
Chapter 4

Case study: Cooperative

deployment

Introduction

The cooperative deployment of two satellite in formation will be studied in the frame
of the indirect optimization methods. After a brief introduction about the Simbol-
X transfer orbit, the optimal thrust direction and magnitude and the switching
function will be introduced. The optimal control theory will be applied first on a
single satellite deployment, then on satellite formation deployment. Approximate
control law and errors in thrust will be also considered.

4.1 Mission in HEO: Simbol-X

In section 1.2 the mission used as case study was introduced. The indirect method
optimization is applied to the deployment phase, first considering only a single
satellite, then considering the formation deployment. The two satellites are injected
by the launcher into an initial elliptic orbit and then they perform an orbit transfer
to move on the operational orbit.

The initial and final orbits are highly elliptic and their orbital parameters are
shown in table (4.1). It is possible to see that the transfer orbit is mainly a perigee
raising, so the engine burns will be placed mainly at the apogee.

The HE orbits have a low perigee, so perturbations due to asphericity of the
Earth have to been taken in account, especially at the beginning of the transfer.
The high apogee needs inclusion of the luni-solar perturbation, while solar radiation
pressure is important in the formation keeping and can be important if the mass to
surface ratio is different between the two satellites, in particular in long missions.

The missions requires two spacecrafts, the mirror and the receiver and they will
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4.1 – Mission in HEO: Simbol-X

Table 4.1: Initial and final orbit characteristics.

a, km e i, deg Ω, deg ω, deg ν rp,km ra,km
initial 98922 0.931985 5.2 90.0 270.0 0.0 6728 191116
final 106247 0.798788 - - - 180.0 21378 191116

be indicated as SAT1 and SAT2. The properties of the two satellites are presented
in Table (4.2).

Table 4.2: Satellites Properties.

SAT1 SAT2
Launch 960 1250
mass [kg]
Propellant 150 200
mass [kg]
Mean 5.7 4.2

surface [m2]
Initial S/m 5.94 · 10−3m2/kg 3.36 · 10−3m2/kg

T [N] 8N 8N
Isp [s] 220 220

The two satellites have different mass and different surface, but they have the
same thruster which produces T = 8N . Other thrust levels have been also used
in this thesis. The thruster exploits hydrazine as propellant (while fine formation
thrusters use cold gas). Having two different masses, the two satellites have also
different acceleration and so SAT1 is lighter and more agile with respect to SAT2.
These features will influence the mission deployment strategy.

The two satellites are injected by the launcher directly at the perigee of orbit
A , but, in order to have proper separation, SAT1 has an initial ∆V of 0.50m/s.
So the SAT1 initial orbit is slighter different from the SAT2 orbit, with an higher
apogee and longer period. Mission prescribes that the two satellites have to arrive at
the same final orbit B. Only semimajor axis and eccentricity are prescribed, leaving
the other orbital parameters free. But the final orbit has to be the same for both
satellites. For operational reason no burns are permitted in the first revolution of
the two satellites, so the first phase is pure coasting and only at the following apogee
perigee passage the satellites can fire their engines.

The two satellites, in order to observe the universe, need a relative distance in the
order of 20 meters, so at the end of the deployment phase the two satellites should
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4 – Case study: Cooperative deployment

have a relative distance of 10 kms in order to start proximity maneuvers, further
details are given in section 1.2. The deployment phase is considered terminated
when, at apogee, the same orbit and the final relative distance of 10 km are reached.
At the last apogee of the deployment the proximity manoeuvres will start, and so
no burns are permitted at the last apogee. No time-transfer and departure date
constraints are imposed, so different multi-revolution missions are analyzed.

In chapter 3 the dynamic models used in this thesis have been introduced, giving
a general frame for trajectories optimization. The starting point is the shape of the
initial and final orbit. They are both HEOs, but the initial reference orbit has a
low perigee, so the influence of the asphericity of the Earth is relevant. From the
first simulations was also clear that J2 perturbations was very important in the first
revolution and also in the overall strategy of the burns times. This aspect will be
deeper analyzed in sec. 5.1.1, but it is important to note here that J2 effects on
semimajor axis are null in average in a complete revolution, but if the two satellites
are injected at the perigee, the results is an instant drop of the semimajor axis that
will change the optimal strategy. A 8x8 model of Earth’s potential is introduced.
Drag is neglected, because the time passed in the lower atmosphere is considered
negligible.

The high apogee makes Moon and Sun perturbations very important. Satellites
perigee shows significant variations even considering only the ballistic flight.

Lunar perturbation brakes or accelerates the spacecraft when it is at the apogee,
changing its semi-major axis, perigee and orbital period. The period changes the
next apogee passage (when compared with the 2 body solution) and so it is difficult
to forecast the position of the Moon and its influence at the next revolution. The
effect of these perturbations on the switching structures for the optimal fuel save
deployment is hard to predict.

The perturbation of the Moon in the first revolution of the spacecraft, that is
ballistic, can lower the perigee and makes the spacecraft plunging in the atmosphere.
The impossibility of controlling the spacecraft orbit in the first phase of the mission
makes important the analysis of moon influence and the choice of the departure
date.

Solar radiation pressure is a very little perturbation, if compared with the other
ones, but it has a strong impact when avoidance collision for the formation flight
is considered because the satellites have different S/m and the period in which
formation keeping is active is longer. Even if in this specific problem seems to be
negligible (but this results is found a posteriori) it is worth to take into account this
perturbation for different possible m/S ratio for the two spacecraft.
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4.2 – Optimal values of the control

4.2 Optimal values of the control

In section 2.4 the indirect method was introduced and eq. (2.33) is the algebraic
expression for the optimal control. The dynamical model of the problem has been
introduced in chapter (3) and the only control present is the thrust vector T . This
means that the control can be represented by the three components of the thrust
Tu, Tv, Tw or using the magnitude T and the thrust angles γT and ψT , as defined in
eq. (3.37).

For the sake of clearness here the Hamiltonian of eq. (3.28) is re-written in a
compact form, emphasizing the dependence on thrust and where H ′ collects all the
terms that do not contain the control

H = λTx = H ′ + λV
TT /m− λm(T/c) (4.1)

λV is the adjoint vector to velocity and in literature is called primer vector [67]; its
magnitude is λV . The expression of the primer vector is:

λV = λuı+ λv+ λwk (4.2)

The projection of the thrust vector direction on the primer vector is indicated as

ΛT = λuTu/T + λvTv/T + λwTw/T (4.3)

The Hamiltonian can be written as

H = λTx = H ′ + T (ΛT/m− λm/c) = H ′ + T · SF (4.4)

SF = (ΛT/m − λm/c) is the Switching function and it is called in this way
because its sign determines if the thruster is switched ON or OFF. From optimal
control theory, the optimal thrust magnitude should be derived from ∂H/∂T = 0,
but the Hamiltonian is linear with the thrust magnitude. However, PMP states
that the optimal control is the value that maximizes the Hamiltonian. So if the
switching function is positive, the optimal value of thrust is Tmax, otherwise is null.
In equation is

T =

{

Tmax for SF > 0

0 for SF < 0
(4.5)

The control is bang-bang.
The optimal thrust elevation angle γT and thrust heading angle ψT are found by

posing ∂H/∂γT = 0 and ∂H/∂ψT = 0. These equations provide

sin γT = λu/λV (4.6)

cos γT cosψT = λv/λV (4.7)

cos γT sinψT = λw/λV (4.8)
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4 – Case study: Cooperative deployment

These are the cosine director of the primer vector. In other words the optimal
direction of the thrust is parallel to the primer vector. If the optimal strategy is
adopted ΛT = λV .

4.3 Single satellite optimal control

Most of the considerations and the procedure developed for the optimization of the
single satellite optimization are valid even for the formation flight. For the single
satellite transfer is considered a satellite with physical property identical to SAT1
(i.e. m0 = 960kg), but the initial orbit is equal at the reference one (so the initial
∆V = 0). This satellite will be named SAT0.

The statement of the problem is described in section (4.1). From the statement
the mathematical formulation of the boundary conditions has to be derived. The
dynamical equations, the differential equations for adjoint variables, optimality and
transversality conditions define the problem.

The dynamical equations and differential equations are defined in chapter (3)
At the initial point j = 0 all state variables are assigned. In the optimal proce-

dure the initial time t0 is considered to be given. A parametric analysis to evaluate
the influence of the departure date on the mission has been performed. At the final
point j = f apogee radius rA and orbit semilatus rectum p = a(1 − e2) are given.
The final point is the apogee. The conditions of the state variables at the terminal
point are:

rf − rA = 0 (4.9)

uf = 0 (4.10)

v2f + w2

f − µp/r2A = 0 (4.11)

The performance index to be maximized is the final mass φ = mf . The optimality
conditions (2.35-2.36), eliminating the adjoint constants, are:

λϑf = 0 (4.12)

λϕf = 0 (4.13)

λvfwf − λwfvf = 0 (4.14)

λmf = 1 (4.15)

As said before the final time is free, so the transversality condition (2.38) gives
Hamiltonian null at the end.

Hf = 0 (4.16)
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4.3 – Single satellite optimal control

Application of equations 2.35 and 2.36 at every switch point gives Hamiltonian
continuity. State and adjoints variables are also continuous and so the switching
function has to be null at the switch points (Points where engines turns OFF-ON
or vice-versa)

SFj = 0 j = 1, . . . ,f − 1 (4.17)

The numerical problem consists of 14 differential equations represented by (3.10-
3.16) and (3.29-3.35). The state variables initial values are given, but the initial
values of the adjoint state variables are unknown. The lengths of the coast and
burn arcs are also unknown; an equal number of boundary conditions, given by Eqs.
(4.9)-(4.17) completes the MPBVP.

The problem is homogeneous in the adjoint variables and Eq. (4.15) can be
replaced by assigning the initial value λm0 = 1 in order to reduce the number of
unknowns. All these parameters are included in the parameters vector p.

The indirect method needs a good initial guess to have an optimal solution. For
this reason the research team started with a simplified model of the problem, without
perturbations, for having a tentative guess for the more complex problem. The first
attempt have tried to solve the two body problem with the shortest mission possible,
that was 2.5 revolutions. The orbit transfer is mainly a perigee raising and a little
apogee decrease. The proto-mission was a long burn arc at apogee followed by a
very short one at perigee (see [68]). In thesis the burn arc at perigee is indicated
with P, while the one at apogee is indicated with A. The first ballistic revolution
is omitted. The proto mission is described with A-P. If the the transfer time is
increased the number of revolutions can be 3.5, 4.5 and so on. When number of
revolution is increased the apogee burn is split in shorter burn arcs. The mission
becomes a A-A-P or a A-A-A-P.

The solution of the two-body problem was quite straight-forward and so the next
step was the introduction of the perturbations due to the asphericity of the Earth.
Even though the effect on the final mass is quite small, the zonal effect J2 changes
the optimal deployment strategy, which now prescribes to first have a brief perigee
burn and then a long apogee ones (see section 5.1.1). In this case the mission is a
P-A (or P-A-A...). Even if there is a slight dependence on time with a 24-h cycle,
the convergence was still straightforward. It was also relatively easy adding new
revolutions around Earth.

A complex behavior rose with the introduction of the luni-solar perturbation.
Once a solution is found for a departure date, convergence was sometimes not ob-
tained when this solution was used as tentative guess for a different departure date.
The perturbation at the apogee changes the orbit period and so the time of the
perigee burn position is different from a departure day to another one. Also the so-
lution is very sensitive to the perigee burn, even if it is very little. Also, as the initial
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4 – Case study: Cooperative deployment

revolution period is modified, all the apogee burn times changed, even if they are
longer and it was easier to get them. Often the time was completely misplaced and
there were no way to get the solution without a manual changes of the guess solution.
Unfeasible solutions with phases with negative length could also be obtained.

There were numerous tentatives, such as putting additional coast phases before
and after the perigee arc to ”catch” the shift of the time of the perigee time. A
good tentative was to change the departure date gradually in order to have smooth
behavior. But there were still two issues:

• to get the solution of a particular date it was necessary to explore all the
solutions between the previous solution and the searched date

• Due to lunar perturbations, for multi-revolution mission, some arcs disap-
peared in certain date, in an unpredictable way.

To solve the problem of ”‘catching”’ the perigee a change of variables was introduced.
It was noted that, even if the burn times changed significantly changing the date,
the right ascension of the burns were quite the same. So the new independent
variables is ϑ and al the differential equation are changed multiplying time dt/dϑ
and changing the expression of the adimensional variable used for integration.

ε = j − 1 +
ϑ− ϑj−1

ϑj − ϑj−1

(4.18)

In this way getting the initial guess solution was easier and if arcs were considered,
the perigee arc is quite long, because the spacecraft is very fast at perigee and so
sweeps a big angle in a short time. Inversion of times was solved and also the shifting
of time. But still there was the problem of guessing the structure of the optimal
solution.

For few revolutions (3.5 revolutions) exploring all the possible structures and
taking only the optimal one was a feasible task. The solution can be a PAA, PA0
or P0A. The 0 indicated that the correspondent apogee burn is not present in the
optimal solution for a certain departure date. For more revolutions it was not
easy and also the problem was not scalable. After many trials, it resulted that to
delete a burning arc was easier than adding one. So a continuation technique using
perturbation fraction as parameter was introduced .

Starting from the J2 optimal solution with no other perturbations, all the burning
arcs are present. In this case the perturbation fraction is Pf = 0. The perturbation
fraction is inserted in the vector parameters p. A new value of the perturbation
fraction is inserted as boundary condition and the optimizer finds the new optimal
solution. If the the optimal structure is the same (i.e. all the arcs are present) the
convergence is straightforward and the new solution is memorized. The max value
of switching function at each arc is also memorized. If an arc has to be deleted the
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procedure does not converge, generally stopping for reaching max iterations number.
This max iteration number is set to 30, providing sufficient margin, because, if
the structure is already optimal, the procedure converges in 8-10 iterations. If
the procedure does not converge the last converged optimal solution is taken and
the minimum peak value of the Switching function indicates which arc has to be
eliminated. So the structure is modified and the optimization is re-started. A new
value of perturbation fraction is imposed as equality constraints until Pf = 1. The
number of level of perturbations fraction is 6 for this problem and this continuation
technique gets the optimal solution in the 98% of the solutions in a year (a solution
for each different day). For having convergence in the remaing 2% it is sufficient
to set more levels of perturbation fractions, because sometime a peak is lower than
another, but it is growing or decreasing slowly. An improvement can be realized by
evaluating the derivative of the Switching function value. When many revolutions
are present (6.5 and more), more than one arc can be eliminated but often arcs are
so small that different switching structures have very similar performance index.

4.4 Formation Flight

The single satellite optimization helped to understand the influence of the pertur-
bation and also it was a good testbed to build a robust procedure for seeking the
optimal solution and optimal structure. As said in Sec. 4.1 the two satellites have to
reach the final orbit with a prescribed inter-satellite final distance. Only semimajor
axis and eccentricity are specified for the final orbit, while the other parameters are
free, but they have to be the same for both satellites.

In the final configuration the order of the satellites is not prescribed, so SAT1
can arrive first at the apogee or can arrive after SAT2. Both configurations have
been explored. When a satellite arrives first at apogee it is designed as the formation
leader, while the other one is called the follower. In this thesis two strategies are
taken in consideration for reaching the final formation: chaser target and cooperative
strategy.

In the Chaser-Target strategy the Target satellite applies its own optimal strat-
egy, the same that is found in the single satellite optimization. The Chaser has to
reach the same orbital parameter of the Target. It is important to note that Chaser
- Target functions are different from Leader - Follower. The Chaser can be follower
(arrive last at apogee) or Leader (arrive first), but it has to reach the same orbit
that is optimal for the Target.

In the cooperative strategy the two satellites reach the same final orbit that is
optimal for the formation and not only for the target. For the model point of view,
the variables and the differential equations are the same for each satellite. So for
the formation flight there are 28 state variables and 28 differential equations. The
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Hamiltonian of the system is the sum of the Hamiltonian of the two satellites and
each satellite has its own switching function.

In the formation flight there is also the constraint of the final intersatellite dis-
tance (phasing constraint). This constraint involves r, ϑ, ϕ of both satellites and
so the optimal constraint should involve the adjoint variables of these quantities. It
was noted that the distance between the two satellite is very small (10 km) and the
two satellites have the same final orbit (because it is the final point). At the apogee
the radius changes slowly, so it is possible to consider the radius equal for both
satellite and so also the velocity is the same. Calling the velocity at the apogee VA,
the final distance df and considering velocity constant the final distance constraint
can be written as

tfF = tfL + df/VA (4.19)

where the subscript F is for the follower, while L is for Leader. So the distance
constraint is now a time constraint and prescribes the delay of the follower apogee
arrival. The time constraint is easier to manage. The performance index is φ =
mfS1 +mfS2.

4.4.1 Chaser Target

The Chaser Target strategy is the simplest, because the Target has to follow its own
optimal solution and optimal strategy. The Chaser has to follow another optimal
solution that is not the same of the single satellite case, because all the orbital
parameters are now constrained. The boundary constraints for the Target are the
same of the single satellite case (4.9-4.11).

rf = a(1 + e) (4.20)

uf = 0 (4.21)

v2f + w2

f = (µ/a)(1− e)/(1 + e) (4.22)

while for the chaser one has

rf = rT (4.23)

ϑf = ϑT (4.24)

ϕf = ϕT (4.25)

uf = 0 (4.26)

vf = vT (4.27)

wf = wT (4.28)

tf = tT ± df/VA (4.29)
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where the subscript f is for the final value of the chaser, while T is for the Target
final value. The optimality boundary conditions for the target are

λϑf = 0 (4.30)

λϕf = 0 (4.31)

λvfwf − λwfvf = 0 (4.32)

λmf = 1 (4.33)

The final time is free, so the final Hamiltonian is null

Hf = 0 (4.34)

The boundary conditions for optimality provide for the Chaser

λmf = 1 (4.35)

For both satellites Hamiltonian continuity holds at the engine switching points;
state and adjoint variables are continuous and, as a consequence, the switching
function must be null there

SFj = 0 j = 1, . . . ,f − 1 (4.36)

In this way the Hamiltonian of the two satellites are separated; the convergence is
easier and also the two problems can be solved in different times (first the trajectory
of the Target and then the Chaser trajectory), and so the solution is faster. Both
satellites can be Chaser or Target, but SAT1 is lighter and, with the same Thrust of
SAT2, is more agile, so it is the most suitable to be the chaser, because can change
the optimal trajectory of the single satellite case with less penalty than SAT2.

4.4.2 Cooperative strategy

With cooperative deployment both satellites modify their strategies in order to fulfill
phase requirements saving the overall fuel. The optimization of the two trajectories
has to be performed at the same time. The two satellites will have different times of
switching on and off the engines. Also the strategies (number of coast and burn arcs)
will be, in general, different (i.e. SAT1 PAA0 and SAT2 PA0A). It is convenient to
split the trajectories of the two satellites in the same number of phases, each one
described by the adimensional variable ǫ. Some of the phases will be constrained to
zero-length (this constraint will replace the constraint of SF = 0). This simplifies
the problem description. The Boundary conditions involves both satellites
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(rS1)f = a(1 + e) (4.37)

(uS1)f = 0 (4.38)

(vS1)
2

f + (wS1)
2

f = (µ/a)(1− e)/(1 + e) (4.39)

and

(rS2)f − (rS1)f = 0 (4.40)

(ϑS2)f − (ϑS1)f = 0 (4.41)

(ϕS2)f − (ϕS1)f = 0 (4.42)

(uS2)f − (uS1)f = 0 (4.43)

(vS2)f − (vS1)f = 0 (4.44)

(wS2)f − (wS1)f = 0 (4.45)

(tS2)f − (tS1)f = ±df/VA (4.46)

The optimal boundary conditions are

(λrS1)f + (λrS2)f = 0 (4.47)

(λϑS1)f + (λϑS2)f = 0 (4.48)

(λϕS1)f + (λϕS2)f = 0 (4.49)

[(λvS1)f + (λvS2)f ]wf − [(λwS1)f + (λwS2)f ] vf = 0 (4.50)

(λmS1)f = 1 (4.51)

(λmS2)f = 1 (4.52)

(HS1)f + (HS2)f = 0 (4.53)

At interior points, where engines are switched on or off, the switching function
of both satellites is null. It is possible to see that the adjoint variables of the two
satellites are no more independent.

The problem stated in this way has (λm)f = 1 as final condition and λm0
as

unknown parameter to be determined (for each satellite). But adjoint differential
equations are homogeneous (gλ(λ) = 0), so it is possible to scale all λ in order to
have an easier BVP problem to solve. For the sake of clearness, the intermediate
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passage are shown here. The original problem has

HS1 +HS2 = 0

λm0S1

λm0S2

λmf S1
= 1

λmf S2
= 1

The Hamiltonians, and so the adjoint variables of each satellite, are scaled by factors

K1 and K2.

H ′

S1
= K1HS1

H ′

S2
= K2HS2

λ′

m0S1
= K1λm0S1

λ′

m0S2
= K2λm0S2

λ′

mf S1
= K1λmf S1

= K1

λ′

mf S2
= K2λmf S2

= K2

If K1 = 1/λm0S1
= λ′

mf S1
and K2 = 1/λm0S2

= λ′

mf S2

λ′

m0S1
= 1

λ′

m0S2
= 1

the new scaled problem has two more initial conditions set and two less boundary

conditions on the terminal point. All the others conditions are scaled as in this

equation:

H ′

S1
/λ′

mf S1
+H ′

S2
/λ′

mf S2
= 0

4.5 Collision Avoidance

The Chaser Target and the cooperative Strategy prescribes only the final distance

between satellites, but during the deployment the distance between them can vary.

In order to prevent the collision between the two spacecrafts, the minimum distance

has to be always greater than a safety value, that is 1 km. Using an indirect method

it is not possible to put directly an inequality constraint. It is only possible to put

an equality constraint when the inequality is active and this can be done only a

posteriori.

It is possible to guess where the constraint can be violated: at the very beginning

and in the last burn arc. At the very beginning it is the separation phase, so it is not
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possible any control and everything is up to the separation stage of the launcher.
During the last burn arc the distance can vary, but now the orbit of the two satellites
are very close, so a collision can happen and collision avoidance constraint must be
introduced. The additional boundary conditions enforce prescribed value dsep and
set the derivative of the distance to zero (because it has to be the minimum distance)

(rS2 − rS1)
T (rS2 − rS1) = d2sep (4.54)

(rS2 − rS1)
T (vS2 − vS1) = 0 (4.55)

The optimality conditions are derived using equations (2.35) and (2.36). All the
adjoint variables have a discontinuity at the minimum distance (if constrained). ∆
indicates the difference between values just after and before the minimum distance
point.

∆λ
T
rS1N = 0 (4.56)

∆λ
T
rS2N = 0 (4.57)

∆λ
T
vS1N = 0 (4.58)

∆λ
T
vS2N = 0 (4.59)

∆λ
T
vS1(vS2 − vS1) = 0 (4.60)

∆λ
T
vS2(vS2 − vS1) = 0 (4.61)

∆λ
T
rS1(rS2 − rS1) = ∆λ

T
rS2(rS2 − rS1) (4.62)

∆λ
T
vS1(rS2 − rS1) = ∆λ

T
vS2(rS2 − rS1) (4.63)

∆λ
T
rS1(vS2 − vS1) = ∆λ

T
vS1(rS2 − rS1)V

2

rel/d
2

sep (4.64)

∆λ
T
rS2(vS2 − vS1) = ∆λ

T
vS2(rS2 − rS1)V

2

rel/d
2

sep (4.65)

where N is the vector normal to both rS2 − rS1 and vS2 − vS1, and Vrel =
|vS2 − vS1| is the magnitude of the relative velocity. From Eqs. (2.37) and (2.38)
one also has an additional transversality condition

∆HS1 +∆HS2 = 0 (4.66)

The boundary conditions are complex and involve all the variables (except mass
and its adjoint). To find the optimal solution it is possible to start from an un-
constrained solution and introducing ∆λ close to zero, but not exactly zero, in the
tentative solution and adding the constraints.

It is possible to fulfill the collision avoidance constraint in a faster and simpler
way. The idea is to constraint a difference in the last burn apogee. The value
to use as difference is found with an an iterative procedure (few iterations of the
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bisection methods). The last arc is split at the apogee, where the radial velocity is
null (uS1 = 0, uS2 = 0). Then the difference of the apogee radius is enforced

rS1 − rS2 = dapo (4.67)

Since the state variable r is involved in an interior boundary constraint, the
respective adjoint variable has a discontinuity.

∆λrS1 +∆λrS2 = 0 (4.68)

derived by Eq. (2.35) and (2.36)

4.6 Optimal Constant-Direction Thrust

The optimal control theory gives the thrust magnitude and direction of the optimal
solution for a given structure (number of coast and burn arcs). For this type of
transfer, the thrust direction is mainly perpendicular to the line of apses, with little
components out of plane or along apses. It was interesting to find how the final
solution can be influenced optimizing only the duration of the arc burn and taking
fixed the thrust angles. It was not only a theoretical curiosity, but also a practical
issue. The physical model used for the trajectory optimization uses a point-mass
spacecraft, but in the real world the satellite has momentum of inertia and all the
changes in attitude require fuel. Also, changing attitude when the engine is on
decreases the precision of the maneuver. Finding a control law that does not require
much changing in thrust direction can be a first guess for an higher fidelity analysis.

A spacecraft is generally built to have the thrust direction for orbital maneuver
mainly oriented along the spinning axis. This is essential for spinning satellites, but
also for three axes stabilized ones. In case of emergency these spacecrafts enter in
safe mode and start spinning.

So the best choice is to find a control law that keeps the thrust direction fixed
in the inertial frame. During the j-th burn, thrust components in the geocentric
inertial reference frame (I, J , K) are written as

Tx = T cosαj cos βj (4.69)

Ty = T sinαj cos βj (4.70)

Tz = T sin βj (4.71)

(4.72)

where αj and βj are the thrust angles. A simple change of reference frame provides
the component in the topocentric frame ı, , k,
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(4.73)
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So the thrust components in local frame Tu, Tv and Tw now depend also on the
state variables ϑ and ϕ. The Euler-Lagrange equations for the corresponding adjoint
variables have to be updated

λ̇ϑT
= [λu(Tx sinϑ cosϕ− Ty cosϑ cosϕ)

+ λv(Tx cosϑ− Ty sinϑ)

+ λw(−Tx sinϑ sinϕ+ Ty cosϑ sinϕ)]/m (4.74)

λ̇ϕT
= [λu(Tx cosϑ sinϕ+ Ty sinϑ sinϕ− Tz cosϕ)

+ λv(0)

+ λw(Tx cosϑ cosϕ+ Ty sinϑ cosϕ+ Tz sinϕ)]/m (4.75)

In this case ΛT 6= λV (see 4.3) and the general expression of the Switching function
has to be taken in account.

First fixed values are considered for the thrust angles of the single satellite mis-
sion. For the shape of the initial reference orbit, that has the line of the apses along
y axis and is coincident with the line of the nodes, α = 0 and β = −i0 (where i0
is the inclination of the initial orbit) are adopted during the perigee burn, whereas
α = π and β = i0 are used during the apogee burns. This thrust vector lays on
the orbital plane and it is always accelerating. Convergence to optimal solutions
is easily achieved using the J2 solution as tentative guess. It can be used also as
tentative guess the free thrust solution with perturbations.

The previous control law, with thrust angles decided a priori, is not suitable for
more complex solutions, for example if the final orbital elements are fixed or if a
change of plane is required. In this case study, having a cooperative deployment,
it is not possible to achieve phasing and final orbit constraints. The two satellites
are under different perturbations at different times and they have to reach the same
final orbit.

The next mandatory step is to optimize not only the time of the burn arc, but
also the thrust angle. The two thrust angles α and β remain fixed in the inertial
frame during the burn arc, but they change from one arc to another. Optimal control
theory is applied to determine the optimal thrust angles. Each thrust angle for each
burn arc is a stand alone variable, but the variable are independent between them
(they are not ”‘active”’ at the same time) so they are stored in the same variable
in the implementation. There will be the optimal thrust angles αj and βj and their
adjoint variables λαj and λβj. For each j pair of angles there are the correspondent
Euler-Lagrange equations dλαj/dt = −∂H/∂αj, that is and dλβj/dt = −∂H/∂βj

λ̇α = −
T

m

(

λu

∂(Tu/T )

∂α
+ λv

∂(Tv/T )

∂α
+ λw

∂(Tw/T )

∂α

)

(4.76)

λ̇β = −
T

m

(

λu

∂(Tu/T )

∂β
+ λv

∂(Tv/T )

∂β
+ λw

∂(Tw/T )

∂β

)

(4.77)
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The partial derivative of the cosines director of the with respect to α and β are:
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(4.79)

According to these equations the λαj and λβj are always null except in the j − th
arc and so the optimal boundary conditions are

λαj
= 0 j = 1, . . . ,f − 1 (4.80)

λβj
= 0 j = 1, . . . ,f − 1 (4.81)

at the beginning and at the end of the arc. The free-thrust direction solution is used
as tentative guess with αj = 0 or π and βj = ±i0 in agreement with the previous
observations.

4.7 Errors in control law

The mission of deployment of the two satellites in formation flight can be accom-
plished with optimal variable angles or with fixed ones for each arc. The one with
fixed angles is the one more suitable for a real flying mission. But real missions are
subjected to errors with respect to the optimal trajectory.

The errors can be classified in three main categories: errors due to the approx-
imation of the dynamic model, errors due to the orbit determination (state of the
spacecraft at a certain moment) and errors due to actuation. These errors cannot be
avoided, and are part of the problem, but their influence can be mitigated improving
precision in models, actuation and sensor but also designing a robust mission where
handling and recovering errors is possible.

In this thesis the model and orbit determination errors are not considered, and
only errors in controls implementations are taken into account. In the mathemat-
ical model considered here, thrust can vary between a maximum value Tmax and
minimum value 0. The optimal control theory states that a bang-bang control is
optimal and the optimal direction is parallel to the primer vector λV when thrust
direction is free. For constant-direction thrusting optimal thrust angle is found for
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each arc. This is indicated as nominal thrust TN . The real thrust vector is actually
T R = TN + T ǫ, where T ǫ is the thrust error vector.

The real vector T R is inside a cone around TN . The magnitude is expressed as
TR = TN +∆T and the position of the vector in Cartesian coordinates is
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cosα cos β − sinα cosα sin β
sinα cos β cosα sinα sin β

sin β 0 cos β











TR cos γ
TR sin γ cos δ
TR sin γ sin δ







(4.82)

where γ is the angular distance between the nominal thrust vector and the real
one. It is the amplitude of the cone where the real thrust vector lays. δ gives the
position on the cone surface.

Finding an optimal solution is not enough, but also a robust solution is pursued.
The methods found in literature involve generally MonteCarlo simulation and genetic
algorithms. The method that seems more suitable with the optimization indirect
method it is the reduction of covariance matrix described by Zimmers in [69]. The
approach followed in this thesis was more empiric, but these results were kept in
consideration. Errors in orbit determination are not taken in consideration, so the
approach is more focused on the strategy that mitigates effects of actuation errors.

The control law with fixed thrust angles for each different arc was the start-
ing point. Errors in thrust magnitude and directions are introduced. The errors
are simulated using random generator function in Fortran. The results is a thrust
profile with a constant component (different for each arc) plus a white noise compo-
nent. The errors on the thrust magnitude and on γ are simulated with a Gaussian
distribution, while δ is generated with uniform distribution.

First, the influence of errors on the final constraints is evaluated in an open-loop
simulation. Then in order to mitigate the errors on the final constraint, an updated
control law is devised. A mission with random error is simulated and, after each
revolution, an observation is taken to track the satellite. By considering this position
as the real one, the remaining mission is re-optimized. This approach emulates a
Model predicted control (MPC), were the optimizer models and designs each step of
the mission, while the injection error subroutine simulates a real mission behavior.

This concept had some convergence problem, because the errors change state
and adjoints variables values. The errors change ra and rp and can modify sensibly
switching structure and thrust angles, requiring a solution far from the nominal one.
So a different procedure that keeps the same switching structure was introduced: the
final arc width is fixed and has a low value τs. This additional boundary condition
substitutes the SF = 0 condition for the final arc. This condition is eliminated only
for the final re-optimization. The time length of final burn arc is fixed, that is, if
only a satellite is considered,

t(f−1) − t(f−2) = τs (4.83)
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If the the formation deployment is considered

t(f−1)S1
− t(f−2)S1

= τs (4.84)

t(f−1)S2
− t(f−2)S2

= τs (4.85)

This constraint on time requires continuity in the Hamiltonian, so for a single satel-
lite deployment is

∆Hf−2 = H(f−2)+ −H(f−2)− = 0 (4.86)

and for a formation deployment is

H(f−2)+S1
−H(f−2)−S1

= 0 (4.87)

H(f−2)+S2
−H(f−2)−S2

= 0 (4.88)

Conclusions

The boundary conditions for single satellite or formation satellite deployment have
been given. Tranversality and optimality conditions have been derived in the frame
of the OCT. The optimal control is a bang-bang thrust with direction parallel to
the primer vector. During the study of the optimal transfer of the single satellite
with luni-solar perturbations, a procedure that gradually introduces these perturba-
tions has been developed for increasing problem convergence. In the chaser-target
deployment optimality and transversality conditions of the two satellites are decou-
pled, while they are linked together in the cooperative deployment. Two collision
avoidance boundary conditions are shown. An alternative sub-optimal control law
with thrust direction fixed in the inertial frame is used. Finally thrust dispersion
errors are injected in the previous approximate control law, suggesting a robust
re-optimization strategy with a short-time final arc.
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Chapter 5

Numerical Results

Introduction

The indirect optimization method is applied to the deployment of the satellite for-
mation. First the single satellite behavior is analyzed considering the influence of
thrust level and number of revolutions. Then the Earth oblateness, Moon and Sun
perturbations are introduced and the results on the final mass, thrust angles and
strategy (number, duration and sequence of thrust arcs) are shown. The same pro-
cedure is applied to the formation deployment. The strategy for collision avoidance
is also analyzed. An approximate control law with thrust direction fixed in the in-
ertial frame is considered and finally the robust re-optimization strategy results are
shown.

5.1 Single Satellite Deployment

The deployment of a single satellite named SAT0 with initial mass m0 = 960Kg is
first considered. All the details of the case study are exposed in chapter (4.1). As
reminder, in the first revolution and at the last apogee no maneuvers are allowed.
The initial orbit is the reference one. The deployment uses the dynamical model
described in chapter 3 with the indirect method explained in section (2.4). The
reference engine has thrust of T = 8N , but to better understand the influence of
thrust magnitude also T = 1N is considered. The time of the deployment is not a
constraint, so missions with length ranging from 2.5 (the minimum possible) to 6.5
revolutions around the Earth were analyzed. The reference case was considered the
4.5-revolution mission that seemed the best compromise between performance index
and time of deployment.
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5.1 – Single Satellite Deployment

Figure 5.1: Trajectory plot

5.1.1 J2 solutions

The deployment of a single satellite in a high elliptic orbit from reference orbit A
to final orbit B, see Fig. (5.1), is mainly a perigee raising with a little decrease
of the apogee. Only final semimajor axis and eccentricity are constrained. In a
two impulsive manoeuvre (in 2.5 revolutions) without perturbations the deployment
can be performed and a big ∆V would be placed at the apogee for accelerating
the spacecraft whereas a little one will be placed at the perigee to decelerate and
lowering the apogee. For energetic reasons the optimal strategy sequence will be A
- P (see [68]), that means coast revolution before the first burn at apogee and then
a perigee burn. The final point is the following apogee. This synthetic script will be
used along the text and it will indicate the position of the burns and their sequence,
describing the optimal strategy.

The satellite is injected at the perigee of the initial orbit by the launcher. If
the J2 model is considered, perturbations of the bulge of the Earth modify the
reference orbit, decelerating the spacecraft and so lowering the apogee height. The
J2 perturbations have a null effect on the semimajor axis when a complete revolution
is performed, but the deployment mission is always n+1/2 revolutions, so the effect
is not more null. The main effect is to change the orbit transfer from a perigee rising
- apogee lowering to a perigee - apogee rising. The maneuver at the perigee is still
little, but now it accelerates the spacecraft. Also the optimal strategy changes from
a A - P to a P - A.

Even if it is possible to still have a A - P strategy and having a sub-optimal
solution, the indirect method optimization has difficulties in convergence and, as
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final results, always show SF > 0 at the first perigee; this fact shows that a burn
could improve the solution.

It is worth to say that the optimal solution generally requires burn arcs at the
beginning and at the end of the mission, but as said in the previous chapter, these
maneuver are not allowed for operational reasons.

If impulsive manoeuvres are considered it does not matter how may revolutions
are performed. The manuevers occur perfectly at the apogee or perigee, without
losses, and if the perigee raising is split in more revolutions, the performance index
does not change. If finite thrust is considered, gravitational losses are present and
grow as the angular length of the burn is increased (thrust applied farther from
the apsis). This means that a long arc will have more losses than a short one. As
expected, higher thrust means shorter arc and so better final mass. But with the
same level of thrust the final mass can be improved with multiple revolution. In
this way the burn is split in shorter arcs with lower losses. So the P - A mission will
become a P - A - A - etc.

Even if in terms of time or angle, splitting also the perigee manoeuvre in more
arcs is possible, in this case the perigee burn is so little that does not affect the final
mass and, for the optimal strategy, it is better performing all the perigee maneuver
before apogee one. The benefits on the performance index deriving from multi-
revolutions are more evident when the thrust level is lower (Fig. 5.2). A larger
number of burn arcs is also preferred as they allow an easier corrections of the errors
that may occur during the maneuvers.

Figure 5.2: Comparison between mission with different number of revolutions
using 1N or 8N thrust level

Table 5.1 gives some details of these maneuvers. The length of each maneuver
can be expressed in time or in angle. Both descriptions are useful and give different
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information. Time length is linked to propellant mass expulsed by the spacecraft.
The width of the arc gives an idea of the loss (wider is the arc, higher the losses
are), but it is important how much time the spacecraft is thrusting far from the
perigee/apogee. For example the perigee arc is wider than the apogee one, but,
because of the high eccentricity, the time spent at the perigee is little. When more
revolutions are considered the ∆V of the apogee maneuver is split in more arcs.
As one can see from Tables 5.1, the time length of the single arc decrease at every
passage (∆tA3 < ∆tA2 < ∆tA1) because the optimization tries to have a uniform
split of the ∆V among the arcs. As the spacecraft becomes lighter after each burn,
the thrust acceleration increases and the time for the same ∆V decreases. It is
worth noting that velocity is larger at each later apogee (i.e. VA2 > VA1) and so the
angle A2 arc length is larger than A1 even if the time arc is shorter. The effect is
more evident with lower thrust.

With more revolutions the perigee time length increases. Even if this can seem
counter-intuitive, it can be understood looking at Figure 5.3. When 2.5 revolution
mission is performed the A1 apogee burn is so long that it can increase also the
apogee rA, whereas in Figure 5.4 the apogee raise was given only by the perigee
manuever. In these figure it is also possible to see the effect of J2 perturbation in
lowering the apogee, and the ”peaks” at every perigee that become smaller as the
distance from Earth increases. It was expected that the optimal structure (a perigee

Table 5.1: Time and angular length of each burn (J2 only).

T = 1 N
Nrev P1 A1 P2 A2 A3
2.5 ∆t, h 2.66 76.50 3.77 - -

∆ϑ,deg 250.15 58.73 154.38 -
3.5 ∆t, h 0.45 35.55 - 34.79 -

∆ϑ,deg 121.27 18.40 - 23.15 -
4.5 ∆t, h 0.65 23.28 - 22.95 22.63

∆ϑ,deg 152.88 10.90 12.97 15.02

T = 8 N
Nrev P1 A1 P2 A2 A3
2.5 ∆t, h 0.09 8.50 - - -

∆ϑ,deg 28.50 4.67 - - -
3.5 ∆t, h 0.09 4.29 - 4.20 -

∆ϑ,deg 28.97 2.04 - 2.61 -
4.5 ∆t, h 0.09 2.87 - 2.83 2.79

∆ϑ,deg 29.05 1.30 - 1.55 1.80
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with subsequent apogee manuevers) will be kept by different number of revolutions
and with different thrust level.

As one can see in table 5.1 and in Figure 5.5 that one of the missions has two
perigees maneuver. This happens because the thrust is so low that the apogee arc is
too wide and the engine has not enough time to perform the perigee raising. So, the
optimal strategy is to raise the first apogee in order to have more time to perform
the perigee raising. Now the apogee maneuver can raise the perigee, but the arc
is so wide that that the burn raises also the apogee. It needs then another perigee
manuever to decrease rA to the required value.

Figure 5.3: rp and ra during a 2.5-revolution mission, 8N thrust

Figure 5.4: rp and ra during a 4.5-revolution mission, 8N thrust
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Figure 5.5: rp and ra during a 2.5-revolution mission, 1N thrust

5.1.2 Luni-Solar perturbations

Next step is introducing luni-solar perturbations. Also solar radiation pressure is
considered in the simulation, even if it does not show significant effects. On the con-
trary the Moon and the Sun have a great influence on the final mass of the spacecraft,
but also on the optimal strategy (sequence of perigee-apogee burn arcs and coast
ones). The continuation technique to obtain converged solutions is explained in
details in section 4.3. A solution with only J2 perturbations is the tentative guess
solution, with all arcs. Perturbations are increased and, if a solution does not con-
verge, the arc with the lowest peak value of the switching function is deleted. The
entire procedure requires less than 50 iterations for convergence when no arc are
deleted, while 80 iterations with one arc canceled. On a a Quad core intel i7 it takes
60 seconds (no parallelization, so only one core is used). The procedure is iterated
for each day of the 1-year launch window starting December 1, 2015 (MJD 57357).
In Figure 5.6 it is possible to see the final mass graph as a function of the depar-
ture date for the 4.5-revolution mission during the year. The difference between the
highest and the lowest final mass is about 8 kg, showing how much studying this
kind of perturbations is important. Another issue about lunar perturbation is that
in the first revolution no maneuver are permitted and, if the Moon is an unfavorable
position at the first apogee, the spacecraft plunges in the atmosphere. The position
of the Moon depends on the departure date. In the figure it is possible to see two
periodic contributions: the one with the lower frequency is the sun perturbation,
while the other one is the Moon influence. The solar perturbation has a biggest
effect on the final mass, but the Sun position is almost constant during the mission
time, while the Moon moves of about 40-55 degrees for each spacecraft revolution.
The variation of the angular displacement is due to eccentricity and to orbital period
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changing of the spacecraft for the apogee burns.

Figure 5.6: Final mass with departure date along 2016

Figure 5.7: Final mass and switching function from December 2015 to February

2016

In Figure 5.7 the structure of the optimal solution is shown for each day from

1st December 2015 to the end of February for the 4.5-revolution solution. The

problem was to understand why and when the optimal structure changed and the

performance was so different. In simulation with almost circular orbit the Luni-solar

perturbations do not seem to influence so much the semi-major axis, but in these

case the high eccentricity changes the symmetry of the perturbations. Perturbations

are markable at the apogee only, because it is far from the Earth. A first approach

was to find the favorable positions of Moon and Sun considering that the most
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important contribution is the tangential component of the perturbation that acts
when the spacecraft is at the apogee. An approximate model was developed. If
coplanar orbits are considered, the tangential component is

at = −
µb

r2
b

[

(rb/R)3 − 1
]

cosϑb (5.1)

with the spacecraft distance from the perturbing body expressed as

R2 = r2
b
+ r2 − 2rbr sinϑb (5.2)

and ϑb is the right ascension of the perturbing body. When the Sun is the perturbing
body, r << rb and only first order terms are retained to obtain (rb/R)3 ≈ 1 +
3(r/rb) sinϑb and

at ≈ −
µb

r2
b

3

2
sin(2ϑb) (5.3)

with maximum positive values at β = 135 and 315 deg (the most favorable positions
of the Sun), and maximum negative values at β = 45 and 225 deg (the most unfa-
vorable positions). If short-period oscillations due to the lunar gravity are ignored
(two cycles are found in each sidereal period of the moon), the final mass in Fig.
5.6 closely follows this trend, with two sinusoids in the 1-year launch window. The
peak values occur for departure on January 24, 2016 (MJD 57411, right ascensions
of the Sun at departure and arrival are 307 and 323 deg) and July 27 2016 (MJD
57596, 127 and 143 deg).

When the Moon is considered, the spacecraft distance from the Earth becomes
comparable to the Earth-Moon distance (r/rb ≈ 0.5) and the previous simplification
does not hold. The symmetry of the result with respect to the x axis is broken and
the effects of the third-body perturbation are enhanced when spacecraft apogees and
Moon are on the same side with respect to the Earth, that is when sinϑb > 0. The
maximum benefit occurs when ϑb ≈ 115 deg (with a less pronounced beneficial effect
at ϑb ≈ 330 deg), whereas the largest negative effect is at ϑb ≈ 65 deg (with a less
remarkably effect at ϑb ≈ 210 deg). As said before, the Sun position during transfer
mission does not change, so to verify the previous assessment for Moon favorable
positions, the position of the Moon was considered fixed during the transfer and the
Sun perturbations were neglected. As expected, in Figure 5.8, when th Moon is in a
favorable position, the spacecraft exploits at every revolution the perturbation of the
Moon to increase its velocity and save fuel. The longest mission (4.5 revolutions) can
exploit significant lunar assist during five passages, two more than in the shortest
ones: variations of the final mass with respect to the average value show roughly
the same 5/3 ratio.

When Moon movements is involved, the case is more complex. Even if Sun
perturbation is neglected the perturbation effects final mass that can be seen in
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Figure 5.8: Lunar perturbations on final mass considering Moon position fixed

Figure 5.9 are not easy to be predicted. The Moon moves of 40-55 degrees during
every revolution of the spacecrafts.

Figure 5.9: Lunar perturbations on final mass considering Moon motion

The Moon is at the most favorable position (ϑb = 115 deg) at the first apogee
passage of the best 2.5-revolution transfer, offsetting the penalty at the last one
(205 deg). On the contrary, the worst performance occurs when the three apogee
passages find the Moon at about 20, 70 and 125 degrees, with the most unfavorable
configuration at the second passage.

The Moon moves about 210 degrees during the best 4.5-revolution transfer and
is in a favorable position at the first (115 deg) and last (about 305 deg) apogee
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passage (with a single unfavorable position, at about 205 degrees, during the third
passage). However, the spacecraft adjusts the burn lengths and varies the orbital
period during each revolution to put forward or push back the passages in order
to enhance/reduce the effects of favorable/unfavorable geometrical configurations.
On average, the final mass is larger in comparison to the shortest transfers, but the
maximum achievable mass is lower.

The switching structure of the optimal 4.5-revolution missions (see Fig. 5.7)
changes with a clear regularity according to the departure date. The best missions
require the removal of the last burn arc (PAA0), whereas the removal of the first
arc (P0AA) is beneficial in the worst cases. Optimization prescribes the removal
of the last two arcs in four cases, and the switching structure becomes PA00. The
same optimal structures repeat at roughly 14-day intervals, corresponding to a half
revolution of the Moon around the Earth. For an assigned departure date, the
thrust strategy has almost no capability of phasing the initial apogee passage with
the Moon position. However a longer thrust arc at the first apogee increases the total
time of flight. On the contrary, when the first apogee burn vanishes, the following
orbital periods are shorter and the whole mission is faster. The trip time may differ
more than 12 hours (about 6 degree in angular position of the Moon). Figure 5.10
shows that the mission departing on Dec. 12 delays the last apogee passage to find
the Moon in a more favorable position. On the contrary, but with a similar aim, the
mission starting on Dec. 5 anticipates the fourth apogee passage. Moon’s complex
influence on the spacecraft trajectories suggests that further analyses could provide
interesting hints for all the missions that exploit lunar resonance.

Figure 5.10: Spacecraft right ascension ϑ deg

If more revolutions are performed (see Figure 5.11) the average final mass is
higher and there is a jump in the maximum mass due to the number of favourable
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positions that the spacecraft can meet during its mission.

Figure 5.11: Total mass [kg] of the two satellites deployed individually

5.1.3 Example Case Analysis

The mission with departure on December 1 , 2015 is taken as example to show the
details of the mission and the convergence procedure. Table 5.2 shows the time
arc length of the 4.5-revolution mission with different perturbation levels. When
Pf = 0 the arc lengths are almost the same and in Figure 5.12 the value of the
switching function for each arc is represented using the adimensional variable ǫ.
This representation has been chosen for the sake of clarity. Using t the perigee arc
would be to little, while using ϑ the apogee arcs would be to little.

Table 5.2: Characteristics of the 4.5-rev. transfer with departure on Dec. 1, 2015.

Pf t2 − t1 t4 − t3 t6 − t5 t8 − t7 mf

hr hr hr hr kg
0.0 0.09 2.87 2.83 2.79 845.57
0.2 0.09 3.59 2.75 2.16 845.40
0.4 0.09 4.27 2.79 1.45 845.25
0.6 0.09 4.97 2.96 0.59 845.10
0.8 0.09 5.51 3.02 - 844.96
1.0 0.09 5.84 2.70 - 844.83

The odd arcs represent coasting, while the even ones are the Thrusting arcs.
The SF is greater than zero also at the beginning and at the end of the mission,
but no manuevers are allowed for operational constraints. For this departure date,
when the perturbations fraction is increased the first arc becomes more convenient,

80



5.1 – Single Satellite Deployment

Figure 5.12: SAt0 Switching structure

increasing the time of flight of the mission. SF peak increases and so does the time
arc length. On the other hand the last arc becomes shorter. The switching function
remains the same until PF = 0.6. When the perturbations are increased to PF = 0.8
with the same switching structure, the optimizer cannot fulfill the constraint SF = 0
at the boundary of the last burn arc.

As the structure brings to an unfeasible solution the procedure comes back to
the last converged solution at PF = 0.6, where the lowest peak of the Switching
Function is in the last arc. So the optimal structure is changed in P-A-A-0 and the
optimizer converges now to an optimal solution. Pontryagin Maximum Principle
(PMP) is satisfied and this assure the optimality, at least locally. This structure is
kept until PF = 1. Figure 5.13 shows the thrust angle values for each thrust arc.

Figure 5.13: Thrust angles of 4.5-revolution mission
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The in-plane thrust angle α is the angle between the spacecraft velocity and
the projection of the thrust on the orbit plane (positive values correspond to thrust
towards Earth), whereas the out-of-plane angle β is the angle between the thrust
vector and the x-y plane. When all perturbations are considered there is a little out
of plane component to change the plane and improve the benefit of the luni-solar
gravitational perturbations. In the orbit plane, the thrust is directed inward with
respect to the Earth when the spacecraft is moving outward (0 < ν < 180 deg, that
is, after perigee and before apogee) and vice-versa, to reduce the orbit eccentricity
in agreement with the variational equations for orbital parameters [57]. Fig. 5.14
shows the variation of the final value of the orbital parameters Ω, ω, i.

Figure 5.14: Final orbital elements

5.2 Chaser-Target and Cooperative deployment

The study of formation deployment is carried on for 4.5 revolutions and T = 8N .
The two satellites SAT1 and SAT2 introduced in chapter 4.1 are injected in almost
the same initial orbit by the launcher and they have to reach the final orbit with
a final distance constraints that can be handled as a phasing constraint. All the
procedure developed for the single satellite is valid for the formation flight. The
main difference is that SAT2 is heavier, so it has a lower acceleration and the thrust
arc are longer than for SAT1 and they disappear less frequently.

Formation deployment is first analyzed without the phasing constraint to high-
light the difference behavior of the satellites, which are free to follow their own
optimal strategy. They can have different optimal structures (different number of
burn arcs) but from the implementation point of view, they have the same number
of phases, some of them with time length equal to zero (Fig. 5.16,5.17). This ap-
proach is consistent with the procedure of finding the optimal structure increasing
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the perturbations level. The integration of differential equations are carried on at
the same time using the adimensional variable ǫ. In this way the two satellites can
switch on and off the thruster at different times, even if the integration is taken in
parallel (Fig. 5.15).

Figure 5.15: Thrust profile. On the top: time t. In the bottom: adimensional time
ǫ

Figure 5.16: Switching Function SAT1

First the behavior of the two satellites can be analyzed when only the J2 per-
turbation is considered and the phasing constraint is neglected. SAT1 has a ∆V for
separation and so has a higher energy orbit. The ∆V gives more velocity to SAT1
which is ahead of SAT2 at the beginning of the mission, but it has also a lower
average angular velocity, so it is soon overtaken by SAT2 during the first revolution.
At the following perigee SAT2 has gained 600 km with respect to SAT1. After the
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Figure 5.17: Switching Function SAT2

Table 5.3: Performance for different deployment strategies (J2 model, 1 N thrust).

Strategy (mS1)f (mS2)f (mS1)f + (mS2)f
unconstrained 844.233 1097.443 1941.676

chaser-target SAT2 ahead 844.202 1097.443 1941.646
chaser-target SAT1 ahead 844.202 1097.443 1941.645
cooperative SAT2 ahead 844.219 1097.437 1941.656
cooperative SAT1 ahead 844.219 1097.436 1941.655

first perigee burn they reach almost the same energy. They follow their own optimal
strategy and the ∆V of every single arc are similar between the two satellites. But
the delay of the first revolution remains for all the mission. Because the velocity at
the apogee increases, the time delay increases the relative distance that arrives at
the end with a large final value (above 4000 km), with SAT1 following SAT2. The
aim of the deployment is instead to take the two satellites to the final orbit with a
final relative distance of 10 km at the apogee. After that, sensors can see the other
spacecraft and they can start the close-approach manuever.

The arriving order is not a requirement, so SAT1 can be the leader (arrives first
at the apogee) or the follower (arrives second). An approach for fulfilling the final
constraint is the Chaser-Target. As already said in section 4.4.1, the target has its
own optimal strategy, the same if it were a single satellite, while the chaser has to
reach the same final orbit of the Target. It is important to avoid confusion between
the concept of Chaser-Target and Follower-Leader. The first one is a functional
classification, the second is a time arriving one. As Chaser the best choice is SAT1
because it is lighter, with higher acceleration and so it is more agile. It can change
its strategy to gain the final arc easily orbit of the Target SAT2. The results are
shown in Table 5.3
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In Table 5.3 the difference between the strategy with SAT1 ahead or SAT2 ahead
with 1N thrust is also shown. The difference is negligible from the results point of
view, but from the theoretical point of view it is interesting to note that one solution
is better than the other because follows the ”‘natural”’ order of the unconstrained
solution. It can be noted that the phasing constraint requires only 30g of propellant
overall between the two satellites, so it is not a big deal with this type of spacecraft
and thrust to mass ratio.

In the cooperative strategy both satellites are engaged to reach an optimum for
the system and not only for the single satellite. This happens splitting the ∆V in
such way that at the first apogee SAT1 has a lower energy than SAT2 (at least in
the simplified model with only J2), so SAT2 becomes slower and permits with SAT1
to recover more easily the delay. This kind of approach saves only 10 g respect to
the chaser-Target approach with 1N thrust, but it is one third of the fuel spent by
the chaser target strategy. With more massive spacecraft or lower acceleration the
benefit of cooperative approach will increase.

When luni-solar perturbations are involved the situation is more complex. The
split between the phases are not more equal and so the two satellites can have
different optimal structure in order to have Moon in favorable position (Fig. 5.18,
5.19), with arc vanishing also for fulfilling the final distance constraint. A one-year
launch window starting December 1, 2015 has been analyzed, with 8 N thrust; the
best performance (cooperative deployment) occurs for departure on January 21, 2016
and total final mass of 1959.9 kg (SAT1 851.5 kg, SAT2 1108.4 kg); almost equal
performance is found for departure on July 31, 2016. The improvement, which can
be obtained by so choosing the departure date that lunisolar perturbation is fully
exploited, is therefore about 13 kg, with respect to the J2 model solution (total final
mass of 1946.7 kg with nominal 8 N thrust). The final mass difference between the
best departure date and the worst one is about 20kg.

5.3 Collision Avoidance

The satellite orbits are always very close, and the inter-satellite distance mainly
depends on the delay which either satellite has with respect to the other. Since
the orbital velocity is smaller at apogee, the minimum separation is expected to
occur during the last apogee burn (when the orbits become very close). In fact, this
anticipation holds for all the cases that have been treated in this work.

The satellite distance changes during the last burn, depending mainly on initial
velocity, which may be different as the satellite orbits are not yet the same at the
start of the propelled arc; thrusting has also an effect, as the engines are switched on
and off at different times and the thrust accelerations are different. Perturbations
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Figure 5.18: Switching function SAT1. Total final mass with departure date along
2016

Figure 5.19: Switching function SAT2. Total final mass with departure date along
2016

have an additional influence, even through a very complex mechanism. The last rev-
olution is not propelled, and therefore the satellite time-delay at the end of the last
burn is almost equal to the final value; in the J2 model the inter-satellite distance
is slightly greater than the nominal value for the formation, being velocity there
greater than at final apogee, as the satellites are already moving towards the Earth.
The last ballistic revolution undergoes other perturbations when the complete dy-
namic model is used: the radius of the second last apogee (and the corresponding
velocity) differs from the final value and, in some cases, the inter-satellite distance
after the last burn is a few hundred meters lower than the final separation (10 km).
However, the satellite distance may be much smaller during the last burn, causing
collision risks.

An exhaustive numerical analysis concerning the satellite separation during the
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Figure 5.20: Energy of SAT1 and SAT2 with J2 perturbations only

maneuver has been carried out; cooperative deployment was only considered, and
the J2 model was initially assumed. In this case SAT1 performs the first apogee
burn to acquire a lower-energy lower-period orbit than SAT2, in order to recover the
delay accumulated during the first revolution (see Figure 5.20). SAT2 cooperates
using an opposite strategy, but at a minor extent, as the maneuver of the heavier
satellite is less convenient. The satellites acquire the same energy only after the
last burn. During this arc SAT2 has greater energy than SAT1 and is faster (the
radius is the same and larger energy corresponds to higher velocity); therefore SAT2
follows SAT1 at the beginning of the last burn. This pattern is independent of the
final configuration (SAT2 leading or trailing SAT1), as the gap recovered during the
burn exceeds 10 km. Therefore, two different scenarios may occur. SAT2 overtakes
SAT1 during the burn, when SAT2 is going to be the formation leader; minimum
distance is typically about 6 km; the best performance is obtained in this case. On
the other hand, if SAT1 will be eventually ahead in the deployed formation, two
close approaches occur during the last burn. SAT2 initially overtakes SAT1 with a
first passage at similar distance as in the former case, but SAT1 has larger thrust
acceleration and eventually overtakes SAT2 with a very close approach (typically
below 1 km) just before the burn end, when the spacecraft orbits are almost the
same. In this case it is extremely difficult to constrain the inter-satellite minimum
distance to a remarkably larger value.

The presence of perturbations does not change this picture significantly, even
though Moon’s gravity has a major effect on performance. Apogee burns are length-
ened or shortened and the times of passage at apogees are adjusted to have the Moon
in more favorable relative positions. Shorter initial burns and longer final burns re-
duce the mission length (energy is kept lower to reduce the orbital period); the
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opposite strategy is adopted when a longer mission is useful. This kind of strategies
is pursued at a greater extent by SAT1, which has larger acceleration and is less
penalized by uneven split of the velocity gain among the apogee burns. However,
it has been found that ,the energy of SAT2 is always larger before the last burn.
The satellite relative position at the start of the last burn (i.e., SAT2 behind SAT1)
is not changed by the account of perturbations; nevertheless, the previous scenario
and the sequence of close approaches may be modified, depending on the energy
difference between satellites.

The final thrust arcs of the most performing opportunities in terms of final mass
are quite long, and the energy difference between satellites is still large before the last
burn: the same conclusions as in the absence of perturbations hold. SAT2 overtakes
SAT1 during the initial part of the burn, but the spacecraft separation remains quite
large (typically above 5 km). This is the only close encounter, if SAT2 is going to
be the formation leader. In the other case SAT1 must move ahead, causing a second
short-distance (about 1 km) encounter. In these circumstances, the configuration
with SAT2 ahead at the final point should be preferred. Inter-satellite distance and
relative angular position for the mission departing on December 10, 2015 are shown
in Figure 5.21, where apogees and perigees are highlighted by A and P, respectively
(the first apogee burn vanishes in this mission); an enlargement of the last burn is
presented in Figure 5.22.

Figure 5.21: Inter-satellite distance 10 December 2015

The last burn is instead short in other cases, e.g., departing on December 2, 2015,
and the energy difference between the spacecraft is small before the final thrust
arc. These solutions are less interesting as they correspond to low-performance
deployments. Satellite distance and relative angles are shown in Figures 5.23 and
5.25. In Figure 5.24 the switching point are shown. A very close approach (about 1
km) occurs, if SAT2 must be ahead at the final time, as SAT2 overtakes SAT1 when
the satellites are moving on almost equal orbits. On the other hand, when SAT1 is
selected as leader of the deployed formation, it remains ahead of SAT2 during the
last burn and the minimum distance is usually only slightly lower than 10 km; this
solution should be preferred to avoid collision risks.
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Figure 5.22: Inter-satellite distance 10 December 2015, magnification

Figure 5.23: Inter-satellite distance 2 December 2015

The enforcement of a safety separation is useful to mitigate collision risks, but it
is almost impossible to impose a large separation when a very close approach (e.g.,
1 km) occurs during the unconstrained deployment, as in these cases the satellite
minimum distance is attained close to the burn end, when the orbits are practically

Figure 5.24: Inter-satellite distance 2 December 2015, magnification with switching
points
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Figure 5.25: Inter-satellite distance 2 December 2015, magnification

equal. However, on the basis of the previous discussion, the formation leader can be
chosen for any departure date so that the minimum distance of the unconstrained
case is greater than 5 km. In this situation, separation can be easily increased by
introducing the collision avoidance constraint described in Section 4.5.

An upper bound exists for the enforced separation and is close to the design value
for the formation (i.e., 10 km), which in practice is already achieved at the end of
the last burn; the actual limit value depends on the perturbations acting during the
last ballistic revolution. The code typically converges to the optimal constrained
solution in a few iterations, when the unconstrained solution is used as tentative
guess and small values are assumed for the additional unknowns (i.e., ∆λ).

Several tests have been carried out to evaluate how the introduction of a safety
separation requirement affects performance. Tests have shown that the minimum
distance can be increased from about 6 km to about 10 km with a negligible penalty
on propellant consumption (less than 0.1 g). Also, no relevant differences are found
in comparison to the simplified approach, which enforces a prescribed difference
between the apogee radii of the satellites during the last burn. This approach
should therefore be preferred as simpler and with a reduced number of unknowns
to permit an easier and faster convergence. Almost equal results are found by the
simplified approach, which enforces a prescribed difference between the apogee radii
of the satellites during the last burn.

5.4 Optimal Constant-Direction Thrust

The optimal free direction thrust solution has β angle almost constant along each
arc, while the α angle can vary between -10 and 10 degree, as Fig. 5.13 shows. If
no thrust vectoring is present, changing thrust angles requires continuous attitude

90



5.4 – Optimal Constant-Direction Thrust

Table 5.4: Final mass comparison with different control laws for SAT0 deployment.

Dec. 25, 2012 Dec. 2, 2012
Revs. Optimal α, β fixed α, β optimal Optimal α, β fixed α, β optimal
2.5 849.216 849.162 849.180 843.519 843.471 843.480

-0.054 -0.036 -0.048 -0.039
3.5 848.982 848.941 848.970 843.784 843.752 843.770

-0.041 -0.012 -0.032 -0.014
4.5 849.730 849.668 849.711 844.512 844.476 844.502

-0.062 -0.019 -0.036 -0.010
5.5 851.153 851.084 851.137 843.663 843.564 843.614

-0.069 -0.0167 -0.099 -0.049
6.5 851.014 850.920 850.997 844.188 844.092 844.178

-0.094 -0.017 -0.096 -0.010

maneuvers in order to keep the thrust direction along the nominal one. Even if
thrust vectoring is present, the thrust vector angles with respect to the body axes
are constrained in amplitude and in changing ratio. Moreover, performing attitude
maneuvers when the engine is on can increase thrust dispersion with respect to the
nominal thrust profile.

Constant-direction thrust is a simpler control law. The angles value can be pre-
assigned and so the optimization procedure finds only the time length of the burn
arcs. However, this control law is too simple and it can not reach a final orbit with
an assigned inclination.

Another option is to optimize the thrust angles of each burn arc. These angles
are kept fixed along the single arc, but they can change from one arc to another.

The deployment of a single satellite (SAT0) is considered with increasing number
of revolutions. As an example, performance for departure on December 25, 2015
(the most favorable case in December 2015) and December 2, 2015 are compared
in Table 5.4. As expected, the resulting performance index is higher when optimal
thrust angles, shown in Tables 5.5 (December 2) and 5.6 (December 25), are used in
comparison to the simplified case with pre-assigned values; differences are however
always very small. The benefit grows with the number of revolutions, i.e., apogee
passages. It can be noted that the average value of β departs more remarkably from
i0 (5.2 degrees) when the number of apogee passages is increased; in this case, orbit
plane change to encounter the Moon in more favorable configurations becomes more
convenient.
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Table 5.5: Optimal thrust angles for departure on December 2, 2015.

Revs. P A1 A2 A3 A4 A5
α β α β α β α β α β α β

2.5 -0.1 -5.4 180.4 6.0 - - - - - - -
3.5 -0.4 -5.5 180.6 6.4 180.5 6.4 - - - - - -
4.5 -0.4 -5.5 180.6 6.7 180.6 6.7 180.4 6.7 - - - -
5.5 -0.3 -5.5 - - - - 180.7 7.3 180.7 7.3 - -
6.5 -0.6 -5.5 180.8 7.9 - - - - 180.8 8.0 181.1 8.0

Table 5.6: Optimal thrust angles for departure on December 25, 2015.

Revs. P A1 A2 A3 A4 A5
α β α β α β α β α β α β

2.5 0.5 -6.2 180.3 6.5 - - - - - - - -
3.5 0.4 -6.2 180.4 6.9 180.5 6.9 - - - - - -
4.5 0.1 -6.2 180.5 7.2 180.7 7.2 - - - - - -
5.5 0.1 -6.2 180.6 7.5 180.7 7.5 - - - - - -
6.5 0.2 -6.2 - - - - - - 180.8 7.9 180.8 7.9

5.5 Errors in control law

When the optimal constant-direction thrust law is chosen, dispersion is introduced
to simulate an open loop mission. Errors can arise both in direction and thrust
magnitude and are modeled as a random-bias Gaussian, fixed during each arc, plus
white noise. A code that propagates solutions obtained from optimization (nominal
control law) has been developed to simulate a mission without feedback and control.
The output is the distribution of final perigee and apogee errors.

The 4.5-revolution mission with departure on December 2, 2015, which exhibits a
PAAA optimal structure, is considered as an example. A test of a 100-run simulation
with only thrust-direction dispersion was first performed (3σ = 2.5 deg); the final
perigee error ranged between was −4 and +2 km, while final apogee error ranged
from −6 to +5 km. Another 100-run simulation with also thrust magnitude errors
(3σ = 3%T ) gave (quite obviously) much larger differences, namley between −139
and +164 km (perigee), and from −41 to +36 km (apogee). A similar behavior
is found for any departure date; for instance, departure on December 25, 2015
(best solution in December, with PAA0 structure) has ranges between −136 and
+168 km (perigee), and −44 and +39 km (apogee). Thrust dispersion affects the
perigee height more remarkably, because it is achieved with long apogee burns and
is therefore subject to large errors; on the contrary, errors on apogee height are
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smaller, as they are generated by thrust dispersion during a short perigee burn and,
only to a minor extent, during apogee burns (see Fig. 5.26,5.27,5.28,5.29,5.30).

Figure 5.26: ra SAT1 dispersion

Figure 5.27: ra SAT2 dispersion

A procedure was developed to simulate missions with feedback control, as shown
in 5.31. After each apogee burn the state of the spacecraft is used as a new starting
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Figure 5.28: rp SAT1 dispersion

Figure 5.29: rp SAT2 dispersion

point and the optimal deployment with constant-direction thrust is re-evaluated,

while preserving the total number of revolutions. The starting point, in this case,
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Figure 5.30: Final phasing time dispersion

are the observation points O1 and O2 (look at Fig. 5.32). The procedure of re-
optimization was done manually with the purpose of simulating a correction after
the satellite tracking, as in a MPC controller. The new initial state is considered
acquired without error. One should note that sometimes the optimal burn structure
in the presence of dispersions can be different from that of the nominal case: for
example, an additional perigee burn may be required or an apogee arc may vanish
or appear, depending on the actual thrust history during the previous burns. Not
all possible cases have been analyzed here, but the original burn structure was
maintained, even though not optimal; test cases have shown that the final mass
penalty is always very small. The only modification was the addition of an apogee
burn at the last apogee passage before orbit insertion for those trajectories which
did not have it, as this burn is mandatory for the correction of errors accumulated
during previous burns.

Optimizer System

Disturbances

u

Measurements

r x x

−

xm

Figure 5.31: Re-optimization Scheme

The procedure is here described for a 4.5-revolution mission. The trajectory is
optimized without thrusting dispersion and the nominal optimal control law (switch-
ing times and thrust angles αj and βj during each burn) is obtained. The nominal
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Figure 5.32: Observation points in mission timeline

control law is then adopted during the perigee (P) and first apogee (A1) burns and
the spacecraft state after A1 in the presence of thrust dispersion is evaluated. A
new mission starting with this state is optimized without thrusting dispersion and
the updated control law for the following apogee burns (i.e., A2 and A3) is obtained.
Dispersions are again introduced during the second burn and the state at its end
is obtained. A new optimization is finally carried out with this departure state to
obtained an updated law for A3, and thrust dispersion is then introduced during A3
to evaluate final perigee and apogee errors.

It is important to note that when the last arc is shorter, final errors with the up-
dated control law are smaller (apogee and perigee differ from the prescribed values
by less than 1 km). On the contrary, when the updated optimal trajectory requires
a long last burn, the final error remains unacceptable (tens of kilometers) when dis-
persion during this arc is considered, even after re-optimization. The relevant point
is that the final error is the result of all thrust errors occurred during maneuvers.
Errors during the perigee and the first two apogee maneuvers can be compensated
by tracking the satellite state and re-designing the final burn of the trajectory. In
the absence of thrust dispersion during the final burn, the required final state would
be achieved exactly; however, the errors arising during the last maneuver cannot be
compensated. Since these errors are related to the burn length, small final errors
are experienced when the last burn has a low ∆V .

For this reason, final orbit errors (after the control law has been updated) are
smaller when the nominal mission has a PAA0 structure; in fact, during the last
apogee passage (A3), a short burn is introduced only to correct the errors accumu-
lated during P, A1 and A2; errors during this burn only slightly affect the final orbit,
due to the short duration. It is important to remark that PAA0 is the optimal struc-
ture of the best performing missions, and better error compensation adds a further
benefit. As an example, two missions with different structure (PAAA, departure
December 2, and PAA0, departure December 25) and similar final errors (before
control law update) are compared. In particular, two simulations in the presence of
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dispersion are chosen, so as both missions show similar perigee and apogee errors,
namely, about +100 km and −15 km, respectively. The perigee error is larger, due
to the longer apogee burns required for perigee raising.

After the correction procedure is applied, the mission with departure on De-
cember 25 exhibits almost null errors (+39 m and +196 m for perigee and apogee,
respectively): a very short (30 s) A3 burn is required to correct errors arising during
the former maneuvers (note that errors caused during P and A1 are also partially
compensated during the re-optimized A2) and errors are therefore only marginal.
On the other hand, A3 burn is 1 hour 53 minutes long in the nominal case when the
departure date is December 2, and becomes 2 hours 28 minutes when the control law
is updated to correct the errors caused by previous burns (in the first re-optimization
A2 length is reduced, causing an increase of A3 length); the effects of dispersion dur-
ing this long burn are much larger, and final errors are about +10 km on perigee and
−250 m on apogee. These considerations suggest that a PAA0 nominal trajectory
should always be adopted, notwithstanding the optimal structure being different on
the particular departure date which is considered (the penalty is always less than
300 g, with larger values corresponding to the worst missions with P0AA optimal
structure). Final masses of PAA0 solutions and optimal solutions are compared in
Fig. 5.33 for 4.5-revolution missions with departure in December 2015. Full and
empty triangles denote PAA0 solutions when they are optimal and non-optimal, re-
spectively. Once dispersions during P and A1 are introduced, an updated control law
is evaluated and adopted for A2 (no thrust is considered during A3, at this point).
After dispersions during A2 are introduced, the final burn A3 is finally added and
optimized; its short duration is required only to accommodate errors which arose
during A2. Errors less than 1 km for both apogee and perigee have always been
obtained for many test cases considered. In the previous example with departure
on December 2, errors with the updated control law become −84 m (perigee) and
+4 m (apogee) as the final burn is now only about 1 minute 37 seconds long. The
mass penalty is only 15 grams compared to the optimal PAA0 solution, but the final
orbit is now achieved with a much larger accuracy.

Convergence may be difficult when the final A3 burn is introduced to correct
the errors for a PAA0 trajectory; this issue arises when dispersion during the first
burn is such that the final perigee height is larger than the prescribed value and a
perigee lowering is required; when the nominal solution is used as tentative value
thrust and primer vectors have opposite direction and the switching function is
always negative, preventing convergence. This problem can be solved by imposing
an A3 burn with very short duration (8 s has been used here) in the starting nominal
structure. This short burn does not substantially modify the lengths of the other arcs
and the capability of the control procedure to compensate for thrusting dispersion
and achieve the final orbit with great accuracy; however, the forced presence of a
thrusting A3 arc during the previous phases of the control procedure, causes the
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Figure 5.33: Comparison between PAAA and PAA0 solutions

solutions to have always a final perigee raising even when dispersion is introduced,

thus permitting an easier convergence.

Conclusions

The results of single satellite deployment shows that high thrust and multi-revolution

increases final mass. The influence of Earth oblateness, due mainly to J2, changes

the thrust strategy from A-A-..-P to P-A-A-... The effects od Moon and Sun perba-

tions on the optimal solution are more complex. They can increase or decrease the

final satellite mass, depending on the Moon and Sun angular position w.r.t. satellite

when it is at the apogee. In order to find the perturbing body, mainly the Moon,

in the favorable position the optimal thrust strategy changes time thrust length,

depending on the launch date. Solar Radiation Pressure has not shown any remark-

ble influence in the satellite performance index and strategy. The thrust strategy

changes also when the formation flight is considered and the final distance boundary

constraint is introduced. The cooperative deployment has shown to be better then

chaser target one, but the difference is small for this type of mission and satellite.

Collision avoidance is also analyzed. Even if it is possible to constraint the

minimum inter-satellite distance, the best strategy is to choice which satellite arrives

first at the last apogee, depending on the last thrust arc length.

The final section shows the effects of thrust dispersion errors on the final reached

orbit, that is different from the prescribed one. The re-optimization procedure shown

to be effective in recovering the error with a small penalty if the final thrust arc is

kept small.
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Conclusions

The work done in these three years and exposed in the thesis shows a large number of

interesting results. Deployment missions with high interest but scarcely considered

in literature have been analyzed. Starting from the case study of Simbol-X, the

indirect optimization method developed at Politecnico di Torino was improved. The

results of this thesis can be divided in two parts: the results concerning the case

study mission and the improvements of the method.

The indirect optimization method is concerned, subroutines for handling as-

phericity of the Earth perturbations, third bodies perturbations and solar radiation

pressure have been developed. Also constraints for formation flight with different

phasing strategies have been derived, opening to new interesting problems. Con-

vergence is easily achieved thanks to a peculiar continuation technique developed in

this thesis. A first tentative of robust optimization has been developed.

The new tool can be used for studying many Earth-centered missions, but can

be easily adapted also for Jupiter-centered mission, such as mission towards Europe

and other Galilean Moons. The influence of third-body perturbations could be

useful also for interplanetary trajectories, i.e. Jupiter perturbations in Earth-Mars

transfer. The optimization procedure is able to find trajectories where third bodies

are in favorable position, maybe suggesting in some case flyby opportunities.

The cooperative strategy, united with collision avoidance analysis, can be useful

for studying the deployment of others formation flight or swarm mission. Also the

deployment in orbit of big auto-assembling modules for Deep Space Habitat can be

studied.

From the point of view of the mission, the launch window was widely analyzed,

with different times of flight and different thrust levels. A reliable procedure for

finding the optimal solution was developed and tested. The procedure permits to

choose a proper departure date, avoiding the plumbing of the two satellites into

the atmosphere. The effects of perturbations on the transfer have been studied in

details, highlighting how Moon and Sun strongly influence trajectory performance

and optimal control strategy. The final mass exhibits changes up to 40 kg depending

on the departure date. An approximate control law, which is more easy to use

in a real mission because involves fewer attitude maneuvers than the optimal law
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was also considered. For the formation flight it was found that the cooperative
strategy improves the formation final mass, but the difference from the chaser target
strategy is not significant, at least when the thrust is sufficiently large. So for a first
design analysis the chaser target strategy can represent a cheaper analysis from the
computational point of view.

During formation deployment the inter-satellite distance can be small and in-
creasing collision risk. In order to avoid this issue, a minimum distance constraint
has been introduced. The collision avoidance analysis showed that not all possi-
ble configurations (leader-follower) can fulfill this constraint, so the best thing is
to adopt the right configuration strategy. Considering that the thrust strategy de-
pends on luni-solar perturbation, choosing which satellites arrives first at the apogee
is fundamental. The more favorable configuration is not equal for all the departure
dates, but understanding which variables influence the minimal distance, gives an
insight to find the right configuration.

The problem of thrust dispersion errors was also analyzed. A brief sensitivity
analysis was carried out using some not-nominal thrust profile scenarios. The opti-
mization procedure has been applied in a closed loop. The optimal nominal solution
showed to be not enough robust when dealing with recovering errors. When satel-
lites are tracked in a finite number of points during the transfer, the best heuristic
strategy found is to have a short last burn arc. The last burn can produce only few
errors and the final point is reached with a very good accuracy. This can be a good
starting point for future works aiming at robust optimization.
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spiace solo che le mie qualità enologiche non abbiano dato abbastanza soddisfazione
nei pranzi da Ostu.

Ringrazio Francesca Letizia che, anche se per un breve periodo, ha condiviso
l’ufficio con me, dandomi la possibilita’ di interessanti e vivaci discussioni che anda-
vano dall’astrodinamica, all’antropologia ed alla politica. E anche al vestiario...

Ringrazio anche tutti coloro che, nel passato, hanno contribuito a creare e modifi-
care i programmi con i quali ho lavorato. Sicuramente partendo dal professor Bussi,
per poi passare dal prof Colasurdo, Casalino, Pastrone e a Matteo Rosa Sentinella
più altri che non ho mai conscoiuto. In questi anni ho avuto anche l’opportunità
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Giudizio sulla Tesi del dottorando Francesco SIMEONI  – XXV ciclo 

“Cooperative deployment of satellite formations  

into highly elliptic orbit” 

Sommario della tesi 

Il lavoro svolto durante il dottorato ha riguardato lo sviluppo di codici per 
l'ottimizzazione indiretta delle traiettorie di trasferimento di satelliti in orbite 
geocentriche con elevata eccentricità. Questa classe di orbite sta attraendo molto 
interesse, rappresentando un'economica alternativa a orbite in prossimità dei punti 
Lagrangiani. 

La prima fase dello studio è stata dedicata alla definizione di un adeguato 
modello dinamico che tenesse in conto di tutte le perturbazioni rilevanti per il 
trasferimento; in particolare si sono considerate la non-sfericità della Terra (in questo 
studio fino all'ottava armonica, ma il modello può essere esteso ad armoniche 
maggiori), le perturbazioni gravitazionali di sole e luna e la pressione di radiazione 
solare. Un'adeguata formulazione del problema ha permesso l'applicazione della 
teoria del controllo ottimale al sistema di equazioni così ottenuto in modo 
relativamente semplice e "meccanico", senza le difficoltà che alcuni autori ritengono 
insite nell'applicazione di metodi indiretti quando il modello dinamico diventa 
complesso. La successione degli archi di spinta è influenzata dalle perturbazioni (in 
particolare dalla luna) e risente quindi della data di partenza; è stata sviluppata, ed è 
stata testata con successo, una strategia basata sulla graduale introduzione delle 
perturbazioni, per ottenere la convergenza alla soluzione ottimale in tempi molto 
ristretti (circa tre minuti nei casi più complicati) per qualunque data. 

La seconda fase dello studio ha avuto il compito di confrontare le prestazioni di 
diverse strategie per il trasferimento dei satelliti nell'orbita richiesta. Il caso scelto 
come oggetto di studio è stato la missione Simbol-X, con il trasferimento di due 
satelliti in una stessa orbita ellittica con un vincolo sulla distanza relativa al 
passaggio all'apogeo. Si sono confrontati il trasferimento dei satelliti in modo 
separato, con la classica strategia chaser-target (in cui uno dei satelliti "insegue" 
l'altro) e con una strategia cooperativa, valutando il guadagno in termini di massa 
finale che la strategia cooperativa può fornire (in particolare evidenziando l'influenza 
che la spinta ha su di esso). L'analisi ha anche riguardato il rischio di collisione, e si 
è dimostrato che può sempre essere evitato con una scelta opportuna della 
geometria della formazione finale. 

La parte finale dello studio ha visto puntare l'attenzione su strategie di 
trasferimento subottimali con direzione di spinta costante in ciascun arco propulso 
(che presentano grandi vantaggi in termini operativi) e sugli effetti che dispersioni di 
spinta (modulo e direzione) hanno per quanto riguarda errori nell'orbita raggiunta e 
nel  vincolo  di  formazione.    L'analisi  condotta  ha  dimostrato  la  piccola  penalità 
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associata ad una spinta in direzione fissa (pochi grammi di propellente rispetto alla 
soluzione ottimale), giustificandone così l'uso. Dispersioni di spinta anche contenute 
possono portare a grandi ed intollerabili errori (anche fino a centinaia di chilometri), 
in particolare sul vincolo di formazione finale; in quest'ottica si è definita un'efficace 
strategia di controllo closed-loop che consente di ridurre fortemente gli errori fino a 
valori accettabili. 

Prodotti della ricerca e pubblicazioni 

Nel corso dei tre anni di dottorato sono state prodotte diverse memorie ed 
articoli su riviste internazionali, sia riguardanti il filone principale del dottorato, sia 
relative ad attività collaterali, sempre nell'ambito dell'ottimizzazione di traiettorie. Una 
parte della ricerca è stata svolta dal candidato presso il JPL, Jet Propulsion 
Laboratory di Pasadena (USA) nell’ambito del progetto Bando Alta Formazione. In 
tale periodo l’attività è stata condotta sotto la supervisione del prof. Nathan Strange 
nell'ambito di orbite cicliche tra Terra e Marte e ricerca di asteroidi atti a fornire 
materiali per la protezione di astronauti dalle radiazioni cosmiche.  

Giudizio del Collegio 

La tesi presenta l'applicazione di metodi di ottimizzazione indiretti ad un 
complesso problema di trasferimento orbitale di satelliti in formazione; l'uso di questi 
metodi, più veloci ed economici dal punto di vista computazionale dei metodi diretti 
usati tradizionalmente, rappresenta una novità per problemi di questo tipo (con 
modello dinamico complicato e vincoli di formazione e collision avoidance), e si è 
dimostrato estremamente efficace, grazie alle particolari strategie adottate dal 
candidato per garantire la convergenza alla soluzione ottimale; l'aver testato in modo 
esaustivo i codici sviluppati su una missione reale ha evidenziato l'utilità delle 
procedure proposte. 

L'analisi ed il confronto tra le diverse strategie di trasferimento ha mostrato 
interessanti ed originali risultati, quali la stretta relazione tra livello di spinta, 
lunghezza degli archi propulsi e benefici derivanti da una strategia cooperativa 
rispetto all'approccio tradizionale chaser-target. L'analisi degli errori derivanti da 
dispersioni di spinta e la definizione di una strategia closed-loop per garantire il 
soddisfacimento dei vincoli di formazione rappresenta un ulteriore importante 
contributo fornito dal candidato.  

In conclusione, sulla base dell’attività di ricerca svolta, si ritiene il dottorando 
Francesco Simeoni, pienamente meritevole di essere ammesso all’esame finale di 
Dottorato.  

    Il Coordinatore del Dottorato in Ingegneria Aerospaziale 

                      Prof. Fulvia QUAGLIOTTI 

Torino, 14/12/2012 


