POLITECNICO DI TORINO
Repository ISTITUZIONALE

Increasing the robustness of CUDA Fermi GPU-based systems

Original

Increasing the robustness of CUDA Fermi GPU-based systems / DI CARLO, Stefano; Gambardella, G.; Indaco, M.;
Martella, I.; Prinetto, Paolo Ernesto; Rolfo, D.; Trotta, P.. - STAMPA. - (2013), pp. 234-235. (Intervento presentato al
convegno IEEE 19th International On-Line Testing Symposium (IOLTS) tenutosi a Crete, GR nel 8-10 July, 2013)
[10.1109/I0LTS.2013.6604088].

Availability:
This version is available at: 11583/2519041 since: 2016-09-16T17:56:15Z

Publisher:
IEEE

Published
DOI:10.1109/I0LTS.2013.6604088

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright

(Article begins on next page)

23 April 2024

Increasing the robustness of CUDA Fermi
GPU-based systems

Stefano Di Carlo*, Giulio Gambardella*, Marco Indaco*, Ippazio Martellal, Paolo Prinetto*,
Daniele Rolfo*, Pascal Trotta*

Politecnico di Torino
Dipartimento di Automatica e Informatica
Corso Duca degli Abruzzi 24, 1-10129, Torino, Italy
*Email: {FirstName.FamilyName} @polito.it
t Email: {FirstName.FamilyName} @ gmail.com

Abstract—Nowadays, Graphical processing Units (GPUs) have
become increasingly popular due to their high computational
power and low prices. This makes them particularly suitable for
high-performance computing applications, like data elaboration
and image processing. In these fields, the capability of properly
work even in presence of faults is mandatory. This paper presents
an innovative approach, that combines a Software Based Self
Test & Diagnosis (SBSTD) methodology with a fault mitigation
strategy, to increase the robustness of a CUDA Fermi GPU-based
system.

I. INTRODUCTION

In the last years, the increasing demand for computational
power resulted in more cores integrated in a single chip. In
this scenario, GPUs have replaced multi-cores processors
in many High Performance Computing (HPC) applications,
thanks to their ability of performing a high number of parallel
operations exploiting their internal Single Instruction Multiple
Data (SIMD) architecture.

Such a rapid proliferation of GPUs is also due to the advent
of significant programming support for developing general-
purpose applications on GPUs, which allows programmers to
easily solve “general” computing problems [1], in addition to
the graphic ones.

Reliability of GPUs is still an open issue. In the past, GPUs
have been mainly exploited for non-critical applications, such
as video or image processing. In these applications, whenever
corrupted pixel values caused by soft or hard faults are
computed, the user experience is in general not significantly
impacted since just few pixels per frame are usually corrupted
[2].

However, the computational power of GPUs is becoming
an attractive solution for several safety critical applications,
like automotive [3], space [4], and medical [5]. In these
applications the ability to continue to properly function
despite the existence of faults (i.e., robustness of the system)
becomes a primary requirement.

The robustness of a system is usually enhanced exploiting
fault-tolerance or fault mitigation techniques. In literature,
several publications provide this kind of techniques for SIMD
processors [6], but, unfortunately, they are not applicable
to modern GPU architectures, since they rely on a deep
knowledge of the processor internal architecture.

Other techniques are completely independent from the

processor internal architecture (e.g., Check pointing-based [7]
and Algorithm-based fault tolerance [8]), but they usually
either introduce high performance overhead, or require
custom modifications to tackle the GPU internal architecture
peculiarities.

To overcome these issues, we propose a combination of
Software Based Self Test and Diagnosis (SBSTD) and fault
mitigation methodologies in order to increase the robustness
of a CUDA Fermi GPU-based system against permanent
faults. Basically, by periodically running the proposed SBSTD
methodology, it is possible to identify faulty Streaming
Multiprocessors (SMs) [9] in the GPU under test. This
information is then exploited by the fault mitigation strategy
to overcome the effect of multiple faults.

When compared with the already presented methodologies,
the proposed approach: (i) does not introduce any execution
time penalties during the GPU fault-free execution, and (ii) it
guarantees fault-free results also in presence of a high number
of faults.

II. PROPOSED SBSTD METHODOLOGY

The proposed SBSTD methodology aims at testing each
SM inside a CUDA Fermi GPU. It first detects the presence of
permanent faults, and then localizes the faulty SM. The basic
steps performed by the proposed methodology are shown in
Fig. 1.

CUDA GPU

Fig. 1: Basic test approach

First, a set of Test Kernels, each one implementing the test
procedure for one of the internal SM components, has been
defined.The CPU runs the CUDA program [9] to start the
execution of the test kernels on the GPU. In order to properly

test each internal component, the GPU must execute one
parallel instance of the test kernel for each internal module
of each SM. From each of these instances it computes the
related test results (TR) or test signatures (TS). Moreover, to
identify the SM that has generated the test response, the GPU
appends an SM identifier (SM ID) to each computed TS/TR.
Finally, these information items are sent back to the CPU.
The CPU checks the presence of faults comparing the obtained
TR/TS with the precomputed Golden TR (GR)/Golden TS
(GS),. When a fault is detected, the CPU exploits the appended
SM ID to localize the faulty SM, and creates the Faulty SM
Map (FM) (i.e., a map indicating the faulty or fault-free status
of SMs)

The proposed test approach has to deal with three main issues.
The first concerns how ensuring the execution of the test
procedure on each component of each SM. This issue has
been solved by properly configuring the compiled test kernel
in terms of Threads, Thread Blocks and Grid [9].

The second issue involves the methodology to prevent the
compiler from inserting extra operations in the test kernel (i.e.,
extra operations could alter the fault detection capability of
the test procedure). This issue can be solved writing each
test kernel exploiting the inline-assembly provided by the
CUDA-ISA [10], and unrolling every for loop required by
the test procedure resorting to the compiler directive #pragma
unroll [11]. The last issue concerns the definition of the
test procedure for each internal component of a SM. In the
proposed approach, some test procedures have been imple-
mented exploiting well-known SBST methodology modified to
tackle GPU peculiarities, while others have been implemented
as fully custom test procedures. Additional implementation
details can be found in [12].

III. PROPOSED FAULT MITIGATION STRATEGY

To ensure correct results also in presence of faults, the
proposed Fault Mitigation strategy prevents kernel executions
on faulty SMs. It exploits the FM, obtained by executing the
proposed SBSTD methodology (see Sec. II), to perform the
fault mitigation.

In the proposed approach (see Fig. 2) the fault mitigation is
ensured by instrumenting the CUDA program and the kernel.

s EINTe

Run IK avoiding
execution on faulty
SMs
L
Detfine
FBs

[{5

Kernel Execution Completed

Fig. 2: Proposed Approach

First, the Instrumented CUDA Program (ICP), exploiting the
FM, provides the kernel the information about the faulty
SMs. Then, the instrumented kernel avoids the execution
of the Thread Blocks on faulty SMs. Since there are no

available instructions that ensure to directly operate on the
Thread Blocks scheduling policy, an ad-hoc procedure has
been implemented. The Instrumented Kernel (IK) identifies the
Thread Blocks scheduled on faulty SMs (i.e., Faulty Blocks
(FBs)), and stops their execution. At the end of the execution,
the IK communicates to the ICP the FBs.

This information is exploited by the ICP to check whether all
Thread Blocks have been executed on a faulty-free SM (i.e.,
execution completed). If the execution is not completed, the
ICP creates several replicas of each FB. A new kernel (Faulty
Kernel (FK)), containing only the generated replicas, will be
created and executed on the CUDA GPU.

The presence of more than one copy of each FB ensures the
execution of each FB on at least one fault-free SM. This set
of steps (i.e., loop identified by the white arrows in Fig. 2)
is iteratively repeated until no FBs are detected after the IK
execution.

For additional information about the implementation details of
the proposed strategy the reader may refer to [13].

IV. CONCLUSION

The paper presents an innovative approach to allow the use
of a CUDA GPU, even in presence of faults. The presented
approach is completely algorithm independent and it allows to
reach the maximum performance during a fault-free execution.

REFERENCES

[1]1 S. Potluri, A. Fasih, L. Vutukuru, F. Al Machot, and K. Kyamakya,
“CNN based high performance computing for real time image process-
ing on GPU,” in 3rd International Workshop on Nonlinear Dynamics
and Synchronization (INDS), pp. 1-7, 2011.

[2] J. Sheaffer, D. Luebke, and K. Skadron, “A hardware redundancy and
recovery mechanism for reliable scientific computation on graphics
processors,” in 22nd ACM SIGGRAPH/EUROGRAPHICS symposium
on Graphics hardware, pp. 55-64, 2007.

[3] K. Haklin and H. Ho-sang, “Integrated Fault Tolerant System for
Automotive Bus Networks,” in 2nd International Computer Engineering
and Applications Conference, pp. 486-490, 2010.

[4] Q. Hu, B. Xiao, and M. Friswell, “Robust fault-tolerant control for
spacecraft attitude stabilisation subject to input saturation,” Control
Theory Applications, vol. 5, no. 2, pp. 271-282, 2011.

[5] N.Z., “Investigation of Fault-Tolerant Adaptive Filtering for Noisy ECG
Signals,” in IEEE Symposium on Computational Intelligence in Image
and Signal Processing, pp. 177-182, 2007.

[6] A. Strano, D. Bertozzi, A. Grasset, and S. Yehia, “Exploiting structural
redundancy of SIMD accelerators for their built-in self-testing/diagnosis
and reconfiguration,” in /EEE International Conference on Application-
Specific Systems, Architectures and Processors, pp. 141-148, 2011.

[71 F. Sinclair, “G-cp: Providing fault tolerance on the GPU through
software checkpointing,” 2010.

[8] C. Ding, C. Karlsson, H. Liu, T. Davies, and Z. Chen, “Matrix multipli-
cation on GPUs with on-line fault tolerance,” in 9th Int’l Symposium on
Parallel and Distributed Processing with Applications (ISPA), pp. 311—
317, 2011.

[9]1 nVidia, nVidia’s Next Generation CUDA Computer Architecture: Fermi,
2006.

[10] nVidia, Parallel Thread Execution ISA, 2012.
[11] nVidia, nVidia CUDA C Programming Guide v.4.2, 2012.

[12] S. Di Carlo, G. Gambardella, M. Indaco, I. Martella, D. Rolfo,
P. Prinetto, and P. Trotta, “A Software-Based Self Test of CUDA Fermi
GPUs,” in I8th European Test Symposium (ETS), 2013.

[13] S. Di Carlo, G. Gambardella, I. Martella, D. Rolfo, P. Prinetto, and
P. Trotta, “Fault mitigation strategies for CUDA GPUSs,” in International
Test Conference (ITC), 2013.

