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Multipolar SPM machines for direct drive application: 

a general design approach 
B. Boazzo, G. Pellegrino, A. Vagati 

Politecnico di Torino 

Corso Duca degli Abruzzi 24, Torino, 10129 Italy 

Abstract - A closed-form, per-unit formulation for the 

design of surface mounted permanent magnet motors having 

high numbers of poles is hereby proposed. The analytical 

expression of machine inductances is presented, covering 

distributed and concentrated windings configurations. The 

paper addresses how the slot/pole combination, the geometric 

variables and the number of poles are related to average 

torque, the Joule loss and the power factor. The performance 

of distributed and concentrated windings machines is 

compared analytically, in normalized quantities. Last, the 

design approach is tested on four design examples, including 

all winding types and validated by finite element analysis. 

Index Terms – PM motor drives, PM machines, Motor Design, 

Surface Mounted PM machines, Wind turbines. 

I. INTRODUCTION 

Permanent magnet (PM) synchronous machines are 

recognized for their performance in terms of torque density 

and efficiency. In particular, direct-drive machines of the 

surface mounted PM type (SPM) have been increasingly 

adopted as motor and/or generators in many up to date 

applications such as traction and propulsion, aerospace and 

energy production from renewable resources [1]. Recently, 

the price of rare earth PMs have suffered from a significant 

volatility, yet the interest for PM based electrical machines 

is high, as recent works demonstrate [1-2]. 

Over the last decade, a lot of effort has been devoted to 

the investigation of fractional slots per pole per phase 

combinations and concentrated windings, for their better 

fault tolerance, ease of manufacturing, short end 

connections and high copper filling factor [2-10]. However, 

distributed winding machines are still adopted in many 

direct drive applications. 

The paper proposes a general, per-unit design approach 

for three-phase SPM machines for direct-drive applications. 

The investigation covers distributed and concentrated 

winding types; it is based on simple analytical formulas, 

valid for all integer and fractional slot numbers. The 

elementary block reported in Fig. 1 represents one pole of a 

SPM machine, e.g. with distributed windings. A rotating, 

direct-drive SPM machine with a high number of poles is 

the assembly of a proper number of such poles, with very 

good accuracy. 

The key-geometric parameters, defined in Fig. 1, are the 

pole pitch a, the tooth length lt and the PM length lm. In all 

formulas, they will be normalized by the airgap length g. 

Another very important parameter is the number of slots 

per pole per phase q, that is an integer for distributed 

windings and a fraction for concentrated windings. For 

fractional slot windings a is the rotor pole pitch. Other 

variables (km, Bfe, kt) are defined in Fig. 1, as a reference for 

the symbols adopted throughout the paper. 

 

Figure 1.  Elementary block of linear-like SPM synchronous machine, 

corresponding to one PM pole pitch. The example has q = 3 slots per pole 
per phase. 

Key figures of merit such as the shear stress (related to 

torque density), the power factor (PF) and the Joule loss per 

outer surface unit will be expressed as a function of q and 

the geometric quantities of Fig. 1. Optimal combinations of 

the design variables are addressed, given the type of 

windings (concentrated, distributed) and the cooling setup 

(Joule loss per square meter). Particular emphasis is put on 

how the PF can be maximized by design, given the shear 

stress, or vice versa. Such emphasis has the following 

motivations, that have relevance in particular for fractional 

slot machines: 

 A low power factor negatively affects the size of the 

power converter. 

 A low power factor indicates that the machine can be 

prone to load-dependent core saturation, leading to a 

torque reduction. 

 The machine inductance is the key design parameter of 

fractional-slot SPM machines. The paper shows that PF 

maximization is a powerful criterion for orientating the 

choice of all other design variables. 

After the model is introduced and commented, a design 

flowchart is proposed and applied to three design examples, 

one per type of windings. The design examples are 

validated by Finite Element Analysis (FEA) and the 

comparison between FEA and the analytical model is 

commented. General considerations about where and how 

to use factional slot configurations are given in the final 



 

 

 

 

discussion. This work is the prosecution and development 

of [11], where the modelling approach was first applied to 

single layer factional windings only. 

II. PER UNIT MACHINE MODEL 

A. Magnetic loading 

The magnetic loading B is defined as the peak of the 

fundamental component (wavelength = 2a), at no load (1). 

   ̂            
  

     
 
  

           

Where Br is the PM remanence, kc is the Carter 

coefficient and kb is a shape factor that quantifies the 

fundamental harmonic, given the magnets’ pole arc [12]. 
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Apart from the Carter coefficient, and given the airgap 

length, the no-load magnetic loading (1) depends on rotor 

parameters only and it is independent of the rotor pole 

pitch a. The effect of steel saturation at load is discussed at 

subsection VII.B. 

Ultimately, the normalized PM thickness lm/g 

determines the magnetic loading (1) and also the resistance 

to de-magnetization of the machine. Over certain values, 

like lm/g = 6, it is not convenient to further increase lm/g to 

improve B, unless it is required by special overload needs 

and related demagnetization issues. The formulas relating 

lm/g and the de-magnetization limit are not reported 

because they are out of the scope of this paper. The 

example value lm/g = 6 will be used in the following and 

final designs must be eventually verified against de-

magnetization through analysis and FEA. 

B. Electric loading and shear stress 

The electric loading is defined in (3): 

  
 

 
 
 

 
                  

Where kw in (3) is the winding factor, N is the number of 

conductors in series per pole per phase. Iq is the phase 

current amplitude. It is implicitly intended that the current 

vector is aligned with the quadrature axis, that is the 

maximum force (torque) per Ampere situation. The average 

shear stress is: 
                

The shear stress is measured in N/m
2
 and it is the time-

averaged tangential force acting on the elementary block of 

Fig. 1, divided by the airgap surface. In case of a 

cylindrical machine, the shear-stress is proportional to its 

torque per rotor volume density. 

Once the PM grade, shape and thickness are set, the 

magnetic loading (1) is determined. Then the shear stress 

will depend on the electric loading (3) only. Its upper limits 

are either related to Joule loss (i.e. thermal limit or 

efficiency target) or to the aforementioned de-

magnetization. 

C. Specific Joule loss 

The Joule loss factor kj (5), expressed in W/m
2
,
 

is 

obtained by dividing the copper loss of the elementary 

block of Fig.1 per its outer surface, and it is representative 

of the heat dissipation capability of the machine: 

   
        

             ⁄  
 (

 

  

)
 

 
 

  
                    

Cu is the electric resistivity of copper, kCu is the slot 

filling factor (net copper over slot cross section), kend is the 

length of the conductors, including end connections, 

divided by their active length. Bfe is the peak flux density in 

the stator back iron, that is inversely proportional to the 

cross section of the stator yoke as defined in Fig. 1. kt is the 

tooth scaling factor, also defined in Fig. 1, and it is 

proportional to the tooth width. As for (1), also the Joule 

loss factor (5) is independent of the pole pitch, and it is also 

independent of the airgap lenght. In substance, kj depends 

on the tooth length, and the tooth length is not normalized 

in this case. The value of kj at continuous conditions 

basically determines the length of the teeth, that has a direct 

impact on the mass of the active parts, as will be shown in 

the next sections. 

D. Power factor 

The vector diagram referring to one machine pole is 

reported in Fig. 2. The current vector is in time quadrature 

with the PM flux linkage (m,pole) and the stator resistance 

voltage drop is neglected. The PF angle  can be expressed 

in normalized quantities as follows: 

     
   

  
          

 

 
              

Where the subscript “pu” stands for per-unit and base 

for inductance normalization is: 
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being l the stack length. According to (6), the power 

factor is determined by the per-unit inductance Lpole,pu only, 

once the shear stress and its components B and A are given. 

 
Figure 2.  Definition of the power factor angle  (6). 

Provided that rare earth magnets are used, the factor B 



 

 

 

 

has very little variations when changing from one machine 

to another, and then the per unit inductance directly 

relates the power factor to the shear stress (torque 

density). This is of little importance with distributed 

windings, but it can become critical for fractional slot 

machines, in particular the single layer ones, where wrong 

design choices can lead to impractical values of the power 

factor. In the following the minimization of the pole per-

unit inductance is addressed, along with the criteria for a 

best compromise between shear stress and power factor. 

III. ANALYSIS OF THE PER-UNIT INDUCTANCE 

The inductance of the elementary block of Fig. 1 is the 

sum of the slot leakage and the air gap inductances: 

                                     

In normalized quantities, the two components of (8) 

depend on the geometric variables defined in Fig. 1, with 

expressions that are different for distributed (integer q) and 

concentrated (fractional q) windings. 

A. Distributed winding machines 

The magnetization inductance is given by (9): 

      
  

    
  (

 

   
  
 

)  
 

 
           

The slot inductance expression is (10): 
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Expressions (9) and (10) are reported for q = 1 only for 

simplicity and because most of machines with many poles 

have q = 1, as also the design example at Section VI. The 

equations could be complicated to include q > 1 and short-

pitching. The results for q = 2, full pitch, are reported in the 

graphs of Figs. 4-7 for the sake of comparison with q = 1, 

showing little difference at the purposes of this analysis. 

From (9) it turns out that Lg is proportional to the ratio 

a/g. Conversely, if the tooth length to airgap rate lt/g is 

fixed, then Lslot is inversely proportional to a/g, as put in 

evidence in (10)
1
. 

The dashed curves in Fig. 2 show that the per-unit 

inductance, sum of (9) and (10), has a minimum for a 

precise a/g value. It can be demonstrated that the minimum 

inductance condition is when Lg = Lslot. Posing Lg = Lslot, 

the pole pitch to air gap ratio that minimizes the inductance 

is found: 

(
 

 
)
    

   √
  

  
 
 (  

  
 

)

  
 

   
  

          

The minimum inductance, corresponding to (11), is: 

                                                           
1 The airgap can be simplified between lt/g and (a/g)-1 in (10) and (13), 

meaning the slot inductance is proportional to lt/a, whatever the airgap. 

The form of (10) was chosen for having all dimensions normalized by g. 
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The tooth to airgap length ratio lt/g has effects on (11) 

and (12), as can be also seen in Fig. 2. The pole pitch (11) 

depends on  lm/g  and lt/g mostly. Typical values of kt are 

0.8 to 0.9, for distributed windings. 

A. Fractional slot machines 

The slot inductance expression is (13), where nl is the 

number of layers, equal to one for single layer and to two 

for double layer configurations, respectively. For nl  =1 the 

expression (13) equals (10). 
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Q0 is the number of slots corresponding to half the 

electrical periodicity of the machine [7], for those q where 

anti-periodic symmetry conditions apply, or corresponding 

to the full electrical period, when they do not. In other 

words, the number Q0, descending directly from q, 

represents the minimum number of slots to be simulated 

when symmetry boundary conditions (anti-periodic or 

periodic, in case) are adopted. Lg,pu, either for single or 

double layer windings is: 
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According to the factor 1/nl in (14), the air gap 

inductance of a double layer machine is half the one of 

the single layer machine having the same geometry. This 

conclusion is valid for all values of q. The derivation of (9)-

(10) and (13)-(14) is reported in the Appendix. 

 
Figure 3.  Per-unit inductance versus the pole pitch to airgap ratio. The 

examples refer to q = 1 and q = 2/5, single and double layer. lm/g = 6 and 
lt/g is a parameter. 

In Fig. 3 the per-unit pole inductance is reported as a 

function of a/g for the example cases q = 1 and q = 2/5, 

single and double layer. Double layer machines tend to 

have a lower inductance than single layer ones, as intuitive, 

and have the minimum inductance condition at larger pole 

pitch values. The comparison between fractional machines 



 

 

 

 

having different q is reported in Fig. 4a, for single layer, 

and Fig. 4b, for double layer. The two figures also report 

the curves for integral q, that are all the same, instead, 

independently from q being one, two or more. 

Posing (13) equal to (14), the minimum inductance 

condition and the minimum inductance value are now: 

(
 

 
)
    

    √
    (  

  (    )

    
) 

  
 
 (  

  
 

)

(  
 

   
  )

         

(        )   
 

 

 
 

  

√   
  √

  
 
 (  

  (    )

    
)

   (  
  
 

) (  
 

   
  )

         

The minimum inductance pole pitch (15) is proportional 

to the fractional q, while it was insensitive to integer q in 

(11), as also evident from Fig. 4. This accounts for how 

critical the choice of q can be when designing a fractional 

slot machine, for keeping the power factor within the 

limits, as addressed in the following section. Also the 

minimum inductance value (16) varies a lot from one 

fractional q to another, that is again verified in Fig. 4. 

(a) 

(b) 
Figure 4.  Per-unit inductance for different values of fractional q. a) 

Single layer machines compared with integral q; b) Double layer machines 

compared with integral q. All examples have lm/g = 6 and lt/g = 40. 

IV. MAXIMUM POWER FACTOR MACHINES 

Machines having minimized inductance are compared in 

this section, meaning that their pole pitch satisfies the 

condition (11), for integral q, and (15) for fractional q, 

given the tooth length lt/g. Figure 5 reports the pole pitch as 

a function of the number of slot per pole per phase. In case 

of cylindrical machines all having the same rotor diameter, 

such a/g values are a measure of the number of pole pairs, 

in inverse proportion. From Fig. 5: 

 fractional slot machines tend to have a smaller (a/g)Lmin 

and then a higher number of poles, when the minimum 

inductance criterion is satisfied. 

 In such conditions, double layer machines can be close 

to integral slot ones, for values such as q = 1/2 or 2/5. 

 Low q machines and single layer machines are forced to 

have a high number of poles (low a/g) for keeping the 

inductance low. 

Figure 6 reports the minimum values of the per unit 

inductance (12) and (16), giving evidence of what 

anticipated in Figs. 3 and 4: 

 integral slot machines are insensitive to q while 

fractional slot ones are very sensitive to q. 

 The minimum inductance is inversely proportional to 

the fractional q, and becomes very large for little values 

of q such as 1/8 or 1/10; 

 
Figure 5.  Pole pitch factor that minimizes the machine inductance, as a 

function of the number of slots per pole per phase. lt/g is a parameter  

 
Figure 6.  Minimum pole per-unit inductance as a function of the number 

of slots per pole per phase and the tooth length. lt/g is a parameter 

As said after equation (6), the per-unit inductance 

determines the power factor given the shear stress. In Fig. 7 

machines all having the same shear stress are evaluated, 

and their maximum PF is reported for all q values, 

following the pole pitch conditions of Fig. 5 and the 

minimized inductances of Fig. 6. The shear stress is 62.5 

kN/m
2
 for all machines, and the corresponding electric 

loading is 55 kA/m, according to (1) and (4). The power 

factor is calculated via (6). All the examples of Fig. 7 have 

the same airgap and rotor parameters (lm/g = 6, Br = 1.12 T, 

kb = 1.15, that is a typical value). 



 

 

 

 

 

Figure 7.  Maximum power factor at given shear stress ( = 62.5 kN/m2) 
as a function of the number of slots per pole per phase and the tooth 

length. lt/g is a parameter 

The results of Fig. 7 show that: 

 With low fractional values of q (e.g. 1/8) there is no 

way of having an acceptable power factor, even if the 

pole pitch is chosen for PF maximization. 

 Popular slot per pole combinations such as 2/7 are at 

risk for this reason, with single layer windings. 

 Shortening the teeth improves the power factor, but it 

also directly increases the specific loss (5). 

 Therefore, in many cases it is actually impossible to 

have an acceptable PF with a low fractional q and single 

layer windings, due to the thermal limit. 

 This becomes even more serious when the minimum 

inductance condition (15) is not respected. 

 The PF of integral slot machines is steadily high, and it 

is then not necessary to optimize the pole pitch, in this 

case. 

 On the contrary, integral slot machines can even have a 

PF that is too high, and related side effects such as high 

short circuit currents and PWM current ripple.  

V. DESIGN FLOWCHART 

This section describes how a rotating machine can be 

designed via the linear per-unit model developed so far. It 

is convenient to introduce the relationship between torque 

and shear stress (17), depending on the rotor radius r and 

the stack length l, and the expression of the number of 

poles (18), given the radius and the pole pitch. 

                                

  
   

 
                         

The flowchart is organized as follows: firstly, the 

elementary block is determined, in terms of size and 

performance, by applying the per-unit model iteratively 

according to the design constraints. Then, the rotating 

machine is obtained as the assembly of a proper number of 

the just defined blocks. The minimum inductance condition 

orientates the choice of the pole pitch and then the number 

of poles (18). When the PF is actually a problem (e.g. 

single layer machines), then such pole pitch will be the 

actual design choice, otherwise it is always convenient to 

reduce the pole pitch for increasing the number of poles 

and then the mass of the active parts. 

It is now assumed that the lower limit to the rated power 

factor is 0.7, as a reference value, but different choices can 

be made. Elementary blocks having the PF lower than 0.7 

are then rejected and the model is re-evaluated with 

different inputs. 

B. Preliminary data  

 Airgap length g 

 q and type of winding 

 PM grade (Br) and thickness lm/g 

 Steel exploitation Bfe (peak) 

 Cooling and thermal constraint, represented by the 

target specific loss kj0 

 Target shear stress , with reference to typical figures 

of machines having the same type of cooling and the 

same size. 

C. Design of the elementary block 

1. The magnetic loading B is calculated via (1). 

2. The electric loading is calculated from B and the  

target, according to (4). 

3. The tooth length is tentatively set according to the loss 

target kj0, according to (5). The end connection factor is 

a tentative value in this case, to be recalculated once the 

active length and the pole pitch are finally done. This 

can require some iteration. 

4. The reference pole pitch (a/g)Lmin is calculated 

according to the minimum inductance condition, (11) or 

(15), respectively. 

5. The minimized power factor is evaluated and compared 

to the limit. 

a. If the PF is 0.7 or little more, then the block is 

completely defined. 

b. If the PF is lower than 0.7, then lt is reduced and the 

flowchart is restarted from point 3. One of the two 

targets  and kj0 must be relaxed, in this case. 

c. If there is a PF margin (PF >> 0.7), then the pole 

pitch is reduced with respect to (a/g)Lmin for 

increasing the number of poles, as aforementioned. 

The outputs of this stage are: 

 the pole pitch a/g and the tooth length lt/g. 

 The shear stress, the power factor, the Joule loss factor. 

As said at point 5c, most of the times a PF margin exists 

and it is not convenient to stay on the minimum inductance 

pitch. If reducing the pitch still maintains an acceptable PF, 

it is convenient to do it, because machines with a shorter 

pitch will have shorter end connections, a lighter back iron 

and a lower short circuit current. Having a PF margin is 

very often the case with distributed windings, less often 

with double layer, fractional q and it is more rare with 



 

 

 

 

single layer windings. In conclusion, the (a/g)Lmin sets an 

upper limit to the pole pitch: all good machines have a 

pitch that is equal or lower than that, whilst choosing it 

larger would only give disadvantages in terms of weight, 

PF and end connections. 

D. Additional input data 

The rotating machine is defined according to: 

 the target torque T0 and the rated speed. 

 The maximum outer radius (R0) and stack length (l0). 

E. Design of the rotating machine 

Given the shear stress of the elementary block: 

1. the product r
2
l is evaluated via (17), according to the 

target torque. 

2. From r
2
l, the rotor radius and stack length are chosen, 

within the maximum length limit. 

3. The number of pole pairs (18) is calculated and 

truncated to the closest feasible number. Not all integers 

are feasible, when dealing with fractional slots. 

4. The end connection length is corrected and the specific 

loss is recalculated according to. 

5. Also the machine inductance and the power factor are 

recalculated, after the pole pair truncation. 

6. The stator outer radius is calculated and compared to its 

limit 

a. If the outer radius is ok, then the design is 

finished. 

b. If it is too large, the flowchart restarts from point 2 

with a reduced r and an increased l, where possible. 

c. If both l and R are over their limits, some constraint 

must be relaxed. 

Once the flowchart is completed, the final design is FEA 

evaluated. 

VI. DESIGN EXAMPLES 

The target performance, common to all design examples 

is the one of a direct-drive wind power generator, rated 3 

MW at 16.9 rpm, that means 1695 kNm continuous torque. 

The target specific loss is kj0 = 7500 W/m
2
, referring to 

direct ventilation from the wind and the stator diameter 

should be lower than or equal to 4 m. 

The three example geometries reported in Fig. 8 have 

been designed following the just introduced flowchart. 

Design 1 refers to distributed windings with q = 1, design 2 

is optimized for single layer windings with q = 2/5 (version 

2a) and then re-evaluated with double layer windings 

(version 2b). Last, design 3 is optimized for q = 2/5, double 

layer. All final designs have the same outer dimensions 

(stator diameter and stack length), the same calculated 

torque, and very similar Joule losses. Iron loss is not 

included in this analysis, due to the low fundamental 

frequency of all the design examples. 

A. Design 1: distributed windings 

The distributed winding example has q = 1. Higher 

numbers (q = 2, 3 ..) would make the slots too slender to be 

feasible. The geometry of design 1 is described in Table I, 

along with its FEA evaluated performance. Table II 

compares the model results with FEA. The sketch of the 

laminations is on the left-hand side of Fig. 8. 

The minimum inductance condition would have 

suggested a pole pitch factor (a/g)Lmin = 44.2 instead of the 

chosen a/g = 25.3. As said in subsection IV.C, the 

minimum inductance condition tends to be disadvantageous 

for distributed winding machines. Design 1 here has p = 45 

while one machine designed according to (a/g)Lmin would 

have had 25 pole pairs, and a significantly higher mass of 

the active parts. The power factor of design 1 is still high 

enough (0.84 from the model, 0.85 from FEA). Moreover, 

the fundamental frequency is still low enough (12.7 Hz at 

rated speed) to assume that the iron and PM loss are 

negligible with respect to the Joule loss. 

The tooth length of this machine (lt/g = 30) is higher 

than the one of the other two machines of Fig. 8, having 

fractional slots. The teeth of design 1 are necessarily longer 

to keep the Joule losses equal to the other designs. It is 

consistent with the literature that fractional slot machines 

have lower Joule losses due to their shorter end 

connections. This can be seen in (5), where the end winding 

factor kend is in evidence. Besides, the two fractional slot 

machines also have a lower tooth scaling kt factor (see 

Table I), and this again reduces the Joule loss according to 

(5). In other words, designs 2 and 3 have a more convenient 

slot to tooth split factor, resulting in a larger total copper 

area over the machine cross section. Also the slot filling 

factor kCu could be a matter of discussion, but here all 

examples have 0.4. 

B. Design 2a: single layer, concentrated windings 

The number of slots per pole per phase is q = 2/5, as 

suggested by all the considerations about the power factor, 

summarized in Figs. 5 to 7. The main data of design 2 are 

in Table I, while the model versus FEA comparison is in 

Table III. The sketch of the laminations is in the middle of 

Fig. 8. As for design 1, the design flowchart is iterated for 

obtaining a stator radius that is exactly 2 m and to comply 

with the torque and loss targets. In this case, the pole pitch 

choice follows the minimum inductance condition (a/g = 

19.3) and the corresponding pole pairs number is very close 

to 60, with no need of truncation. The model-calculated 

power factor is 0.7. 

C. Design 2b: double layer version of design 2a  

Design 2b is essentially the same machine of design 2a, 

where the single layer windings have been replaced by a set 

of double layer ones. Most of the data referring to this 

machine in Table I are the same given for design 2a. When 

different, the additional numbers in round brackets in the 

table refer to design 2b.



 

 

 

 

 

Figure 8.  Sketches of the three design examples geometries.

TABLE I –MAIN DATA OF THE MACHINE DESIGN EXAMPLES 

Design 1 2 3 

Main input data 

Winding type Dist 
2a: SL 

(2b: DL) 
DL 

Slot/pole/phase q 1 2/5 2/5 

Airgap g (mm) 5 

Magnet grade Br (T) 1.12 

PM length lm/g 6.1 

Core flux density Bfe (T) 1.5 

Slot filling kCu 0.4 

Stator radius R (m) 2.00 

Design results 

Rotor radius r (m) 1.807 1.840 1.815 

Stack length l (m) 1.3 

Pole pitch a/g 25.3 19.3 25.4 

Tooth length lt/g 30.4 23.8 26.6 

Pole pairs p 45 60 45 

Carter kc 1.053 1.085 1.101 

End connections kend 1.334 
1.094 

(1.066) 
1.087 

Tooth scaling kt 0.8 0.76 0.76 

Mass of 

active parts 
(tons) 33.2 

26.7 

(26.5) 
29.5 

Mass of PMs (tons) 2.96 3.01 2.97 

FEA evaluated performance 

Torque (Nm) 1562 
1533 

(1572) 
1609 

Joule loss (kW) 108 
110 

(118) 
109 

PF  0.85 
0.70 

(0.78) 
0.78 

Also, Table III reports the FEA to model comparison for 

this particular machine. In brief, the double layer version 

shows a significantly higher power factor (0.78 versus 

0.70), but also a little increase of Joule losses for giving the 

same torque (118 kW versus 110 kW). This is due to the 

winding factor kw that is lower with double layers (0.966 

versus 0.933). 

D. Design 3: double layer with optimized PF 

Design 3 is also reported in Table I and in Fig. 8, on the 

right-hand side. Table IV reports the model and the FEA 

calculated performance. The number of poles has been 

chosen for inductance minimization according to (15) and 

(18), apart from pole-pair truncation. According to FEA, 

design 3 is the one giving the highest torque, or the less 

underestimated one (1609 Nm against the target 1695 Nm), 

due to a lower impact of core saturation that will be 

discussed later. Joule losses are the same of design 1 and 

design 2a and the weight of the active parts is intermediate 

between the three geometries. The power factor is 

practically equal to the one of design 2b, even if that 

machine was not specifically designed for PF 

maximization, in the double layer version. This could 

sound counterintuitive, in a way, but it must be considered 

that design 3 has longer teeth, and then a PF factor that 

tends to be worse due to the slot leakage inductance. 

Which solution is better between design 2a and design 3 

is a matter of discussion, the former being lighter (26.5 tons 

versus 29.5 tons), while the latter giving more torque for 

the same loss. 

E. Finite element validation of the model 

The per-unit design procedure has been validated via 

static magnetic FEA using FEMM [13]. Finite element 

results are given in Tables II to IV, next to the model 

results for the design examples. Both with the model and 

with FEA, the magnetic loading B is evaluated at no load, 

and the numbers are very alike in this case, for all 

machines. The model calculated target torque is purposely 

equal (1695 kNm), as well as the model calculated Joule 

loss (109 kW). The number of turns in series per phase is 

chosen to set the phase voltage of all machines to 577 V 

peak, at rated current. This calculation was based on FEA 

results. The discrepancy between FEA and model evaluated 

losses in the Tables is related to the effect of curvature on 

the actual cross section of the slots. It is no coincidence that 

this effect is more evident in design 1, which is the one 

with the longest teeth. In fact, the linear model 

underestimates the cross section of slots, and the 

approximation is always conservative 



 

 

 

 

TABLE II – PERFORMANCE OF DESIGN 1, q = 1 

 Eq. Model FEA 

B (T) (1) 1.10 1.10 

A (A/m) (3) 54293  

(kN/m2  63.22  58.25 

T (kNm) (16) 1695  1562 

Phase Current (Apk)  3845 

Phase Voltage (Vpk)  636 577 

Phase back-emf (Vpk)  518 518 

Joule loss (kW)  119.2 107.9 

Lg (mH) (9) 0.274  

Lslot (mH) (10) 0.683  

Ltip (mH)  0.137  

Ltot (mH)  1.09 1.05 

PF  0.84 0.85 

TABLE III – PERFORMANCE OF DESIGN 2, q = 2/5 

  Single Layer Double Layer 

 Eq. Model FEA Model FEA 

B (T) (1) 1.10 1.09 same same 

A (A/m) (3) 55499 same 

(kN/m2  60.96 55.13 same 56.53 

T (kNm) (16) 1695 1533 same 1572 

Phase Current (Apk)  4421 4233 

Phase Voltage (Vpk)  661 577 621 577 

Phase back-emf (Vpk)  451 447 470 466 

Joule loss (kW)  119 110 125 118 

Lg (mH) (13) 0.385  0.225  

Lslot (mH) (14) 0.390  0.398  

Ltip (mH)  0.214  0.219  

Ltot (mH)  0.99 0.98 0.84 0.87 

PF  0.7 0.72 0.78 0.77 

TABLE IV – PERFORMANCE OF DESIGN 3, Q = 2/5 

 Eq. Model FEA 

B (T) (1) 1.10 1.11 

A (A/m) (3) 57158 

(kN/m2  62.65  59.46 

T (kNm) (16) 1695  1609 

Phase Current (Apk)  4286 

Phase Voltage (Vpk)  623 577 

Phase back-emf (Vpk)  466 470 

Joule loss (kW)  119 109 

Lg (mH) (13) 0.396  

Lslot (mH) (14) 0.453  

Ltip (mH)  0.295  

Ltot (mH)  1.14 1.18 

PF  0.77 0.78 

VII. DISCUSSION OF OTHER EFFECTS 

A. Tooth tip inductance 

The tooth tip inductance term Ltip has been evaluated 

analytically in Tables II to IV, but its equation was not 

explicitly mentioned in the paper for the sake of simplicity. 

The tooth tip inductance requires a few additional 

parameters to be defined [10], and the tooth tip shape can 

vary a lot from case to case. The impact of the tooth tip 

term on the choice of the critical pole pitch (a/g)Lmin is very 

limited, and such simplification does not affect the final 

design, apart from the correct evaluation of the PF, that 

must include Ltip. 

B. Steel saturation 

The torque versus current curves in Fig. 9, FEA 

calculated, show the progressive effect of core saturation 

with current loading. The torque at rated current is lower 

than the one predicted by the per-unit model, that assumes 

magnetic linearity. In the presented modelling approach, 

the choice of the parameter Bfe determines the yoke and 

tooth widths. This is the target peak value of the flux 

density in the back iron, intended at no load. All the 

examples in the paper refer to Bfe = 1.5 T. The yokes of all 

the design examples are then expected to have peak flux 

densities of 1.5 T at no load, and that is confirmed by FEA. 

When at load, the stator core will actually work at higher 

flux densities, due to the armature flux, and then saturate 

progressively. 

In Fig. 9, design 2a is the one suffering most from 

saturation. To a certain extent, those machines having a 

higher armature flux linkage (a lower power factor) are also 

more likely expected to have a torque reduction due to 

saturation. Design 2a is, in fact, the machine with the 

lowest power factor. The double layer version of the same 

machine, design 2b, has a better power factor and, 

consistently, a lower saturation.  

 

Figure 9.  Machine torque according to the linear model and the FEA, as 

a function of the machine current, for the two designs, to put in evidence 

the effect of core saturation. 

However, when coming to compare designs 1 and 3, it 

turns out that the one with the lower PF (design 3 has 0.78 

and design 1 has 0.85) saturates less at rated current. This is 

related to the shorter tooth length of design 3. The model 



 

 

 

 

could be modified to include saturation, but this has been 

avoided for simplicity. A possible countermeasure to 

reduce the torque overestimate, with no model 

complication, could be to oversize the yoke and tooth 

widths by a certain factor, by setting a lower no load peak 

flux density (e.g. Bfe = 1.4 T). 

In Tables II to IV the phase voltage amplitude from the 

model and from FEA are different, again due to core 

saturation. 

Last, the Ltot inductances in the tables are FEA 

calculated at low current loading, before saturation, to be 

comparable with the respective values given by the model. 

C. Design maps at given outer dimensions 

It is interesting to see how the design philosophy based 

on elementary blocks can partially change when moving to 

real world rotating machine. The blocks of the per-unit 

model refer to the airgap surface (radius r), that is not equal 

for all the designs at Section VI, where it is the outer 

dimension (R = 2 m) that is always the same, instead. 

 
Figure 10.  PF and W/m2 countour curves at constant outer dimensions (R 
= 2m, l = 1.3m) and constant torque (1695 kNm), for q = 2/5, single layer. 

 

Figure 11.  PF and W/m2 countour curves at constant outer dimensions (R 

= 2m, l = 1.3m) and constant torque (1695 kNm), for q = 2/5, double 
layer. 

Figs. 10 and 11 summarize the performance of a family 

of rotating machines all having the same stack cylinder (R 

= 2m, l = 1.3m) and the same output torque (1695 Nm). All 

the curves have been traced by means of the linear per-unit 

model, applied iteratively to obtain R = 2 m and the 

specified torque. All machines of Fig. 10 have q = 2/5, 

single layer, including design 2a, while Fig. 11 refers to q = 

2/5, double layer (design 2b and design 3). The PF and the 

specific loss contour curves are reported as a function of 

the number of pole pairs and of the tooth length. The red 

dotted line represents the family of machines having the 

p.u. pole inductance minimized, that should be the ones 

with the best PF at given loss, according to the elementary 

blocks approach. 

Fig. 10 shows that the loss of design 2a, which lays on 

the red line, can be reduced by increasing the number of 

poles and keeping the same tooth length. The gray 

“improvement area” indicates machines with a  lower kj 

and the PF substantially unchanged. 

Similarly, design 3 is on the red line in Fig. 11, apart 

from pole truncation to p = 45, and it can become more 

efficient again by moving horizontally in the graphs, still 

with a good PF. Design 2b is not red-line optimized, and 

yet its PF is higher than the one of Design 3, at the expense 

of higher Joule losses. 

Dealing with the mass of the active parts, moving 

horizontally in Figs. 10 and 11 means to slightly reduce the 

total mass. This because machines with higher poles and 

same tooth length have a thinner back iron both in the 

stator and in the rotor. 

To summarize, the red curve of minimum inductance 

splits the dominion of possible designs into a right-hand 

area of convenient designs and a left-hand area of non 

convenient designs. There are good reasons to choose to 

stay on the line or to move slightly rightwards, but there are 

no reasons for moving leftwards, because all figures of 

merit (PF, kj, mass) would deteriorate in that case. 

VIII. CONCLUSION 

The design of surface mounted permanent magnet 

motors with high number of poles is approached by means 

of a per-unit analytical model, assuming magnetic linearity 

and a rectified geometry. The formulas cover distributed 

and concentrated windings, that are compared according to. 

An original expression for the airgap inductance is 

presented, valid for fractional windings of all 

slot/pole/phase combinations, single or double layer. It can 

be verified that the airgap inductance of a double layer 

winding machine is exactly one half of that of the 

corresponding single layer machine. 

The PF maximization criterion, at continuous current 

loading, orientates the selection of the pole pitch and then 

the number of pole pairs. It is not to be respected strictly, 

but it splits bad designs from good designs. 

The passage from the rectified to the cylindrical 

machine is addressed, as well as the effects of steel 

saturation, that are FEA quantified and commented. 



 

 

 

 

Four design examples are presented, with reference to a 

large size, direct drive wind generator. The examples 

confirm that single layer, concentrate winding machines are 

at risk of an unfeasibly low PF, and that double layer ones 

are, instead, very flexible in setting the PF at the designer’s 

will. Distributed winding machines must have longer teeth 

to keep up with the others in terms of Joule losses, and they 

are then the heaviest of all, when efficiency is constrained. 

Iron loss is neglected here, but it could limit the feasible 

number of poles in applications having higher speeds. The 

single layer windings, that require higher pole numbers for 

giving the same PF of double layer ones, could be further 

penalized in this perspective. 
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APPENDIX: MATHEMATICAL DERIVATION OF EQUATIONS 

(10),(13-14) 

Airgap inductance of fractional slot machines (14) 

The phase inductance, divided by the number of poles, 

accounts for self and mutual coupling contributions: 

        
 

  
 (           )             

The two terms in (19) come from the integration of the 

winding functions Na (phase a) and Nb (phase b) [10]: 
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Fractional slot windings can be grouped as in Table V, 

with all combinations belonging to one group having the 

same a and b winding functions. The “basic” slot and pole 

numbers represent one electric periodicity as defined in [7]. 

TABLE V – EXAMPLES OF WINDING FUNCTIONS INTEGRALS 
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The arrangement of phase coils into slots is made 

according to [7], as well. Table V reports the result of the 

two integral terms in square brackets in (20). All the 

slot/pole examples have a winding factor equal or greater 

than 0.866, with the “basic slots” number limited to 12 for 

space reasons. It turns out that the sum of the winding 

integrals is always Nslot
2
/(6nl). Nslot is the number of 

conductors per slot, that is also N/q. From (20) and Table 

V, finally: 
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The normalization of (21) by Lbase (7) leads to (14). 

Slot leakage inductance (10),(13) 

Given one slot of rectangular shape, whose dimensions 

are lt and wslot, filled with Nslot conductors all belonging to 

the same phase, its leakage inductance is: 

        

 
           

  
  

     
         

http://www.femm.info/


 

 

 

 

From the definitions in Fig. 1, the slot width is: 
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The inductance of one machine pole is q times the one of 

one slot: 

                   
  

 
 

 

  
 

   
  

         

Where Nslot = N/q and (23) have been substituted. The 

normalization by Lbase (7) leads to (25), that is both equal to 

(10) and to (13) with nl = 1. 

              
  

   
  

  

 
 

 

  
 

   
  

         

In double layer windings, different phases are sharing the 

same slots. The effect of mutual inductances reduces the 

resulting pole inductance, as well described in [14]. In 

particular, the mutual term acts differently according to the 

phase difference of the currents that are sharing each slot. 

Again, testing all possible combinations, it turns out that the 

windings can be grouped according to Q0, introduced at 

subsection III.A, and that the normalized per-pole inductance 

of a double layer machines is (26) times the one of a single 

layer machine, as in (13). 

          

          

   
 

    

        

For clarity, Table VI reports examples of Q0. 

TABLE VI – VALUES OF Q0 FOR EXAMPLE DOUBLE LAYER COMBINATIONS  

slots 3 9 12 15 18 

poles 2 4 8 10 4 8 10 14 14 16 14 22 

Q0 3 9 6 15 9 

 


