
23 September 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Infrequent Weighted Itemset Mining Using Frequent Pattern Growth / Cagliero, Luca; Garza, Paolo. - In: IEEE
TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. - ISSN 1041-4347. - 26:4(2014), pp. 903-915.
[10.1109/TKDE.2013.69]

Original

Infrequent Weighted Itemset Mining Using Frequent Pattern Growth

Publisher:

Published
DOI:10.1109/TKDE.2013.69

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2514489 since: 2016-02-18T11:55:25Z

IEEE COMPUTER SOCIETY

1

Infrequent Weighted Itemset Mining

using Frequent Pattern Growth
Luca Cagliero and Paolo Garza

Abstract

Frequent weighted itemsets represent correlations frequently holding in data in which items may weight differently.

However, in some contexts, e.g., when the need is to minimize a certain cost function, discovering rare data correlations

is more interesting than mining frequent ones. This paper tackles the issue of discovering rare and weighted itemsets,

i.e., the Infrequent Weighted Itemset (IWI) mining problem. Two novel quality measures are proposed to drive the

IWI mining process. Furthermore, two algorithms that perform IWI and Minimal IWI mining efficiently, driven by the

proposed measures, are presented. Experimental results show efficiency and effectiveness of the proposed approach.

Index Terms

H.2.8.b Clustering, classification, and association rules, H.2.8.d Data mining

I. INTRODUCTION

Itemset mining is an exploratory data mining technique widely used for discovering valuable correlations among

data. The first attempt to perform itemset mining [1] was focused on discovering frequent itemsets, i.e., patterns

whose observed frequency of occurrence in the source data (the support) is above a given threshold. Frequent

itemsets find application in a number of real-life contexts (e.g., market basket analysis [1], medical image process-

ing [2], biological data analysis [3]). However, many traditional approaches ignore the influence/interest of each

item/transaction within the analyzed data. To allow treating items/transactions differently based on their relevance

in the frequent itemset mining process, the notion of weighted itemset has also been introduced [4]–[6]. A weight

is associated with each data item and characterizes its local significance within each transaction.

Consider, as an example, the dataset reported in Table I. It includes 6 transactions (identified by the respective

tids), each one composed of 4 distinct items weighted by the corresponding degree of interest (e.g., item a has

weight 0 in tid 1, and 100 in tid 4). In the contexts of data center resource management and application profiling,

transactions may represent CPU usage readings collected at a fixed sampling rate. For instance, tid 1 means that, at

a fixed point of time (1), CPU b works at a high usage rate (weight 100), CPUs c and d have an intermediate usage

rate (weights 57 and 71, respectively), while CPU a is temporarily idle (weight 0). The itemsets mined from the

L. Cagliero and P. Garza are with the Dipartimento di Automatica e Informatica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129,

Torino, Italy. E-mail: {luca.cagliero, paolo.garza}@polito.it.

DRAFT

2

TABLE I

EXAMPLE OF WEIGHTED TRANSACTIONAL DATASET

Tid CPU usage readings

1 ⟨a, 0⟩ ⟨b, 100⟩ ⟨c, 57⟩ ⟨d, 71⟩
2 ⟨a, 0⟩ ⟨b, 43⟩ ⟨c, 29⟩ ⟨d, 71⟩
3 ⟨a, 43⟩ ⟨b, 0⟩ ⟨c, 43⟩ ⟨d, 43⟩
4 ⟨a, 100⟩ ⟨b, 0⟩ ⟨c, 43⟩ ⟨d, 100⟩
5 ⟨a, 86⟩ ⟨b, 71⟩ ⟨c, 0⟩ ⟨d, 71⟩
6 ⟨a, 57⟩ ⟨b, 71⟩ ⟨c, 0⟩ ⟨d, 71⟩

TABLE II

IWIS EXTRACTED FROM THE DATASET IN TABLE I. MAXIMUM IWI-SUPPORT-MIN THRESHOLD ξ=180.

IWI IWI-support-min IWI IWI-support-min

{c} 172 (Minimal) {a,b,c} 0 (Not Minimal)

{a,b} 128 (Minimal) {a,b,d} 128 (Not Minimal)

{a,c} 86 (Not Minimal) {a,c,d} 86 (Not Minimal)

{b,c} 86 (Not Minimal) {b,c,d} 86 (Not Minimal)

{c,d} 172 (Not Minimal) {a,b,c,d} 0 (Not Minimal)

TABLE III

IWIS EXTRACTED FROM THE DATASET IN TABLE I. MAXIMUM IWI-SUPPORT-MAX THRESHOLD ξ=390.

IWI IWI-support-max IWI IWI-support-max

{a} 286 (Minimal) {a,c} 372 (Not Minimal)

{b} 285 (Minimal) {b,c} 371 (Not Minimal)

{c} 172 (Minimal)

example dataset can be exploited by a domain expert to profile system usage in order to perform resource allocation

and system resizing.

The significance of a weighted transaction, i.e., a set of weighted items, is commonly evaluated in terms of

the corresponding item weights. Furthermore, the main itemset quality measures (e.g., the support) have also been

tailored to weighted data and used for driving the frequent weighted itemset mining process. For instance, when

evaluating the support of {a,b} in the example dataset reported in Table I, the occurrence of b in tid 1, which

represents a highly utilized CPU, should be treated differently from the one of a, which represents an idle CPU at

the same instant. In [4]–[6] different approaches to incorporating item weights in the itemset support computation

have been proposed. Note that they are all tailored to frequent itemset mining, while this work focuses on infrequent

itemsets.

In recent years, the attention of the research community has also been focused on the infrequent itemset mining

problem, i.e., discovering itemsets whose frequency of occurrence in the analyzed data is less than or equal to a

maximum threshold. For instance, in [7], [8] algorithms for discovering minimal infrequent itemsets, i.e., infrequent

DRAFT

3

itemsets that do not contain any infrequent subset, have been proposed. Infrequent itemset discovery is applicable to

data coming from different real-life application contexts such as (i) statistical disclosure risk assessment from census

data and (ii) fraud detection [7]–[9]. However, traditional infrequent itemset mining algorithms still suffer from their

inability to take local item interestingness into account during the mining phase. In fact, on the one hand, itemset

quality measures used in [4]–[6] to drive the frequent weighted itemset mining process are not directly applicable

to accomplish the infrequent weighted itemset mining task effectively, while, on the other hand, state-of-the-art

infrequent itemset miners are, to the best of our knowledge, unable to cope with weighted data.

This paper addresses the discovery of infrequent and weighted itemsets, i.e., the Infrequent Weighted Itemsets

(IWIs), from transactional weighted datasets. To address this issue, the IWI-support measure is defined as a weighted

frequency of occurrence of an itemset in the analyzed data. Occurrence weights are derived from the weights

associated with items in each transaction by applying a given cost function. In particular, we focus our attention on

two different IWI-support measures: (i) The IWI-support-min measure, which relies on a minimum cost function,

i.e., the occurrence of an itemset in a given transaction is weighted by the weight of its least interesting item, (ii)

The IWI-support-max measure, which relies on a maximum cost function, i.e., the occurrence of an itemset in a

given transaction is weighted by the weight of the most interesting item. Note that, when dealing with optimization

problems, minimum and maximum are the most commonly used cost functions. Hence, they are deemed suitable

for driving the selection of a worthwhile subset of infrequent weighted data correlations. Specifically, the following

problems have been addressed:

A) IWI and Minimal IWI mining driven by a maximum IWI-support-min threshold, and

B) IWI and Minimal IWI mining driven by a maximum IWI-support-max threshold.

Task (A) entails discovering IWIs and Minimal IWIs (MIWIs) which include the item(s) with the least local interest

within each transaction. Table II reports the IWIs mined from Table I by enforcing a maximum IWI-support-min

threshold equal to 180 and their corresponding IWI-support-min values. For instance, {a,b} covers the transactions

with tids 1, 2, 3, and 4 with a minimal weight 0 (associated with a in tids 1 and 2 and b in tids 3 and 4), while it

covers the transactions with tids 5 and 6 with minimal weights 71 and 57, respectively. Hence, its IWI-support-min

value is 128. In the context of system usage profiling, IWIs in Table II represent sets of CPUs which contain at

least one underutilized or idle CPU at each sampled instant. As shown in Section V, real-life system malfunctioning

or underutilization may arise when the workload is not allocated properly over the available CPUs. For instance,

considering CPUs a and b, recognizing a suboptimal usage rate of at least one of them may trigger targeted actions,

such as system resizing or resource sharing policy optimization. As an extreme case, {a,b,c} has IWI-support-min

equal to 0 because at every sampled point of time at least one between a, b, or c (not necessarily the same at each

instant) is idle, possibly due to system oversizing. Considering Minimal IWIs (MIWIs) allows the expert to focus

her/his attention on the smallest CPU sets that contain at least one underutilized/idle CPU and, thus, reduces the

bias due to the possible inclusion of highly weighted items in the extracted patterns. In Table II IWIs are partitioned

between minimal and not, as indicated next to each itemset IWI-support-min value (Minimal/Not Minimal).

DRAFT

4

Task (B) entails discovering IWIs and MIWIs which include item(s) having maximal local interest within each

transaction by exploiting the IWI-support-max measure. Table III reports the IWIs mined from Table I by enforcing

a maximum IWI-support-max threshold equal to 390. They may represent sets of CPUs which contain only under-

utilized/idle CPUs at each sampled time instant. Note that, in this context, discovering large CPU combinations

may be deemed particularly useful by domain experts, because they represent large resource sets which could be

reallocated.

To accomplish tasks (A) and (B), we present two novel algorithms, namely Infrequent Weighted Itemset Miner

(IWI Miner) and Minimal Infrequent Weighted Itemset Miner (MIWI Miner), which perform IWI and MIWI mining

driven by IWI-support thresholds. IWI Miner and MIWI Miner are FP-Growth-like mining algorithms [10], whose

main features may be summarized as follows: (i) Early FP-tree node pruning driven by the maximum IWI-support

constraint, i.e., early discarding of part of the search space thanks to a novel item pruning strategy, and (ii) cost

function-independence, i.e., they work in the same way regardless of which constraint (either IWI-support-min or

IWI-support-max) is applied, (iii) early stopping of the recursive FP-tree search in MIWI Miner to avoid extracting

non-minimal IWIs. As shown in Section IV, Property (ii) makes tasks (A) and (B) equivalent, from an algorithmic

point of view, as long as a preliminary data transformation step, which adapts data weights according to the selected

aggregation function, is applied before accomplishing the mining task.

Experiments, performed on both synthetic and real-life datasets, show efficiency and effectiveness of the proposed

approach. In particular, they show the characteristics and usefulness of the itemsets discovered from data coming

from benchmarking and real-life multi-core systems, as well as the algorithm scalability.

This paper is organized as follows. Section II discusses and compares related work with the proposed approach.

Section III introduces preliminary definitions and notations as well as formally states the IWI and MIWI mining

tasks addressed by this paper. Section IV describes the proposed algorithms, while Section V evaluates efficiency

and effectiveness of the proposed approach. Finally, Section VI draws conclusions and presents future work.

II. PREVIOUS WORK

Frequent itemset mining is a widely used data mining technique that has been introduced in [1]. In the traditional

itemset mining problem items belonging to transactional data are treated equally. To allow differentiating items

based on their interest or intensity within each transaction, in [4] the authors focus on discovering more informative

association rules, i.e., the Weighted Association Rules (WAR), which include weights denoting item significance.

However, weights are introduced only during the rule generation step after performing the traditional frequent

itemset mining process. The first attempt to pushing item weights into the itemset mining process has been done

in [5]. It proposes to exploit the anti-monotonicity of the proposed weighted support constraint to drive the Apriori-

based itemset mining phase. However, in [4], [5] weights have to be preassigned, while, in many real-life cases, this

might not be the case. To address this issue, in [6] the analyzed transactional dataset is represented as a bipartite

hub-authority graph and evaluated by means of a well-known indexing strategy, i.e., HITS [11], in order to automate

item weight assignment. Weighted item support and confidence quality indexes are defined accordingly and used

DRAFT

5

for driving the itemset and rule mining phases. This paper differs from the above-mentioned approaches because

it focuses on mining infrequent itemsets from weighted data instead of frequent ones. Hence, different pruning

techniques are exploited.

A related research issue is probabilistic frequent itemset mining [12], [13]. It entails mining frequent itemsets

from uncertain data, in which item occurrences in each transaction are uncertain. To address this issue, probabilistic

models have been constructed and integrated in Apriori-based [12] or projection-based [14] algorithms. Although

probabilities of item occurrence may be remapped to weights, the semantics behind probabilistic and weighted

itemset mining is radically different. In fact, the probability of occurrence of an item within a transaction may

be totally uncorrelated with its relative importance. For instance, an item that is very likely to occur in a given

transaction may be deemed the least relevant one by a domain expert. Furthermore, this paper differs from the

above-mentioned approaches as it specifically addresses the infrequent itemset mining task.

A parallel effort has been devoted to discovering rare correlations among data, i.e., the infrequent itemset mining

problem [7]–[9], [15]–[17]. For instance, in [7], [8] a recursive algorithm for discovering minimal unique itemsets

from structured datasets, i.e., the shortest itemsets with absolute support value equal to 1, is proposed. They extend

a preliminary algorithm version, previously proposed in [18], by specifically tackling algorithm scalability issues.

The authors in [9] first addressed the issue of discovering minimal infrequent itemsets, i.e., the itemsets that satisfy

a maximum support threshold and do not contain any infrequent subset, from transactional datasets. More recently,

in [17] an FP-Growth-like algorithm for mining minimal infrequent itemsets has also been proposed. To reduce

the computational time the authors introduce the concept of residual tree, i.e., an FP-tree associated with a generic

item i that represents dataset transactions obtained by removing i. Similarly to [17], in this paper we propose an

FP-tree-based approach to mining infrequent itemsets. However, unlike all of the above-mentioned approaches, we

face the issue of treating items differently, based on their relative importance in each transaction, in the discovery of

infrequent itemsets from weighted data. Furthermore, unlike [17], we adopt a different item pruning strategy tailored

to the traditional FP-tree structure to perform IWI mining efficiently. An attempt to exploit infrequent itemsets in

mining positive and negative association rules has also been made in [15], [16]. Since infrequent itemset mining is

considered an intermediate step, their focus is radically different from that of this paper.

III. PROBLEM STATEMENT

This paper addresses the problem of mining infrequent itemsets from transactional datasets. Let I={i1, i2, . . .,

im} be a set of data items. A transactional dataset T={t1, t2, . . ., tn} is a set of transactions, where each transaction

tq (q ∈ [1, n]) is a set of items in I and is characterized by a transaction ID (tid).

An itemset I is a set of data items [1]. More specifically, we denote as k-itemset a set of k items in I. The

support (or occurrence frequency) of an itemset is the number of transactions containing I in T . An itemset I

is infrequent if its support is less than or equal to a predefined maximum support threshold ξ. Otherwise, it is

said to be frequent [1]. An infrequent itemset is said to be minimal if none of its subsets is infrequent [7]. Given

a transactional dataset T and a maximum support threshold ξ, the infrequent (minimal) itemset mining problem

DRAFT

6

entails discovering all infrequent (minimal) itemsets from T [9].

Unfortunately, using the traditional support measure for driving the itemset mining process entails treating items

and transactions equally, even if they do not have the same relevance in the analyzed dataset. To treat items

differently within each transaction we introduce the concept of weighted item as a pair ⟨ik, wq
k⟩, where ik ∈ I is

an item contained in tq ∈ T , while wq
k is the weight associated with ik that characterizes its local interest/intensity

in tq [4]. Concepts of weighted transaction and weighted transactional dataset are defined accordingly as sets of

weighted items and weighted transactions, respectively.

Definition 1: Weighted transactional dataset. Let I={i1, i2, . . ., im} be a set of items. A weighted transactional

dataset Tw is a set of weighted transactions, where each weighted transaction twq is a set of weighted items ⟨ik, wq
k⟩

such that ik ∈ I and wq
k is the weight associated with ik in twq .

Note that, in general, weights could be either positive, null, or negative numbers. Itemsets mined from weighted

transactional datasets are called weighted itemsets. Their expression is similar to the one used for traditional itemsets,

i.e., a weighted itemset is a subset of the data items occurring in a weighted transactional dataset. The problem

of mining itemsets by considering weights associated with each item is known as the weighted itemset mining

problem [4]. For the sake of simplicity, by convenient abuse of notation weighted itemsets will be denoted by

itemsets whenever it is clear from the context. For the same reason, a generic weighted dataset and transaction are

denoted by T and tq , respectively, throughout the paper.

Consider again the example dataset reported in Table I. It is a weighted transactional dataset T composed of

6 transactions, each one including 4 weighted items. Since, for instance, the weight of item a in tid 1 (0) is

significantly lower than the ones of b (100) and d (71) then a, b, and d should be treated differently during the

mining process.

This paper focuses on considering item weights in the discovery of infrequent itemsets. To this aim, the problem of

evaluating itemset significance in a given weighted transactional dataset is addressed by means of a two-step process.

Firstly, the weight of an itemset I associated with a weighted transaction tq ∈ T is defined as an aggregation of its

item weights in tq . Secondly, the significance of I with respect to the whole dataset T is estimated by combining

the itemset significance weights associated with each transaction.

In traditional itemset mining, an itemset I is said to cover a given transaction tq if I ⊆ tq . For our purposes,

we define two different weighting functions, i.e., the minimum and the maximum functions, which associate the

minimum and the maximum weight relative to items in I with each covered transaction tq . As discussed in the

following, minimum and maximum are weighting functions which are deemed suitable for performing different

targeted analysis.

Definition 2: Weighting functions. Let tq={⟨i1, wq
1⟩, ⟨i2, wq

2⟩, . . . , ⟨il, wq
l ⟩} be a weighted transaction, and

IS(tq)={ik|⟨ik, wq
k⟩ ∈ tq for some wq

k} the set of items in tq . Let I be an itemset covering tq , i.e., I ⊆ IS(tq).

The minimum weighting function is defined by Wmin(I, tq)=minj| ij∈I w
q
j . The maximum weighting function is

defined by Wmax(I, tq)=maxj| ij∈I w
q
j .

Notice that weighting functions are defined only when a transaction is covered by the given itemset. Selecting the

DRAFT

7

minimum item weight within each transaction allows the expert to focus her/his attention on the rare itemsets that

contain at least one lowly weighted item (e.g., an underutilized/idle CPU). On the other hand, using the maximum

weighting function allows considering rare itemsets that contain only lowly weighted items.

Similarly to the traditional absolute support measure1, the IWI-support of an itemset is defined as its weighted

observed frequency of occurrence in the source data, where for each transaction itemset occurrences are weighted

by the output of the chosen weighting function.

Definition 3: IWI-support. Let I be an itemset, T a weighted transactional dataset, IS(tq) the set of items in

tq ∈ T , and Wf a minimum or maximum weighting function. The IWI-support of I in T is defined as follows.

IWI-support(I, T) =
∑

tq∈T | I⊆IS(tq)

Wf (I, tq)

If Wf=Wmin then the IWI-support measure is denoted as IWI-support-min. Otherwise (i.e., in case Wf=Wmax), it

is denoted as IWI-support-max.

Consider again the dataset in Table I. The IWI-support-min of {a,b} is 128, because its weights referring to the

transactions with tids 1-6 are 0, 0, 0, 0, 71, and 57. Instead, the IWI-support-max of {a,b} is 443, because the

assigned weights are 100, 43, 43, 100, 86, and 71.

The IWI-support measures are characterized by the following notable properties.

Property 1: Equivalence between the IWI-support measure and the traditional support measure. Let T be

a weighted transactional dataset that exclusively contains items with weight 1, and Tu its corresponding unweighted

version. Let Wf be an arbitrary aggregation function. The IWI-support value of an itemset I in T corresponds to

its traditional support value in Tu, i.e., IWI-support(I , T) = support(I , Tu).

Proof: Since any item in T has a weight equal to 1 then Wf (I, tq) = 1 for any tq ∈ T covered by I , where

Wf (I, tq) may be either Wmin(I, tq) or Wmax(I, tq). Thus, by Definition 3, the IWI-support is equal to the number

of the transactions covered by I . Hence, it follows that IWI-support(I , T) = support(I , Tu).

The maximum IWI-support-min constraint is also characterized by the monotonicity property.

Property 2: Monotonicity property of the maximum IWI-support-min constraint. Let T be a weighted

transactional dataset and ⪯ a precedence relation holding between pairs of weighted itemsets X and Y, such that

X ⪯ Y holds if and only if X ⊆ Y . Let ξ be a maximum IWI-support threshold. The maximum IWI-support

constraint IWI-support-min(X, T)≤ ξ is monotone with respect to ⪯.

Proof: Let X and Y be two arbitrary weighted itemsets such that X ⪯ Y . Since X ⊆ Y the transactions

covered by X in T are a subset of those covered by Y . Moreover, given an arbitrary weighted transaction tq covered

by both X and Y , it trivially follows from Definition 2 that Wmin(X, tq) ≥ Wmin(Y, tq). Hence, the following

inequality holds. IWI-support-min(X,T) =
∑

tq∈T | X⊆IS(tq)
Wmin(X, tq) ≥

∑
tq∈T | Y⊆IS(tq)

Wmin(Y, tq) =

IWI-support-min(Y, T), where IS(tq) is the set of items in tq .

1The absolute support of an itemset is defined as the number of occurrences of the itemset in the source data [1].

DRAFT

8

It follows that the maximum IWI-support constraint is monotone with respect to the precedence relation ⪯.

Problem statement. Given a weighted transactional dataset T , an IWI-support measure based on a weighting

function Wf (let it be either the minimum or the maximum weighting function), and a maximum IWI-support

threshold ξ, this paper addresses the following tasks:

A) discovering all IWIs that satisfy ξ in T ,

B) discovering all MIWIs that satisfy ξ in T .

While task (A) entails discovering all IWIs (minimal and not), task (B) selects only minimal IWIs (MIWIs), which

represent the smallest infrequent item combinations satisfying the constraints.

If Wf is the minimum weighting function then the IWI-support-min measure is considered and tasks (A) and

(B) select all IWIs/MIWIs that include at least one lowly weighted item within each transaction. Otherwise, i.e.,

in case Wf is the maximum weighting function, the IWI-support-max measure is considered and, thus, tasks (A)

and (B) select all IWIs/MIWIs that include only lowly weighted items within each transaction.

IV. THE ALGORITHMS

This section presents two algorithms, namely Infrequent Weighted Itemset Miner (IWI Miner) and Minimal Infre-

quent Weighted Itemset Miner (MIWI Miner), which address tasks (A) and (B), stated in Section III, respectively.

The proposed algorithms are FP-Growth-like miners whose main characteristics may be summarized as follows:

(i) The use of the equivalence property, stated in Property 3, to adapt weighted transactional data to traditional

FP-tree-based itemset mining, and (ii) the exploitation of a novel FP-tree pruning strategy to prune part of the search

space early. This section is organized as follows. Section IV-A formally states the weighted transaction equivalence

property and describes the FP-tree pruning strategy, while IWI Miner and MIWI Miner algorithms are thoroughly

described in Sections IV-B and IV-C.

A. Weighted transaction equivalence

The weighted transaction equivalence establishes an association between a weighted transaction dataset T ,

composed of transactions with arbitrarily weighted items within each transaction (Cf. Definition 1), and an equivalent

dataset TE in which each transaction is exclusively composed of equally weighted items. To this aim, each weighted

transaction tq ∈ T corresponds to an equivalent weighted transaction set TEq ⊆ TE, which is a subset of TE’s

transactions {te1, . . . , tek}. Item weights in tq are spread, based on their relative significance, among their equivalent

transactions in TEq . The proposed transformation is particularly suitable for compactly representing the original

dataset by means of an FP-tree index [10]. As shown in Sections IV-B and IV-C, the generated FP-tree will be used

to tackle the (M)IWI mining problem effectively and efficiently. The equivalent weighted transaction set is defined

as follows.

Definition 4: Equivalent weighted transaction set. Let T be a weighted transactional dataset and TE its corre-

sponding equivalent dataset. Let tq be a weighted transaction in T , {⟨i1, wq
1⟩, ⟨i2, w

q
2⟩, . . ., ⟨il, w

q
l ⟩} the enumeration

DRAFT

9

of all weighted items in tq and Wf a minimum or maximum weighting function. Let Wq={wq
1, w

q
2, . . . , w

q
l } be the

set of weights associated with items in tq and wq
p,Wf

the p-th distinct least wq
j ∈ Wq in case Wf is minimum, or the

p-th distinct highest wq
j ∈ Wq if Wf is maximum. The equivalent weighted transaction set TEq = {te1, . . . , tek}

associated with tq is a set of k weighted transactions tep (p ∈ [1, k]) such that for all 1 ≤ p ≤ k, tep ∈ TE. Each

tep includes items with weight wtp and is defined as follows:

tep =

{⟨ij , wtp⟩|⟨ij , wq
j ⟩ ∈ tq ∧ wq

j ≥ wq
p,Wf

} if Wf = Wmin,

{⟨ij , wtp⟩|⟨ij , wq
j ⟩ ∈ tq ∧ wq

j ≤ wq
p,Wf

} if Wf = Wmax

where wtp =

wq
1,Wf

if p = 1,

wq
p,Wf

− wq
(p−1),Wf

otherwise

The equivalent version TE of a weighted transactional dataset T (Cf. Definition 1) is the union of all equivalent

transactional sets associated with each weighted transaction. Consider, for instance, the example dataset reported

in Table I. The equivalent versions of the transaction with tid 1 obtained by using the minimum and the maximum

weighting functions are reported in the left-hand side of Table IV, where the original transaction and its equivalent

versions are put side by side for convenience.

TABLE IV

EQUIVALENT WEIGHTED TRANSACTION ASSOCIATED WITH THE TRANSACTION WITH TID 1 IN THE EXAMPLE DATASET.

Tid Equivalent Weighted Original

transaction transaction

Minimum weighting function

1.a ⟨a, 0⟩⟨b, 0⟩⟨c, 0⟩⟨d, 0⟩ }
⟨a, 0⟩⟨b, 100⟩⟨c, 57⟩⟨d, 71⟩

1.b ⟨b, 57⟩⟨c, 57⟩⟨d, 57⟩
1.c ⟨b, 14⟩⟨d, 14⟩
1.d ⟨b, 29⟩

Maximum weighting function

1.a ⟨a, 100⟩⟨b, 100⟩⟨c, 100⟩⟨d, 100⟩ }
⟨a, 0⟩⟨b, 100⟩⟨c, 57⟩⟨d, 71⟩

1.b ⟨a,−29⟩⟨c,−29⟩⟨d,−29⟩
1.c ⟨a,−14⟩⟨c,−14⟩
1.d ⟨a,−57⟩

Readers can notice that each transaction in the equivalent datasets only includes equally weighted items. In both

cases, the transaction with tid 1 in Table I is mapped to the equivalent transactions with tids 1.a, 1.b, 1.c, and

1.d. When using the minimum weighting function, the equivalence procedure first considers the lowest among the

weights occurring in the original transaction as current reference weight wref (e.g., the weight 0 associated with item

a in tid 1) and generates an equivalent transaction of equally weighted items (tid 1.a). Next, an iterative procedure

only considers, for the subsequent steps, the set S of items contained in the original transaction and having weight

strictly higher than wref (e.g., items b, c, and d in tid 1). Items in S are combined in a new equivalent transaction

(tid 1.b). At this stage, the new value of reference weight wref for tid 1.b is equal to the minimum weight among

the items in S reduced by the previous reference weight value (e.g., the minimum between 100 (100-0), 57 (57-0),

and 71 (71-0)). Next, set S is further pruned by excluding items with weight wref once more. The above procedure

DRAFT

10

is iterated until S is empty. In case the maximum weighting function is adopted, the procedure is analogous, but

the highest transaction weight is selected at each step instead of the lowest one. Note that reducing item weights

by the local maximum weight may yield negatively weighted equivalent transactions.

The IWI-support of a weighted itemset in a weighted transactional dataset corresponds to the one evaluated on

the equivalent dataset. We denote this property as the equivalence property.

Property 3: Equivalence property. Let T be a weighted transactional dataset and TE its equivalent version.

The IWI-support values of an itemset I in T and TE are equal.

Proof: Let tq ∈ T be a weighted transaction covered by I and TEq = {te1, . . . , tek} its equivalent transaction

set. Let matched = {⟨ij , wq
j ⟩ ∈ tq| ij ∈ I} be the set of matched weighted items and IS(tq) and IS(tep) the set

of items in tq and tep, respectively. Consider the IWI-support-min measure first. Let ⟨il, wq
l ⟩ ∈ matched be the

least weighted item in matched. By Definition 2, the following equality holds: Wmin(I, tq)=w
q
l . Furthermore, by

Definition 4, any transaction tep ∈ TEq containing il includes all the other items in matched as well. Thus, the

IWI-support-min of I in TEq could be rewritten as follows:
∑

tep|il∈IS(tep)
Wmin(I, tep)=w

q
l =Wmin(I, tq). Hence,

IWI-support-min(I ,TE) =
∑

TEq∈TE IWI-support-min(I, TEq) =
∑

tep∈TEq|I⊆IS(tep)∧TEq∈TE Wmin(I, tep)

=
∑

tq∈T |I⊆IS(tq)
Wmin(I, tq) = IWI-support-min(I, T).

Consider now the IWI-support-max measure. Let ⟨ih, wq
h⟩ ∈ matched be the maximally weighted item in matched.

By Definition 2, the following equality holds: Wmax(I, tq)=w
q
h. Furthermore, by Definition 4,∑

tep|ih∈IS(tep)
Wmax(I, tep)=w

q
h=Wmax(I, tq). Hence, IWI-support-max(I ,TE) = IWI-support-max(I ,T) follows

analogously to the former case.

Complexity analysis. The dataset transformation procedure generates, for each transaction, a number of equivalent

transactions at most equal to the original transaction length. A lower number of equivalent transactions is generated

when two or more items have the same weight in the original transaction. The product of the original dataset

cardinality and its longest transaction length can be considered a preliminary upper bound estimate of the equivalent

dataset cardinality. However, in real datasets many transactions are usually shorter than the longest one and many

items have equal weight in the same transaction. This reduces the number of generated equivalent transactions

significantly. As confirmed by the experimental results achieved on real and synthetic data (see Section V), the

scaling factor becomes actually lower than the average transaction length, which could be considered a more realistic

upper bound estimate.

IWI Miner and MIWI Miner exploit the equivalence property to address tasks (A) and (B), stated in Section III,

efficiently and effectively. In the following section a thorough description of the proposed algorithms is given.

B. The Infrequent Weighted Itemset Miner algorithm

Given a weighted transactional dataset and a maximum IWI-support (IWI-support-min or IWI-support-max)

threshold ξ, the Infrequent Weighted Itemset Miner (IWI Miner) algorithm extracts all IWIs whose IWI-support

satisfies ξ (Cf. task (A)). Since the IWI Miner mining steps are the same by enforcing either IWI-support-min or

DRAFT

11

Fig. 1. Example of node pruning. Maximum IWI-support threshold ξ=2.5

IWI-support-max thresholds, we will not distinguish between the two IWI-support measure types in the rest of this

section.

IWI Miner is a FP-growth-like mining algorithm [10] that performs projection-based itemset mining. Hence, it

performs the main FP-growth mining steps: (a) FP-tree creation and (b) recursive itemset mining from the FP-tree

index. Unlike FP-Growth, IWI Miner discovers infrequent weighted itemsets instead of frequent (unweighted) ones.

To accomplish this task, the following main modifications with respect to FP-growth have been introduced: (i) A

novel pruning strategy for pruning part of the search space early and (ii) a slightly modified FP-tree structure, which

allows storing the IWI-support value associated with each node.

To cope with weighted data, an equivalent dataset version is generated (Cf. Definition 4) and used to populate

the FP-tree structure. The FP-tree is a compact representation of the original dataset residing in main memory [10].

Unlike the traditional FP-tree creation, items in the FP-tree header table are sorted by their IWI-support value

instead of by their traditional support value. Furthermore, the insertion of an equivalent weighted transaction tep,

whose items are all characterized by the same weight wtp, requires increasing the weights associated with the

covered tree nodes by wtp rather than 1.

To reduce the complexity of the mining process, IWI Miner adopts an FP-tree node pruning strategy to early

discard items (nodes) that could never belong to any itemset satisfying the IWI-support threshold ξ. In particular,

since the IWI-support value of an itemset is at least equal to the one associated with the leaf node of each of its

covered paths, then the IWI-support value stored in each leaf node is a lower bound IWI-support estimate for all

itemsets covering the same paths. Hence, an item (i.e., its associated nodes) is pruned if it appears only in tree

paths from the root to a leaf node characterized by IWI-support value greater than ξ. The pruning property could

be formalized as follows.

Property 4: Pruning property. Let T be a weighted transactional dataset and FPT the FP-tree associated with

T . Let i be an arbitrary item and Ni = {ni1, . . . , nik} the set of nodes associated with i in FPT . If for each path

from nij ∈ Ni to a leaf in FPT the leaf node is characterized by an IWI-support value greater than ξ then i cannot

be contained in any IWI satisfying the IWI-support constraint.

Proof: Suppose that i is an item such that, for each path from nij ∈ Ni to a leaf, the leaf node is characterized

DRAFT

12

Algorithm 1 IWI-Miner(T , ξ)
Input: T , a weighted transactional dataset

Input: ξ, a maximum IWI-support threshold

Output: F , the set of IWIs satisfying ξ

1: F=∅ /* Initialization */

/* Scan T and count the IWI-support of each item */

2: countItemIWI-support(T)

3: Tree ← a new empty FP-tree; /* Create the initial FP-tree from T */

4: for all weighted transaction tq in T do

5: TEq ← equivalentTransactionSet(tq)

6: for all transaction tej in TEq do

7: insert tej in Tree

8: end for

9: end for

10: F ← IWIMining(Tree, ξ, null)

11: return F

by an IWI-support greater than ξ. Hence, for every path pil from the FP-tree root to a leaf through nij ∈ Ni the

leaf node is characterized by an IWI-support higher than ξ. Consider now a generic itemset Iil composed of items

in pil. Since the IWI-support of the leaf node of pil is greater than ξ then the IWI-support of Iil is greater than

ξ, i.e., Iil does not satisfy the maximum IWI-support constraint. Thus, every itemset containing i does not satisfy

ξ.

Consider, for example, the FP-tree in Figure 1(a) and suppose discovering IWIs by enforcing an IWI-support-min

threshold ξ equal to 2.5. Item d is included in the paths {d,c} and {h,d,f}, whose leaf nodes have IWI-support equal

to 3 and 4, respectively (see Figure 1(a)). Since d is contained only in paths whose leaf nodes have an IWI-support

value greater than ξ, it can be pruned. The same consideration holds for f and h. Instead, b is contained in a path

({a,b,c}) associated with a leaf node having an IWI-support value lower than ξ. Thus, it should be kept. In fact,

{a,b,c} is an IWI characterized by an IWI-support-min equal to 2. The result of the pruning step is reported in

Figure 1(b).

1) Algorithm pseudocode: In Algorithm 1 the IWI Miner pseudocode is reported. The first steps (lines 2-9

of Algorithm 1) generate the FP-tree associated with the input weighted dataset T . Then, the recursive mining

process is invoked on the constructed FP-tree (line 10). The FP-tree is initially populated with the set of equivalent

transactions generated from T . For each weighted transaction tq ∈ T the equivalent set (line 5) is generated by

applying function equivalentTransactionSet, which implements the transactional dataset equivalence transformation

described in Section IV-A.

Once a compact FP-tree representation of the weighted dataset T has been created, the recursive itemset mining

process is executed (Algorithm 1, line 10). A pseudocode of the mining procedure is given in Algorithm 2. Since

IWI Miner relies on a projection-based approach [10], items belonging to the header table associated with the input

FP-tree are iteratively considered (lines 2-14). Initially, each item is combined with the current prefix to generate

DRAFT

13

Algorithm 2 IWIMining(Tree, ξ, prefix)
Input: Tree, a FP-tree

Input: ξ, a maximum IWI-support threshold

Input: prefix, the set of items/projection patterns with respect to which Tree has been generated

Output: F , the set of IWIs extending prefix

1: F=∅
2: for all item i in the header table of Tree do

3: I = prefix ∪ {i} /* Generate a new itemset I by joining prefix and i with IWI-support set to the IWI-support of item i */

/* If I is infrequent store it */

4: if IWI-support(I)≤ ξ then

5: F ← F ∪ {I}
6: end if

/* Build I’s conditional pattern base and I’s conditional FP-tree */

7: condPatterns ← generateConditionalPatterns(Tree, I)

8: TreeI = createFP-tree(condPatterns)

/* Select the items that will never be part of any infrequent itemset */

9: prunableItems ← identifyPrunableItems(TreeI , ξ)

/* Remove from TreeI the nodes associated with prunable items */

10: TreeI ← pruneItems(TreeI , prunableItems)

11: if TreeI ̸= ∅ then

12: F ← F ∪ IWIMining(TreeI , ξ, I) /* Recursive mining */

13: end if

14: end for

15: return F

a new itemset I (line 3). If I is infrequent, then it is stored in the output IWI set F (lines 4-6). Then, the FP-tree

projected with respect to I is generated (lines 7-8) and the IWIMining procedure is recursively applied on the

projected tree to mine all infrequent extensions of I (line 12). Unlike traditional FP-Growth-like algorithms [10],

IWI Miner adopts a different pruning strategy (see lines 9-10). According to Property 4, identifyPrunableItems

procedure visits the FP-tree and identifies items that are only included in paths whose leaves have an IWI-support

above ξ. Since they cannot be part of any IWI, they are pruned (line 10).

C. The Minimal Infrequent Weighted Itemset Miner algorithm

Given a weighted transactional dataset and a maximum IWI-support (IWI-support-min or IWI-support-max)

threshold ξ, the Minimal Infrequent Weighted Itemset Miner (MIWI Miner) algorithm extracts all the MIWIs that

satisfy ξ.

The pseudocode of the MIWI Miner algorithm is similar to the one of IWI Miner, reported in Algorithm 1.

Hence, due to space constraints, the pseudocode is not reported. However, in the following, the main differences

with respect to IWI Miner are outlined. At line 10 of Algorithm 1, the MIWIMining procedure is invoked instead

of IWIMining. The MIWIMining procedure is similar to IWIMining. However, since MIWI Miner focuses on

generating only minimal infrequent patterns, the recursive extraction in the MIWIMining procedure is stopped as

DRAFT

14

soon as an infrequent itemset occurs (i.e., immediately after line 5 of Algorithm 2). In fact, whenever an infrequent

itemset I is discovered, all its extensions are not minimal.

V. EXPERIMENTS

We evaluated IWI Miner and MIWI Miner performance by means of a large set of experiments addressing the

following issues: (i) Expert-driven validation from real weighted data (Section V-B), (ii) algorithm performance

analysis (Section V-C), and (iii) algorithm scalability analysis (Section V-D). All the experiments were performed

on a 3.0 GHz Intel Xeon system with 4 GB RAM, running Ubuntu 10.04 LTS. The IWI Miner and MIWI Miner

algorithms were implemented in the C++.

A. Dataset description

The characteristics of the evaluated datasets are summarized in the following.

Real-life datasets. To validate the usefulness of the proposed algorithms we analyzed 10 collections, each one

composed of 31 real-life weighted datasets. Each collection was obtained by measuring the CPU usage of a multi-

core system when executing a different benchmark, among the ones available at http://www.dacapobench.org/. The

benchmarks (e.g., avrova, batik) are exploited to analyze multi-core system performance by running a number of

standard programs. Each dataset reports the per-core usage rate of a multi-core machine during the execution of

a benchmark. In particular, each weighted transaction corresponds to a distinct reading sampled at a fixed point

of time, where its weighted items represent the per-core usage rate measures. Datasets have been populated by

performing tests on a IBM Power7 machine equipped with 4 CPUs with 8 cores each and enabling/disabling the

available cores. More specifically, for each collection, each of the considered datasets represents the CPU usage

collected with a different multi-core setting, i.e., the first dataset is relative to a 2-core setting (i.e., 2 out of 32 cores

were enabled, while all the others were temporarily idle), the second one to a 3-core setting, etc. Each dataset is

characterized by a number of items per transaction equal to the number of enabled cores, i.e., the transaction length

is equal to the number of enabled cores. The sampling rate is around 1 s for the 2-core setting, while it decreases

when a larger number of cores is enabled. Hence, the dataset cardinality is usually higher for highly parallelized

test settings.

Synthetic datasets. We also exploited a synthetic dataset generator to evaluate algorithm performance and

scalability. The data generator is based on the IBM data generator [19]. It allows generating transactional synthetic

datasets by setting (i) the dataset cardinality, (ii) the average transaction length, and (iii) the item correlation factor.

To assign weights to data generated by the IBM generator we integrated a synthetic weight generator. The newly

proposed data generator version may assign to each data item a weight according to two different distributions,

chosen as representative among all the possible data distributions, i.e, the uniform data distribution and the Poisson

distribution. When not otherwise specified, in the following experiments item weights are selected in the range

[1,100]. The synthetic weighted data generator is publicly available at http://dbdmg.polito.it/∼paolo/.

DRAFT

15

B. Knowledge discovery from real benchmark datasets

Analysis and monitoring of multi-core system usage is commonly devoted to (i) detecting system malfunctioning,

(ii) optimizing computational load balancing and resource sharing, and (iii) performing system resizing. To address

these issues we focus on analyzing and validating, with the help of a domain expert, the usefulness of the patterns

extracted by IWI Miner and MIWI Miner from the real-life datasets described in Section V-A.

Since item weights occurring in the analyzed datasets represent core load rates, IWIs and MIWIs that satisfy a

maximum IWI-support value represent combinations of underutilized or idle cores. More specifically, when setting an

IWI-support-min threshold, MIWIs represent the smallest core combinations that contain at least one underutilized

core. Instead, when setting the IWI-support-max threshold, MIWIs represent the smallest core combinations that

contain only underutilized cores.

Consider the avrova benchmark first. In Table V the number of MIWIs mined by MIWI Miner by setting different

values of the maximum IWI-support-min and IWI-support-max thresholds (relative to 10% and 30% core usage

rates, respectively) is reported. Since core usage rates range from 0 to 100, for each dataset the absolute threshold

relative to the x% usage rate is given by |T | ·x%, where |T | is the dataset cardinality (i.e., the number of samples).

The corresponding values are given in Columns 2 and 5 in Table V. A preliminary analysis of the MIWIs extracted

by enforcing different IWI-support-max thresholds shows that, unexpectedly, some cores become underutilized when

the workflow is allocated over several cores. For instance, when 7 or more cores are simultaneously enabled some

of them have an average usage rate lower than 30% in all sampled points of time, i.e., at least one MIWI is mined.

Similarly, when 12 cores are simultaneously active, there exist 3 core combinations composed of cores with average

usage rate lower than 10%. Their inspection allows the expert to drive the process of system resizing.

To detect system malfunctioning or analyze the maximum application parallelism, the expert may also perform

a worst-case analysis by discovering situations in which the simultaneous enabling of multiple cores may cause

one or more cores to remain, possibly in an alternate fashion, completely idle (i.e., usage rate = 0). This situation

may be due to either specific scheduling problems (e.g., the scheduler may fail to consider some of the available

cores for its internal allocation policy) or running application constraints, which may limit the maximum system

parallelism. Table VI reports the number of IWIs and MIWIs mined from the avrova benchmark datasets by setting

IWI-support-min to 0. To give a more detailed insight into the characteristics of the extracted MIWIs, in Figure 2

we also reported the per-length distribution of the MIWIs mined from three representative datasets relative to the

avrova benchmark (i.e., the 16-, 24-, and 32-core settings) by enforcing an IWI-support-min threshold equal to 0.

The extracted IWIs compactly represent the information that, at each sampling time, at least one of the included

cores is idle. The extraction of IWIs with length 1 from highly parallel settings (i.e., the 24- and 32-core settings)

confirms the hypothesis of suboptimal resource utilization and suggests disabling/reallocation of specific cores. On

the other hand, longer IWIs may suggest the presence of an unbalanced load allocation when enabling specific

core combinations. Note that longer IWIs are discovered even when lowly parallelized settings (e.g., 16-core) are

analyzed. As a drawback, IWIs with IWI-support-min equal to 0 may also contain highly loaded cores. To focus

DRAFT

16

TABLE V

NUMBER OF MIWIS MINED BY MIWI MINER BY SETTING DIFFERENT VALUES OF MAXIMUM IWI-SUPPORT-MIN AND IWI-SUPPORT-MAX

THRESHOLD ξ. AVROVA BENCHMARK.

Usage ≤10% Usage ≤30%

Dataset Num. MIWIs Num. MIWIs

IWI- IWI- IWI- IWI-

ξ sup-min sup-max ξ sup-min sup-max

D2cores 790 0 0 2340 0 0

D3cores 780 0 0 2250 0 0

D4cores 750 0 0 2310 0 0

D5cores 770 0 0 2340 1 0

D6cores 780 0 0 2370 10 0

D7cores 790 10 0 2400 15 1

D8cores 800 20 0 2460 6 5

D9cores 820 33 0 2850 9 6

D10cores 950 45 0 3000 12 6

D11cores 1000 54 0 2790 10 9

D12cores 930 52 3 2940 11 11

D13cores 980 39 3 3150 12 11

D14cores 1050 59 2 3150 13 12

D15cores 1050 62 3 3180 15 15

D16cores 1060 58 4 3150 15 14

D17cores 1050 50 6 3300 16 15

D18cores 1100 59 6 3300 17 17

D19cores 1100 43 9 3300 18 17

D20cores 1100 61 9 3360 19 19

D21cores 1120 79 8 3360 21 21

D22cores 1120 66 10 3360 22 22

D23cores 1120 84 10 3390 23 23

D24cores 1130 50 14 3450 23 23

D25cores 1150 74 13 3480 25 25

D26cores 1160 73 14 3570 25 25

D27cores 1190 74 15 3480 27 27

D28cores 1160 58 18 3420 28 28

D29cores 1140 51 20 3510 28 27

D30cores 1170 69 19 3480 29 29

D31cores 1160 76 19 3160 30 30

D32cores 1180 84 20 3120 32 32

the attention on the smallest potentially relevant core combinations, the expert chooses to look into the subset of

Minimal IWIs. Although the mined IWI set may be hardly manageable for manual inspection, the number of mined

MIWIs is, in most cases, orders of magnitude lower (see Table VI).

The results confirm that the system has parallelized the computational workflow to lower extent than expected.

In fact, idle core situations appear when sampling the system usage with a 14-core setting or higher. Similar

results were achieved by evaluating system performance with other benchmarks. Table VII reports, for each tested

benchmark, the maximum number of cores yielding an optimal system parallelization in terms of the following

DRAFT

17

TABLE VI

AVROVA BENCHMARK. NUMBER OF IWIS AND MIWIS MINED BY SETTING THE MAXIMUM IWI-SUPPORT-MIN THRESHOLD ξ TO 0.

Dataset Num. of Num. of Size Num. of Num. of

original equivalent increase MIWIs IWIs

trans. trans. ratio with ξ=0 with ξ=0

|T | |TE| |TE|/|T |

D2cores 79 155 1.96 0 0

D3cores 78 221 2.83 0 0

D4cores 75 291 3.88 0 0

D5cores 77 370 4.81 0 0

D6cores 78 437 5.60 0 0

D7cores 79 511 6.47 0 0

D8cores 80 579 7.24 0 0

D9cores 82 606 7.39 0 0

D10cores 95 723 7.61 0 0

D11cores 100 769 7.69 11 70

D12cores 93 726 7.81 27 781

D13cores 98 756 7.71 42 1,908

D14cores 105 823 7.84 21 9,592

D15cores 105 821 7.82 187 12,931

D16cores 106 824 7.77 135 57,797

D17cores 105 811 7.72 190 121,724

D18cores 110 856 7.78 208 244,546

D19cores 110 882 8.02 175 513,470

D20cores 110 892 8.11 166 1e06

D21cores 112 942 8.41 552 2e06

D22cores 112 947 8.46 484 4e06

D23cores 112 993 8.87 562 8e06

D24cores 113 953 8.43 444 16e06

D25cores 115 1,086 9.44 576 33e06

D26cores 116 1,060 9.14 428 67e06

D27cores 119 1,064 8.94 636 134e06

D28cores 116 1,123 9.68 1513 267e06

D29cores 114 969 8.50 627 536e06

D30cores 117 1,051 8.98 448 1e09

D31cores 116 1,027 8.85 594 2e09

D32cores 118 816 6.92 1,816 4e09

criteria: (A) no idle core is detected, and (B) no core with average usage rate lower than 10% is detected. Condition

(A) is verified if no MIWI with IWI-support-min equal to 0 is mined, whereas condition (B) holds when no MIWI

with IWI-support-max lower than the 10% usage rate is extracted. The results show that in 7 out of 10 benchmarks

there exists at least one core combination for which one or more cores remain idle (not necessarily the same at

each instant), and in 8 cases out of 10 there is a suboptimal system resource usage.

DRAFT

18

TABLE VII

WORKFLOW PARALLELIZATION ANALYSIS.

Benchmark Max. number of Benchmark Max. number of

exploited cores exploited cores

no idle no usage no idle no usage

rate ≤10% rate ≤10%

avrova 10 7 lusearch 32 32

batik 5 6 pmd 32 18

h2 23 12 sunflow 32 32

jython 8 7 tomcat 29 17

luindex 7 6 xalan 27 25

 1

 10

 100

 1000

1 2 3 4 5 6 7 8

N
u
m

b
e
r

o
f
M

IW
Is

MIWI length

D16cores D24cores D32cores

Fig. 2. Per-length MIWI distribution. Maximum IWI-support-min threshold ξ=0. Avrova benchmark.

C. Performance analysis

We analyzed IWI Miner and MIWI Miner performance on standard synthetic and real datasets. In particular, we

analyzed: (i) The impact of the equivalence procedure on the dataset size (see Section V-C1), (ii) the impact of the

IWI-support thresholds on both the number of mined patterns and the algorithm execution time (see Section V-C2),

and (iii) the comparison, in terms of execution time, between MIWI Miner and MINIT, a state-of-the-art minimal

infrequent (unweighted) itemset miner [9] (see Section V-C3).

1) Impact of the equivalence procedure: To enable the IWI mining process from weighted data, an equivalence

procedure, described in Section IV-A, is preliminary applied to the original dataset in order to suit weighted data

to the subsequent FP-Growth-like mining step. This section reports the results of an experimental evaluation of the

impact of the equivalence procedure on the resulting dataset size.

Table VIII reports, for four representative synthetic datasets with different characteristics, the original dataset

size |T | (Column 1), the longest transaction length in T (Column 2), the equivalent dataset size |TE| (Column

3), and the size increase ratio |TE|/|T | (Column 4). In particular, three weighted datasets with size 100,000,

average transaction length 10, uniformly distributed weights, and different item correlation values (i.e., minimum

(0), standard (0.25), maximum (1)) are considered. Furthermore, one dataset with size 100,000, transaction length

10, Poisson distribution, and standard item correlation value is also analyzed. Similar statistics for the real avrova

datasets are given in Table VI.

DRAFT

19

 0

 1e+09

 2e+09

 3e+09

 4e+09

 5e+09

 6e+09

 7e+09

 8e+09

 0 50 100 150 200

N
u

m
b

e
r

o
f

IW
Is

IWI-support-min threshold ξ

(a) Number of mined IWIs.

IBMT10D100KC0-Uniform
IBMT10D100KC0.25-Uniform

IBMT10D100KC1-Uniform
IBMT10D100KC0.25-Poisson

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 0 50 100 150 200

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

IWI-support-min threshold ξ

(a) Number of mined IWIs. (b) IWI miner. Execution time.

IBMT10D100KC0-Uniform
IBMT10D100KC0.25-Uniform

IBMT10D100KC1-Uniform
IBMT10D100KC0.25-Poisson

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 0 50 100 150 200

N
u

m
b

e
r

o
f

M
IW

Is

IWI-support-min threshold ξ

(a) Number of mined IWIs. (b) IWI miner. Execution time.

(c) Number of mined MIWIs.

IBMT10D100KC0-Uniform
IBMT10D100KC0.25-Uniform

IBMT10D100KC1-Uniform
IBMT10D100KC0.25-Poisson

 8
 9

 10
 11
 12
 13
 14
 15
 16
 17

 0 50 100 150 200

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

IWI-support-min threshold ξ

(a) Number of mined IWIs. (b) IWI miner. Execution time.

(c) Number of mined MIWIs. (d) MIWI miner. Execution time.

IBMT10D100KC0-Uniform
IBMT10D100KC0.25-Uniform

IBMT10D100KC1-Uniform
IBMT10D100KC0.25-Poisson

Fig. 3. Impact of the maximum IWI-support-min threshold on IWI Miner and MIWI Miner performance. IBM synthetic datasets with different

data and weight distributions.

 0

 1e+09

 2e+09

 3e+09

 4e+09

 5e+09

 6e+09

 7e+09

 8e+09

 0 50 100 150 200

N
u
m

b
e
r

o
f
IW

Is

IWI-support-max threshold ξ

(a) Number of mined IWIs.

IBMT10D100KC0-Uniform
IBMT10D100KC0.25-Uniform

IBMT10D100KC1-Uniform
IBMT10D100KC0.25-Poisson

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 0 50 100 150 200

N
u
m

b
e
r

o
f
M

IW
Is

IWI-support-max threshold ξ

(a) Number of mined IWIs.

(b) Number of mined IWIs.

IBMT10D100KC0-Uniform
IBMT10D100KC0.25-Uniform

IBMT10D100KC1-Uniform
IBMT10D100KC0.25-Poisson

Fig. 4. Impact of the maximum IWI-support-max threshold on IWI Miner and MIWI Miner performance. IBM synthetic datasets with different

data and weight distributions.

As discussed in Section IV-A, a more realistic estimate of the number of generated equivalent transactions should

consider the average transaction length instead of the maximal one. The results reported in Table VI, achieved on

synthetic data with average transaction length 10, confirm the expected trend. However, in practice, since many

transactions are shorter than the longest one and many items have the same weight in each transaction, the actual

DRAFT

20

TABLE VIII

COMPARISON BETWEEN ORIGINAL AND EQUIVALENT DATASETS.

Dataset Num. of Max. Num. of Size Num. of

trans. trans. equiv. increase FP-tree

|T | length trans. ratio nodes

in T |TE| |TE|
|T | increase

ratio

IBMT10D100KC0 98,352 30 945,249 9.6 3.8

Uniform

IBMT10D100KC1 98,331 30 943,614 9.6 3.8

Uniform

IBMT10D100KC0.25 98,346 29 944,780 9.6 3.8

Uniform

IBMT10D100KC0.25 98,346 29 817,106 8.3 3.4

Poisson

size is significantly lower (e.g., for IBMT10D100KC0.25 the size increase ratio is 9.6 instead of 29). When using

the Poisson distribution instead of the uniform one, weights are more correlated with each other and the size increase

ratio further decreases (8.3 instead of 29). Similar results come out when coping with real data (e.g., based on the

results in Table VI, D32cores achieves 6.92 against 32). As discussed in Section IV-A, a more precise estimate of

the number of generated equivalent transactions is obtained by considering the product between the cardinality of

T and its average transaction length. In the considered IBM datasets the average transaction length is equal to 10,

and its use allows obtaining a good estimate of |TE|.

Since during the FP-Growth-like mining process many transactions may be collapsed into a single FP-tree path,

we also analyzed the impact of the equivalent procedure on the FP-tree size. In particular, in Table VI we reported

the ratio between the number of nodes contained in the FP-tree generated from TE and the one relative to the

FP-tree that would be generated from T (see Column 6). For all the evaluated datasets, the increase ratio, in terms of

nodes, is lower than the one achieved in terms of number of transactions because, subsets of equivalent transactions

generated from one original transaction are commonly compacted in the same FP-tree path.

2) Impact of the maximum IWI-support threshold: Since IWI-support threshold enforcement may affect the result

of the (M)IWI mining process significantly, we analyzed its impact on IWI Miner and MIWI Miner performance

on synthetic data. In particular, we performed different mining sessions, for many combinations of algorithms and

datasets with different characteristics, by varying the maximum IWI-support-min and IWI-support-max thresholds.

Figures 3(a), 3(c) and 4(a), 4(b) report the number of patterns extracted by IWI Miner and MIWI Miner from

datasets with different characteristics by varying the IWI-support-min and IWI-support-max constraints, respectively.

For the IWI Miner algorithm, the combinatorial growth of the number of possible infrequent item combinations

makes the number of mined IWIs grow super-linearly with the IWI-support threshold until a steady state is reached,

because all the possible IWIs have been extracted. Enforcing the IWI-support-max constraint instead of the IWI-

support-min one yields the curves converging to the steady state condition more slowly, because IWIs have, on

DRAFT

21

average, higher IWI-support values. Instead, for the MIWI Miner algorithm the combinatorial increase of the number

of candidate MIWIs is counteracted by the discarding of some IWIs that become not minimal, i.e., some of their

subsets satisfy the IWI-support constraint, from a certain point on. Hence, the total number of MIWIs becomes

maximal at medium IWI-support thresholds (i.e., when ξ is around 25)) while it decreases for higher IWI-support

values.

The average length of the extracted MIWIs also reflects the selectivity of the enforced IWI-support thresholds. In

particular, at lower IWI-support thresholds longer MIWIs are selected on average, while the average MIWI length

decreases when increasing the maximum IWI-support threshold. As an extreme case, when very high IWI-support

thresholds are enforced, only single weighted items get selected as minimal IWIs.

Synthetic datasets with different item correlation factors (i.e., the lowest (0), the highest (1), and the standard one

(0.25)) have been generated and tested. Roughly speaking, the correlation factor is an approximation of the dataset

density, i.e., the more the items are correlated with each other, the more dense the analyzed data distribution is.

As expected, the correlation factor turns out to be inversely correlated with the number of mined (M)IWIs. In fact,

denser datasets contain on average a higher number of frequent patterns and, thus, a lower number of infrequent

ones.

Weighted datasets with two different weight distributions, i.e., the Poisson distribution with a mean value equal

to 50 and the uniform distribution, have also been analyzed. Using the Poisson distribution instead of the Uniform

one produces, on average, fewer (M)IWIs with low IWI-support values. In fact, when using Poisson, the distribution

of the IWI-supports of the extracted MIWIs is thickened around the mean value 50, while the IWI-supports of the

extracted MIWIs are spread across the whole value range when using the uniform distribution.

Since the algorithm execution time and mined set cardinality are strongly correlated each other, the corresponding

curves show a similar trend. Hence, due to the lack of space, we report detailed results only for the IWI-support-min

measure (Figures 3(b) and 3(d)). Similar results have been obtained by enforcing the IWI-support-max measure.

 1

 10

 100

 1000

 10000

 0 50 100 150 200

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Support treshold ξ

MINIT - T=15
MINIT - T=10

MIWI - T=15
MIWI - T=10

Fig. 5. Comparison between MIWI Miner and MINIT in terms of execution time. Synthetic datasets.

3) Comparison with traditional non-weighted infrequent itemset mining: This paper is, to the best of our

knowledge, the first attempt to perform infrequent itemset mining from weighted data. However, other algorithms

(e.g., [7]–[9], [17]) are able to mine infrequent itemsets from unweighted data. Hence, to also analyze the efficiency

of the proposed approach when tackling the infrequent itemset mining from unweighted data, we compared

DRAFT

22

 0.1

 1

 10

 100

 1000

 10000

 0 10000 20000 30000 40000 50000

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Support treshold ξ

MIWI MINIT

Fig. 6. Comparison between MIWI Miner and MINIT in terms of execution time. Connect UCI dataset.

MIWI Miner execution time with that of a benchmark algorithm, namely MINIT [9]. MINIT is, to the best

of our knowledge, the latest algorithm that performs both minimal and non-minimal (unweighted) infrequent

itemset mining from unweighted data. For MINIT, we exploited the C++ algorithm implementation available

at http://mavdisk.mnsu.edu/haglin. For MIWI Miner, we set all item weights to 1 in order to mine traditional

(unweighted) infrequent itemsets.

We compared MIWI Miner and MINIT performance, in terms of execution time, on synthetic and benchmark

datasets with different characteristics. Figure 5 reports the execution times achieved by varying the maximum support

threshold in the range [0, 200] on two IBM synthetic datasets with 100,000 transactions and two representative

average transaction length values (i.e., 10 and 15). The synthetic datasets are characterized by a fairly sparse data

distribution. Similarly, Figure 6 reports the results achieved on the real-life Connect dataset downloaded from the

UCI repository [20]. Connect is an averagely dense dataset, characterized by 67,557 transactions and 42 categorical

attributes, which has already been used for comparing infrequent itemset mining algorithm performance [9]. Since

MINIT always takes more than 10 hours in mining non-minimal infrequent itemsets, while IWI Miner execution

is orders of magnitude faster, the corresponding plots have been omitted.

Thanks to its FP-growth-like implementation and the applied pruning strategy, MIWI Miner is always at least

one order of magnitude faster than MINIT in all the performed comparisons. In particular, when coping with denser

datasets (e.g., Connect) MIWI Miner becomes at least two orders of magnitude faster than MINIT for almost all the

considered maximum support threshold values. Similar results have been obtained for the other real and synthetic

datasets.

For the sake of completeness, we also considered another minimal infrequent mining algorithm, called IFP min [17],

beyond MINIT. IFP min is, to the best of our knowledge, the latest minimal (unweighted) infrequent itemset miner.

According to the results reported in [17], IFP min is faster than MINIT only when relatively high maximum support

threshold values are enforced. Unlike IFP min, MIWI Miner performs better than MINIT for every support threshold

value. Hence, when the mining task becomes more time consuming (i.e., lower support thresholds are enforced) it

performs significantly better than both IFP min and MINIT.

In summary, when dealing with unweighted data (i) IWI Miner is shown to be orders of magnitude faster than

state-of-the-art algorithms for all considered parameter settings and datasets, and (ii) MIWI Miner is faster or

DRAFT

23

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 200000 400000 600000 800000 1e+06

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

Number of transactions

(a) Num. of trans. (IWI Miner.

Avg. trans. len.=10. IWI-support-min).

ξ=1
ξ=10

ξ=20
ξ=100

 0

 50

 100

 150

 200

 250

 0 200000 400000 600000 800000 1e+06

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

Number of transactions

(a) Num. of trans. (IWI Miner.

Avg. trans. len.=10. IWI-support-min).

(b) Num. of trans. (MIWI Miner.

Avg. trans. len.=10. IWI-support-min).

ξ=1
ξ=10

ξ=20
ξ=100

 0

 100

 200

 300

 400

 500

 600

 0 200000 400000 600000 800000 1e+06

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

Number of transactions

(a) Num. of trans. (IWI Miner.

Avg. trans. len.=10. IWI-support-min).

(b) Num. of trans. (MIWI Miner.

Avg. trans. len.=10. IWI-support-min).

(c) Num. of trans. (MIWI Miner.

Avg. trans. len.=10. IWI-support-max).

ξ=1
ξ=10

ξ=20
ξ=100

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

 0

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

Average transaction length

(a) Num. of trans. (IWI Miner.

Avg. trans. len.=10. IWI-support-min).

(b) Num. of trans. (MIWI Miner.

Avg. trans. len.=10. IWI-support-min).

(c) Num. of trans. (MIWI Miner.

Avg. trans. len.=10. IWI-support-max).

(d) Avg. trans. len. (IWI Miner.

Num. of trans.=100,000. IWI-support-min).

ξ=1
ξ=10

ξ=20
ξ=100

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

Average transaction length

(a) Num. of trans. (IWI Miner.

Avg. trans. len.=10. IWI-support-min).

(b) Num. of trans. (MIWI Miner.

Avg. trans. len.=10. IWI-support-min).

(c) Num. of trans. (MIWI Miner.

Avg. trans. len.=10. IWI-support-max).

(d) Avg. trans. len. (IWI Miner.

Num. of trans.=100,000. IWI-support-min).

(e) Avg. trans. len. (MIWI Miner.

Num. of trans.=100,000. IWI-support-min).

ξ=1
ξ=10

ξ=20
ξ=100

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

Average transaction length

(a) Num. of trans. (IWI Miner.

Avg. trans. len.=10. IWI-support-min).

(b) Num. of trans. (MIWI Miner.

Avg. trans. len.=10. IWI-support-min).

(c) Num. of trans. (MIWI Miner.

Avg. trans. len.=10. IWI-support-max).

(d) Avg. trans. len. (IWI Miner.

Num. of trans.=100,000. IWI-support-min).

(e) Avg. trans. len. (MIWI Miner.

Num. of trans.=100,000. IWI-support-min).

(f) Avg. trans. len. (MIWI Miner.

Num. of trans.=100,000. IWI-support-max).

ξ=1
ξ=10

ξ=20
ξ=100

Fig. 7. IWI Miner and MIWI Miner scalability with different parameters. Correlation factor = 0.25.

competitive with state-of-the-art approaches, especially when setting lower maximum support thresholds or coping

with denser datasets.

D. Scalability analysis

We also analyzed the algorithm scalability, in terms of execution time, on synthetic datasets. To test the algorithm

scalability with the number of dataset transactions (i.e., the dataset cardinality), we generated datasets of size ranging

from 0 to 1,000,000 transactions by following the procedure described in Section V-A.

Figures 7(a) and 7(b) respectively report IWI Miner and MIWI Miner execution times by varying the dataset car-

dinality and by setting three representative IWI-support-min threshold values. The mining computational complexity

appears to be strongly correlated with the cardinality of the extracted patterns. In general, IWI Miner execution time

significantly increases for higher IWI-support-min threshold values due to the combinatorial growth of the number

of extracted patterns. Instead, MIWI Miner takes a higher execution time when medium IWI-support-min thresholds

are enforced, because the cardinality of the mined MIWIs becomes maximal (see Section V-C2). However, both

IWI Miner and MIWI Miner execution time scale roughly linearly with the dataset size for all the tested settings.

We also analyzed the algorithm scalability, in terms of execution time, with the average transaction length.

Figures 7(d)-7(e) report the IWI Miner and MIWI Miner execution times by varying the transaction length and by

setting three representative IWI-support-min threshold values. When increasing the average transaction length the

algorithm execution time increases because of the non-linear increase of the number of possible item combinations.

To also compare the impact of the IWI-support-min and IWI-support-max constraints on algorithm scalability in

DRAFT

24

Figures 7(c) and 7(f) we report the MIWI Miner execution time achieved by enforcing three representative IWI-

support-max constraint values and by varying the dataset cardinality and the average transaction length, respectively.

From the comparison between Figures 7(b) and 7(c) it comes out that the effectiveness of the early item pruning

strategy described in Section IV is lower when pushing the IWI-support-max constraint into the mining process

instead of IWI-support-min. Similar results, omitted due to space constraints, were achieved for IWI Miner (i.e.,

when non-minimal IWIs are mined). However, enforcing both constraints the proposed algorithms scale well even

when coping with fairly complex datasets (e.g., with dataset cardinality = 1,000,000, correlation factor = 0.25, and

average transaction length = 10, MIWI Miner takes around 180 s with IWI-support-min threshold ξ = 100, whereas

520 s with IWI-support-max threshold ξ = 100).

VI. CONCLUSIONS AND FUTURE WORK

This paper faces the issue of discovering infrequent itemsets by using weights for differentiating between relevant

items and not within each transaction. Two FP-Growth-like algorithms that accomplish IWI and MIWI mining

efficiently are also proposed. The usefulness of the discovered patterns has been validated on data coming from a

real-life context with the help of a domain expert. As future work, we plan to integrate the proposed approach in an

advanced decision-making system that supports domain expert’s targeted actions based on the characteristics of the

discovered IWIs. Furthermore, the application of different aggregation functions besides minimum and maximum

will be studied.

REFERENCES

[1] R. Agrawal, T. Imielinski, and Swami, “Mining association rules between sets of items in large databases,” in ACM SIGMOD 1993, 1993,

pp. 207–216.

[2] M. L. Antonie, O. R. Zaiane, and A. Coman, “Application of data mining techniques for medical image classification,” in MDM/KDD’01,

2001.

[3] G. Cong, A. K. H. Tung, X. Xu, F. Pan, and J. Yang, “Farmer: finding interesting rule groups in microarray datasets,” in ACM SIGMOD

04, Paris, France, 2004.

[4] W. Wang, J. Yang, and P. S. Yu, “Efficient mining of weighted association rules (WAR),” in Proceedings of the sixth ACM SIGKDD

international conference on Knowledge discovery and data mining, KDD’00, 2000, pp. 270–274.

[5] F. Tao, F. Murtagh, and M. Farid, “Weighted association rule mining using weighted support and significance framework,” in Proceedings

of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, KDD’03, 2003, pp. 661–666.

[6] K. Sun and F. Bai, “Mining weighted association rules without preassigned weights,” IEEE Transactions on Knowledge and Data

Engineering, vol. 20, no. 4, pp. 489 –495, 2008.

[7] A. Manning and D. Haglin, “A new algorithm for finding minimal sample uniques for use in statistical disclosure assessment,” in Fifth

IEEE International Conference on Data Mining, ICDM’05, 2005, pp. 290–297.

[8] A. M. Manning, D. J. Haglin, and J. A. Keane, “A recursive search algorithm for statistical disclosure assessment,” Data Mining and

Knowledge Discovery, vol. 16, no. 2, pp. 165–196, 2008, software downloaded from http://mavdisk.mnsu.edu/haglin at August 1st, 2011.

[9] D. J. Haglin and A. M. Manning, “On minimal infrequent itemset mining,” in Proceedings of the 2007 International Conference on Data

Mining, DMIN’07. CSREA Press, 2007, pp. 141–147.

[10] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without candidate generation,” in Proceedings of the 2000 ACM SIGMOD International

Conference on Management of Data, 2000, pp. 1–12.

[11] J. M. Kleinberg, “Authoritative sources in a hyperlinked environment,” J. ACM, vol. 46, no. 5, pp. 604–632, 1999.

DRAFT

25

[12] C.-K. Chui, B. Kao, and E. Hung, “Mining frequent itemsets from uncertain data,” in Proceedings of the 11th Pacific-Asia conference on

Advances in knowledge discovery and data mining, ser. PAKDD’07. Berlin, Heidelberg: Springer-Verlag, 2007, pp. 47–58.

[13] T. Bernecker, H.-P. Kriegel, M. Renz, F. Verhein, and A. Zuefle, “Probabilistic frequent itemset mining in uncertain databases,” in

Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, ser. KDD ’09. New York,

NY, USA: ACM, 2009, pp. 119–128.

[14] C. K.-S. Leung, C. L. Carmichael, and B. Hao, “Efficient mining of frequent patterns from uncertain data,” in Proceedings of the Seventh

IEEE International Conference on Data Mining Workshops, ser. ICDMW ’07, 2007, pp. 489–494.

[15] X. Wu, C. Zhang, and S. Zhang, “Efficient mining of both positive and negative association rules,” ACM Trans. Inf. Syst., vol. 22, no. 3,

pp. 381–405, 2004.

[16] X. Dong, Z. Zheng, Z. Niu, and Q. Jia, “Mining infrequent itemsets based on multiple level minimum supports,” in Second International

Conference on Innovative Computing, Information and Control, ICICIC’07, 2007, pp. 528–531.

[17] A. Gupta, A. Mittal, and A. Bhattacharya, “Minimally infrequent itemset mining using pattern-growth paradigm and residual trees,” in

COMAD, 2011, pp. 57–68.

[18] M. J. Elliot, A. M. Manning, and R. W. Ford, “A computational algorithm for handling the special uniques problem,” Int. J. Uncertain.

Fuzziness Knowl.-Based Syst., vol. 10, no. 5, pp. 493–509, 2002.

[19] IBM, “IBM Quest Synthetic Data Generation Code,” 2009. [Online]. Available: http://www.almaden.ibm.com/

[20] A. Frank and A. Asuncion, “UCI machine learning repository,” 2010. [Online]. Available: http://archive.ics.uci.edu/ml

DRAFT

