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Abstract (English)

Space trajectory optimization and mission design analysis have not general standards

and procedures suitable for any kind of problems. Methods and results improve

thanks the progress in computer science, numerical analysis, and engineering.

The aim of this thesis is to enlarge the field of application of indirect optimization

methods, which are based on the theory of optimal control, to trajectory optimiza-

tion problems characterized by a complex dynamical model, which considers Earth

oblateness, gravitational perturbations from Moon and Sun, and solar radiation

pressure.

The case study is the finite-thrust deployment of a two-satellite formation into

a highly elliptic orbit. The optimization procedure provides the engine switching

times and the thrust direction during each burn in order to transfer the satellites to

the same prescribed final orbit with assigned distance between them at the apogee

passage; the total final mass is maximized.

A minimum-distance constraint is introduced when required to avoid collision

risk. Different deployment strategies are analyzed; in particular, the classical chaser-

target approach is compared to cooperative deployment. Necessary conditions for

optimality corresponding to the different strategies are derived and numerical results

presented. The optimal solution exhibits remarkable changes depending on the

departure date, and a procedure has been developed to assure convergence with the

use of a single tentative solution.

The same problem was also solved using a suboptimal control law with thrust

angles that remain constant in the inertial frame during each thrust arc. A pre-

liminary study for considering errors introduced by thrust dispersion was carried

on. The use of a re-optimization procedure after each apogee burn allows for a

remarkable reduction of the errors on the final orbit achievement both in the single

satellite case and in the formation deployment. In particular, intrinsically robust

deployment strategies, characterized by a short final burn, have been identified.
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Abstract (Italiano)

L’ottimizzazione di traiettorie spaziali e l’analisi di missione non possiedono al mo-
mento procedure e standard adatti ad ogni genere di problema. Metodi e risultati
migliorano grazie ai progressi nell’informatica, nell’analisi numerica e nell’ingegneria.
Lo scopo di questa tesi è di allargare il campo di applicazione dei metodi indiretti, che
sono basati sulla teoria del controllo ottimale, a problemi di ottimizzazione di traiet-
torie caratterizzati da un modello dinamico complesso, che consideri la non sfericità
della Terra, le perturbazioni gravitazionali della Luna e del Sole e la pressione di
radiazione solare. Il caso studiato è il dispiegamento in orbita di una formazione di
due satelliti in un’orbita altamente ellittica (HEO: Highly Elliptic Orbit) con spinta
finita. La procedura di ottimizzazione fornisce i tempi di accensione e spegnimento
del motore e la direzione di spinta durante ogni sparo, in modo tale da trasferire i
satelliti sulla stessa orbita finale con una distanza assegnata al passaggio all’apogeo;
la massa totale dei due satelliti alla fine del trasferimento è l’indice di prestazione
massimizzato.

Un vincolo di distanza minima è introdotto quando necessario per evitare il ris-
chio di collisione. Diverse strategie per il dispiegamento della formazione sono state
analizzate; in particolare, il classico approccio chaser-target è stato comparato al
dispiegamento cooperativo. Le condizioni necessarie per l’ottimalità sono state rica-
vate per ciascuna strategia e i risultati numerici sono stati presentati. La soluzione
ottimale mostra cambiamenti significativi al variare della data di partenza e una pro-
cedura e’ stata sviluppata per garantire la convergenza utilizzando una sola soluzione
di tentativo. Lo stesso problema è stato risolto utilizzando una legge di controllo
sub-ottimale in cui gli angoli di spinta rimangono costanti nel sistema di riferimento
inerziale durante ognuna degli archi propulsi. É stato condotto uno studio prelim-
inare sugli errori introdotti dalla dispersione di spinta. L’utilizzo di una procedura
di ri-ottimizzazione dopo ciascun arco di spinta permette una sostanziale riduzione
degli errori nel raggiungimento dell’orbita finale sia per il caso del singolo satellite
che nel dispiegamento della formazione. In particolare sono state identificate strate-
gie di dispiegamento intrinsecamente robuste, caratterizzate da un breve arco di
spinta finale.
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Introduction

Exploration is possible only if new routes are discovered. In space there are infinite

routes, but it is not easy to find ones worth to be followed.

Space trajectory design and optimization is the field that studies how to move

a spacecraft, subject to different forces, in a three dimensional space in order to

accomplish its mission. This field involves many disciplines working together and

there are not commercial or academic tools that are suitable for any kind of problem.

There are not standards or established working procedures.

Finding a feasible solution is not easy but the most fascinating part in space

trajectory design is that, for a given problem, there are multiple trajectories and

local optima that fulfill requirements, but difference between a mediocre solution

and a good one is sensible. So optimization is a fundamental step.

Improvements in computer science, numerical analysis, propulsion and engineer-

ing permit to accomplish complex tasks in a more efficient, economic way or, some-

times, make these tasks feasible.

At present different optimization method are used for trajectory optimization,

mainly direct methods, indirect methods, evolutionary algorithms and dynamic pro-

gramming. The aim of this thesis is to enlarge the application field of the indirect

method developed at Politecnico di Torino. Derivation of adjoint variables differen-

tial equations was carried on, considering a J8x8 Earth Geopotential model, luni-

solar perturbations and solar radiation pressure with Earth conical shadow. The

dynamic model has been implemented in a procedure tested on a transfer between

HEO orbits.

Highly elliptic orbits are interesting for being a cheap alternative to Halo orbits

and they are peculiar from the trajectory design point of view because their high

eccentricity breaks the symmetry of perturbations influence.

The main issue was the convergence of the solution, due to the intrinsic sensitivity

of indirect methods to the initial tentative guess. A continuation technique was

introduced to guarantee convergence using only one tentative guess for all possible

departure dates.

The procedure is applied to different boundary conditions and control law. The

deployment of two satellites formation has been studied with two different phasing

3



strategies: Chaser-Target and Cooperative. All the previous problems have been

solved also with a control law requiring that the thrust direction is fixed in the

inertial frame during each thrust arc.

At the end the errors introduced by thrust dispersion have been analyzed. A

re-optimization procedure with an heuristic robust trajectory has been tested in the

single satellite case and in the formation deployment, considering different thrust

scenarios.
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Chapter 1

Indirect method applied to

complex problems

Introduction

In this chapter the general problem of satellite deployment will be introduced, con-
sidering different scenarios and methods from literature. More details will be given
about perturbations and formation flight issues.

The mission Simbol-X will be presented, as case study for indirect methods
application.

1.1 Trajectory optimization of satellite deployment

This work is focused on the trajectory optimization, in particular on the application
of the indirect method to problem characterized by complex dynamical model where
perturbations are present. The optimization method developed is then applied to
the deployment of two satellites flying in formation, considering also operational
issues such as the re-optimization of the trajectory after the simulation of thrust
dispersion errors.

In space trajectory design, the simplest gravitational model used is the two-body
problem, where there is a central massive body, that is the source of the gravitational
field, and a little one, e.g. is a spacecraft, that does not influence the gravitational
field and so it is attracted only by the first body. The only way to modify its
trajectory is by using the thrust (generally the only one control). This model is
well suited for some conceptual design (i. e. interplanetary trajectories) but it has
strong limitations in some scenarios, such as missions around the Earth. In low
Earth orbit a big issue is certainly the drag of the highest part of the atmosphere. If
the spacecraft is close to the Earth, it is also subjected to the perturbations due to
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1 – Indirect method applied to complex problems

the non-spherical shape of our planet. When the altitude of the orbit grows, other
two actors come on the stage: the Moon and the Sun.

The effects of perturbations are well studied since the beginning of the Space Era:
perturbations due the asphericity of the Earth, the presence of Sun and Moon and
also effects of solar radiation pressure ( [1], [2], [3], [4], [5], [6], [7]). The perturbations
are relative small in comparison to Earth’s gravity, so the effects can be seen in a mid-
long period. Typically perturbations are well studied in station keeping problem,
when long operative periods are considered. Analytical and semi-analytical [8], [9]
models have been developed to take these perturbations into account, in parallel
to numerical methods. These methods were very important in the past when the
computational power was small, but also now they are applied successfully in order
to speed up computation for long time simulations.

Orbit transfers are shorter in comparison to station keeping time, so perturba-
tion influence is less studied. In most of the geocentric orbit transfers, perturbations
are handled using direct methods (MALTO [10], ecc) and, in the last years, dynamic
programming (MYSTIC [11]) for trajectory optimization. Another class of meth-
ods for trajectory optimization are evolutionary and indirect methods. A deeper
analysis, with differences between the methods will be given in chapter 2. Indirect
methods are faster and more precise than direct methods, but they may have more
convergence issues. Another problem is that indirect methods require the derivation
of optimal boundary conditions and derivation of the differential equations for the
adjoint variables. They cannot be used as black box solver and they are generally
applied to problem with simple dynamics. Application to geocentric problem is less
frequent.

Indirect methods are generally used for optimization of impulsive or, at the
opposite, very low thrust missions. When these methods are used for geocentric
transfers with perturbations, the problem consists in a minimum time optimization
in most of the cases and the solution has a continuous thrust. If very low thrust
engine is employed, minimum fuel-missions, that consider coast arcs, would be too
long. A study on this problem was accomplished by Geffroy and Epenoy [12]. They
use an averaging technique to deal with perturbations and a continuation scheme to
achieve the optimal solution.

Satellites in geocentric orbit often use chemical thrusters for orbit maneuver. The
thrust level is not so high to model the maneuvers as impulsive. At the same time
is too high for having a continuous solution. A bang-bang solution is necessary with
long coast arcs to keep low the fuel consumption. Several authors (Redding [13],
Bertrand [14], Haberkorn [15]) worked on minimum fuel problems with indirect
methods, but perturbations were not considered. Thevenet and Epenoy [16] included
J2 perturbations in one of their work. They exploited J2 effects to reduce the
propellant consumption during the reconfiguration of a four spacecrafts formation;
Chuang et al. [17] discuss the effects of atmospheric drag and Earth oblateness for
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1.1 – Trajectory optimization of satellite deployment

a fixed-duration transfer.
In ”Politecnico di Torino” an indirect method has been used for trajectory opti-

mization for the last two decades and a procedure was developed that mitigates the
drawbacks of indirect methods. The formulation of the problem is simplified and so
more attention can be paid on strategies to achieve convergence. The procedure has
been tested on different problems of interplanetary trajectories [18] [19] [20] [21] [22],
but also ascent trajectories of launchers and sounding rockets [23]. The procedure
has proven to work with problems involving aerodynamic forces [24] [25].

In the last three years the propulsion group of Politecnico, together with ”‘Uni-
versità Sapienza di Roma”’, decided to apply the indirect method procedure to a
more complex dynamical environment. The research produced different papers on
the subject and this thesis collects and puts the work done in a more generic frame.

The introduction of perturbations in the indirect procedure required a new
derivation of the adjoint variables differential equations. This was a time consuming
task, but derivation was not the greatest issue. The real issue was to understand
how perturbations change the optimal solution of the problem and how to get con-
vergence. The last was a big problem considering that indirect methods are very
sensible to initial tentative guess and the presence of perturbations makes the prob-
lem more sensible.

On the other side, including perturbations enlarges the research field and im-
proves the fidelity of the model; new strategies are sought to avoid the unfavorable
perturbations and to exploit the favorable ones. This is useful from a practical point
of view but it is also challenging form the intellectual point of view. Highly elliptic
orbits are a good testbed for the indirect method procedure applied to perturbative
environment. The low perigee is subjected to J2 perturbations and the high apogee
is influenced by Luni-Solar perturbations for a large fraction of the revolution pe-
riod. The procedure can be also used in the future for interplanetary trajectories
considering the influences of all the planets, but also for tour design around Jupiter
Moons, where there is a big oblateness effect of the giant planet.

From the operational point of view HEO are becoming interesting because they
are a cheap alternative to Halo orbits around Lagrangian points for the observations
of deep space sky. An example is the concept mission Simbol-X, that is the case
study of this thesis. Simbol-X is a mission for observing the sky and the scientific
task is accomplished by two satellites working together. The reference orbit of this
mission requires the introduction of perturbations but it gives also the chance to
deal also with the deployment of two satellites in formation.

Missions can be accomplished by a single satellite or group of satellites. Con-
stellations of satellites work everyday in order to give us telecommunication service,
position and surveillance. A constellation is a set of satellites working together for
pursuing a specific task/mission. The constellation has to be managed in order to
guarantee a certain coverage and the satellites have different orbits. A new paradigm
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1 – Indirect method applied to complex problems

has been introduced in the last years, that is the satellites in formation flight. In
this case satellites work at a closer distance, they have to keep relative distance and
velocity in certain ranges and their orbits are very close.

The concept is not new: the Gemini and Apollo capsules had to perform a
formation flight before operating a rendez-vous, even if it was only for a short time.
Now the idea is to have satellites flying and working in formation, sometimes with
very strict constraints.

Some features make more satellites working together an appealing configuration.
The formation flight is used by GRACE and GRAIL missions for mapping the
gravity of Earth and Moon, by Cluster, Themis and Artemis missions for measuring
the interaction of solar wind with the magnetic field of Earth and Moon. Formation
flight is also present in proposals, such as Darwin (a telescope for seeking exo-
planets), LISA (an interferometer for detecting gravitational waves), SWARM et al.
It is possible to say that now there are two types of missions that require formation
flight: missions that need a big distance between the satellites in order to have
the required accuracy (GRACE, GRAIL and LISA) or missions that have to make
measurements over large volumes (CLUSTER, Themi-Artemis).

Sometimes, some of the missions can be accomplished by a single satellite. For
example the gravity map performed by GRACE was also performed by GOCE, even
if GOCE has a higher space sensitivity, while GRACE has an higher time sensitivity,
so the two missions were in part complementary. Other missions, such as LISA, are
not possible with a monolithic structure.

Another field of interest represent Cubesats. The new standard of cubesat per-
mits access to space with a relative low cost, but the small dimensions of cubesats
(even in the composite structure of three modules) do not permit to have complex
system on a single spacecraft. A formation of cubesats could accomplish more com-
plex tasks and have some fault tolerant formation design. They can be used also
coupled with bigger spacecrafts. Another possible future application is the forma-
tion flight needed to auto-assembly the next generation Space Station or Deep Space
Habitat.

Formation flight is a very prolific field of studies, considering free or tethered
satellites in formation, but often the studies are focused on the control law and
the stability of the formation. Relative few studies are oriented to deal with the
deployment of the formation, even if the maneuver can be tricky, in particular when
perturbations are present.

The classical deployment strategy is the chaser-target, where a satellite (the
target) applies its own optimal strategy, while the other one (the chaser) reaches
the orbit of the first one. In this thesis the chaser-target approach has been studied
together with the cooperative approach. Cooperative deployment strategy means
that the two satellites perform the transfer optimizing the overall final mass and not
only the target final mass. The sum of the masses of the two satellites in cooperative
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1.2 – Case study: Simbol-X

strategy is larger than the same value in chaser-target strategy, while target final
mass will be lower and chaser one higher.

At the end of the thesis some operative studies have been done about the appli-
cation of indirect method to more operational problem, such as consider thrust laws
more simple to be realized than the optimal control law.

The last topic of this thesis is the study of the influence of thrust dispersion
errors in the fulfillment of mission requirements. A simulation of the errors in
direction and magnitude of the thrust vector was performed and the final errors on
the boundary constraints were considered. An open loop control is not suitable, even
if only thrust errors are considered (not considering orbit determination errors). So
re-optimization close loop was used and sub-optimal robust solutions were seek.

1.2 Case study: Simbol-X

The indirect optimization procedure with perturbations can be applied to different
case studies and different configurations. The case study of this thesis is the mission
concept Simbol-X, a French-Italian mission (now canceled) for the observation of
the sky in the hard X-ray.

Figure 1.1: Artistic Impression of Simbol-X. Credit: CNES

In 2001 CNES, the French Space Agency, wanted to build a formation flying
demonstrator. The French and Italian scientific community proposed a mission
for observing the universe in the hard X-ray range. In the past other missions
explored the X-ray with lower energy (< 10KeV): UHURV, Ariel-V, HEA01, Ein-
stein, ROSAT, Chandra, XMM-Newton. These missions permitted to discover X-ray
bursts in the galaxy.

Other missions were launched for the observation of hard X-rays (BeppoSAX,
INTEGRAL), but the sensitivity and angular resolution was low with respect to
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1 – Indirect method applied to complex problems

X-ray telescopes and so it is hard to individuate hard X-ray sources. These sources
are important to study the accretion physics in black holes and particle acceleration
mechanism. The idea was to bring the X-ray mirror technology to the observations
of hard X-rays, but this feature requires long focal lengths.

In order to reach the scientific requirements for observation, the focal length
should be between 20m and 30m. It is not possible to have this instrument in
a monolithic structure, so the telescope has the mirror and the detector on two
different satellites flying in formation.

Figure 1.2: Distance between satellite: the left satellite is the detector and the
satellite on the right is the mirror. Credit: CNES

The mission should operate for at least 2 years with a chance to be extended. The
telescope points the target and has to perform a long observation (100 ks or more)
on the same target. In order to have stable images the two satellites have to keep
the focal length with an error ±10 cm. The scientific requirements give constraints
to the choice of the orbit. The observation can be done only above 73000 km, in
order to avoid disturbances form Van Allen belt. At the beginning, the orbit chosen
was an halo orbit around L2 Sun-Earth Lagrangian point, but then the idea was to
use a cheaper geocentric elliptic orbit.

Gamet et al. [26], [27], Fontedecaba [1] describe the mission overview, the con-
straints and the problem related with formation keeping and orbit raising. The main
constraint for the choice of the operative orbit are: the observation constraints; the
launcher mass capacity; propellant mass budget for orbit maneuver, formation keep-
ing, pointing and end-of-life maneuver; link budget.

The constraint of staying above the Van Allen belt requires high semi-major
axis. At the beginning a 7 sidereal-days (90% of observation time) orbit was chosen,
but it was not compatible with link and mass budget and so a 4 days orbit (83% of
observation time) was selected. The selected launcher was a Soyouz with a Fregat
upper stage. The launcher capacity for the chosen transfer orbit is around 2300 kg.
The choice of the value of the perigee is linked to three factors. The first is that the
hydrazine budget for formation keeping increases when the perigee altidtude is low
(5000 km altitude). Possible values were in the range 15000-20000 km of altitude.
On the other side a higher altitude of perigee requires higher propellant budget for
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1.2 – Case study: Simbol-X

Figure 1.3: Viewing direction. Credit: CNES

perigee raising. In order to improve also the link budget, the lowest value of the
perigee was chosen.

The mission starts with the launch, then the perigee raising is performed. This
maneuver is strongly influenced by the position of the Moon that may make the two
satellites plunging in the atmosphere. On the other side, if a good departure date
is chosen, the Moon may stay in a favorable position and help increasing spacecraft
perigee. In this phase the two satellites are controlled independently from the ground
in the so called free formation flying. When the two satellites are close enough (10
- 30 km) a radio frequency sensor establish an inter satellite link. In this phase the
satellites maneuver are still computed on the ground, but avoidance maneuvers are
computed on board. In the formation acquisition mode the formation is controlled
by on board Guidance, Navigation and Control subsystem.

In the coarse formation mode the distance between satellites is reduced to 20 m.

11
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In the fine formation mode the formation is controlled by optical sensors and cold
gas thrusters: this is the scientific mode.

The work of this thesis is focused on the application of the indirect method to
the delivery phase/perigee raising. The aim is to apply the indirect method to this
complex problem, to study the influence of the perturbations on the optimal solution
either in terms of performance index or in terms of optimal strategy.

Conclusions

In this chapter the problem of satellite deployment was presented. After the review
of existing literature, it has been proposed to apply the indirect method developed
at ”Politecnico di Torino” to more complex problems, involving Earth oblatness,
Moon and Sun perturbations. The deployment of two-satellite formation in HEO
was considered a good testbed due to the complexity of the involved dynamic and,
at the same time, for the increasing interest of the scientific community in the
exploitation of HEO as cheaper alternative to Halo orbits and in the appealing
formation flight features. The mission Simbol-X proposal was presented as case
study.

12



Chapter 2

Methods for trajectory

optimization

Introduction

The general statement of an optimization problem will be introduced in this chapter.

After a brief survey of direct and evolutionary methods, a deeper description of the

indirect method used in this thesis will be given.

2.1 Optimization problem: definition and taxon-

omy

The work presented in this thesis concerns the transfer trajectories of a two-satellites

formation, with the Earth as central body. The dynamic environment is complex,

described by non linear equations. Every little perturbation can change the final

orbit, so the design is challenging and the optimization process is necessary in order

to have a feasible mission. When finite thrust is used the optimization is even more

difficult so the optimization method becomes important.

In Politecnico di Torino prof. Bussi established an optimization research team for

solving problem linked with propulsion and trajectory mission design. In this team

an indirect method was developed and applied to different problems: interplanetary

mission, such as Earth-Mars transfers or travel to asteroid, deviation of asteroid

with kinetic impact, launcher ascent optimization and sounding rocket flight. In the

last years an hybrid evolutionary algorithm was developed in the team, for solving

problems such as impulsive transfers and other applications. The direct method has

not been used in the Politecnico team, but there was a first tentative of a direct

method coupled with the indirect method. The research of the last three years was
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2 – Methods for trajectory optimization

focused on the use of the indirect method in a perturbed environment and also with
more than one spacecraft in formation.

It is important to describe the optimization tool used for the problem studied in
this thesis, but it can be useful in the this chapter a brief survey of other optimization
methods. The material is taken form the notes of prof. Casalino lessons, Repetto’s
course in Politecnico di Torino [28], Stanford [29] and Princeton course [30] and the
paper of Betts about the survey of the optimization methods [31]. More detailed
information can be found in these resources.

Most of the theoretical bases have their roots in the middle of twenty th century,
but the implementation of these methods was difficult because the low computa-
tional power available. So it is possible to see a parallel path in which optimization
methods improve their performances and number of applications side by side the
improvements in computational power. An optimization method can be used in dif-
ferent applications, but not all methods are good for each one. Changing the field of
application or also, in the same field, the type of the problem, can require a tuning
of the algorithm.

The aim of the optimization is to maximize or minimize an objective function.
This is called single objective optimization and it is the same carried out in this
thesis.

There is also the multi-objective optimization where there are multiple perfor-
mance index. Citing the definition of Osyczka (1985), multi-objective optimization
find a vector of decision variables and optimizes a vector function whose elements
represent the objective functions. The performance index are usually in conflict, so
the optimization process aims to find acceptable values of the objective functions,
following some criteria useful to the user. Generally the aim is to find a trade-off
between them.

There are different ways to deal with multi-objective optimization: the most
common are the use of a Pareto front or summing all the performance indexes in a
single one.

For the first one the meaning of dominance is involved. The Pareto front is a set
of solutions, each one is not dominated by other solutions. The problem becomes
highly computational demanding. Another way is to have a single performance
index that is the linear combination of the objective functions. The sum of all the
indexes requires the choice of weights and the optimal solution strongly depends on
this choice. Changing the weights is equivalent to move on the Pareto front.

Another taxonomy is about global/local optimization. Local optimizers start
from a tentative solution and find a local minimum (maximum) which depends on
the convergence radius of the method. A global optimizer virtually explores all the
solution space and it is able to find the global optimum.

In general, an optimization problem can be static or dynamic, requiring different
types of methods. Trajectory is the set of the different positions of the spacecraft
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during time, so it is a dynamical problem and the independent variable is the time t.
Sometimes it can be convenient to change the independent variable. The trajectory
can be split in different phases or arcs, each one from tj−1 to tj. The different
phases are useful for using different constraints, different state equations or also for
considering a multi-branch trajectory.

In the most general case the trajectory is described by the state variables x(t)
and the control vector u(t). It is also possible to have static parameters that are
collected in vector c. The dynamic system behavior is nonlinear and that makes
the optimization process more difficult than a static problem, but the time depen-
dence builds a structure in the solution, because all the state variables have to be
continuous inside a phase, while they can be discontinuous between two phases.

The system is defined by a set of explicit differential equation, even if it should
also be implicit. Usually

dx

dt
= f(x(t),u(t),c,t) (2.1)

Splitting the trajectory in phases allows to have different dynamic equation for
each arc (i.e. different Thrust level, different engine). As said before, each phase is
identified by an initial and a final time.

The set of boundary conditions can be indicated as:

ψj−1l
≤ ψ(x(j−1)+ ,xj

−

,u(j−1)+ ,uj
−

,c,t(j−1)+ ,tj−) ≤ ψj−1u
j = 1, . . . ,f (2.2)

where j is the phase number, t0 is the initial point and tf the final one. The
subscripts l and u indicate respectively lower bound and upper one. All the interior
point are called junction points, where two or more phases (if the trajectory is multi-
branch) are linked. The boundary conditions are in general inequality constraints,
but they can consider also equality ones. The boundary conditions can be complex
functions, but also simple linear constraints on the state variables or on the controls.

The solution can also fulfill algebraic path constraint in the form

gpl ≤ gp(x,u,c,t) ≤ gpu j = 1, . . . ,f (2.3)

In the next paragraphs, if no specified, x and u stand respectively for x(t) and
u(t). In some case also the quadrature

∫ tf

t0

q[x,u,c,t]dt (2.4)

case can be evaluated. The quadrature, together with the differential equation
(2.1) and the path constraint (2.3), are referred as the continuous functions inside
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2 – Methods for trajectory optimization

each phase. The boundary conditions, that can be also linear, are referred as the
point functions.

The objective functions can be continuous or discrete. For the trajectory opti-
mization problem, generally the assumption is that the objective function is contin-
uous and differentiable with respect to the variables.

In the Mayer formulation the performance index J is written as

J = φ(x0,x1±,...,xf ,t0,t1±,...,tf ,c) (2.5)

Another formulation is the Lagrangian one

J =

f∑
j=i

∫ t(j)−

t(j−1)+

Φ(x,ẋ,t)dt (2.6)

If the J is the sum of the integral of the Lagrangian formulation and the scalar
of the Mayer formulation, it is called the Bolza problem. It is always possible to
pass from one formulation to the other one with the help of auxiliary variables.

Now it is possible to define the optimization problem: find the control u and
parameters vector c to minimize (or maximize) the performance index J , respecting
the boundary conditions. The search of the optimal solution can be performed using
only the objective function evaluation (as in the evolutionary methods), the gradient
evaluation or also the Hessian evaluation. Sometimes the taxonomy is not so neat.
For example the Newton method, the most used in trajectory optimization, uses
the computation of the Hessian, while the Quasi-Newton Method approximates the
Hessian using only the evaluation of the gradient. In the optimization a feedback
control law can be used, such as the Q-law function introduced by Petropoulos et
al. [32]. In the present thesis a feed-back is used to mitigate the error introduced
by possible dispersions in a real mission, but in this case it is not involved in the
optimization process.

In the next paragraphs three methods will be presented: direct methods, evo-
lutionary methods and the indirect method used in this work. Other methods for
the optimization can be used, such as the dynamic programming or the differential
dynamic programming, that mitigates the curse of dimensionality of its predecessor.
It is worth to say that dynamic programming, even if it has not a large field of
application, is very important from the theoretical point of view.

2.2 Direct Algorithms

Direct algorithms are very common in the field of trajectory optimization. Both
direct and indirect methods make use of NLP (Non Linear Programming) for the
search of the optimal variables, but the main difference is that direct methods have
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a direct evaluation of the performance index and the constraints of the problem.
The indirect methods only consider the constraints of the problem and optimality
conditions. The main source for this paragraph is the paper of Betts about numerical
methods for Trajectory Optimization.

There are different applications of direct methods, but one of the most useful is
the direct transcription that works with discrete system. It can be applied with-
out deriving optimality conditions and does not require an a priori definition of
phase sequence when path inequalities are present. The time domain is divided into
intervals, defining a grid

t0 < ti < . . . < tM = tf (2.7)

The problem variables to be optimized are the state and control variables at the
grid points:

x = {y
0
,u0,y1

,u1, . . . ,yM ,uM} (2.8)

The aim is to maximize the performance index φ(x). φ is a maximum if dφ ≤ 0
for any choice of dx. For small variations it is possible to adopt a second order
Taylor’s expansion of φ.

φ(x+ dx) = φ(x) + gTdx+
1

2
dxTHdx (2.9)

where g is the gradient defined as

g =
∂φ

∂x

T

= ∇xφ =











∂φ

∂x1

∂φ

∂x2

...
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∂xn











(2.10)

while H is the Hessian, the nxn symmetric matrix

[H ] =
∂
(

∂φ

∂x

)T

∂x
=

∂g

∂x
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(2.11)

For an unconstrained optimization, the necessary condition for φ to be a maxi-
mum (or a minimum) is that the gradient g is zero. To identify the nature of the
stationary point, the second variation of φ ( the Hessian) has to be analyzed. For
a maximum, dxTHdx ≤ 0 is required for any dx, that is H negative semidefinite
for a maximum (non-positive eigenvalues). For a minimum the eigenvalues have to
be non-negative. The sufficient conditions to have a maximum is that g = 0 and
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2 – Methods for trajectory optimization

dxTHdx < 0 for any dx 6= 0, that is H negative definite for a maximum (negative
eigenvalues).

The aim of the optimization is to have g(x) = 0, that is true for a root x∗. The
basis for the root finding is Newton’s Method, that here is explained in brief. This
method is iterative and starts from a tentative guess x0, where the superscript is no
an exponent, but the number of the iteration. If a generic xr estimation at the r−th

iteration is considered, the new estimation is:

xr+1 = xr +K1r (2.12)

where K1 is called the scalar step length and r is the search direction. In lit-
erature the search direction is sometimes indicated as p, but the other notation is
preferred to avoid confusion with other symbols.

The search direction r is computed using the Hessian:

H(x)r = −g(x) (2.13)

The root-finding method can be generalized using different matrices for comput-
ing the search direction. In general, the matrix used has to be non-singular (in other
words invertible). An issue of this method is that the initial estimation has to be
close to the root x∗, otherwise the method may diverge. In order to stabilize the
method the K1 step length can be reduced. This procedure is called a line search.
In general what is done by this procedure is to find a value of K1 so that a function
called merit function is lower than the previous iteration. One possible choice is the
gradient

∥

∥g(xr+1)
∥

∥ ≤ ‖g(xr)‖ (2.14)

This is a common choice for indirect methods. For direct methods generally the
performance index is chosen as merit function

∥

∥φ(xr+1)
∥

∥ ≤ ‖φ(xr)‖ (2.15)

When this merit function is used it may happen that the search direction points
uphill instead of downhill, and so the search direction has to be recomputed. In
other words, if the function φ were a bi-dimensional convex function, it would be
like a bowl. With the second order Taylor’s expansion the Newton Method is able to
find the bottom of the bowl, that is where g(x) = 0. The function is convex and the
minimum is only one (specular situation is for a concave function where there is only
one maximum). Generally speaking the function φ is not convex (o concave) and it
has multiple local minimum and maximum and so different peaks and valleys. The
Newton method, starting from a first guess, approximate the neighborhood of the
estimation x as a bowl to find the search direction to the bottom of the approximated
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bowl. But the real shape of the function is different from a bowl, so following the
search direction it is possible to have a value of φ higher than in the previous step
or a gradient higher than in the previous step. Indirect methods, commonly but not
always use the gradient as the merit function, so they may be entrapped in a local
minimum. Direct methods generally have a bigger convergence basin because they
use the performance index as merit function.

The optimization problem becomes more complex when constraints are involved.
For the sake of simplicity here only the equality constraints ψ(x) = 0 are considered.
If x is a n-component vector and ψ is a m-component vector, it has to be m < n.
The feasible points are those which satisfy the relationship ψ(x) = 0. The choice
dx is said admissible if it verifies ψ(x+ dx) = 0.

At a feasible point, φ is a maximum if dφ ≤ 0 for any admissible choice of
dx. Any admissible variations require dψ = ψ(x + dx) − ψ(x) ≤ 0. There are
different ways to maximize the function φ considering also the constraints. One of
the possibilities is to optimize the augmented function

φ∗ = φ(x) + λTψ (2.16)

where λ is a m-component vector of adjoint parameters to be determined. φ and
φ∗ have the same value if the constraints are satisfied. In literature, the expression

L(x,λ) = φ(x)− λTψ (2.17)

can be found. This is the Lagrangian and it is equivalent to Hamiltonian H,
except for the minus sign before the λ vector. The second-order Taylor’s expansion
of the augmented function φ∗ is

φ∗(x+ dx) = φ∗(x) + (gT + λT [G])dx+
1

2
dxT [H∗] dx (2.18)

where g is the gradient as usual, [G] is the Jacobian and [H∗] is the augmented
Hessian. The Jacobian is the first order expansion of the constraints

[G] =
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(2.19)

and the augmented Hessian is

[H∗] = [H ] +

∂

[

(

∂λ
T

ψ
∂x

)T
]

∂x
(2.20)
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The component of the augmented Hessian is expressed as

H∗

ij = Hij +
m∑

k=1

λk
∂2ψk

∂xi∂xj
(2.21)

The first-order necessary condition for the augmented function is

g + [G]T λ = 0 (2.22)

which gives n scalar conditions. With the m conditions ψ = 0 there are n +m

equations for finding x and λ. Eq. (2.22) build a relationship between the gradient
of the function φ and the gradient of the constraints. The linear system to compute
the search direction is called Kuhn-Tucker (KT) or Karush-Kuhn-Tucker system and
it is equivalent to the minimization of the quadratic form

1

2
rTH∗r + gTr (2.23)

with the constraints

Gr = −ψ (2.24)

This is called Quadratic programming.
When inequalities are considered, the problem is to define which constraints are

active, and so they have to be treated as equality constraints, and which ones are
inactive, and so they are not considered in the optimization. A very common method
to handle the inequality constraints in the realm of space trajectories optimization
is the sequential quadratic programming (SQP).

All the techniques described until now are optimization methods and they are
applied to the trajectory optimization. The trajectory problem can be stated in
different way.

One possible choice is direct shooting. In this case the unknowns of the problem
are the initial state variables, the initial time, the parameters and the parameters
of the control u. The initial values are propagated until the final time tf is reached,
and the output of the problem is the value of the function φ and the constraints ψ.
One of the issue of this method is that the problem is very sensitive to the initial
values that are propagated along the whole trajectory.

To avoid that small changes introduced at the beginning of the trajectory can
propagate into large changes at the end, the trajectory is broken into shorter seg-
ments. The initial values of the dynamic variables at the beginning of each segment
are the new unknowns. New constraints are present to join all the segments. The
number of unknowns grows with the number of segments, but the Jacobian is sparse
because the segments are uncoupled. The multiple shooting improves robustness of
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the method, but increases the number of unknowns and constraints. It needs also

to define constrained and unconstrained subarcs a priori.

Another direct method is the transcription or collocation method. The time

domain is broken in smaller intervals and each point is called grid point. The

unknowns are the state and control variables at the grid points and their parameters,

such as initial and final time. The initial differential equation are substituted by

defect constraints, that are the errors at arc junctions after the integration of one

step. The non linear programming problem is large, but the matrices are sparse.

This method is versatile and robust and does not require to establish inequality path

constraints a priori.

2.3 Evolutionary Algorithms

A class of Algorithms that is widely used nowadays are the Evolutionary Algorithms.

They are global optimizer in the sense that they can potentially find the global

optimum of the problem. Direct and Indirect methods strongly depend on the initial

solution, even if in different ways. Evolutionary methods take inspiration from the

natural life and sometimes they are addressed also as biomimetics. Evolutionary

algorithms are good for testing biological or social theories, but they are also good

for optimizing. Every solution is considered as an individual and new solutions are

generated in different ways.

Three features are fundamental in the evolutionary algorithms: the new solutions

are obtained by little changes and some features have to be inherited from the old

individuals; there is a selection of the individuals; the fittest individuals survive and

transmit their features to the new individuals. In nature the fittest individual is

the one who survives, but in an optimization process the performance index is the

measure of the fitness and is linked in some way to the fitness function. The fitness

function can be fixed or mutable and it is called also fitness landscape. Generally

there is a parent population of individuals that generates an offspring generation.

In this process the parents are chosen with a bias towards the higher fitness.

There are a lot of different algorithms that belong to this class, some are quite

equivalent and each one can have different variants. These algorithms do not make

any general assumption about fitness landscape, so they are pretty versatile. They

have a stochastic behavior so they are also intrinsically robust. They can handle

also multi-objective function and they generally give a set of possible solutions and

it is task of the user chooses the suitable one.

Some issues are obviously present. Having no assumptions about the fitness

landscape, the parameters space has to be searched in a ”blind way”, so more

parameters are present, more function evaluations are necessary. In complex prob-

lem, where many parameters are present, the use of those algorithms is limited by
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computer-time, in comparison with problem of the same complexity treated by di-
rect or indirect methods. A common practice is to use an approximate model with
an evolutionary algorithm and then using the solution as a tentative guess for an
other optimizer with a more complex model.

Another issue is that different algorithms behave in different ways with different
problem. Generally an algorithm can be evaluated considering its speed of conver-
gence, efficiency and accuracy. One single algorithm is generally very strong in one
feature and average on the other two for a certain problem.

A hybrid optimization method, which runs GA, DE, and PSO in parallel, was in
the past developed at Politecnico di Torino. The characteristics of the algorithms
and their synergistic use have been discussed in detail [33–35] and only the main
features are described here. In the last version an initial diversification phase based
on enhanced continuous tabu search is introduced into the algorithm with the aim
of improving the algorithm performance (namely, probability of finding the global
optimum) and possibly reducing the required number of function evaluations to
attain the optimum.

2.3.1 Genetic Algorithm

GA are the most common evolutionary algorithms, introduced by John Holland [36].
They are based on the observation of natural evolution. Each individual is a string
written with a certain alphabet. The string plays the role of a chromosome and en-
codes the individual. The genotype is the set of chromosome value that is uniquely
mapped onto the decision variable (phenotype). So the string is decoded into its
phenotypic values. A phenotype can correspond to different genotypes. The chromo-
some can be expressed in binary string, but in the realm of trajectory optimization
a real-code formulation is usually adopted and each individual is characterized by
the real values of the optimization variables. Each individual has a fitness function
depending on the value of the performance index and individuals with higher fitness
have a higher probability of being selected for mating with other individuals. This
is the principle of survival of the fittest and it is used to have better and better
approximations of the optimal solution. The initial population is created randomly
and for each generation parent individuals are selected. In the code used in Po-
litecnico they are chosen by means of tournament selection. Deb’s crossover [37] is
used to create children solutions which replace the old individuals in the new gener-
ation. Elitism is used to avoid the loss of good individuals caused by other genetic
operators. Mutation is applied to the new population to increase the number of
explored solutions and keep diversity in the population. Some of the variables are
changed, according to a small specified probability. The objective function of each
individual of the new generation is finally evaluated; the worst ones are discarded
and replaced by the elite individuals of the former generation. The whole procedure
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is repeated for a fixed number of generations or until a prefixed number of function
evaluations is reached. GA algorithms permit to explore a population of points in
parallel, while the direct and indirect method explore the neighboring of a single
point at one time. GAs do not require derivative computation or other auxiliary
information. They use probabilistic rules, not deterministic ones, so can give differ-
ent results in different runs. GA provide a set of potential solution, but the final
solution is generally chosen by the user. Their probabilistic nature can be utilized
for a robust optimization.

2.3.2 Differential Evolution

DE [38, 39] is similar to GAs. There are parents and offspring and the selection
is made considering the fitness function, but the selection/crossover mechanism is
different. For the generation offspring, four individuals (the minimum size of popu-
lation) are chosen randomly. New vectors of variables are generated by adding the
weighted difference between the two vectors to a third one. The resulting individ-
ual is compared to a predetermined population member. If the fitness function of
the new individual is higher, it replaces the one it was compared to; otherwise, the
old individual is retained. There are a lot of variation of this simple method and
the value of the amplification of the difference vector can change depending on the
problem.

2.3.3 Particle Swarm Optimization

PSO [40] [41] [42] [43] [44] is a social optimization algorithm. It is based on the
interaction of simple individuals with the environment and between each other. An-
other algorithm belonging to the category of social optimization is the Ant Colony
Optimization ACO. The PSO is inspired by social behavior of bird flocking or fish
schooling. The collective behavior of the individuals shows an emerging intelligence
that is called swarm intelligence. In this algorithm the current population moves
across the search space, while in GA and DE there is the generation of new individ-
uals. The individual is called particle and it has a position (that are the parameters
of the problem) and a velocity vector, which rules the motion of the particle. The
particles move through the domain and each particle updates its instantaneous ve-
locity at each iteration in order to improve the solution. The velocity is changed to
move the particle toward the best solution that the particle itself has reached in the
previous iterations (cognitive acceleration) and toward the best solution that any
particle in the population has reached (social acceleration). So the PSO algorithm
has memory. In GA and DE all the individuals share information with all the pop-
ulation, while in PSO only the Best individual gives information to the group. For
this reason the PSO algorithm converges very quickly.
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2.3.4 Ant Colony Optimization

Ant Colony Optimization [45] [46] is another bio-inspired algorithm and it belongs
to the category of social optimization. It takes inspiration from the behavior of
ants that have limited cognitive faculties as individuals. Ants usually communicate
with the colony using pheromones, that are applied to the ground. The pheromone
has limited lifetime before evaporating. The ants explore the nest neighborhoods
with an initial random walk, but when food is found, the ant comes back to the
nest leaving pheromones on the ground. The other ants, at each step, can decide
to explore the neighborhoods or to be greedy and follow the path with the higher
pheromone concentration. The shortest path between the nest and the food has the
higher quantity of pheromones because they have less time for evaporating, so ants
follow the shortest path with an higher probability.

There are many different implementations of ACO and they are used for combi-
natorial problem, minimum walk in a graph, etc.

2.3.5 Branch and Bound

First proposed by Land and Doig [47], the branch and bound (and prune) method is
used for integer and discrete optimization. There is also an implementation that use
the the cutting plane algorithm. The procedure is based on three step: branching,
bounding and pruning. The aim is to optimize (i.e. minimize) the function φ(x) in
a set S of candidate solution of integer or discrete decision variables. The first step
is recursive generation of subset Si (branching). This operation build a tree, that
is a set of nodes connected by edges. The function φ(x) has a minimum value vi in
the subset Si and the upper and lower bounds for the minimum value of φ(x) are
computed (bounding).

If the lower bound for some tree node is greater than the upper bound of another
node (in minimization case), this maybe safely discarded (pruning). The entire
procedure stops when S is a single element or if the upper bound matches the lower
bound.

2.3.6 Simulated Annealing

Simulation annealing [48] takes inspiration from annealing in metallurgy, a technique
that involves heating and cooling in order to increase crystal size dimension. The
main idea is to have an algorithm exploring neighboring solutions with a decreasing
probability of accepting worse solution

The procedure starts from a state s and can decide to move in other state or
remain in the same state. The decision is probabilistic, in order to have the possi-
bility to fully explore the solution space. The aim is to minimize the energy, that
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can be the performance index.
The acceptance probability function P (e,e′,T ) defines the probability to move

in another state and it depends on the energy of the present state e, the energy of
the neighboring state e′ and the time-varying parameter, the temperature T . The
probability has to be positive (but small) if e′ > e. When T decreases the algorithm
has to become more greed and to ”prefer” down-hill moves.

2.3.7 Cooperative hybrid algorithm

An evolutionary algorithm can be evaluated considering the speed of convergence,
the efficiency and the accuracy, but these performance strongly depends on the
nature of the problem. A specific algorithm can have very good speed of convergence,
but be average in the other performance.

The use of an hybrid algorithm, where different programs work sinergistically, can
improve the overall performance. The different algorithms can exchange information
using migration or clonation of the best individuals. The different populations can
work on different domains, using the island model.

At Politecnico di Torino a similar algorithm has been developed (Hemoglop:

Hybrid Evolutionary Multi-Optimisers Global Optimisation Tool) and GA, PSO and
DE are used. In order to have a good exploration of the solution space, the search
of the optimal one can start with a TS based diversification phase. Tabu search
is an algorithm originally developed by Glover [49, 50], which has been successfully
applied to a variety of combinatorial optimization problems. The parameters for
trajectory optimization are continuous, so it is more suitable an adaptation of TS
to continuous optimization problems, called enhanced continuous tabu search [51],
which is inspired by Glover’s approach.

A number of random solutions depending on the number of variables are initially
produced; the diversification phase starts from the best solution s among these. A
set of a limited number of new solutions is generated during each iteration, dividing
the domain in hypercubes, which surround the current solution s. A new solution is
picked randomly in every subdomain. A tabu list, which contains solutions belonging
to regions of the search domain that have already been explored, is created to avoid
the risk of the appearance of a cyclic behavior. The solutions, which are close to
solutions in the tabu list, are systematically eliminated. The objective function to
be minimized is evaluated for the new solutions and the best one becomes the new
current solution s, even if the objective function is worse than the previous value.
After each move, s is put into the tabu list.

In the diversification phase TS generates a list of promising solutions to locate
the regions of the search domain which correspond to low values of the function
to be minimized. Each current solution s is inserted into the promising list if the
objective function is lower than a given threshold. Each solution in the promising
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list can be considered as the center of a hypersphere called promising area. New
solutions are added to the list only if they do not belong to any of the promising
hyperspheres. This condition stimulates the search toward new areas of the domain.

After the diversification phase, the individuals of the promising list, ordered
according to the objective function, are copied into the initial populations of GA, DE,
and PSO until the population is completed (number of individuals in the algorithm
population smaller than number of individuals in the promising list) or the promising
list is totally exploited (in the opposite case); in the latter case the each algorithm
initial population is completed with individuals created randomly. The exchange
process between the different algorithms is clonation.

2.4 Indirect Method Optimization

In this thesis an Indirect Method for trajectory optimization is used and it will be
described in details in this paragraph. The statement of the optimization problem
is the one exposed at the beginning of the chapter, but some parts will be repeated
for the sake of clarity. The time t is the independent variable, x is the vector of
the state variables (n-component vector) and u is the control vector (q-component
vector), while ψ = 0 is the m-component vector of constraints.

The Bolza problem, defined as sum of Mayer (2.5) and Lagrangian (2.6) per-
formance index, consists in finding the extremal path x(t) and the corresponding
optimal control law u(t) that satisfy the differential equation ẋ(t) = f(x,u,t) and
the boundary equations, maximizing (or minimizing) the performance index J .

The trajectory is split in j phases and each point is labeled by the time tj, where
the state variable vector assume values xj (the subscript here indicates the point
and not the variable inside the state variable vector). Each point is called joining
or internal boundary point. The variables can have different values before and after
the point, so that discontinuity can be handled.

The j-th interval goes from t(j−1)+ to t(j)
−

and the variable values at the extrem-
ities are indicated as x(j−1)+ to x(j)

−

, with j = 1,..,f , where f is the number of
phases.

The Bolza problem performance index is (compare (2.5) and (2.6))

J = φ(x0,x1±,...,xf ,t0,t1±,...,tf ) +

f∑
j=i

∫ t(j)−

t(j−1)+

Φ(x,ẋ,t)dt (2.25)

and the boundary conditions are written as

ψ(x(j−1)+ ,xj
−

,t(j−1)+ ,tj−) = 0 j = 1, . . . ,f (2.26)

’
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In the code developed at Politecnico di Torino only Mayer formulation is used.
J is a functional and the calculus of variations is used to study the behavior of the
performance index given its variables. The Optimal Control Theory OCT [53] is the
theory that uses calculus of variations to maximize or minimize a functional. The
maximization problem can be changed into a minimization problem changing the
sign of φ and Φ, and here only the maximization problem is considered.

In the Bolza problem 2.25 there are not reference to the boundary conditions or
the differential equations, but an augmented index can be introduced:

J∗ = φ+ µψ +

f
∑

j=i

∫ t(j)−

t(j−1)+

[Φ + λT (f − ẋ)]dt (2.27)

The new variables added are the adjoint variables λ (n-component vector) and
the adjoint constants µ. The adjoint variables are associated with the state vari-
ables, while adjoint constants are associated with the constraints. When Boundary
conditions and differential equation are satisfied (the solution is feasible), J = J∗

for any choice of λ and µ.
The behavior of J∗ can be analyzed by the first order expansion of the functional.

In the subsequent expression the interior point are omitted in order to improve
clearness and they will be re-introduce later.

dJ∗ =

(

∂φ

∂tf
+ µT ∂ψ

∂tf
+ Φf + λ

T
f (f f − ẋf )

)

dtf +

+

(

∂φ

∂t0
+ µT ∂ψ

∂tf
− Φ0 − λ

T
0
(f 0 − ẋ0)

)

dt0 +

+

(

∂φ

∂xf

+ µT ∂ψ

∂xf

)

dxf +

+

(

∂φ

∂x0

+ µT ∂ψ

∂x0

)

dx0 +

+

∫ tf

t0

[

∂(Φ + λTf)

∂x
δx+

∂(Φ + λTf)

∂u
δu− λT δẋ

]

dt (2.28)

The Hamiltonian defined as H = Φ+λTf is introduced and substituted in 2.28.
Considering that

dx = δx+ ẋdt (2.29)

and integrating δẋ by parts
∫ tf

t0

−λT δẋdt = −λT

f
δxf + λ

T

0
δx0 +

∫

tf

t0

−λ̇
T

δxdt (2.30)
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the first variation of J∗ can be written now as

dJ∗ =

(

∂φ

∂tf
+ µT ∂ψ

∂tf
+Hf

)

dtf +

+

(

∂φ

∂t0
+ µT ∂ψ

∂tf
−H0

)

dt0 +

+

(

−λf +
∂φ

∂xf

+ µT ∂ψ

∂xf

)

dxf +

+

(

λ0 +
∂φ

∂x0

+ µT ∂ψ

∂x0

)

dx0 +

+

∫ tf

t0

[(

∂H

∂x
+ λ̇

T
)

δx+
∂H

∂u
δu

]

dt (2.31)

The necessary condition for the stationarity of the performance index J is that
dJ = 0 for any admissible variation which is guaranteed by posing dJ∗ = 0 for any
choice of δx, δu, dxf ,dx0,dtf , dt0. The adjective admissible means that each choice
must fulfill the boundary conditions and the differential equations. The first order
variation is null when all the coefficients of the admissible choices are nullified. In
other words λ and µ can be chosen in order to have dJ∗ = 0 whatever values take
δx, δu, dxf ,dx0,dtf , dt0.

Nullifying the coefficient of δx gives the Euler-Lagrange equations

dλ

dt
= −

(

∂H

∂x

)T

(2.32)

that is a set of n differential equations that describes how the adjoint variables evolve
during the trajectory.

Nullifying δu provides q algebraic equations

(

∂H

∂u

)T

= 0 (2.33)

that define the optimal control values. They do not formally depend on the perfor-
mance index.

The other coefficients are related to the initial and final conditions, but it is better
to introduce the interior point constraints for having a more general framework.
Rewriting 2.31 with the interior point constraints
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dJ∗ =

f
∑

j=0

[

(

∂φ

∂tj−
+ µT ∂ψ

∂tj−
+Hj−

)

dtj− +

+

(

∂φ

∂tj+
+ µT ∂ψ

∂tj+
−Hj+

)

dtj+ +

+

(

−λj− +
∂φ

∂xj−

+ µT ∂ψ

∂xj−

)

dxj− +

+

(

λj+ +
∂φ

∂xj+

+ µT ∂ψ

∂xj+

)

dxj+] +

+

f
∑

j=1

∫ tj−

t(j−1)+

[(

∂H

∂x
+ λ̇

T
)

δx+
∂H

∂u
δu

]

dt (2.34)

The conditions for nullifying the coefficients of dxj− and dxj+ are called con-
ditions for optimality. At generic point j (end of phase j and at the beginning of
phase j + 1) they are:

−λT
j
−

+
∂φ

∂xj
−

+ µT

[

∂ψ

∂xj
−

]

= 0 j = 1, . . . ,f (2.35)

λT
j+

+
∂φ

∂xj+

+ µT

[

∂ψ

∂xj+

]

= 0 j = 0, . . . ,f − 1 (2.36)

The transversality conditions are the ones for nullifying the coefficients dt

Hj
−

+
∂φ

∂tj
−

+ µT ∂ψ

∂tj
−

= 0 j = 1, . . . ,f (2.37)

−Hj+ +
∂φ

∂tj+
+ µT ∂ψ

∂tj+
= 0 j = 0, . . . ,f − 1 (2.38)

It is possible to see that the shape of the transversality conditions is very similar
to the optimality conditions. The Hamiltonian seems to have the same function for
the time that the adjoint variables have for state variables.

The Hamiltonian is a function with interesting properties. If its time derivative
is observed

dH

dt
=
∂H

∂t
+
∂H

∂x
ẋ+

∂H

∂λ
λ̇+

∂H

∂u
u̇ (2.39)

and considering that (∂H/∂λ)T = f = ẋ and λ̇ = −(∂H/∂x)T , the Hamiltonian
time derivative can be written as
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dH

dt
=

∂H

∂t
+

∂H

∂u
u̇ (2.40)

so if the Hamiltonian does not explicitly depend on time (∂H
∂t

= 0) and the
optimal control law is adopted ( ∂H

∂u = 0), the Hamiltonian is constant. This is a fast
and simple check to find errors in the implementation of the optimal control theory
in a real problem.

Optimality and transversality conditions depend on performance index and con-
straints. These conditions give the values (or the relationship between them) of
the adjoint variables and constants. The possible constraints are infinite, but it is
possible to see the most relevant conditions.

If the value of the variable xi (xi is the component i of vector x, while (xi)j
is xi at point j) is assigned at the beginning or at the end of the trajectory, the
corresponding adjoint variable at that time is free. If the value of xi is not assigned
and the performance index does not depends on this variable at this time, the
corresponding adjoint variable at the assigned time is set to zero.

If the constraint is applied at one interior point, there is a condition before the
point (j−) and after the point (j+). If the variable is continuous and the value is
assigned at the point j, the corresponding adjoint variable has a free discontinuity

(λi)j+ − (λi)j− = −(µ1 + µ2) (2.41)

while if the variable is continuous but unspecified, the corresponding adjoint
variables is continuous.

The Hamiltonian has the same structure: it is continuous if the time at point j
is free, while it has a jump if the time is assigned. If the final time is free, Hf = 0.
In 4.1 the indirect method will be applied to the specific case of this thesis and more
practical examples about optimal boundary conditions will be given.

The condition which states dJ∗ = 0, and so the optimality and transversality
conditions, is useful for finding a stationary point, but it is necessary also to deter-
mine the nature of the stationary point. For understanding the nature of the point
the second variation of J∗ has to be analyzed.

In order to have a maximum the value of Huu has to be negative definite (or
positive definite if a minimum is searched). This is a necessary condition.

If the optimal path is supposed unique, for a given point x0, t0 and constraints
ψ = 0, the optimal path provides the maximum index J = J0 with control variable
u0(t). The Hamiltonian-Jacobi theory provides differential equations concerning J0

and the optimal control u0, extended by Bellman to discrete systems. The practical
implementation of this theory is known as dynamic programming. The Hamiltonian-
Jacobi theory says that, given x,λ and t, H has to be maximized with respect to
u in order to have J0. The same result was obtained independently by Pontryagin
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and it is known as Pontryagin’s maximum principle (PMP). Without bounds on
state and control variables, the maximization of H implies Hu = 0 and Huu negative
definite (local conditions). This means that if H is linear with respect to a control
variable uj,

∂H
∂uj

= 0 does not contain uj, that is, it is indeterminate. The problem

has a solution only if uj is bounded. In this case the optimal control value is the
one that maximizes H. This is called Bang-Bang control.

The Optimal Control Theory exposed here formulates a multi-point boundary
value problem (BVP), where some state values, adjoint variables and constants are
unknowns. The unknown values can be found at the internal point, or at the be-
ginning or ending point of the trajectory. The OCT provides the optimal boundary
conditions that must be added to the constraints of the problem. The constant La-
grange multipliers µ are eliminated from Eqs. (2.35)-(2.38); the resulting boundary
conditions for optimality and the boundary conditions on the state variables, given
by Eq. (2.26), are collected in a single vector in the form

σ(x(j−1)+ ,xj
−

,λ(j−1)+ ,λj
−

,t(j−1)+ ,tj−) = 0 j = 1, . . . ,f (2.42)

All these conditions must be satisfied at the relevant points.

The optimization problem state at the beginning of this chapter, subjected to
ODE 2.1 and to constraints 2.2, is now a BVP where ODE are integrated and the
boundary conditions are evaluated after each integration. The solution of BVP
is found through iterative solution of an initial value problem (IVP) where initial
values of all variables and constant parameters are considered as given. The iterative
procedure is based on Newton’s method.

The differential equations are integrated by a multistep implicit method, with
variable step and order, based on Adam-Moulton method [54]- [55].

As said before, the independent variable is the time t. The trajectory is divided
in phases, but the duration τj of each phase is unknown. So an independent variable
transformation is introduced. The new independent variable is ǫ and its value at
the j-th arc is

ǫ = j − 1 +
t− tj−1

tj − tj−1
= j − 1 +

t− tj−1

τj
(2.43)

At the j-th arc the value of ǫ varies between j-th and j. The ODE are transformed
in

dx

dǫ
= τj

dx

dt
(2.44)

dλ

dǫ
= τj

dλ

dt
(2.45)
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The constant parameters are collected in the y vector and the equation is
(dy/dǫ) = 0. All the variables are collected in a single vector z

z =





x

λ

y



 (2.46)

and the differential equations are generally indicated as

∂z

∂ǫ
= g(z,ǫ) (2.47)

Variable value at the relevant boundaries are collected in the vector

s = (z0+,z1±, . . . ,z(f−1)±,zf ) (2.48)

and the boundary condition can be written in a synthetic way as

Ψ(s) = 0 (2.49)

The unknown initial values and parameters are collected into vector p and the
first tentative guess is p0. Posing z0 = p0, the differential equations are integrated
and the boundary conditions Ψ(s) are evaluated. To reduce the errors at bounds
the parameters have to be changed. At the r-th iteration the parameters will be

pr+1 = pr +∆p (2.50)

At first orders, to choose how much the parameters have to change, the matrix
of the derivative of the errors with respect to the parameters can be used.

∆p = pr+1
− pr = −

[

∂Ψ

∂p

]−1

Ψ
r (2.51)

The matrix [∂Ψ/∂p] has to be non-singular and can be evaluated numerically or
analytically. For the computation in the analytic shape, the matrix is decomposed
in

[

∂Ψ

∂p

]

=

[

∂Ψ

∂s

] [

∂s

∂p

]

(2.52)

The matrix [∂Ψ/∂s] is obtained by derivation of the boundary conditions, while
the matrix [∂s/∂p] collects the values at boundaries of the matrix [∂z/∂p]. In other
words:

[

∂s

∂p

]

=

[

∂z0

∂p

∂z1

∂p
. . .

]

(2.53)
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The matrix is obtained by integration of the homogeneous differential system

[

∂ż

∂p

]

=

[

∂g

∂z

] [

∂z

∂p

]

(2.54)

In this thesis the matrix [∂Ψ/∂p] is evaluated only numerically. Each parameter
pi is in turn varied by a small quantity δpi around the value of the previous iteration
pr
i
. The small quantity is generally 10−5, but it can be changed depending on the

nature of the problem. If it is too large or too small the linearization is not able
to catch the local shape of the errors. The differential equations are integrated and
the changes of variable values are evaluated at relevant points δs. The changes in
error on boundary conditions are δΨ. The i-th column of [∂Ψ/∂p] is approximate
by linearization as

[

∂Ψ

∂pi

]

=
δΨ

δpi
(2.55)

The linearization of the matrix [∂Ψ/∂p] introduce errors in the evaluation of
the matrix itself. These errors can prevent convergence, so ∆p is modified from
equation (2.51). There two ways for improving the stability of the procedure. The
first one is to check the error variation between two different iterations.

If max(Ψr+1) > k1max(Ψr) than the correction ∆p is halved and results pr+1 =
p
r +∆p/2. This operation is generally called bisection and the bisection parameter

k1 is usually posed equal to 2. This value generally provides good results also because
it permits a limited increase of the maximum error and so the indirect method can
exit from a local minimum valley.

The second operation is to use a reduced parameter correction

∆p = −k2

[

∂Ψ

∂p

]

−1

Ψ
r (2.56)

This parameter is the scalar step length and the value is usually set in the range
0.01 ≤ k2 ≤ 1 as input of the program and it is not found by a line search.

Conclusions

The definition of a general optimization problem and its taxonomy has been given
in this chapter. In space trajectory optimization direct, indirect and evolutionary
methods are mainly used. Today also differential dynamic programming is suc-
cessfully used in this field. Direct methods can deal easily with many problems,
considering equality and inequality constraints. They have also a greater conver-
gence radius with respect to indirect methods. The number of unknowns is large
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and the solution of this problem is numerically demanding. They rely on a tentative
solution.

Evolutionary methods are simple to apply and they can virtually find a global
optimum, but they require a great number of function evaluations, so they are mainly
used with approximate model.

Indirect methods are fast and give insight of the problems. They have small
convergence radius, they rely on tentative solution and they cannot solve the op-
timization problem as a black box. Euler-Lagrange equations are derived together
with optimality and transversality conditions. The Boundary Value Problem (BVP)
and its solution by the procedure developed at ”Politecnico di Torino” has been ex-
posed. The procedure try to overcome the issues coming from the small convergence
radius typical of indirect methods.
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Chapter 3

Dynamic Model

Introduction

Different forces act on the spacecraft: Earth, Sun and Moon gravity, thrust and so-
lar radiation pressure. The dynamic model considering the two body problem, the
thrust control and the above mentioned perturbations will be described in this chap-
ter. The Hamiltonian and the differential equations of state and adjoint variables
will be derived in a topocentric frame.

3.1 Differential equations and reference frame

In Chapter 2 the main methods used in astrodynamics optimization have been briefly
introduced and the indirect method used in thesis was deeply studied. Before start-
ing with the case study, it is important to introduce the dynamic model. This thesis
topic is the optimization of deployment trajectories of a couple of spacecrafts, but
the dynamic model is the same for both, so all the considerations made for one satel-
lite are valid for the other one. First the state x and control u vectors are defined.
Trajectory is the evolving of the position of the spacecraft during time and so the
natural state vector is made up by the position vector r and the velocity vector V .
In order to complete the state vector also the mass m, which is a scalar quantity,
is introduced. The attitude of the spacecraft, even if it will be considered in some
assumptions later, is not considered in the optimization process, so the spacecraft
is assumed as a point mass. The control is the vector T , that can vary in magni-
tude and direction. It section 4.2 is explained that thrust magnitude will be either
maximum or minimum in order to fulfill optimality condition.

The simplest model used in preliminary design analysis is the two body model.
It is possible to find reference in many basic books of Astrodynamics or physics,
such as Bate [56]. In this model the assumption are
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• the spacecraft mass is negligible respect to central body mass

• the central body has a spherical mass distribution or the spacecraft is far
enough, in order to consider all the mass as a point

In the two-body model only the gravitational force of the main body is considered.
This model is a good first approximation, but it is far enough from the reality,

i.e. if a Low Earth orbit or HEO is considered. In space environment there are
different types of perturbations that must be taken in account, depending on which
problem is considered.

In this thesis the two body problem approximation plus perturbations are consid-
ered as dynamical force. Before going in details it is possible to write the differential
equation of the state vector written in vectorial form.

dr/dt = V (3.1)

dV /dt = −µr/r3 + T /m+ ap (3.2)

dm/dt = −T/c (3.3)

where −µr/r3 is the central body spherical gravitational acceleration, while ap

collects the perturbing accelerations. In the mass differential equation c is the
effective gas exhaust velocity (in literature is indicated also as ve). T/c is the mass
flow. As said before, the thrust vector is the only control of the trajectory and can
vary its magnitude between maximum and minimum values. The specific impulse,
and so c, is considered constant in this problem.

In the specific problem of orbital transfer between elliptic orbit, the central body
is the Earth and the perturbations, which are considered in this work are:

ap = aJ + alsg + asrp (3.4)

where aJ are the perturbations due to Earth asphericity, alsg are the gravitational
forces of ”‘third bodies”’, in particular the subscript l indicates the lunar pertur-
bation, while s indicates solar ones. asrp represents the perturbations due to solar
radiation pressure, that is the pressure of the photons coming from the Sun. The
Earth Mean Equator and Equinox of Epoch J2000 (i.e. EME2000) reference frame
is adopted. In this reference frame the unit vectors are indicated as I, J , K. The
first vector points towards the Vernal Equinox, the third is perpendicular to the
ecliptic plane and points towards the celestial North Pole, and the second one is
chosen in order to have a right hand frame. Precession and nutation are neglected.
Position is described by radius r, right ascension ϑ and declination ϕ. The position
vector in the inertial frame can be written as

r = r cosϑ cosϕI + r sinϑ cosϕJ + r sinϕK (3.5)
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and the length element can be written as

dl2 = dr2 + (rcosϕ)2dϑ2 + r2dϕ2 (3.6)

A topocentric frame defined by unit vector ı (radial),  (eastward), and k (north-
ward) is also introduced (Fig. 3.1). The transition matrix from inertial to topocen-
tric coordinates is







ı



k







=





cosϑ cosϕ sinϑ cosϕ sinϕ
− sinϑ cosϑ 0

− cosϑ sinϕ − sinϑ sinϕ cosϕ











I

J

K







(3.7)

In the topocentric frame the position vector is simply

r = ri (3.8)

while the velocity vector is split in three components

v = ṙ = uı+ v+ wk (3.9)

with u, v, and w radial, eastward and northward components, respectively. The
spherical symmetry of the gravitational field of the two body problems (that is
the main contribution in the dynamic of the problem) makes the choice of spherical
coordinates and topocentric velocity components almost natural. The velocity vector
written in topocentric frame is also more intuitive than in rectangular coordinates
based on inertial frame. Dynamic equations are also easier to understand because
gravity of the central body acts only on the radial component of velocity and the
others contributions are centrifugal and Coriolis force components. The advantage
is mainly numeric, because u ≈ 0 and r is approximately constant.

The same problem has been solved using also equinoctial equations [57] [12],
but the derivation of the optimal conditions is more difficult and the computational
time for the single solution is higher. Generally, these state variables are useful to
understand the behavior of the osculating orbit (more than the motion of the space-
craft), but they give some issues in the derivation of perturbations components and
the necessary optimal conditions/Euler-Lagrange equations for the indirect method
formulation. The scalar dynamic equation are expressed, in the topocentric frame,
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Figure 3.1: Spherical Reference frame

as

dr/dt = u (3.10)

dϑ/dt = v/(r cosϕ) (3.11)

dϕ/dt = w/r (3.12)

du/dt = −µ/r2 + (v2 + w2)/r + Tu/m+ (ap)u (3.13)

dv/dt = (−uv + vw tanϕ)/r + Tv/m+ (ap)v (3.14)

dw/dt = (−uw − v2 tanϕ)/r + Tw/m+ (ap)w (3.15)

dm/dt = −T/c (3.16)

where subscripts u, v, and w denote the components along ı, , and k, respectively.
In the derivation of the scalar equation of the spherical coordinates it should be
paid attention to the metric of the spherical coordinates that comes from the length
element equation 3.6. Also different perturbations can be taken in account.

In the following paragraphs a deeper analysis of the perturbations is carried on.
Now that the dynamic equation are defined it is possible to write the Euler-Lagrange
equations (2.32). First the Hamiltonian has to be written. In the vectorial form is
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3.1 – Differential equations and reference frame

quite simple.

H = λT ẋ = H2B +HT +Hp (3.17)

H2B = λT
r V + λT

V g (3.18)

HT = λT
V T /m− λm(T/c) (3.19)

Hp = λT
V ap = HJ +Hlsg +Hsrp (3.20)

HJ = λT
V aJ (3.21)

Hlsg = λT
V alsg (3.22)

Hsrp = λT
V asrp (3.23)

and Euler-Lagrange equations are written (if thrust is independent of state variables)
as

dλr/dt = (∂g/∂r + ∂ap/∂r)
TλV (3.24)

dλV /dt = −λr (3.25)

dλm/dt = λV T /m2 (3.26)

(3.27)

The subscripts J stands for geopotential perturbation, lsg for luni-solar gravity and
srp stands for solar radiation pressure.

These equations have to be changed if thrust depends on radius, for example if
the distance from the sun changes significantly, such as in an interplanetary mission,
and the power of solar arrays drops down. In the topocentric reference frame and
spherical coordinates the Hamiltonian is written

H = λru+ λϑv/(r cosϕ) + λϕw/r +

+λu

[

−µ/r2 + (v2 + w2)/r + (aJ)u + (alsp)u + (asrp)u
]

+

+λv [(−uv + vw tanϕ)/r + (aJ)v + (alsp)v + (asrp)v] +

+λw

[

(−uw − v2 tanϕ)/r + (aJ)w + (alsp)w + (asrp)w
]

+

+((λuTu + λvTv + λwTw)/m− λm(T/c)) (3.28)

And scalar equations of Euler-Lagrange are
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dλr/dt = [λϑ(v/ cosϕ) + λϕw + λu(−2µ/r + v2 + w2)

+ λv(−uv + vw tanϕ+ λw(−uw − v2 tanϕ)]/r2 + (∆λ̇p)r (3.29)

dλϑ/dt = (∆λ̇p)ϑ (3.30)

dλϕ/dt = (−λϑv sinϕ− λvvw + λwv
2)/(r cos2 ϕ) + (∆λ̇p)ϕ (3.31)

dλu/dt = (−λrr + λvv + λww)/r + (∆λ̇p)u (3.32)

dλv/dt = [−λϑ/ cosϕ− 2λuv + λv(u− w tanϕ) + 2λwv tanϕ]/r

+ (∆λ̇p)v (3.33)

dλw/dt = (−λϕ − 2λuw − λvv tanϕ+ λwu)/r + (∆λ̇p)w (3.34)

dλm/dt = TλV /m
2 + (∆λ̇p)m (3.35)

where λV =
√

λ2u + λ2v + λ2w is the magnitude of the primer vector λV . In the

set of differential equations the term ∆λ̇p indicates the sum of the contributions of
the perturbations

∆λ̇ = λ̇2B + λ̇J + λ̇lsg + λ̇srp (3.36)

The thrust vector components T are

Tu = T sin γT

Tv = T cos γT cosψT

Tw = T cos γT sinψT

(3.37)

The angles are shown in Fig, 3.2
All quantities have been made dimensionless using as reference length the Earth

radius (Rconv = 6378.1363 km), as reference velocity Vconv =
√

µ/Rconv, as mass
m = 1000 kg. After that, the other dimensionless quantities (time, acceleration)
have been derived. The gravitational parameter in adimensional form is µ = 1.

3.2 Geopotential Model

The two body problem considers the central body as a point mass body or perfectly
spherical symmetrical gravitational field. Even if this is a good assumption in a
preliminary analysis, closer the spacecraft is to the central body, more important are
the contributions of the non-homogeneous distribution of mass. These perturbations
can also affect in significant way the spacecraft motion when the satellite keeps the
same position relative to Earth for a long time, such as a geo-synchronous satellite.
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3.2 – Geopotential Model

Figure 3.2: Thrust Direction

Giant planets such as Jupiter have a big oblateness perturbation and the problem
of gravity asphericity is very challenging also for orbiting around bodies such as the
Moon or for small bodies such asteroids. Probe Dawn found that Vesta asteroid
has an unexpected tangential component of the gravitational field greater than the
thrust its engines can provide.

Generally, this kind of perturbation are studied in preliminary analysis when
considering the station keeping maneuver (often using equinoctial averaged equa-
tion), but the effects of asphericity perturbations can be important also in transfer
problem.

The gravitational field is defined as an integral that is function of the mass dis-
tribution inside the body. When the body has spherical symmetry, the gravitational
field and its acceleration are those described by the two-body problem. If the body
is not spherical the gravitational field has different equipotential surfaces and the
acceleration is no more radial. The difference between the gravity acceleration of
the two-body model and the one found by the mass distribution is taken in account
in the perturbation vector aJ .

The potential field generated by a non spherical mass distribution can be ex-
pressed as series of spherical harmonics, where the first harmonic is the pure sphere
and it is the same of two-body problem. The general theoretical frame is well de-
scribed in [58] and the model is updated and verified during the years.

When real celestial bodies are considered, the real mass distribution is unknown.
Gravitational field is measured considering deviation of satellites or other little bod-
ies from the predicted orbit. The measures coming from the orbit determination are
used for computing the coefficients of the spherical harmonics. The gravitational
model used in this work is described in NIMA technical report [59] and expressed
by coefficients of EGM2008. For the equations the same reference frame used for
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3 – Dynamic Model

Figure 3.3: Image of Geoid. Credit: Grace/NASA

dynamic equation is adopted (EME2000) neglecting precession and nutation. In
EGM2008 the geopotential is referred as

V = µ/r + Φ (3.38)

with Φ

Φ = −µ/r
N
∑

n=2

(rE
r

)n
n

∑

m=0

(Cnm cosmλ+ Snm sinmλ)Pnm(sinϕ) (3.39)

where µ is the Earth gravitational parameter, rE is the semimajor axis of the Earth
ellipsoid. N is the number of the harmonics taken in consideration, while λ and
ϕ are the longitude and latitude of the spacecraft respect to the Earth. It has to
be noted that the latitude coincides with declination ϕ only because nutation is
neglected. While longitude λ is related to right ascension ϑ by means of relation

λ = ϑ− ϑGref − ωE(t− tref) (3.40)

where ϑGref is Greenwich right ascension at the reference time tref (51544.5 MJD)
and ωE is the angular velocity of the Earth’s rotation. It is evaluated on the basis
of the sidereal day (86164.098 s ), neglecting precession and considering uniform ro-
tation. The potential (3.39) is expressed as sum of spherical harmonics. The first
harmonic is µ/r and is already considered in the two body dynamical problem. The
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3.2 – Geopotential Model

other harmonics are zonal and tesseral harmonics. The index n indicates the zonal
ones, that are ondulation on latitude while the tesseral harmonics m superimpose
on the previous ones. It is important to note the m ≤ n. Coefficients Cnm and
Snm define the amplitude of this harmonics that are described by the associated
Legendre functions Pnm and the combination of sine and cosine of λ and ϕ. These
coefficients are taken from the EGM2008 model [60] and can be normalized or un-
normalized. The first ones have a greater accuracy, while the second ones are faster
(the normalization has to be recomputed at each derivation). Two types of models
for coefficients can be used: the ”‘Tide Free”’and the ”‘Zero Tide”’. In this disser-
tion only the first one is used. The associated Legendre functions are solution of the
Legendre equation. More information can be found in Abramowitz and Stegun [61],
Bosch [62]. These functions can be computed iteratively or explicitly. In this study
it is no necessary to go beyond 8x8 degrees in spherical harmonics, so it was pre-
ferred to write explicitly the functions in order to improve computational speed. For
having more degrees it can be used the recursive functions.

t = sinϕ (3.41)

u = cosϕ (3.42)

P0,0(t) = 1 (3.43)

Pn+1,0(t) = (2n+ 1)tPn,0(t)− nPn−1,0(t) (3.44)

Pn,n(t) = (2n+ 1)uPn−1,n−1(t) (3.45)

Pn,m(t) = Pn−2,m(t)− (2n− 1)uPn−1,m−1(t) (3.46)

In order to avoid some misleadings it is important to note that the notation Pn,m

is different from Pm
n , because they have a different sign in the generating function:

they have same magnitude, but different sign when m is odd. In this work only the
Pn,m is used. The Legendre Polinomyal Pn are not the same things of associated
Legendre functions Pn,m and they correspond to the functions with degree n and
order 0, so Pn,0. In some text instead of using the latitude ϕ it is used the colatitude
π/2−ϕ, that takes to a change of sign in the computation of derivatives. Spherical
harmonics can be expressed also with the coefficients Jnm.

The J2 coefficient is the most important and it is related to the bulge of the Earth
at the equator. Along this thesis the model up to J8x8 harmonics is considered. The
opposite gradient of the potential is the acceleration due to the asphericity of the
Earth. Graphically the acceleration is perpendicular to the equipotential surface in
the considered point.

aJ = −∇Φ (3.47)

That is, in scalar coordinates
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3 – Dynamic Model

(aJ)u = −∂Φ/∂r (3.48)

(aJ)v = −(∂Φ/∂ϑ)/(r cosϕ) (3.49)

(aJ)w = −(∂Φ/∂ϕ)/r (3.50)

So it is necessary to derive the potential (3.39). Differentiation with respect
to r and ϑ is straightforward; while the derivatives with respect to ϕ require the
derivatives of the associated Legendre functions, which are obtained recursively.
Derivatives can be computed respect to the argument of the function or directly
respect to ϕ. In the code implemented the second way is chosen. Posing Pnm = 0 if
m > n

dPnm

dϕ
=

{

Pn1 for m = 0

[Pn(m+1) − (n+m)(n−m+ 1)Pn(m−1)]/2 for m > 0
(3.51)

Further details can be found in [61] and [62].
In order to shorten the equation, the following notation is introduced:

CcSsPs =
n

∑

m=0

(Cnm cosmλ+ Snm sinmλ)Pnm(sinϕ)

CsScPs =
n

∑

m=0

(−Cnmm sinmλ+ Snmm cosmλ)Pnm(sinϕ)

CcSsPC =
n

∑

m=0

(Cnm cosmλ+ Snm sinmλ)
dPnm(sinϕ)

dϕ

(3.52)

The derivatives of the potential are

∂Φ

∂r
=

µ

r2
Φ−

µ

r

{

N
∑

n=2

(−n)
(rE
r

)n

(CcSsPs)

}

(3.53)

∂Φ

∂ϑ
= −

µ

r

{

N
∑

n=2

(−n)
(rE
r

)n

(CsScPs)

}

(3.54)

∂Φ

∂ϕ
= −

µ

r

{

N
∑

n=2

(−n)
(rE
r

)n

(CcSsPC)

}

(3.55)
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3.2 – Geopotential Model

Once that the mathematical model is defined, the contribution of these perturba-
tions to the Euler-Lagrange equations can be derived. For this purpose, also second
derivative of the associated Legendre functions must be computed, but the scheme
is the same as the first derivative. Geopotential perturbations, as all accelerations
in the system dynamics, are involved in the computation of the Hamiltonian. The
HJ term contains only the Earth asphericity acceleration, as written in Eq. (3.17)
and (3.20)

HJ = λu(aJ)u + λv(aJ)v + λw(aJ)w (3.56)

and from this equation it is possible to write the contribution of geopotential per-
turbations λ̇J = −∂HJ/∂x to the λ̇ differential equations

(λ̇J)r = λu

(

∂2Φ

∂r2

)

+ λv

(

−

µ

r2 cosϕ

∂Φ

∂ϑ
+

µ

r cosϕ

∂2Φ

∂r∂ϑ

)

+ λw

(

−

µ

r2
∂Φ

∂ϕ
+

µ

r

∂2Φ

∂ϑ∂r

)

(3.57)

(λ̇J)ϑ = λu

(

∂2Φ

∂r∂ϑ

)

+ λv

(

µ

r cosϕ

∂2Φ

∂ϑ2

)

+ λw

(

µ

r cosϕ

∂2Φ

∂ϑ∂ϕ

)

(3.58)

(λ̇J)ϕ = λu

(

∂2Φ

∂r∂ϕ

)

+ λv

(

µ

r cos2 ϕ
sinϕ

∂Φ

∂ϑ
+

µ

r cosϕ

∂2Φ

∂ϑ∂ϕ

)

+ λw

(

µ

r

∂2Φ

∂ϕ2

)

(3.59)

It is necessary to write the second derivative of Φ. In order to shorten the
equations (and make them more comprensible) other functions are introduced

m2CcSsPs =
n

∑

m=0

(

−Cnmm
2 cosmλ− Snmm

2 sinmλ
)

Pnm(sinϕ)

CsScPC =
n

∑

m=0

(−Cnmm sinmλ+ Snmm cosmλ)
dPnm(sinϕ)

dϕ

CcSsP2 =
n

∑

m=0

(Cnm cosmλ+ Snm sinmλ)
d2Pnm(sinϕ)

dϕ2
(3.60)

And now it is possible to write the second derivative of the potential.
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∂2Φ

∂r2
= −2

µ

r3
{1 + Φ}+ 2

µ

r2

{

∂Φ

∂r

}

−
µ

r

{

N
∑

n=2

n(n+ 1)

(

rn
E

r(n+ 2)

)

(CcSsPs)

}

(3.61)

∂2Φ

∂r∂ϑ
=

µ

r2
∂Φ

∂ϑ
−

µ

r

{

N
∑

n=2

(−n)

(

rn
E

r(n+ 1)

)

(CsScPs)

}

(3.62)

∂2Φ

∂r∂ϕ
=

µ

r2
∂Φ

∂ϕ
−

µ

r

{

N
∑

n=2

(−n)

(

rn
E

r(n+ 1)

)

(CcSsPC)

}

(3.63)

∂2Φ

∂ϑ2
= −

µ

r

{

N
∑

n=2

(rE

r

)n

(m2CcSsPs)

}

(3.64)

∂2Φ

∂ϑ∂ϕ
= −

µ

r

{

N
∑

n=2

(rE

r

)n

(CsScPC)

}

(3.65)

∂2Φ

∂ϕ2
= −

µ

r

{

N
∑

n=2

(rE

r

)n

(CcSsP2)

}

(3.66)

The method of writing the gravitational potential field by means of spherical har-
monics is very precise, but it is also computationally demanding, especially when
considering high fidelity optimization (200x200). In this case, also the use of recur-
sive formulation, requires the most of computation power available. A new method
have been proposed by Arora et al. [63], in which the gravitational field computed
by harmonics is memorized and is interpolated by 3 degrees polynomial in a 3D
mesh. In this way the operation of derivative is faster than the computation of the
gravitational field. The two methods are comparable with a 10x10 degree, so in the
case studied in this thesis the computation by harmonics is still faster

3.3 N-body perturbations

Asphericity of the central body is important when spacecraft is close to the cen-
tral body, but if the artificial satellite is on an Highly Elliptic Orbit (HEO) the
perturbations of other bodies influence trajectory and deployment strategy. When
considering Earth as the central body the most important gravitational perturba-
tions come from Moon and Sun. The position of the relevant bodies with respect
to the Earth are evaluated using DE405 JPL ephemeris [64] [65] which provide the
rectangular coordinates xb, yb, zb in International Celestial Reference frame and
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3.3 – N-body perturbations

therefore in the EME2000. The differences between the two frames are very small
and can be neglected in this problem. The subscript b stands for the generic per-
turbing body and is replaced by s for the Sun and l for the Moon. The perturbing
acceleration has to be referred to the Earth reference system, so the force of the
celestial body on the spacecraft and on the Earth should be computed and the dif-
ference represents the perturbing term. The relative distance Earth-Celestial Body
is

rb = xbI + ybJ + zbK (3.67)

while the relative distance spacecraft-Earth is simply r. The relative distance
between the Spacecraft and the perturbing body is R = r−rb, as in figure 3.4. The
perturbing acceleration is

Figure 3.4: Schematic geometry of gravitational perturbations

abg = ab−sc + ab−E = −(µb/R
3)R− (µb/r

3

b )(rb) (3.68)

In the topocentric reference frame one has

(abg)u = (µb/R
3)[(rb)u − r]− (µb/r

3

b )(rb)u (3.69)

(abg)v = (µb/R
3)(rb)v − (µb/r

3

b )(rb)v (3.70)

(abg)w = (µb/R
3)(rb)w − (µb/r

3

b )(rb)w (3.71)
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The vector rb pointing from Earth to the perturbing Body has component

(rb)u = xb cosϑ cosϕ+ yb sinϑ cosϕ+ zb sinϕ (3.72)

(rb)v = −xb sinϑ+ yb cosϑ (3.73)

(rb)w = −xb cosϑ sinϕ− yb sinϑ sinϕ+ zb cosϕ (3.74)

while the magnitude of R (the distance between the perturbing body and the
spacecraft) is

R =
√

[r − (rb)u]2 + (rb)2v + (rb)2w (3.75)

The gravity forces depends only on position and the perturbation forces are
written in function of r, ϑ, ϕ and time t.

As for the perturbations of the asphericity of the Earth is concerned, the Hamil-
tonian terms which depend from the perturbation of another gravitational body, are
introduced

Hbg = λu(abg)u + λv(abg)v + λw(abg)w (3.76)

Now it is possible to compute the contribution to Euler-Lagrange equation

(λ̇bg)r = λu

(

∂(ab−sc)u
∂r

+
∂(ab−E)u

∂r

)

+ λv

(

∂(ab−sc)v
∂r

+
∂(ab−E)v

∂r

)

+λw

(

∂(ab−sc)w
∂r

+
∂(ab−E)w

∂r

)

(3.77)

(λ̇bg)ϑ = λu

(

∂(ab−sc)u
∂ϑ

+
∂(ab−E)u

∂ϑ

)

+ λv

(

∂(ab−sc)v
∂ϑ

+
∂(ab−E)v

∂ϑ

)

+λw

(

∂(ab−sc)w
∂ϑ

+
∂(ab−E)w

∂ϑ

)

(3.78)

(λ̇bg)ϕ = λu

(

∂(ab−sc)u
∂ϕ

+
∂(ab−E)u

∂ϕ

)

+ λv

(

∂(ab−sc)v
∂ϕ

+
∂(ab−E)v

∂ϕ

)

+λw

(

∂(ab−sc)w
∂ϕ

+
∂(ab−E)w

∂ϕ

)

(3.79)

where the derivatives are

∂(ab−sc)u
∂r

= −

µ

R3

(

−

3

R2
(r − (rb)u)

2 + 1

)

(3.80)

∂(ab−sc)v
∂r

= −

µ

R3

(

−

3

R2
(r − (rb)u)(−(rb)v)

)

(3.81)

∂(ab−sc)w
∂r

= −

µ

R3

(

−

3

R2
(r − (rb)u)(−(rb)w)

)

(3.82)
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∂(ab−sc)u
∂ϑ

= −

µ

R3

(

−

3r

R2
cosϕ(−(rb)v)(r − (rb)u) + (−(rb)v) cosϕ

)

(3.83)

∂(ab−sc)v
∂ϑ

= −

µ

R3

(

−

3r

R2
cosϕ((rb)v)

2 + (rb)u cosϕ− (rb)w) sinϕ

)

(3.84)

∂(ab−sc)w
∂ϑ

= −

µ

R3

(

−

3r

R2
cosϕ(−(rb)v)(−(rb)w) + ((rb)v) sinϕ

)

(3.85)

∂(ab−sc)u
∂ϕ

= −

µ

R3

(

−

3r

R2
(−(rb)w)(r − (rb)u)− (rb)w

)

(3.86)

∂(ab−sc)v
∂ϕ

= −

µ

R3

(

−

3r

R2
(rb)w(rb)v

)

(3.87)

∂(ab−sc)w
∂ϕ

= −

µ

R3

(

−

3r

R2
(rb)

2

w
+ (rb)u

)

(3.88)

∂(ab−E)u
∂r

= 0 (3.89)

∂(ab−E)v
∂r

= 0 (3.90)

∂(ab−E)w
∂r

= 0 (3.91)

∂(ab−E)u
∂ϑ

= −

µ

r3
b

((−(rb)v) cosϕ) (3.92)

∂(ab−E)v
∂ϑ

= −

µ

r3
b

((rb)u cosϕ− (rb)w) sinϕ) (3.93)

∂(ab−E)w
∂ϑ

= −

µ

r3
b

((rb)v sinϕ) (3.94)

∂(ab−E)u
∂ϕ

= −

µ

r3
b

(−(rb)w) (3.95)

∂(ab−E)v
∂ϕ

= 0 (3.96)

∂(ab−E)w
∂ϕ

= −

µ

r3
b

((rb)u) (3.97)
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3.4 Solar Radiation pressure

Another perturbation that can be taken in account is the solar radiation pressure,
that is the force which results from photons interacting with the spacecraft. The
total power radiated by the Sun is LS = 3.84 · 1026W. The power is distributed on
a sphere and so, going far from the Sun, the power for unit area decreases as the
sphere surface increases. If clight is the speed of light it is possible to write the solar
radiation pressure as

p = LS/(4πR
2clight) (3.98)

where R is again the Spacecraft-Sun distance. At R∗=1 AU radiation pressure is
p∗ = 4.55682 · 10−6N/m2. Assuming reflectivity η = 0.7 the acceleration on a
spherical body of mass m and cross-section S is

asrp = (1 + η)p∗(R∗/R)2(S/m)R/R = ΓR/(mR3) (3.99)

whose components are

(asrp)u =
[

Γ/
(

mR3
)]

[(rs)u − r] (3.100)

(asrp)v =
[

Γ/
(

mR3
)]

[(rs)v] (3.101)

(asrp)w =
[

Γ/
(

mR3
)]

[(rs)w] (3.102)

The radiation pressure acts as a force in the Sun-Spacecrafts direction and it is
inverse proportional to the squared distance of the two bodies. Therefore, the grav-
itational perturbation and the solar pressure radiation show the same dependence
on distance and they are parallel but opposite. From the mathematical point of
view the expression is the same as that of the gravitational perturbation, so they
can be computed at the same time. The solar radiation term is computed as so-
lar gravitational parameter modification in the force acting on the spacecraft (not
on the Earth). The solar radiation pressure does not act on the spacecraft when
Earth eclipses the Sun, so it is important to model the shadow. There are different
type of model, such as the cylindrical shape, the conical one and different models of
penumbra [66]. In the problem of transfer between elliptic orbits considered here the
thruster is chemical, so the shadow does not influence the thrust and the radiation
pressure perturbation is very small. The conical shadow seems the best approxi-
mation, without considering the most complex penumbra model. Issues regarding
numerical instabilities due to the discontinuities in the solar radiation pressure have
not been found. First step is to check if spacecraft and Sun are in opposite position
with respect to the Earth. The relevant quantities are sketched (not to scale) in
Fig. 3.5. If (rs)u < 0 then Sun is in the opposite side. If the penumbra is not
considered, the Earth shadow cone has an angle of γshadow = sin−1(rE/rs), where
rE is the Earth radius (only circular cone shadow is considered). To evaluate if
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3.4 – Solar Radiation pressure

the spacecraft is inside or outside the shadow, the cone with axis on the Sun-Earth
line, with center on the Sun and lateral surface tangential to spacecraft-Sun vec-
tor, is considered. The angle of the Sun-Spacecraft cone is γ = sin−1(r sin δ/R),
where δ is the angle centered on the Earth between r and rs and it is evaluated as
δ = cos−1[(rs)u/rs]. When (rs)u < 0 and γ < γshadow the spacecraft is in the shadow
of the Earth. The contribution to λ̇ equation are the same as those of the N-Body
gravitational perturbation and are evaluated in the same subroutine. The difference
is that the acceleration depends on the instantaneous mass of the spacecraft and
this fact introduces a new term in λ̇m equation.

∆(̇λspr)m =
S · Cspr

m2

1

R3
(λu(r − (rb)u) + λv(−(rb)v) + λw(−(rb)w)) (3.103)

where S = 0 if shadow is present.

Figure 3.5: Schematic geometry of the Earth shadow

Conclusions

The chapter describes the two body model and introduces different perturbations:
asphericity of the Earth, Moon and Sun gravity, Solar Radiation Pressure. The
state variables differential equations are derived and Hamiltonian has been written
in a local topocentric frame. The Hamiltonian has been used to derive the adjoint
variables differential equations (Euler-Lagrange equations). Legendre associated
functions and their derivatives are used for the computation of the geopotential
perturbations. A conic shadow model without penumbra has been introduced for
the solar radiation pressure perturbations.
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