
Algorithm 2). The basic idea is to stop the thread block ex-
ecuted on the faulty SM, until all thread blocks dispatched
on the fault-free SMs are completely executed. In this way,
it is possible to ensure that the total number of faulty blocks
is fixed to:

Faulty Blocks = Faulty SM ⇤BpSM (5)

This ensures that n replica is fixed to 2, also.
To enable this kind of execution avoidance, the Execution
Configuration structure must be modified by adding two
fields: target done and num done.
The former identifies the number of thread blocks that must
be executed. When the instrumented CUDA program (see

Subsection 3.1) starts the instrumented kernel for the first
time, this parameter is set to the number of thread blocks in
the grid.
Otherwise, when a faulty grid is executed, target done is
set to the number of faulty blocks. The latter enumerates
the thread blocks executed on the fault-free SMs.
These two fields are exploited to ensure stopping of the
faulty SMs for the proper amount of time, to avoid per-
formance overhead. Basically, when a thread block has
finished its execution on a fault-free SM, it increments
the num done field. This operation is performed using an
atomic add operation (i.e., the CUDA API called atomicInc)
to avoid race conditions on the num done field, shared
among all thread blocks.
Whenever a thread block is dispatched on a faulty SM, it
waits until all thread blocks dispatched on fault-free SMs
are completed. This operation is performed using a while
loop, that iterates until num done reaches target done. Be-
fore starting the while loop, each thread block dispatched
on a faulty SM must decrement the target done field. With-
out this operation, the value of num done could never reach
the value of target done. Since the reduction must be per-
formed just once (i.e., for each thread block executed on
faulty SM), the target done is decremented only by the first
thread contained in the thread block.

4.3 Comparison

An accurate comparison between the two proposed fault
mitigation techniques is required to understand whether the
one should be preferred to the other.
On the one hand, the Sleep fault mitigation strategy has two
main pros: (i) it only requires that each faulty SM is able to
perform a for loop (or a sequence of NOP), and (ii) it does
not require any information on the thread block scheduling
policy to be applied.
The biggest con concerns the number of faulty grids that
must be executed on the CUDA GPU to ensure the complete
correct execution of the kernel. This number can increase
depending on the number of faulty SMs. Thus, the execu-
tion of a kernel on a faulty CUDA GPU could require more
than one faulty grid.
On the other hand, the wait fault mitigation strategy guaran-
tees a fixed number of faulty blocks (see (5)). If n replica is
set to the value obtained from (4), it is possible to guarantee
a complete error-free execution of the kernel executing one
faulty grid, only.
Thus, the Wait fault mitigation strategy, unlike the Sleep
strategy, requires just two iterations of the kernel (i.e., the
first kernel execution and the execution of the faulty grid).
However, it requires the execution of more complex opera-
tions on faulty SMs. In fact, each faulty SM must be able to
execute the while loop, to perform the atomic subtraction,

Paper 8.3 INTERNATIONAL TEST CONFERENCE 6

Table 1: Execution Time and Performance Gain associated with the fault mitigation strategies

Faulty Matrix Multiplication Histogram Computation
CPU Sleep Wait CPU Sleep Wait

SMs [ms] GPU [ms] PG GPU [ms] PG [ms] GPU [ms] PG GPU [ms] PG
0 9,850 507 19,4 471 20,9 627 48 13.1 49 12.8
1 9,850 582 16.9 540 18.2 627 65 9.7 64 10.3
2 9,850 678 14.5 631 15.6 627 88 7.1 72 9.2
3 9,850 817 12.1 756 13.0 627 99 6.3 82 7.8
4 9,850 1,024 9.6 942 10.4 627 114 5.5 97 6.5
5 9,850 1,364 7.2 1,258 7.8 627 167 3.8 132 4.8
6 9,850 2,044 4.8 1,885 5.2 627 230 2.7 194 3.2
7 9,850 4,089 2.4 3,768 2.6 627 450 1.4 380 1.6

and to identify the first thread of a block.
Thus, the programmer should first evaluate the capability of
the faulty SMs. If they are able to perform the operations
needed to execute the Wait function, this mitigation strat-
egy should be preferred since it guarantees the lowest per-
formance overhead. Otherwise, the Sleep strategy should
be used, thanks to the lowest required capability of faulty
SMs.

5 Experimental Results

A set of experiments has been performed to prove the
effectiveness of the proposed mitigation strategies. The
CUDA GPU used during the tests is a Gigabyte GeForce
GTX 560Ti, equipped with 1 GB of dedicated RAM and 8
Streaming Multiprocessors (SM). An Intel Core i5-2500k
CPU is used as CPU.
The fault mitigation strategies have been applied to two ap-
plications available in the CUDA SDK: Matrix Multiplica-
tion and CUDA Histogram. The former performs the mul-
tiplication between two 2048x2048 input matrix. The latter
sorts 335,544,320 char data into 256 bins. Input data, for
both applications, are generated randomly with a uniform
distribution, exploiting the standard rand() C/C++ function.
Both applications execute the same computation on the
CPU (i.e., exploiting Multi-Thread (MT) implementations)
and on the CUDA GPU, so the performance of the two plat-
forms can be compared and the correctness of the results
can be checked.
CUDA programs and kernels have been instrumented ac-
cording to the methodologies presented in Section 4. In ad-
dition, in order to find the best sleep time (see Subsection
4.1) several test executions have been carried out. Even-
tually, the sleep time has been set to: 10,000 cycles for the
matrix multiplication and to 65,000 cycles for the histogram
computation. Each application has been tested in 8 differ-
ent conditions, with different number of faulty SMs (i.e.,
changing the faulty sm map vector), in order to character-

ize the execution times related to the CPU and GPU imple-
mentation.
Table 1 lists the execution times for both test algorithms.
The comparison is made between the execution times of
the CPU and GPU algorithm by reporting the Performance
Gain (PG). From the presented data it is clear that the usage
of a GPU, also in presence of faults, with both proposed
fault mitigation strategies ensures better performance w.r.t.
to a CPU.
Clearly, the execution time on the GPU increases with the
number of faulty SMs (see Fig. 6 and Fig. 7).
From the reported graph it can be noticed that the Wait strat-
egy offers slightly better performance than the Sleep strat-
egy, especially when the number of faulty SMs increases.

Figure 6: Fault mitigation Strategies comparison - Matrix
Multiplication

6 Conclusion

The paper presents an innovative methodology to allow
the use of a CUDA-based GPU, even in presence of faulty
streaming multiprocessors. While the other already pre-

Paper 8.3 INTERNATIONAL TEST CONFERENCE 7

Figure 7: Fault mitigation Strategies comparison - His-
togram Computation

sented methodologies are algorithm dependent or introduce
performance penalty without faults, also, the two presented
fault mitigation techniques are completely algorithm inde-
pendent and they allow to reach the maximum performance
during CUDA fault-free execution.
Moreover, a validation campaign has been performed to as-
sess the graceful performances degradation granted by the
proposed techniques in presence of faults.

References

[1] H. Kimm and H. sang Ham, “Integrated fault toler-
ant system for automotive bus networks,” in Proceed-
ings IEEE Int. Computer Engineering and Applica-
tions Conf., pp. 486–490, 2010.

[2] Q. Hu, B. Xiao, and M. Friswell, “Robust fault-
tolerant control for spacecraft attitude stabilisation
subject to input saturation,” Control Theory Applica-
tions, vol. 5, no. 2, pp. 271–282, 2011.

[3] N. Zhang, “Investigation of fault-tolerant adaptive fil-
tering for noisy ecg signals,” in Proceedings IEEE
Symp. on Computational Intelligence in Image and
Signal Processing, pp. 177 –182, april 2007.

[4] nVidia, nVidia’s Next Generation CUDA Computer
Architecture: Fermi, 2006.

[5] A. Sengupta and C. Raghavendra, “All-to-all broad-
cast and matrix multiplication in faulty simd hy-
percubes,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 9, no. 6, pp. 550 –560, 1998.

[6] J.-H. Kim, F. Lombardi, and N. Vaidya, “An improved
approach to fault tolerant rank order filtering on a
simd mesh processor,” in Proceedings IEEE Int. Work-
shop on Defect and Fault Tolerance in VLSI Systems,
pp. 137 –145, 1995.

[7] A. Strano, D. Bertozzi, A. Grasset, and S. Yehia,
“Exploiting structural redundancy of simd acceler-
ators for their built-in self-testing/diagnosis and re-
configuration,” in Proceedings IEEE Int. Conf. on
Application-Specific Systems, Architectures and Pro-
cessors, pp. 141 –148, 2011.

[8] J.-H. Kim, S. Kim, and F. Lombardi, “Fault-tolerant
rank order filtering for image enhancement,” IEEE
Transactions on Consumer Electronics, vol. 45, no. 2,
pp. 436 –442, 1999.

[9] C. Raghavendra and M. Sridhar, “Global commutative
and associative reduction operations in faulty simd hy-
percubes,” IEEE Transactions on Computers, vol. 45,
no. 4, pp. 495 –498, 1996.

[10] X. Xu, Y. Lin, T. Tang, and Y. Lin, “HiAL-Ckpt: A
hierarchical application-level checkpointing for CPU-
GPU hybrid systems,” in Proceedings IEEE Int.
Conf. on Computer Science and Education (ICCSE),
pp. 1895–1899, 2010.

[11] K.-H. Huang and J. A. Abraham, “Algorithm-based
fault tolerance for matrix operations,” IEEE Transac-
tion on Computers, vol. 33, no. 6, pp. 518–528, 1984.

[12] C. Braun and H.-J. Wunderlich, “Algorithmen-
basierte fehlertoleranz fr many-core-architekturen
(algorithm-based fault-tolerance on many-core archi-
tectures).,” it - Information Technology, vol. 52, no. 4,
pp. 209–215, 2010.

[13] C. Ding, C. Karlsson, H. Liu, T. Davies, and Z. Chen,
“Matrix multiplication on gpus with on-line fault tol-
erance,” in Proceedings IEEE Int. Symp. on Par-
allel and Distributed Processing with Applications,
pp. 311–317, 2011.

[14] nVidia, NVIDIA CUDA Architecture - Introduction &
Overview, 2009.

[15] nVidia, nVidia Tesla - GPU Computing Technical
Brief, 2007.

[16] nVidia, nVidia Kepler GK110 Next-Generation CUDA
Compute Architecture, 2012.

[17] S. Di Carlo, G. Gambardella, M. Indaco, I. Martella,
D. Rolfo, P. Prinetto, and P. Trotta, “A software-based
self test of CUDA Fermi GPUs,” in Proceedings IEEE
European Test Symp., pp. 33–38, 2013.

[18] nVidia, Parallel Thread Execution ISA, 2012.

[19] nVidia, nVidia CUDA C Programming Guide v.4.2,
2012.

Paper 8.3 INTERNATIONAL TEST CONFERENCE 8

