
25 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Enabling Design and Simulation of Massive Parallel Nanoarchitectures / Frache, Stefano; Chiabrando, Diego; Graziano,
Mariagrazia; Vacca, Marco; Boarino, L.; Zamboni, Maurizio. - In: JOURNAL OF PARALLEL AND DISTRIBUTED
COMPUTING. - ISSN 0743-7315. - (2014), pp. 2530-2541. [10.1016/j.jpdc.2013.07.010]

Original

Enabling Design and Simulation of Massive Parallel Nanoarchitectures

Publisher:

Published
DOI:10.1016/j.jpdc.2013.07.010

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2511685 since:

ELSEVIER

Enabling Design and Simulation of Massive
Parallel Nanoarchitectures

S. Frachea, D. Chiabrandob,a, M. Grazianoa,c, M. Vaccaa, L. Boarinob,
M. Zambonia

aElectronics and Telecommunications Department, Politecnico di Torino, c.so Duca degli
Abruzzi 24, Torino, Italy

bNanoFacility Piemonte, Electromagnetism Division, INRIM (Istituto Nazionale di Ricerca
Metrologica) Torino, Italy

cCorresponding author: E-mail: mariagrazia.graziano@polito.it

Abstract

A common element in emerging nanotechnologies is the increasing complexity of
the problems to face when attempting the design phase, because issues related
to technology, specific application and architecture must be evaluated simulta-
neously. In several cases faced problems are known, but require a fresh re-think
on the basis of different constraints not enforced by standard design tools.
Among the emerging nanotechnologies, the two-dimensional structures based on
nanowire arrays is promising in particular for massively parallel architectures.
Several studies have been proposed on the exploration of the space of architec-
tural solutions, but only a few derived high-level information from the results
of an extended and reliable characterization of low-level structures.

The tool we present is of aid in the design of circuits based on nanotechnolo-
gies, here discussed in the specific case of nanowire arrays, as best candidate for
massively parallel architectures. It enables the designer to start from a standard
High-level Description Languages (HDL), inherits constraints at physical level
and applies them when organizing the physical implementation of the circuit el-
ements and of their connections. It provides a complete simulation environment
with two levels of refinement. One for DC analysis using a fast engine based
on a simple switch level model. The other for obtaining transient performance
based on automatic extraction of circuit parasitics, on detailed device (nanowire-
FET) information derived by experiments or by existing accurate models, and
on spice-level modeling of the nanoarray. Results about the method used for the
design and simulation of circuits based on nanowire-FET and nanoarray will be
presented.

1. Introduction

The remarkably successful era in computing, where Moore’s Law reigns and
processing power per dollar doubles every year, is approaching its end. Many
attempts to keep up according to Moore’s law have been put forward. Among

Draft August 14, 2013

Figure 1: A) generic organization of a nanoarray fabric structure: the structure requires
interface to the external world, a system of interconnects both based on micro and nano wires,
and the array of nanowires. B) Different cross points (sub-tiles) composing the design if the
focus is on an inner element of the matrix; elements can be microwires (bigger rectangles),
nanowires (smaller rectangles), crossing among those sub-elements without or with contact
(case with the small dot), nanowire FET transistors of N-type or P-type (represented by
different colors here in the right column).

them there is massive parallelism. Actually, parallel computation has been
subject of interest and driving topic up to the development of integrated archi-
tectures. It is now even more a reality with multiprocessors systems, thanks
to the integration capabilities reached by scaled technologies. However, even
though parallelism levels now feasible are more sizable than ever, they allow
to achieve only a tiny portion of what could really be faced in certain break-
through applications (i.e. biological related processing in medicine [8]). Thus,
even though research and technology is expected to greatly improve in this
field during the following years, the predicted limits of CMOS technology [1][2]
will prevent substantial revolutions in the amount of information that can be
processed in parallel.

Hence, the new era of nanoelectronics is on the horizon, with ever smaller
devices and higher densities [9]. Different nano-structures have been recently
explored [10], however some of them will be rejected on account of the feasi-
bility [11][3][4]. For what concerns massive parallelism, nanowire arrays [21]
[35][18], organized in matrices [22], which allow the creation of active nanode-
vices (diodes and FETs) in their crosspoints [23], have been proposed. These
structures are generally organized in two-dimensional tiled arrays. In particular,
nanoscale programmable logic arrays, e.g. nanoPLA [24], or molecular/nanowire
array, e.g. CMOL [25], have been investigated. NanoASICs (NASICs) designs
have been indicated as a valid way to reach denser designs with better fabric
exploitation and efficient cascading of circuits with respect to general-purpose
programmable fabrics (PLAs) [26], [27], [28]. Some authors [29], [30] proposed
these structures for an optimal deployment of massively parallel architectures
in specific applications, like cellular neural networks or image processors. Nev-
ertheless, despite their promising characteristics, such structures have to deal
with not negligible defect rates [12], mainly on account of critical manufacturing
processes at nanoscale level. Defect tolerant techniques proposed for nanoscale
arrays [31], [32], [33], [34], showed the importance of faults analysis and fault
techniques application in nanoarray-based structures.

Nanotechnologies in general represent an emerging field of study in which

2

many questions are open. For example, the maximum density of devices obtain-
able after solving all the problems of reliability is still not known, neither which
nanoarchitecture is best suited for a particular type of application. Epoch-
making changing brings new challenges into play. New devices solicit the devel-
opment of novel fabrication and integration approaches, novel simulation meth-
ods, and novel architectures to take full advantages from their potentialities.
Moreover, design tools able to capture the specificities of these technologies are
required, to explore the space of possible solutions, and to validate the proposed
circuits and architectures. Hence, researchers need to revise the methodologies
and design tools involved.

We propose a methodology to approach the abovementioned issues included
in a tool we are developing: ToPoliNano (after Torino Politecnico Nanotech
design tool). Even though not mature as an industrial level tool might be, the
essential steps enabling the design and characterization of nanoarray based cir-
cuits are already implemented and are here presented. Starting from a VHDL
circuit description, ToPoliNano can aim at different disruptive nanotechnolo-
gies (Nanoarray-based circuits as a possible example, as in Figure 1.A, but not
limited to), to place and route circuits on a low-level floorplan (please, see later
section for details) and then to simulate it, in an integrated fashion, at both
switch level and device level.

The aim of this tool is to analyze complex systems based on emerging elec-
tronic nanotechnologies. The study was specifically focused on the assessment of
dimensions, performance, power consumption and, as a consequence, in develop-
ing optimized architectures. The ability to base its high level analysis of complex
structures onto low-level information is a key aspect of ToPoliNano. This low-
level information is derived from actual device technology, circuit topology and
circuit layout post-placement parasitics extraction, in an efficient way. The ex-
pected overall result is, thus, an accurate characterization of the design, based
on detailed technological parameters and device-level simulation results. The
paper is organized as follows: previous work in the field and our case study struc-
ture are exposed section II; the general organization and features of ToPoliNano
software are described in section III; its low-level floorplanning capabilities and
related results are shown in section IV; logic simulation and results are reported
in section V; timing simulation are faced in section VI.

2. Previous works and case study structure

Circuits based on nanoarrays have been largely investigated in the last years
[11], [12], [24], [25], [28]. Their main attractive features are the high theoretical
density of devices that can be obtained, the high frequency of operation, the
low power consumption [8], and the possibility of being integrated with CMOS
structures. However, the detailed study of circuits and architectures, consider-
ing at the same time device density, device defectiveness, power consumption,
frequency of operation, etc, appears critical, on account of the interdependence
of the obtained results. The assessment of main parameters affecting the feasi-
bility of an architecture and its performance plays a fundamental role, in order

3

Figure 2: A) A sketch of the nanoarray like in figure 1.A recalling in this example the NASIC
structure. B) A higher level architecture based on matrices of tiles. C) Identification of
constraints for the place and route phase arising when considering a complex architecture.

to establish the priority in actions to be undertaken in a given technology and
to identify the key aspects to be further investigated. Authors in [13][36] give an
important overview of a possible architecture based on the regular composition
of variably sized NASIC tiles, and this kind of exploration is essential towards
a real implementation. Actually, the second and natural step in this method is
the possibility to evaluate the effect of the modification of a transistor’s techno-
logical parameter on the performance of a realistic circuit, as proposed in [13].
To be consistent, a third step should be undertaken, based on three main points.
i) The actual layout of the circuits, after all the constraints of placement and
routing have been taken into account together with all the device and intercon-
nects parasitics, has to be considered in the performance evaluation to reduce
over or under estimation. ii) This evaluation should be executed easily and if
possible automated in order to allow the architect to make his own analysis.
Moreover, iii) a different resolution in terms of accuracy should be available,
to enable evaluation speed on one side or accurate device level analysis on the
other side, according to the designer needs. This third step is the one we are
proposing with our method.

Besides the benefits of these technologies listed before, there is research inter-
est about the importance of handling the high defectiveness of these structures,
which has been investigated also in [12] [14] [32], [34]. Different techniques of
fault tolerance have been applied to these fabrics; in the form of the so-called
built-in type, either through the reconfiguration of the fabrics. The defective-
ness of these nanofabrics is a delicate point to be treated, because it is much
higher than in the CMOS case. High defect rates are likely to considerably
reduce the advantage in terms of maximum device density that can be reached,
after the implementation of effective fault tolerance techniques. One evident
problem underlined by the literature is the reduced availability of design and

4

simulation tools expressly focused on the detailed design and simulation of these
structures. One system level approach (the first step) has been developed in [37],
where a framework based on a variety of models allows the architect to map
an application on a wide range of emerging nanofabrics. Based on models of
a specific fabric (e.g. computational, architectural, technological and fault),
this framework fits the need of the designer to compare different nanoarray ap-
proaches. Actually, high level models of a whole tiled nanoarray is the ground
on which the system is based. Whereas, the specific nanoarray organization, its
logic topology, the nanowire and nanodevices technological description are not
directly included, thus allowing a system level perspective and not a detailed
array behavior characterization. A device-level approach (the second step) has
been proposed in [38], where a crossed nanowire field-effect transistor is 3-D
modeled and device level characteristics are extracted to validate at SPICE
level the dynamic circuit style adopted in the NASIC approach. Recently an
accurate analysis including noise resiliency has been discussed in [13] consider-
ing architectural level implications. In our case, it will be shown by means of
the obtained results, the tool enables to simultaneously consider technological
parameters, circuit style, topology, layout, and to efficiently analyze the behav-
ior of complex architectures. This is a pre-requisite for the further step, i.e.
a simulator able to adapt to the evolving fabric styles proposed in literature
and to accurately take into account the extracted circuit parasitics and the post
fabrication device characteristics.

About the defect analysis, we have addressed the point in a previous work,
with a preliminary version of this tool [39]. The possibility to perform this kind
of analysis has been broaden to arbitrarily complex circuits, and is recently in-
tegrated into ToPoliNano. However, it is not dealt with in the present paper.
Similarly, for the sake of brevity, we overlook the investigation and implementa-
tion of the power consumption analysis capability in this paper, but information
about the topic can be found in [8].

To introduce ToPoliNano, we chose a crossed-nanowire based architecture, as
is shown in Figure 1.A and 2.A. Actually, this tool is able to manage different
nanoarray-based architectures. The way in which ToPoliNano is capable of
treating modification of the same technology, and ultimately totally different
nanotechnologies, is detailed in the next section. In particular, we choose the
NASIC architecture as a case study as one of the most interesting nanoarray
structure. According to its proponents [26], the elemental units in NASIC are
called tiles. These are circuits for adders, multiplexers, and flip-flops. Individual
tiles can then be connected with nanowires or microwires to form a larger,
multi-tile structure. As already highlighted, all nanoscale computing systems
have to deal with the high defect rates of nanodevices and faults introduced by
manufacturing of fabrics, and so do NASICs. Their nanoscale underpinning is
based on a grid of NWs (or CNTs). The grid crossings can be programmed
either as FETs, P-N type diodes, or can be disconnected, thus implementing
a two-level logic architecture. NASIC designs do not have logic planes of fixed
size and wiring/routing between them, as in PLA-type designs. Furthermore,

5

VHDL circuit
description

Output
resultsParser Low-level

oorplanner
Place&Route

engine
Simulation

engine

Figure 3: Basic ToPoliNano flow.

NASICs have been proposed in both static-ratioed and dynamic styles [26], with
the latter that enables pipelining and overcomes the many restriction of a static
design. Eventually, micro-wires are used to carry power and control signals from
the CMOS level. Faults are controlled by masking them in the circuit and/or
architecture design itself, implementing a multi-tiered built-in fault tolerance
approach [14]. Dataflow in NASICs is through a multi-phase progression and
the control signals from the CMOS level coordinate these phases. Internally, the
tile can be seen as a matrix of elements that we baptized sub-tiles, give by the
various combinations of micro-wires, nanowires, connections and nanowire-FET
(as in figure 1.B). These will be referred to later in the description of the tool
behavior.

3. ToPoliNano general organization

The description is here organized in a few subsections addressing the most
important features and ideas behind the method.

3.1. How to cope with a multi-technological scenario.

ToPoliNano is a CAD tool for design and simulation that supports a variety
of nanotechnology, from NML [4][20] to nanoarrays based on SiNWs or CNTs.
This choice stems from the importance of evaluating several promising technolo-
gies, among which a winner, if ever one will prevail, is yet to be determined. It
is necessary to evaluate nanotechnologies in different fields of application and
with specific architectures for each one.

Many ways lead to the support of different technologies. The most obvious
one, but also the most expensive in terms of lines of code and development
time, is to write specific code for each technology. A less obvious approach,
but effective in saving both lines of code and time, is to exploit the similarities
existing even between totally different nanotechnologies, to unify large portions
of code, which turn out to be shared. One might think that this way will nec-
essarily lead to inefficiencies, maybe in terms of memory usage, or perhaps in
the form of long simulation times. The benchmarks we performed to assess the
timing of design and simulation phases say quite the opposite, as we show in
the results (see section 4.2). Each nanotechnology fabric has unique character-
istics but, at the same time, shares technological constraints, which allow for
unification of certain fundamental aspects. A basic underlying requirement is
a two-dimensional array that act as the fundamental structure for computing
[35], [22], [24]. This is evident from the crossbar structures, but for instance it
is perfectly applicable also to the case of NML.

6

3.2. The “building brick” principle.

In literature there are numerous variations on the theme of architectures
based on crossed nanowires [28],[25]. To be able to treat them all within the
tool, the tool itself has been designed to exploit some common elements in these
structures. First and foremost, the regularity of the 2D array. One can imagine
the plane of the circuit covered with set of tiles of different sizes, like in figure
2.B. Each tile, as in figure 2.A contains a maximum of three components, in
definite positions.

With reference to Figure 1.B, the variety of basic sub-tiles that can be cre-
ated with a reduced set of elementary components can be seen. To design a
NASIC circuit, in fact, only 5 such elemental components are necessary, rota-
tions excluded: p-type and n-type transistor, contact, nanowire, microwire. By
composing these items one can get all that is needed to describe an arbitrarily
complex circuit.

3.3. The recursive hierarchical composition principle.

Another key aspect in the generalization of the approach is the application of
a principle of recursive hierarchical composition. In other words, each element
may be part of the architecture at any level of the hierarchy. On condition that
you can describe it in terms of elemental components, whatever your library of
elemental components is, you can aggregate them and reuse the aggregates in
turn as components. This has enabled us to develop a distinct piece of software
(a component generator) that can be used to describe sub-circuits to be used in
the design of complex and optimized circuits 2.B.

3.4. The fundamental steps.

ToPoliNano integrates all the tools required to design and simulate circuits
based on the so-called disruptive nanotechnologies in just one cross-platform
tool. It actually runs on the three major operating system platforms: Linux,
Mac OS, Windows. It has been developed in C++, and currently counts nearly
100k lines of code, external libraries excluded. The main application organiza-
tion and flow is briefly discussed: see Figure 3 for a very simplified one.

On application’s first launch, the user is presented a wizard, to simplify the
configuration of the tool. It will ask the user to choose the target technology
among the supported ones (currently NML and Nanofabrics) and the techno-
logical node of interest, beside performing early configuration of the related
simulation parameters. At this stage, or at a later one, the user can describe
the circuit by means of VHDL files or LSI files.

Parser. The tool features a HDL parser, presently implementing essential
parts of the VHDL93 specification. A design can be described at different
abstraction levels, i.e. in terms of elemental components (basic patterns of sub-
tiles, etc.), as well as in terms of complex tiles (i.e. plain NASIC tiles) based
on the available elemental components in a dedicated Component Library or
with previously defined tiles. This works in a hierarchical fashion, through
the Component Library which is user-expandable. The user inputs a VHDL

7

Figure 4: A snapshot of the tool GUI during the layout phase execution and display.

description of the circuit; the VHDL description recalls the components through
the component statement of the VHDL language. The parser will analyze the
code and create an internal representation of the circuit, used to compose it
with items from the library itself or the output from a synthesizer, which will
then feed the library. As an alternative to VHDL, the circuit can be entered in
the form of LSI files.

Place and Route engine. An intermediate form representation is used to
place the circuit, once a new low-level floorplan is defined or a previously defined
one is chosen. Figure 2.C shows the constraints (nanowire and microwire pitch
and size, non routable areas, microwire dedicated areas, position of inputs and
outputs, etc.) that have to be taken into account at the lowest floorplanning
level (see in next session a discussion on this point). This is one of the design
steps which differs largely with respect to conventional CMOS technology. In
fact, the standard cell approach has totally different constraints to enforce. In
the context of nanotechnologies, we have to handle very different constraints
across nanotechnologies, even if they can all be thought-of in terms of elemental
components. The automatic constrained routing phase can then take place. In
Figure 4 the tool interface when the layout is executed is shown.

Simulation engine. Since the tool supports a variety of nanotechnologies,
so does the simulation engine, which must allow cross-technology operation.
Parts of the tasks related to simulation (i.e. input/output vectors handling)
can be shared by all technologies, but there are specific aspect of the low level
simulations that must be customized, because the physical implementations
differ. To maximize the portion of code that can be shared across technologies,
an event driven approach was adopted. This will be further discussed in section
5. In order to refine the analysis, not only a switch level simulation engine is
implemented (section 5), but an automatic extraction system is available which
describes the circuits in terms of spice-level elements and includes table models
for accurate simulation (see section 6).

8

Figure 5: Layout of a eight bit adder (bottom row). A zoom is given for the input tile, one of
the 1bit FA tile, a buffer tile to connect different FA, and an output tile.

4. Low level floorplan: discussion and results

4.1. Dynamic floorplanning and placement

Each nanotechnology copes with the constraints related to the physical char-
acteristics of the devices it exploits. If Silicon nanowires and Carbon nanotubes
show similarities in the physical structure, though they feature distinct techno-
logical parameters, things are different for technologies such as NML, based on
nanomagnets. The constraints to which the devices are subject are essentially
different [4][5][6][7].

In the case of nanowires/nanotubes the constraints are those common for a
crossbar structure.

In Figure 2 the main constraints of a nanoarray design are shown. A slicing
design is required for the tool to be able to operate. Each part of the design
can feature different tile size. For the tiles to operate correctly, and for proper
routing of information, interconnection boxes are automatically placed by the
tool. They do serve different purposes: they allow inputs to come from different
directions, they permit routing of signals from one tile to another, not necessarily
adjacent of course, and they output data from previous tile in the last phase
of the dynamic control sequence. In particular, with reference to Figure 2.C,
besides the wire pitch is among the constraints to take into account (affecting
the size of the area in aquamarine), there is the area allocated to the microwires
(in light gray), the routability of interconnections among tiles (black lines with

9

Figure 6: 28 input logic function layout.

ending dots), the position of inputs and outputs (both primary and secondary),
the alignment of blocks of different size, etc.

The constraints that the different technologies put to the positioning the
devices on the plane of the circuit require an appropriate partitioning of the
space available. We call low-level floorplan the peculiar partitioning of the space
at device level that depends on the specific technological constraints. With the
term floorplan we do not refer to partitioning at the level of functional units, to
which it usually refers to.

To capture the constraints of different technologies, while maintaining a com-
mon data structure, we introduced an abstraction at circuit level, in particular
regarding its subdivision. A graph represents the plane of the circuit, its par-
titioning and all its parts. The constraints are represented by specific classes,
which became part of the class hierarchy as one or more concrete classes: they
implement the abstract base class to represent constraints in the specific tech-
nology. In this way, to introduce a new technology does not require extensive
rewriting of the code, but only the introduction of specific classes for the new
constraints and/or the extension of existing classes, allowing a greater reuse of
the code.

Dynamic low-level floorplanning is performed through operations on the
common graph structure. This allows for resizing, shifting of circuit parts,
and also for easy placement of the circuit elements. Because all the classes that
represent circuit parts must conform to a common interface, and are referred
to the root of the part with a single pointer, it is lighting-fast to move entire
portions of a circuit from one point of the low-level floorplan to another.

10

4.2. Results

In Figure 5 the layout of an 8-bit adder, based on eight 1bit Full Adders,
after VHDL parsing, placement and routing on a low-level floorplan is shown.
In particular, details are shown of the complementary structures: the input and
output tiles, as well as a buffer tile between one stage and the next. This is
not a conventional NASIC designs, but represents an evolution of the original
design. The evolution here proposed derives by the analysis of the technological
constraints when conceiving the method to implement the whole feasible layout.
This evolution that comprises a modification of the structure to manage the
control signals of the vertical nanowires, now included in the buffer tile. Clearly
this is not the only possible solution, however it allows to demonstrate the
correctness of the top-down design approach. It is possible for the tool to
automatically generate this kind of tile that is responsible for the routing of the
input signals, as shown in the same figure.

To demonstrate the capability of the tool we show in Figure 5 the layout
of a 28-input function obtained after automatic synthesis and placement on a
low-level floorplan. The function is as in equation (1): the function significance
is not important here, while it is worth noticing the complexity in terms of
number of inputs and number of logic combinations.

f = a1a4a6a7a8b2b4b5b6b9c2c3c4c7c9d1 + a3a5a7b1b3b5b8c1c3c6c7d1

+ a1a5a6a8b3b4b6c1c2c4c8c9 + a2a4a9b2b7b9c5c7

+ a2a3a6a9b1b4b7b8c2c5c6c9 (1)

Also depicted in figure, the routing of the input signals from the left, which
perfectly shows the cost of routing the signals and the need to carefully plan
the orientation of the tiles in a design.

The performance of the tool have been tested on a pretty basic machine, to
underline the efficiency of the implementation. Preliminary benchmarks con-
ducted on a Linux box (Ubuntu 10.10, Core2DUO t8300 processor) have been
performed on designs of different sizes. The instantiation of one FA tile took
0,231 seconds. A 103 times increase in components and low-level floorplan size
required an increase in time of 102. The maximum memory occupation for
2.6·106 subtile actually instantiated, just required 819 Mb main memory and
837 Mb Virtual Memory.

5. Logic simulation: discussion and results

5.1. Logic simulation engine

The simulation engine belongs to the class of the event-driven simulators. It
monitors the information flow inside the structure under simulation and induces
specific events, when necessary, to correctly handle the propagation of informa-
tion. In order to better understand this process, it is helpful to turn back to the
sub-tiles and their regular structure, as shown in Figure 1.B. Each sub-tile can
be seen as a four-port device, with each port identified by a cardinal point. A

11

Figure 7: Flow diagram of the switch level simulation engine. A) High level view of the
sequence of event management. B) Detailed view of the events management at sub-tile level.

change in the information at a certain port may need to be propagated inside
the sub-tile, if an appropriate component supporting the propagation (e.g. a
nanowire). Nothing about the electrical properties of the component is needed
to be known to perform a logical analysis. Actually, the possibility to support
further propagation of the information is a function of the port at which the
change in information occurs, and the original direction of propagation of this
piece of information. This is true also for the evaluation of a change of the
information on another port of the sub-tile by means of the supporting element.
This, in turn, will trigger an update event over the sub-tile, if any, connected to
the first one by means of the output port. A generic scheme on the event man-
agement is in figure 7.A. By following the very same process, the information is
propagated inside the structure, only if necessary. An active device inside the
sub-tile could be present, and the propagation of information could lead to a
change in its status. In this case, another kind of event would be enqueued in
the event queue, waiting to be processed to take into account a possible change
of information in a direction of propagation that is orthogonal with respect to
the one that originated the event. A more detailed flow for this algorithm is in
figure 7.B. This approach is very pliable, indeed, because it allows for different
kind of control of dynamic circuits (number of phases). This is possible thanks
to the phase sequence coded in the input control sequence and not embedded
into the simulator. The same approach can thereby be used in many different
scenarios. In addition, it is also quite efficient, as pointed out by the following

12

results.

Figure 8: 8bit Adder logic simulation results.

5.2. Results

We performed logic simulations on both the 8bit Adder of Figure 5, and the
28-input function of Figure 6.

Figure 9 shows the correct output result for input a2 transitioning from logic
value 0 to logic value 1. The time required to complete the logic simulation of
this 28-input function, with input a2 transitioning from logic level 0 to logic
level 1 was 47ms. Figure 8 shows the correct output result for the full adder
in the case of th input values reported in top of the figure itself. The time
required to complete the logic simulation of the FA under the aforementioned
input conditions was 140ms for each input vector.

13

Figure 9: 28-input function logical simulation result. The function is evaluated for input a2
transitioning from logic value 0 to logic value 1.

6. Electrical simulation: discussion and results

6.1. Electrical modeling and spice-compatible netlist extraction

In order to be able to perform both accurate DC and transient simulations,
care must be taken in accounting for transistor and interconnects behavior and
in evaluating all the parasitics that, inevitably, affect the layout of a circuit
once it has been placed and interconnected. The extraction of these parasitic
parameters takes place automatically in ToPoliNano, from the actual circuit
post-placement, i.e. after the final layout is set.

The R and C parameters have been calculated from geometrical data, along-
side with materials characterizations. Capacitances, in particular, account for
coupling among interconnections, and strongly depend upon circuit layout.

To illustrate the principle by which parameter extraction is being conducted,
we refer to Figure 10.A, where a pair of crossed wires is shown. In a real-
life circuit, wires may be either nanowires, or microwires or both kind, and
in some of the crossing point a transistor might be present. In Figure 10.B a
representation in terms of equivalent model of the same couple of crossing wires
is depicted. Our approach has been to associate RC ladders to interconnects,
and to include specific models for the transistors.
Wires in Figure 10.C have a distributed capacitance and a resistance, and also
a coupling capacitance, as shown in Figure 10.D. It is possible to calculate these
quantities by geometric considerations, starting from the structure of the circuit
and the definition of the materials of the parts. We previously showed (see
Figure 1.B) how a NASIC circuit can be thought-of as composed by sub-tiles.
This approach still holds in the present context. Each of the sub-tile comprises
a maximum of three elements, for each of which the tool is able to determine
the necessary technological parameters, as a function of the technology node
set by the user, and automatically calculate the required values. In Figure
10.E as scheme of the extraction flow executed by ToPoliNano is shown. Once
these parameters have been calculated, the tool can generate a spice-compatible
netlist. In fact, there are small differences in syntax among simulators, e.g. UC
Berkeley and Mentor Graphics Eldo Spice, so the netlist can be generated in
both formats.

14

Figure 10: Example of parasitics in a pair of crossed wires.

In case the sub-tile encountered while scanning the tile is an active device
(like in Figure 11) then we refer to a model in library and to geometrical con-
sideration. To account for transistor behavior, in general, different approaches
can be followed. Transistor action can be captured by means of numerical simu-
lations. There are different approaches in numerical simulations too, but many
commercial software simulators (e.g. Synopsis Sentaurus Device, Silvaco Atlas,
etc.) are physics based and provide a fairly good degree of accuracy. The draw-
back with TCAD simulations is the time required to complete the analysis of a
single device. TCAD simulations do not scale at circuit level, being confined by
time constrains to the simulation of just few devices.

This well known problem has led to the development of compact models, to
achieve accuracy and fast simulations. One of the main problems with compact
models is the time required to develop one such model, a great effort for just
solution space exploration. A third way, then, must be pursued if the objective
of the research is to explore innovative devices exploitation at circuit level,
like for example the approach in [19]. It is well known that is possible to

15

Figure 11: Structure of a Gate-All-Around Silicon nanowire-FET.

build Verilog A models, in the form of table models, with data coming from
accurate numerical simulations. Out of a relatively small set of data, that
can be further interpolated by the simulation software, it is possible to gain a
thorough description of an active device. This kind of model can be fast to
evaluate, according to designer choices that will be further discussed. What is
lost is predictive capability, which is very limited in table models, while still
strong in compact models.

The conceptual framework for such kind of models can be thought-of being
made out of three parts: a table, whose entries capture electrical characteristics,
a search function, that given bias values, searches in the aforementioned table
for the nearest entries, and interpolation routines, to provide values not entered
in the tables. About this third part, different interpolation and approxima-
tion methods exist: polynomial interpolation (linear, quadratic, exponential),
B-spline approximation, combined interpolations, etc. A comparison among
different interpolation methods is beyond the scope of this paper, but let us re-
sume the reasons behind the choice of polynomial (linear) interpolation for the
simulations in this work. Linear interpolation is computationally simple, and
it preserves monotonicity of data, a stringent requirement. Accuracy is con-
trolled by table density, so you can get the required accuracy level by entering
more data into the table. Of course, this comes at the price of computational
simplicity, but tradeoffs can be found. Among the main drawbacks there are
discontinuous first derivatives and the relatively large tables that are needed for
good accuracy.

The table model approach has several advantages also when it comes to
contrast and compare the behavior of different devices into the same circuit
topology. This is possible by simply modifying the data in the table. In this work
we tested two models. A conventional model, hereinafter model-1, is a Si-NW
transistor, modeled with Fettoy [17] assuming ballistic behavior (optimistic),
for the featured size and technological parameters in table 1.We also tested,
hereinafter model-2, the junctionless crossed nanowire field effect transistors

16

Channel width: 10nm
Gate width: 10nm
Gate Oxide thickness: 2nm
Bottom oxide: 10nm
Channel doping: 4 × 1019 dopants/cm3

Gate doping: 8 × 1019 dopants/cm3

Substrate bias: −3V

Table 1: Characteristics of the device modeled for which table modes have been created.

proposed by [15], starting from data published in the referenced paper, coming
from numerical 3D simulations. We built the table model accordingly, in order
to simulate a device with the characteristics in table 1.

The resulting characteristic curves for the two models are in figure 12, where
clearly model-1 shows higher currents with respect to model-2, being more
ideal and based on theoretical derivations.

6.2. Results

We demonstrate here the capability the tool has to extract, to capture the
correct model and to prepare a final netlist for an external simulator on three
structures of increasing complexity. Two are in figure 13: a ring-oscillator and
a Full-Adder with a standard scheme, and the third is the NASIC adder (8 bits)
based on 8 FA previously described in the layout and switch level simulation
sections.

We used for the ring-oscillator the two transistor models, model-1 and
model-2. In both cases we show the results obtained both without and with
extracted parasitic capacitance at the transistor Drain and Source connections.
Figure 14 shows on the top row results from model-1 and on the bottom row
results from model-2. Left results are obtained without capacitance, right re-
sults derived by including the following capacitances: Cgate−reference = 7.5aF ,
Cgate−source = 4aF , Cgate−drain = 3aF , Cdrain−source = 3aF , Csource−reference =
10aF .
The presence of parasitic capacitances impact the semi-period of the oscillation

of a similar factor (more than 3 times bigger) in both cases. model-2 reduces
the oscillation frequency of a factor bigger than 4, which is coherent with the
on current.

For the Full-Adder results are in figure 15 reported for model-1 with ca-
pacitance only for the sake of brevity. Finally, figure 16 shows the behavior of
the spice simulation of the whole adder based on NanoASIC previously designed
in the case of model-1 with capacitance and including parasitic resistance and
capacitance for all the interconnects.

7. Conclusion

We illustrated the methodology we propose and the tool we developed for
the design and simulation of circuits suitable for parallel architectures based on

17

emerging technologies. In particular we focused here on a NASIC structure as
a working platform.

ToPoliNano allowed to design, place, route and simulate the behavior of: i) a
basic arithmetic circuit (an 8bit Adder), ii) a random 28-input function in NA-
SIC nanotechnology, iii) a ring-oscillator, iv) a standard Full-Adder. All circuits
were subject also to post-layout automatic parasitic parameter extraction, and
netlist based on RC networks and table models to include transistor behavior
were fed to spice-compatible simulation software, to get transient analysis. All
the simulations were benchmarked, and the benchmarking results show good
performances, both in terms of execution speed and memory footprint.

These preliminary results show that the tool is well suited to design and test
complex circuits and architectures, which are part of our future work plans.

8. Acknowledgement

The authors would like to thank the Nanofacility Piemonte and Compagnia
di San Paolo for the support.

References

[1] International technology roadmap of semiconductors, 2008 update,
http://public.itrs.net (2008).

[2] A. Pulimeno, M. Graziano, G. Piccinini, Udsm trends comparison: From
technology roadmap to ultrasparc niagara2, Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on 20 (7) (2012) 1341–1346.

[3] A. Pulimeno, M. Graziano, A. Sanginario, V. Cauda, D. Demarchi, G. Pic-
cinini, Bis-ferrocene molecular qca wire: Ab initio simulations of fabrication
driven fault tolerance, Nanotechnology, IEEE Transactions on 12 (4) (2013)
498–507.

[4] M. Graziano, M. Vacca, A. Chiolerio, M. Zamboni, A ncl-hdl snake-clock
based magnetic qca architecture, IEEE Transaction on Nanotechnology (10)
DOI:10.1109/TNANO.2011.2118229.

[5] M. Graziano, A. Chiolerio, M. Zamboni, A technology aware magnetic qca
ncl-hdl architecture, in: International Conference on Nanotechnology, IEEE,
Genova, Italy, 2009, pp. 763–766.

[6] M. Graziano, M. Vacca, D. Blua, M. Zamboni, Asynchrony in quantum-dot
cellular automata nanocomputation: Elixir or poison?, IEEE Design & Test
of Computers.

[7] M. Awais, M. Vacca, M. Graziano, M. Roch, G. Masera, Quantum dot cellu-
lar automata check node implementation for ldpc decoders, Nanotechnology,
IEEE Transactions on 12 (3) (2013) 368–377.

18

[8] S. Frache, L.G. Amaru, M. Graziano, and M. Zamboni, Nanofabric power
analysis: Biosequence alignment case study, in “Nanoscale Architectures
(NANOARCH), IEEE/ACM International Symposium on”, pp. 9198, 2011.

[9] International Technology Roadmap of Semiconductors, Update, Emerging
Research Device, http://public.itrs.net, 2010.

[10] European Commission IST programme Future and Emerging Technologies
Technology Roadmap for Nanoelectronics.

[11] J. A. Hutchby et al., Emerging Nanoscale Memory and Logic Devices: A
Critical Assessment, in “IEEE Computer”, vol. 41, Issue 5, 2008.

[12] P. Narayanan, M. Leuchtenburg, J. Kina, P. Joshi, P. Panchapakeshan,
C. On Chui, C. A. Moritz, Variability in Nanoscale Fabrics: Bottom-up In-
tegrated Analysis and Mitigation, ACM HJournal on Emerging technologies
in Computing Systems. Vol. 9, issue 1, 2013.

[13] P. Narayanan, J. Kina, P. Panchapakeshan, C. O. Chui, C. A. Moritz,
Integrated Device-Fabric Explorations and Noise Mitigation in Nanoscale
Fabrics, IEEE Transactions on Nanotechnology, vol. 11, no. 4, pp. 687 -700,
Jul. 2012

[14] M.M. Khan, P. Narayanan, P. Joshi, M. Leuchtenburg, P. Panchpakeshan
and C.A. Moritz, FastTrack: Towards Nanoscale Fault Masking with High
Performance, IEEE Transactions on Nanotechnology, vol. 11, no. 4, pp. 720-
730, Jul. 2012.

[15] P. Narayanan, P. Panchapakeshan, J. Kina, C. O. Chui and C. A. Moritz,
Integrated Nanosystems with Junctionless Crossed Nanowire Transistors,
IEEE International Conference on Nanotechnology (IEEE NANO 2011),
pp.845-848, 15-18 Aug. 2011.

[16] P. Narayanan, K. W. Park, C. O. Chui and C. A. Moritz, Validating Cas-
cading of Crossbar Circuits with an Integrated Device-Circuit Exploration ,
IEEE/ACM Symposium on Nanoscale Architectures(NANOARCH’09), Jul.
2009.

[17] A. Rahman, J. Wang, J. Guo, Md..S. Hasan, Y. Liu, A. Mat-
sudaira, S.S. Ahmed, S. Datta; M. Lundstrom (2009), ”FETToy,”
http://nanohub.org/resources/fettoy.

[18] I. Ercan, N.G. Anderson, Tight-Binding Implementation of the Micro-
canonical Approach to Transport in Nanoscale Conductors: Generalization
and Analysis, Journal of Applied Physics 107, 124318 (2010).

[19] E. Albert, A. Abdellah, G. Scarpa, P. Lugli Electronic transport modeling
with HSPICE in random CNT networks Nanotechnology (IEEE-NANO),
2012 12th IEEE Conference on (2012)

19

[20] J Das, S.M. Alam and S. Bhanja, Nanomagnetic Logic For Low Energy
High Density Circuits VLSI Systems I: Regular Papers, IEEE Transactions
on, in press.

[21] W. Lu et al., Semiconductor nanowires, in “J. Phys. D: Applied Physics”,
n. 39, pp. 387–406, Oct. 2006.

[22] Y. Luo et al., Two-Dimensional Molecular Electronics Circuits, in
“ChemPhysChem”, vol. 3, no. 6, pp. 519-525.

[23] Y. Huang et al., Logic Gates and Computation from Assembled Nanowire
Building Blocks, in “Science”, vol. 294, pp. 1313–1317, 9 Nov. 2001.

[24] A. DeHon, Nanowire-Based Programmable Architectures, in “ACM Journal
on Emerging Technologies in Computing Systems (JETC)”, vol. 1, Issue 2,
pp. 109–162, July 2005.

[25] K. K. Likharev, A. Mayr, I. Muckra, Ö. Türel, CrossNets: High-
performance neuromorphic architectures for CMOL circuits, in “Ann. New
York Acad. Sci.”, vol. 1006, pp. 146–156, 2003.

[26] C. A. Moritz et al., Latching on the wire and pipelining in nanoscale designs,
in “3rd Non-Silicon Comput. Workshop (NSC-3)”, Munich, Germany, 2004.

[27] P. Narayanan et al., Manufacturing Pathway and Associated Challenges for
Nanoscale Computational Systems, in “9th IEEE Nanotechnology conference
(NANO 2009)”, July 2009.

[28] P. Narayanan, J. Kina, P. Panchapakeshan, P. Vijayakumar, S. Kyeong-
Sik, M. Rahman, M. Leuchtenburg, I. Koren, C. Chi On, C.A. Moritz,
Nanoscale Application Specific Integrated Circuits, in “Nanoscale Archi-
tectures (NANOARCH)”, 2011 IEEE/ACM International Symposium on,
pp. 99–106, 8-9 June 2011.

[29] P. Narayanan et al., Image Processing Architecture for Semiconductor
Nanowire Fabrics, in IEEE Nanotechnology conference (NANO 2008)”.

[30] P. Narayanan et al., Comparison of Analog and Digital Nano-Systems: Is-
sues for the Nano-Architect, in “IEEE International Nanoelectronics Con-
ference (INEC)”, 2008.

[31] J. Dai et al., Defect tolerance for molecular electronics-based nanofabrics
using built-in self-test procedure, in “IEEE International Symposium on
Nanoscale Architecture”, 2007.

[32] C. A. Moritz et al., Fault-Tolerant Nanoscale Processors on Semiconductor
Nanowire Grids, in “IEEE Transactions on Circuits and Systems, Regular
papers”, vol. 54, n. 11, pp. 2422–2437, novembre 2007.

20

[33] T. Wang et al., Heterogeneous 2-level Logic and its Density and Fault Tol-
erance Implications in Nanoscale Fabrics, in “IEEE Transaction on Nan-
otechnology”, vol. 8, n. 1, pp. 22–30, Jan. 2009

[34] S. Ahn et al., A Floorprint-based Defect Tolerance for Nano-scale
Application-Specific IC, in “IEEE Transaction on Instrumentation and Mea-
surement”, vol. 58 , Issue 5, May 2009.

[35] K. L. Wang et al., More than Moore’s Law: Nanofabrics and Architectures,
in “Bipolar/BiCMOS Circuits and Technology Meeting, BCTM ’07. IEEE”,
pp. 139–143, Sept. 30 2007 - Oct. 2 2007.

[36] C. Teodorov, P. Narayanan, L. Lagadec, and C. Dezan, Regular 2D NASIC-
based architecture and design space exploration, in “Nanoscale Architectures
(NANOARCH)”, 2011 IEEE/ACM International Symposium on, pp. 70–77,
8-9 June 2011.

[37] C. Dezan et al., Towards a framework for designing applications onto hybrid
nano/CMOS fabrics, Microelectronics J., Elsevier, n. 40, 2009.

[38] P. Narayanan et al., CMOS Control Enabled Single-Type FET NASIC, in
“IEEE Computer Society Annual Symposium on VLSI”, 2008.

[39] S. Frache, M. Graziano, and M. Zamboni, A flexible simulation methodology
and tool for nanoarray-based architectures, Computer Design (ICCD), 2010
IEEE International Conference on, Amsterdam, pp. 60–67, 2010.

21

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

0 0.2 0.4 0.6 0.8 1.0

Id
s
 [
u
A

]

Vds [V]

Model 1

 0

 2

 4

 6

 8

 10

 12

 0 0.2 0.4 0.6 0.8 1 1.2

Id
s
 [

u
A

]

Vds [V]

Model 2

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

0 0.2 0.4 0.6 0.8 1.0 1.2

Id
s
 [

u
A

]

Vgs [V]

Model 1

 0

 2

 4

 6

 8

 10

 12

 0.2 0.4 0.6 0.8 1 1.2

Id
s
 [
u

A
]

Vgs [V]

Model 2

Figure 12: Gate-All-Around SiNWFET currents (Ids vs. Vds top and Ids vs. Vgs bottom),
for two different transistor models. Left figures are for model-1 [17], while right figures are
for model-2 [15].

22

Figure 13: A) Scheme of the ring oscillator, B) Scheme of the Full Adder.

Figure 14: Simulation of the ring-oscillator, N2 in evidence. A) Model 1 without parasitics
capacitance, B) Model 1 with parasitic capacitance, C) Model 2 without parasitic capacitance,
D) Model 2 with parasitic capacitance.

23

input A

input B

input Cin

A) B)

Figure 15: Simulation of the Full Adder obtained with Model 1 with capacitance.

Figure 16: Waveforms of the 8bit Adder simulations for the same inputs of Figure 8.

24

