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ABSTRACT 

Solenoid current regulation is well-known and standard in any proportional electro-hydraulic 

valve. The goal is to provide a wide-band transfer function from the reference to the measured 

current, thus making the solenoid a fast and ideal force actuator within the limits of the power 

supplier. The power supplier is usually a Pulse Width Modulation (PWM) amplifier fixing the 

voltage bound and the Nyquist frequency of the regulator. Typical analogue regulators include 

three main terms: a feedforward channel, a proportional feedback channel and the 

electromotive force compensation. The latter compensation may be also accomplished by 
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integrative feedback. Here the problem is faced through a model-based design (Embedded 

Model Control), on the basis of a wide-band embedded model of the solenoid which includes 

the effect of eddy currents. To this end model parameters must be identified. The embedded 

model includes a stochastic disturbance dynamics capable of estimating and correcting the 

electromotive contribution together with the model parametric uncertainty, variability and state 

dependence. The embedded model which is fed by the measured current and the supplied 

voltage becomes a state predictor of the controllable and disturbance dynamics. The control law 

combines a reference generator, state feedback and disturbance rejection to dispatch the PWM 

with the appropriate duty cycle. Modeling, identification and control design are outlined 

together with experimental result. Comparison with an existing analogue regulator is also 

provided. 

 

KEYWORDS：Current regulator, disturbance rejection, identification, solenoid, model-based 

control 

 

1 Introduction  

1.1 Goal and rationale of the paper  

Solenoid current regulation of proportional electro-hydraulic valves appears to be a standard 

and mature control problem [1]. To the authors’ knowledge, few scientific papers [2] have been 

recently devoted to the subject, whereas tens of integrated circuits and boards are available on 

the market. Nowadays, major emphasis is directed toward current regulators of small 

synchronous motors [3], [4], [5], AC drives [6], [7] and automotive applications [8], [9], [10]. 

This paper aims to design a solenoid digital current regulator, aided by a model–based design 

methodology like the Embedded Model Control (EMC) [11], [12], and to assess the 

experimental results in comparison with an existing analogue regulator. The 100 W solenoid 

under study drives an off-the-shelf proportional electro-hydraulic valve. The solenoid is driven 

by a 24 V Pulse Width Modulation (PWM) amplifier switching at 10 kHz. The input signals of 
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the current regulator are the digital output of a milliampere-accurate current sensor and the 

current reference provided by the valve position control [13], acting as the outer loop of a 

hierarchical controller. Unlike moving coil motors, solenoids only provide a unidirectional 

force (in this case of the order of 100 N) which is contrasted by a spring assembly. Thus the 

current must be regulated around a variable current bias (about 1.6 A) so as to withstand the 

spring reaction force at the zero position of the useful valve stroke. Besides current bias, 

solenoid current regulation encounters targets and constraints that are typical of electric drives 

[1]: wide bandwidth (BW), large slew rate, bounded supply voltage, magnetic hysteresis, 

variable inductance, resistance and electromotive force, power amplifier delay, eddy currents if 

the magnetic circuit is not laminated which is the case of valve solenoids.  

Current regulators of electric drives usually include a feedforward command, a proportional 

feedback, a direct compensation of the electromotive force and of the solenoid resistance 

variation [10]. As an alternative to direct compensation, proportional and integrative (PI) 

feedback is used [1], [4], [6], but the PI feedback must be equipped with an anti-windup 

strategy to withstand supply voltage saturation [14]. The design of digital regulators is often 

approached by converting continuous time to discrete time [6], [8]. Direct discrete-time design 

can account for transport delays as in [14]. Very often simple algorithms are preferred because 

of a limited computing time. 

Here a discrete-time (digital) model-based design as suggested by the Embedded Model 

Control (EMC) is applied to a valve solenoid. Advantages of an EMC regulator are the 

following.  

1) An accurate model of the solenoid dynamics and of the PWM response is made available, 

included in the control algorithm (it will be referred to as the embedded model), and it 

may be tailored and tuned to a specific solenoid class. The model may be pushed by 

identification to include PWM and sensor delays, as well as eddy current dynamics [15] 

close to the PWM Nyquist frequency max 5 kHzf  . An identification algorithm has been 

designed and tested on purpose. In fact, a mere chain of integrators as suggested by 

Active Disturbance Rejection Control (ADRC, [16], [17]) does not fit, since eddy 
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currents make the solenoid dynamics of fractional order, and delays are added by PWM 

and sensor electronics.  

2) The control algorithm features automatic rejection of parametric uncertainty and 

variability (for instance, the resistance drift due to temperature [18]) as well as of external 

disturbances like the electromotive force. Rejection is designed so as to avoid 

supplementary measurements (solenoid temperature, plunger velocity) and integrative 

actions. This is achieved by completing the embedded model with a stochastic dynamics 

capable of updating the disturbance state within a wide frequency band, which is only 

limited by sensor noise and neglected dynamics. Disturbance estimation and rejection of 

unknown disturbances (including parametric uncertainty) is an effective procedure that is 

usually dealt with the aid of a state observer [19], [20]. Here as in other applications of the 

EMC [21], [22], the concept and practice of the embedded model is exploited for building 

up a real-time model of the plant and disturbances, which is capable of being 

continuously updated, and can therefore provide the right information (state variables) to 

the control law.  

3) EMC disturbance observers appear to be different from ADRC. The latter observers are 

built around a high-frequency model of the controllable dynamics taking the form of a 

chain of integrators, whose size matches the input-output relative degree (denominator 

less numerator degree, here of fractional order). A further integrator is included, the 

output playing the role of input disturbance. A static output-to-state feedback as in 

Kalman filters is drawn from the output error (the same as the EMC model error) to the 

input of each integrator and the feedback gains are tuned for guaranteeing stability and 

bandwidth just on a model basis. On the contrary, EMC assumes that the embedded 

model is perturbed at higher frequencies by a neglected dynamics, which increases the 

model relative degree to the detriment of the overall stability and performance. The 

observer eigenvalue tuning in Section 3.3 has been proved by EMC (ref. [11], [12]) to be 

the key tool for blocking neglected dynamics and high-frequency uncertainty from 

entering feedback and destabilizing the whole closed-loop system. For instance, 
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uncertainty in the high-frequency gain (the sole model parameter in the ADRC case) may 

be so large as to require a wide BW, which may conflict with the upper limit imposed by 

the neglected dynamics and render control design unfeasible, as pointed out in Section 

3.3. Further design issues that are solved by EMC are: (i) delays cannot be treated as 

integrators, which suggests direct discrete-time design, (ii) the observer feedback 

variables are treated as noise components (Section 2.3) to be designed together with the 

disturbance dynamics, (iii) disturbance dynamics must be given the right state equation 

(not necessarily of the first order) which is capable of describing the class of the plant 

uncertainty to be rejected, (iv) the disturbance entry points in the controllable dynamics 

may be everywhere, which requires a specific disturbance rejection law as in Section 3.4. 

4) Driving the embedded model with the same command which is dispatched to the plant, 

eliminates any integral windup when the command saturates. The reason is that the 

disturbance state of the embedded model is continuously updated by the residual 

discrepancy between plant and model running under the same command. As a result the 

EMC control law in Section 3.4, unlike PID feedback laws, becomes static, the only state 

variable being a delay between pre-computed and current command. The reference 

generator in Section 3.2 provides a reference duty cycle and reference state variables that 

are coherent with the duty-cycle range. In this manner, contribution to command 

saturation of tracking errors and disturbance rejection is minimized.  

5) The overall input-output dynamics is shaped for meeting the requirements in Section 3.1. 

This is achieved by eigenvalue tuning as shown in Sections 3.3 and 3.4. 

6) Last but not least, the current regulator fits into the hierarchical control scheme of a valve 

position control [13], since it receives the reference current I  from the position control 

and provides the latter control with current and current derivatives (Figure 1).   

Figure 1 Current regulator and position control. 

The goal of a current regulator is to convert solenoids into ideal force actuators of position 

controllers. In other words, a current regulator becomes the inner loop of a position control loop 
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as in Figure 1. In view of a position bandwidth wider than 100 Hz, a milliampere-accurate 

repeatability of the current reference I  is demanded from DC to about 1 kHz. The regulator is 

fed by a current reference I , generated by the position controller, and must guarantee fast and 

accurate tracking of the reference current within the limits of the PWM amplifier, i.e. voltage 

bound, max 24 VV V  , and delay.  

Three main performance indices characterize a solenoid current regulator. 

1) The first is the slew rate  max
/dI dt  in response to reference steps. The slew rate is limited 

by the PWM voltage maxV  and by the self-inductance. It may be identified and assessed 

from the response to a square-wave reference. 

2) The second is the tracking delay in the linear response region. It may be identified and 

assessed either by the harmonic response or by the time response to canonical reference 

signals. 

3) The third is the accuracy of the tracking error to be measured under steady state and 

transient conditions.  

The paper starts in Section 2 with a discrete-time dynamic model and the relevant identification 

procedure. Fine and simplified models are discussed to fix the embedded model of the control 

algorithm. The current regulator is outlined in Section 3. This is the combination, in accordance 

with the EMC, of a reference generator, state predictor and control law. The state predictor, 

made by embedded model and noise estimator, is essential to estimate the unknown disturbance 

to be rejected. The attribute ‘unknown’ emphasizes the fact that no supplementary 

measurements are necessary to the purpose. Experimental tests prove the regulator performance 

and show the advantage of the proposed disturbance rejection. Formulation is reduced to a 

minimum. 

2 Solenoid dynamic model and identification 

2.1 Model class 

The goal is to identify a discrete-time state equation which is driven by the PWM duty cycle 

1 1u    and by the measurable plunger speed v x   [m/s], and provides the measurable 
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solenoid current I  [A] as output. The time unit 0.1 msT   is dictated by the PWM cycle. 

Due to a complex magnetic circuit, magnetic flux saturation and solenoid heating, the equation 

parameters collected in the vector  , ,I x tp  depend on the current I , on the plunger position 

x  and are time varying. By expressing them as the sum of a mean (nominal) value p  and of 

an uncertain but bounded deviation  , ,I x tp , a linear time-invariant state equation can be 

written as follows 

 

                 
         

0

max

1 , ; , ,  0

m m

i A i B u i G v i u

y i C i e i y i e i

p



 

     

   



x p x p p h x p p x x

x

p

, (1) 

where the model output my , the measured output y  and the model error me  are indicated. In 

(1),  h  is a static vectorial function accounting for the effect of p  on the state vector x . 

h  and p  are assumed to be continuous in all the arguments. One of the current regulator 

goals is to predict and reject  h  by means of the control signal u  in the same way as an 

unknown input disturbance. The model error m me y y  , in the linear domain, can be written 

as the sum of the measurement noise yw  and of the effect of the high-frequency dynamics 

(mainly eddy currents) that have been neglected in (1). The corresponding equation is  

 m y me w P y    , (2) 

where the dynamic operator P  is referred to as the fractional model error. By taking the 

Z-transform of (2), it is shown in [11] that  j TP e   tends to increase at higher frequencies 

and often overcomes the unit value, which corresponds to a 100% model error at an angular 

frequency  . Model identification should tend to bound  j TP e   below unit. The goal can 

be achieved by increasing the model order, i.e. the state vector dimension, but at the cost of a 

larger parametric uncertainty. In the case  max 1j TP e 
   , the state predictor of the control 

unit (the ensemble of embedded model and noise estimator) is in charge of abating, with some 

margin [11], the fractional error overshoot to below unit. This task is one of the key design 

techniques of the EMC.  
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Previous discussions can be summarized by saying that the model uncertainty can be split into 

two main terms: (i) parametric uncertainties entering the static function  h  and affecting the 

model state variables through (1), (ii) the neglected dynamics P  affecting the model output. 

Both uncertainties must be accounted for and accommodated by the control design, less 

instability and performance degradation.  

Nominal model and deviations as formulated in (1) have been identified in two stages. 

1) A large-signal identification provides the nominal parametric model to be embedded in the 

control system. 

2) A small-signal identification around a current value and at a fixed plunger position provides 

the harmonic response to be compared with the parametric model.  

Experimental data are shown in Figure 2 and Figure 3 up to the Nyquist frequency maxf . The 

dashed responses have been obtained with a small sinusoidal duty cycle  0.025  around a 

bias fixing the mean current in the range mean 1 3 AI   . The solid response has been obtained 

by the parametric identification excited by a pseudo-random duty cycle which is ten times 

larger  0.25  and varies around the zero position bias. Harmonic response variations are 

rather significant, fairly uniform for 10 Hzf  , and are mainly due to a variable inductance 

because of the magnetic circuit saturation. The relative variation has been estimated close to 

20% . To avoid nonlinear terms in (1), inductance variation and uncertainty have been 

accounted for by  h . 

 

Figure 2 Magnitude of the harmonic response. 

 

Figure 3 Argument of the harmonic response. 

Both diagrams in Figure 2 and Figure 3 show the effect of the solenoid eddy currents and of the 

PWM delay, since the magnitude plot decays less than 20 dB/dec  at 10 Hzf  , and the 

argument remains close to 1 rad  before abruptly decaying and repeating the delay argument 
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shape. The corresponding transfer function is not rational, but within a finite frequency band 

can be approximated by a rational function with zeros and poles having relative degree 1r  . 

The goal of the parametric identification in Section 2.2 was to identify such an approximation 

up to maxf . Identifying the electrical parameters of the eddy current dynamics was not the goal 

[15]. 

Typical eigenvalues of the open-loop dynamics (1), together with control system eigenvalues, 

are reported in Table I.  

2.2 Parametric identification 

Parametric identification is based on the ARX model [24] of (1). To this end, (1) is rewritten in 

the form of a transfer function as follows 

 
   

     
     

 
            1 y m m

B z G z d z
I z u z v z

A z A z A z

y z P z I z w z y z e z

  

     

, (3) 

where A , B  and G  are different from (1) and hold 

 

   
 
 

1
1 1 0

1 0

1 0

n n
n

m
m

m
m

A z z z a z a z a

B z b z b z b

G z g z g z g


    

   

   







. (4) 

In (3),  y z  is the current measurement,  me z  is the model error,  v z  is the velocity 

measurement, and  d z  is a disturbance term which includes the components of  h  in (1) 

that cannot enter a linear model. The degree n  has been selected to be 3n   to reduce the 

model order to a minimum, while keeping the fractional model error less than unit, i.e. 

  1j TP e   . The numerator degree holds 2m  , and the relative degree holds 

1 2r n m    , because of a delay fitting the argument as in Figure 3. By separating model 

and neglected dynamics, one obtains the following ARX form [24], [25], [26]:  

 
             
         

A z y z B z u z G z v z z

z d z A z P z y z





  

  
, (5) 
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where y , u  and v  are known,   is unknown, and the sensor noise yw  in (2) has been 

dropped because rather negligible at higher frequencies (see the bottom curve in Figure 4). The 

ARX form (5) assumes that   is a white noise. The assumption has been verified from 

experimental data.  

 

Figure 4 Spectral density of the normalized duty cycle (top), of the measured current 

(decreasing curve), of the residuals (middle) and of the sensor noise (bottom). 

The solenoid has been excited by a pseudo-random duty cycle whose spectral density (PSD) is 

top curve of Figure 4. The duty cycle u  has been normalized to be a current uI  through the 

equality 

     max
01 / 1 5.7u

V
I uB z A z K u u u

R
      , (6) 

where R  is the solenoid resistance. Figure 4 shows also the PSD of the measured current y  

and of the residual  . Residuals (the middle curve in Figure 4) look rather close to being white, 

which is a key assumption of the ARX model (5). At lower frequencies, they repeat the driving 

input because of identification errors in the low frequency gain 0K  in (6). At mid and higher 

frequencies they slightly deviate from a flat profile, which is typical of a white noise, because of 

the neglected dynamics P . The current PSD decreases less than 20 dB/dec  as expected.  

2.3 The embedded model  

To compensate for the parametric uncertainty which is accounted in (1) by the term h , the 

embedded model is completed with a disturbance dynamics capable of surrogating h . A 

stochastic disturbance class D  whose realization is denoted by the vector  id , 1n , 

replaces the unknown vector      G v i  p h  in (1), where    G v ip  may be treated either 

as known or unknown. The disturbance class has been designed to be the combination of a 

white noise and a random drift, as in the following equation 

 
       
     

01 ,  0d d d d d

d

x i x i w i x x

i Hx i N i

   

 d w
, (7) 
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whose matrices and vectors are: 

 

 
 

 

3 2 1 0

3 2 1 0

3 2 1 0diag , , ,

T

T

w w w w

H h h h h

N n n n n







w

. (8) 

The following Lemma is straightforward. 

Lemma 1. The state equation (7) gives rise to the following Z-transform in (3) 

            
3 2

3 23 2 1 0
3 3 2 2 1 1 0 01 d

h z h z h z h
d z w z n z w z n z w z n zw z n w z

z

  
    


.□ (9) 

As expected,  d z  is the sum of a white noise combination (the last four terms) and a drift. 

The white noise part is coherent with the identification results in Section 2.2, showing that the 

PSD of the identification residual   (including d ) is close to being flat. The drift term aims to 

model the components of       , ; ,i u i ih x p p  that have not been identified: typically 

parameter variations like the solenoid resistance thermal variation. Actually, the size dn  of dx  

in (7) should be a matter of design, and experimental comparisons between different orders 

should be the right procedure. Here 1dn   has been selected for the sake of simplicity, relying 

on the fact that a current regulator is an inner loop of a hierarchical control, whose outer loop 

(the position control) is capable of rejecting low-frequency residuals of the inner loop. A further 

reason is that a first-order dynamics replaces the integrative action of a PI current regulator, and 

eliminates, as already mentioned, integral wind-up. Unlike PI regulators, which are in charge of 

zeroing both reference and disturbance static errors, equation (7) is only in charge of fitting 

disturbance and parametric uncertainty. Reference errors are eliminated by a specific reference 

generator. 

The embedded model is obtained by combining (1) and (7). The total state size is 5n  . The 

state vector is partitioned into controllable state x  and disturbance state dx . The model 

equation, written in a compact form, is the following 
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         

              0

0

0
1

0 1 0 0 1 0

0 ,  0

d d d

m
d d d

A H B N G
i i u i i v i

x x w

y i C i e i y i e i
x x x

            
                

            
     

         
     

x x w

x x x
  (10) 

The parameters of A , B  and G  are those estimated in Section 2.2. In (10), my  is the model 

output, free of the model error me . The controllable state vector x  in (10) is the following 

  3 2 1 0
T x x x xx   (11) 

The upmost three components of x , namely ,  0,1, 2kx k   account for solenoid and eddy 

currents, 0x  accounts for PWM delay. The matrices in (10), that are not reported in (7), derive 

from (4) and read as follows 

  
3

2 22

1 11

0 0

0 01 0 0

00 1 0
,  1,  ,  ,  1 0 0 0

0 0 1

00 0 0 0

d

a

b ga
A A B G C

b ga

b g

     
              
    
          

. (12) 

The zero entries of G  and B  are a result of the parametric identification. The following 

lemma is straightforward. 

Lemma 2. Equation (10) with the matrices in (12) is controllable by u  and observable by y

. □ 

What remains to be found are the coefficients of H  and N , since they give form to the 

interaction between the uncertainty model (7) and the controllable dynamics. The step 

corresponds to the ‘noise design’ in [27], which may be retained as a peculiarity of EMC. The 

design aims at a simple and meaningful interaction form. Let us begin with H  that couples the 

drift state with x . The aim is to correct the variability of the DC gain 0K  in (6) through dHx

. To this end, H  should be proportional to B . Actually H  has been simplified to be 

proportional to G . Besides a sake of simplicity, B  turns to possess three non-zero 

coefficients only because two of the four eigenvalues of A  are close to zero, as shown in Table 

1. Were both delays neglected, A  would reduce to a second-order matrix and B  to a single 
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non zero coefficient equal to 0 1 2b b b  , which justifies the single non-zero coefficient of H . 

The coefficient, being dx  arbitrary, is set equal to one. Simplification of H  is balanced by 

fixing all the coefficients of N  to be non-zero, except the last one, 0 0n  . Again, the last two 

noise terms in (8), 1w  and 0w , can substitute each other being just separated by a delay. At the 

end, H  and N  become 

 
 

 
0 0 1 0

diag 1,1,1,0

TH

N




. (13) 

The block-diagram of the embedded model is shown in Figure 5. Clouds denote uncertainty 

sources.  

 

Figure 5 Block diagram of the embedded model. 

 

3 Current regulator design 

3.1 Requirements 

The goal is to design a dead-beat control, meaning that the close loop dynamics in the linear 

domain must approximate a delay chain driven by the reference current I  and the tracking 

error e , i.e.  

 
     

    
,  0.3 ms

0,  1.5 mA

I t I t e t

e t e t

    

 E
. (14) 

The bound on the delay   is imposed by the relative degree 1 2n m    in (10), plus a 

margin delay. The bound on the tracking error e  is obtained by fixing a bounded contribution 

5 mxe   to the valve position tracking error. In the frequency band of the spool-spring 

resonance (50 Hz), such a contribution can be written as  

 0.0035xe e e
K

   , (15) 
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where   [Vs/m] is the solenoid force constant and K  [N/m] is the spring stiffness. The linear 

domain is defined by the bounds  

 max0 3 A

1 1

I I

u

  

  
. (16) 

In the linear domain the deadbeat control is optimal for what concerns the magnitude 

  1H j   of the input-output transfer function      /H s I s I s , since the reference 

signal I  is repeated without distortion after a delay  , less a zero-mean and random tracking 

error e . In principle optimization might also address the delay   and the variance 2
e  of the 

tracking error. Actually they are imposed by higher level requirements or by the embedded 

model structure as previously outlined.  

The duty cycle limit in (16) fixes the current slew-rate through the PWM voltage maxV , the 

voltage bias 0 6 VV   contrasting the spring force, and the inductance L . Due to the voltage 

bias, different slew rates correspond to positive and negative voltage jumps, namely 

 

max 0

,max

max 0

,max

A
360 

A
640 

V VdI

dt L s

V VdI

dt L s





    
 

    
 

. (17) 

The regulator architecture is the assembly of the following subsystems, which are typical of the 

Embedded Model Control [11]. They are (i) the reference generator, (ii) the state predictor and 

(iii) the control law. The current regulator block-diagram is in Figure 6. The box marked with D 

denotes a delay, i.e. a memory saving the one-step anticipated command before dispatching. 

 

Figure 6 Current regulator block-diagram. 

3.2 Regulator architecture: the reference generator 

The reference generator provides the open-loop command u  that drives the state x  of a 

nominal model to the desired current I . The reference generator is derived from the ARX 

equation (5) by setting   0z  , and including the plunger velocity rv , which is not 
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compulsory because of the disturbance state dx  in (7). In this way the electromotive force may 

be accounted for either explicitly or not. Rewriting (5) as a difference equation and solving for 

the most recent duty cycle occurring at time 1i  , one obtains the reference command equation: 

 

        

        

 

1 0 1
2

3 2 1
2

1
1 2 3 2

1
1 1 2

1 1 1

r r r r

r

u i b u i b u i g v i
b

I i a I i a I i a I i
b

u i

       

      

   

. (18) 

Underlined symbols in (18) denote reference variables. Equation (18) implements a causal 

inverse of the embedded model (10), but free of unknown input signals. During the computing 

step i ,  1iT t i T   , the current prediction  1I i   is assumed to be made available by 

the valve position control within the current limits (16). The reference vector rx  of the state 

vector x  in (11), which is employed by the control law in Section 3.4, is obtained by solving 

the state equation in (10). The equation is excited by the past sequence ( ),  2ru i k k   of the 

duty cycles and by the past sequence of the plunger velocity ( ),  2rv i k k   as follows  

 

       
3

2

1

0

1 2 2 2r r r r

r

r
r

r

r

i A i Bu i Gv i

x

x

x

x

      

 
 
 
 
 
 

x x

x
. (19) 

The reference generator has no parameter to be tuned, and the reference state accounts for the 

duty-cycle saturation. Since  1ru i   and  1r i x  are exogenous variables of the current 

regulator, they are two-step anticipated in order to define the reference variables  

        1 1 ,  1 1r ru i u i i i     x x  (20) 

which are employed by the control law in Section 3.4.  
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3.3 Regulator architecture: the state predictor 

3.3.1 State predictor equations 

The state predictor is the ensemble of the embedded model (10) and of the noise estimator in 

charge of estimating in real-time the unknown noise vector  iw  that has been defined in (11)

. Noise design in Section 2.3 has suggested that the noise size be 1 4wn n   , as it allows a 

static noise estimator to be employed [27]. It holds 

 
      

 3 2 1

ˆ

 

m

T
d

i L y i y i

L l l l l

 



w
, (21) 

where the ‘bar’ denotes estimated variables depending on the present and past output values, 

namely   ,  0y i k k  . On the contrary, ‘hat’ denotes one-step prediction only depending on 

the past values   ,  0y i k k  . The gains of L  are tuned by fixing 4wn   real-valued 

closed-loop eigenvalues 0 1mk   of the state predictor that are collected in 

 0 1 40, ,...,m m m m     . Having defined the characteristic polynomial as follows 

      4 4 3 2
3 2 1 01 mk m m m mk

P c c c c        


       ,  (22) 

and the unknown polynomial of the state predictor (see equation (24)) as  

  , det
1

c c
m

d

I A N LC H
P L

N LC





   

    
, (23) 

the gain equations easily follow. 

The factor   in (22) corresponds to the delay (zero eigenvalue, 0 0m  ) between u  and 0x  

in (10) and (12). No output feedback closes on 0x̂  because it is noise free. 

Using the ‘hat’ notation, the state-predictor equation can be written as 

 

     

     

     

0

0

ˆ ˆ
1

ˆ ˆ1 0

ˆ ˆ
,  0

ˆ ˆ0

ˆ
ˆ 0

ˆ

c c

d d d

c
r

d d d

m
d

A N LC H B
i i u i

x N LC x

N L G
y i v i

N L x

y i C i
x

       
                 

      
        

      
 

  
 

x x

x x

x

x

, (24) 
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where rv  denotes the same velocity measurement employed in the reference generator.  

3.3.2 Design of the state predictor eigenvalues 

The design of the state predictor eigenvalues is the key step in the EMC design ([11], [12]). In 

fact rejection degree and bandwidth of the parametric uncertainties in  h  are imposed by the 

state-predictor sensitivity  m fS , whereas the neglected dynamics P  is attenuated by the 

complement    1m mf f V S . To this end, their product must satisfy the stability inequality  

      
max maxmax 1Pf f jf P jf jf P      V V , (25) 

where P  achieves the maximum at Pf f . Figure 7 shows the magnitude of both transfer 

functions.  

Consider for simplicity’s sake the following parametric uncertainty 

  

max

0 0

0 0
, ,

0 0

/y m u m

u i

h y h u R Ry V Lu

   
   
    
   
           

h x , (26) 

where yh  accounts for the fractional resistance uncertainty 1R   and uh  for the inductance 

uncertainty L . In [11] and [12] it has been shown that yh  is attenuated if  

 
   

 
max

2 2

max 1

( ) / ( )

m yf f

j fT j fT

f f h

f B e A e 

  



S M

M
, (27) 

where A  and B  are the polynomials in (3) and 1/  is a stability margin, which may be the 

same as in (25), since (25) and (27) refer to different frequency bands. Now since M  (see 

Figure 2) is monotonically decreasing and mS  is monotonically increasing in the frequency 

domain, a unique maximum exists in (27). Using Figure 2 and Figure 7, both magnitudes can be 

approximated by 

     max/ ,  /m m a

V
f f f f f f

R
 S M  (28) 

from 20 Hz to 500 Hz. Thus (27) simplifies to  

 / ,  20 Hzm a af Rf f   . (29) 
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By assuming R   , (29) provides a moderate lower bound to the state predictor frequency 

BW mf  in (28). The upper bound to mf  is imposed by (25), and results into  

 
 1/

max

max

/ 450 Hz

0.5 1,  0.4, 1,  3000 Hz

r

m P

P

f f P

r P f








  

     
. (30) 

The treatment of uh  is more complex as it involves the control law of Section 3.4. In practice 

(27) must be replaced by  

      
max

max 1m uf f f f f h   S M C , (31) 

where    z zM C  is the loop transfer function of the control law [11], [12], that in turn 

defines the sensitivity   1
1c

 S MC  and the complement 1c c V S . Since the aim is a 

deadbeat control, it occurs that     1f f M C  from DC to maxf , and decays like /cf f  

while approaching maxf  (the same decay applies to the sensitivity complement 1c c V S ). 

Hence (31) can be replaced by  

   / / 1 /m c u m cf f f f h f L f      . (32) 

Assuming 0.4L    , inequality (32) is rather critical since it demands that the 

state-predictor BW mf  is close to the control law BW cf . Such a demand may conflict with 

the upper bound in (30), may force cf  to be narrowed, and the dead-beat requirement in (14) to 

be abandoned. For such reasons solenoid inductance should be accurately known, i.e. L  

, and modeled as a function of I  according to Figure 2. Here, to be conservative but in view 

also of 0.2L    , all the model parameters in (12) have been assumed to be constant. Their 

uncertainty and variability are attenuated by mS  according to (27) and (31).  

 

Figure 7 Harmonic response (magnitude) of the state predictor sensitivity and of the 

complement. 
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3.3.3 Comparison with Kalman filter design 

It may be of some interest to compare eigenvalue design in the previous section to Kalman filter 

design. We restrict to a stationary filter that has the same equation as in (24), but is rewritten in 

the compact form as 

 
           
   

0ˆ ˆ ˆ ˆ1 ,  0

ˆ ˆ

p p p p p p p

m p p

i A LC i B u i Ly i

y i C i

     



x x x x

x
. (32) 

The gain vector L  in (21) must be computed as  

 
  
     

12

2

T T
p p p p

T T T T
p p p p

L A PC S C PC r

P A LC P A LC Q Lr L SL LS


  

      
, (32) 

where 0P   is the state covariance, 2 0r   is the measurement noise variance, 0Q   is the 

input noise covariance, and 0S   fixes that measurement and input noises are uncorrelated. 

Comparison is made by fixing the same gain vector L ,  

 

0.489

0.141

0.00764

0.0319

L

 
  
 
 
 

  (32) 

hence the same closed-loop eigenvalues in Table I, and thus solving (32) for P  and Q , given 

0S   and 1r  . In this way the results must be scaled by the measurement noise covariance 

2r . The matrix equations (32) are linear in the unknowns, but we have to ensure 0P   and 

0Q  . First the gain equation in (32) is solved for T
pPC   

   1 2T
p p pPC A LC Lr


  . (32) 

Then the Lyapunov equation is solved for the whole P  and Q . Because of the sparsity of pA

, only a pair of diagonal entries of Q , namely 22 33q q  are iterated for obtaining non negative 

definite matrices. The input noise covariance matrix results into 

 2

0.14 0.068 0.010 0

0.068 0.033 0 0
,  det =0

0.010 0 0.033 0

0 0 0 0.0018

Q r Q

  
  
 
 
 

  (32) 
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and the square root eigenvalues of Q  and P  are 

 
   
   

0.084,0.19,0.29,0.91

0,0.042,0.18,0.42

P r

Q r








. (32) 

As a first remark, the covariance matrix (32) corresponds to an input noise having smaller 

variance than the measurement noise 2r , which does not agree with the spectral densities of the 

sensor noise and of d   in Figure 4. Indeed, the spectral density of the input noise   is 

much higher than the sensor noise. As a second remark, one may wonder how practically obtain 

the matrix Q  in (32). Parametric identification in Section 2.2 and disturbance modelling in 

Section 2.3 have only suggested location and size of the noise vector w  in (10), but no 

accurate covariance as in (32). The eigenvalue design in Section 3.3.2, typical of Embedded 

Model Control, fills in the gap. 

3.4 Regulator architecture: the control law 

The main goal of the control law is to reject the disturbance term  h  in (1), which has been 

modeled by the stochastic disturbance class D  in (7), and to make the closed-loop system 

approach dead-beat conditions. Following EMC [11], [12] disturbance rejection must satisfy 

two principles. 

1) Only the state variable dx  can enter the control law, unlike dw , since only the  one-step 

prediction of dx  is made available by the state predictor. 

2) When the disturbance input matrix cH  does not belong to the subspace spanned by B  

(the command input matrix in (12)), an extended tracking error e  including the  

disturbance state dx  must be defined  

        di i i Qx i  e x x . (33) 

It has been shown in [28] that only the extended tracking error e  can be brought 

asymptotically to zero, upon a suitable design of the vector Q  through a Sylvester-type 

equation. The same equation has been already found by [29], [30] and [31] in the 

framework of the internal model principle.  
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Combining, in accordance with the previous principles, the reference command in (20), the 

tracking error feedback built on (33) and the disturbance rejection of ˆdx , the one-step 

anticipated duty cycle takes the following form: 

 
            
    0

ˆ ˆ ˆ1 1 1 1 1 1

1 sat 1

c d d

c

u i u i K i i Qx i mx i

u i u i u

          

   

x x
, (34) 

where  sat   denotes saturation to the duty-cycle limits in (16), and 0 0 max/u V V  is the duty 

cycle offset. Finally Q  and m  satisfy the following Sylvester-type equation  

 
0 0

cH Q A B Q

C m

     
     

     
. (35) 

One-step anticipation in (34) is compulsory for recovering the computing delay. Anticipation is 

permitted by the one-step predictor in (24).  

The gains of the row vector  3 2 1 0K k k k k  are obtained in a way similar to L , i.e. by 

fixing the eigenvalues  0 3,...,c c c    of the closed-loop matrix A BK .  

The eigenvalues of the embedded model, of the state predictor and of the control law are 

reported in Table I. The control-law eigenvalues are the same as the open-loop ones, except for 

a single eigenvalue, 3 0.52c  , which is in charge of widening the BW up to about 

800 Hzcf   for approaching dead-beat conditions. A pair of state predictor eigenvalues 

3 40.7,  0.8m m    are free, and are fixed not far from cf  (one octave below) so as to respect 

the critical inequality (32). 

 

Table I -Open-loop and closed loop eigenvalues. 

The commanded duty cycle u  in (34), when converted to a voltage     max,  V t V t V , must 

include the nominal voltage offset 0V  in (17), and reads as  

    0 maxV t V u t V  . (36) 

4 Experimental results and discussion 

Experimental results aim to verify the requirements in (14). 
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4.1 Slew rate 

The slew rate, tested through a square-wave reference current, appears to compatible with 

values in (17). Figure 8 shows the current reference (10 Hz square wave) and the measured 

current response. The increasing current jump tracks the reference more slowly than the 

decreasing leg, because of the asymmetrical voltage limits in (17) as in Figure 10. Figure 9 

shows the response to a decreasing current jump, which requires a negative voltage jump and 

thus benefits from the larger slew rate in (17). Figure 10 shows the commanded voltage ( )V t  

defined in (36). The dashed curve, maxnomV uV , is the nominal command (in voltage units) 

computed by the reference generator in (18) and (20).  

 

Figure 8 Reference and response to a 10-Hz square wave.  

Figure 9 Response to a decreasing current jump (enlargement of Figure 8). 

Figure 10 Commanded duty cycle converted to voltage. 

4.2 Delay and tracking accuracy 

The dead-beat equation (14) has been tested in the time and frequency domains. Magnitude and 

argument of the harmonic response are shown in Figure 11 and Figure 12. They are compared 

with an existing analogue current regulator, showing significant improvement. The response 

approaches a delay of 0.2 ms, which is smaller than the bound in (14), and equal to the 

open-loop relative degree. As a proof, the argument of a 0.2 ms delay fits the experimental 

argument as shown by Figure 12. Figure 12 further shows that the closed-loop argument has 

been increased from the open-loop profile in Figure 3 only in the mid frequency domain, i.e. 

below 1 kHz. This further proves that the relative degree is 1 2n m   , and is maintained as 

expected by the closed-loop dynamics. 

 

Figure 11 Harmonic response of the current regulator (digital and analogue): magnitude. 
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Figure 12 Closed-loop (digital and analogue) and open-loop harmonic response: argument. 

The measured tracking error ey  is the combination of the nominal error nome  in (14) which is 

imposed by the 0.2 ms delay and of the residual rese  of the disturbance rejection. The error 

expression can be obtained by rewriting (14) as follows  

 
             
   

e nom res

res

y t I t I t I t I t e t e e t

e t e t

       

 
  (37) 

Figure 13 shows the nominal and the measured tracking error in response to a 10-Hz triangular 

wave having a 12 A/s slew rate and a magnitude of 0.3 A  around the current offset. The 

transient and steady state residuals remain below the 1.5 mA threshold of (14), but show a peak 

(high frequency) and a drift (mid frequency) because of the variable inductance, that the 

disturbance ˆdx  cannot completely reject. This is the intrinsic limitation of any unknown 

disturbance estimation as in (24) and of any rejection as in (34), as they suffer from the upper 

bound (30) on the state predictor BW. Only a more accurate model around mf f  can loose 

the restraint. 

 

Figure 13 Nominal and measured tracking error in response to a triangular wave. 

Figure 14 repeats Figure 13 for a 10-Hz sine wave having a slew rate of 38 A/s and a magnitude 

of 0.3 A  around the current offset. The residuals (total error minus nominal) still remain 

below the target of 1.5 mA.  

 

Figure 14 Nominal and measured tracking error in response to a sine wave. 
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4.3 Disturbance rejection 

The benefits of complementing the electromotive force compensation (reference generator) 

with an unknown disturbance estimation can be appreciated in Figure 15 and Figure 16. In both 

cases (the current varies of 0.3 A  around the offset) the disturbance magnitude is of the same 

order of the tracking error residuals, but they allow the systematic component of the error to be 

reduced.  

 

Figure 15 Total rejected disturbance and components in response to a triangular wave. 

 

Figure 16 Total rejected disturbance and components in response to a square wave. 

To illustrate the benefit of the unknown disturbance estimate, the electromotive force has been 

underestimated by a factor of about 0.5, but the unknown disturbance recovers the error and 

completes the disturbance estimate with other components, that are not referable to the 

electromotive force. That increases regulator robustness, and guarantees the target accuracy in 

(14).  

5 Conclusions 

The paper has shown how unknown disturbance rejection can improve the robustness of a 

simple but ubiquitous control system like a current regulator. A linear time-invariant model and 

the estimation of the parametric uncertainties through a simple stochastic dynamics do the task. 

The solenoid of an electro-hydraulic valve was the study case. The current regulator presented 

in this paper is the inner wide-band loop of a proportional valve position control. 
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Figures	and	tables	

 

 

Figure caption 1. Current regulator and position control. 

 

Figure caption 2. Magnitude of the harmonic response. 
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Figure caption 3. Argument of the harmonic response. 

 

 

Figure caption 4. Spectral density of the normalized duty cycle (top), of the measured 

current (decreasing curve), of the residuals (middle) and of the sensor 

noise (bottom). 
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Figure caption 5. Block-diagram of the embedded model. 
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Figure caption 6. Current regulator block-diagram. 
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Figure caption 7. Harmonic response (magnitude) of the state predictor sensitivity and of its 

complement. 

 

 

Figure caption 8. Reference and response to a 10-Hz square wave.  
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Figure caption 9. Response to a negative current jump. 

 

Figure caption 10. Commanded duty cycle converted to a voltage signal. 
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Figure caption 11. Harmonic response of the current regulator (digital and analogue): 

magnitude. 

 

 

Figure caption 12. Closed-loop (digital and analogue) and open-loop harmonic response: 

argument. 
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Figure caption 13. Nominal and measured tracking error in response to a triangular wave. 

 

Figure caption 14. Nominal and measured tracking error in response to a sine wave. 
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Figure caption 15. Total rejected disturbance and components in response to a triangular 

wave. 

 

Figure caption 16. Total rejected disturbance and components in response to a square wave 
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0 Embedded model 20 Hzaf   0, -0.1, 0.52, 0.989 

1 State predictor 400 Hzmf     0, -0.1, 0.52, 0.7, 0.8 

2 Control law 800 Hzcf   0, -0.1, 0.52, 0.52 
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