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We investigate the temperature induced ferromagnetic to paramagnetic phase transition in Co

substituted La(FexCoySi1�x�y)13 with x¼ 0.9 and low Co content of y¼ 0.015 ðTc ’ 200 KÞ by

means of magneto-optical imaging with indicator film and by calorimetry at very low temperature

rates. We were able to visualize the motion of the ferromagnetic (FM)/paramagnetic (PM) front

which is forming reproducible patterns independently of the temperature rate. The average velocity

of the FM/PM front was calculated to be 10�4 m/s during the continuous propagation and

4� 10�3 m=s during an avalanche. The heat flux was measured at low temperature rates by a

differential scanning calorimeter and shows a reproducible sequence of individual and separated

avalanches which occurs independently of the rate. We interpret the observed effects as the result

of the athermal character of the phase transition. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4866880]

I. INTRODUCTION

Magneto-caloric materials with a magneto-structural

phase transition of first order are promising candidates for

magnetic refrigeration around room temperature because of

the large entropy change at the transition temperature. The

first order transition is characterized by hysteresis: both in

temperature and magnetic field.1 This is a strong drawback for

application in a refrigeration device, which may be cycled at a

frequency of a few Hz. The capacity of a material to perform

the transition at these frequencies has been overestimated,2

due to the lack of investigations of the transition kinetics.

An example is the alloy La(FexSi1�x)13 which exhibits a

ferro- (FM) to paramagnetic (PM) transition.3 Co substitution

rises the transition temperature and lowers the hysteresis.4

Previous studies of the kinetics of La-Fe-Si compounds have

generated different interpretations. Zhang et al. interpreted

the observed exponential time dependence of the magnetiza-

tion as a thermally activated process.5 Moore et al. described

the rate dependence of the magnetic field induced phase

transition as an extrinsic effect.6 Fujita et al. interpreted the

kinetics in the framework of the Johnson-Mehl-Avrami

(JMA) model.7 We observed that most of the kinetics could

be attributed to thermal contact effects,8 however, our conclu-

sions were merely based on macroscopic observations. As the

JMA model is based on the competition between the domain

nucleation and the domain propagation at different rates, an

investigation of the spatial evolution of the magnetization

patterns is needed. Imaging techniques have been applied

successfully to phase transitions9–11 and magneto-caloric

materials in particular,12 however a time and space character-

ization is still missing. Here, we present the results of

dynamic magneto-optical observations13 and calorimetric

measurement on individual transformation avalanches.14

II. EXPERIMENTAL RESULTS AND DISCUSSION

The temperature induced FM to PM phase transition in

polycrystalline Co substituted La(FexCoySi1�x�y)13 with

x¼ 0.9 and low Co content of y¼ 0.015 ðTc ’ 200 KÞ was

investigated. The sample was prepared by powder metal-

lurgy at Vacuumschmelze GmbH and CoKG.4

The magneto-optical imaging (MOI) technique is based

on a Kerr microscope, on an optical cryostat and on a

magneto-optical indicator film,15 which consists in a single

crystal film of Bismuth-Luthetium substituted iron garnet

(BIG), deposited by liquid phase epitaxy on an optical sub-

strate (Gadolinium-Gallium garnet) and equipped with a thin

mirror (Ag). The BIG film displays giant Faraday rotation at

optical wavelengths and has its spontaneous magnetization

in the film plane. When the indicator film is placed in tight

contact with a magnetic sample, its magnetization almost

freely rotates in presence of stray fields generated by the

external source. The light contrast that is measured by the

Kerr microscope corresponds to the rotation of the magnetiza-

tion in the BIG film, which is proportional to the out-of-plane

component of the magnetic induction field at the indicator

plane. In this way, direct imaging of domains and domain

boundaries in ferromagnetic samples can be achieved.13

A fragment of LaFe11.7Co0.195Si1.105 sample was placed

on a Cernox thermometer mounted on top of the cold finger

in the cryostat. The indicator film is pressed on the surface of

the sample. The temperature rate was remotely controlled

(with Labview software) by the liquid helium valve and by

the internal heater. The temperature was monitored online,

both by the sensor in the cold finger and by the Cernox ther-

mometer. The digital camera was controlled by the same PC,a)Electronic mail: m.kuepferling@inrim.it.

0021-8979/2014/115(17)/17A925/3/$30.00 VC 2014 AIP Publishing LLC115, 17A925-1
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in order to synchronize the image acquisition with the tem-

perature readings. A uniform, out-of-plane, magnetic field

was applied by an electromagnet outside the cryostat. The

spatial evolution of the transition is observed by acquiring

several image sequences with MOI, during either cooling or

heating the sample around the transition temperature, with

different temperature rates (10–200 mK/s), and with or with-

out applying a small external field (few mT).

Fig. 1 contains a selection of frames during both cooling

and heating experiments, with an applied field of 3 mT. As

soon as part of the sample goes through the PM to FM transi-

tion, the corresponding sample area is lighting up clearly.

There is evidence of a moving FM/PM front whose kinetics

follows a precise pattern, which is almost the same in cooling

and heating. Different temperature rates in the range

10–200 mK/s were employed and did not significantly alter

the observed pattern. The FM/PM phases coexist in a tempera-

ture interval of about �5 K, an interval comparable to differ-

ential scanning calorimetry (DSC) measurements at similar

rates when high thermal contact resistance is present.8 This

spatial phase separation gives strong support to the first order

nature of the observed FM/PM transition. It was observed that

this FM/PM front is propagating occasionally in jump-wise

fashion, likely correlated with the avalanches detected in calo-

rimetric measurements.8 These jumps are position dependent

and their spatial pattern is roughly the same, independent of

temperature rate and applied field. The speed of the 1D front

was estimated by assuming a linear advancement from one

image to the next (typical timestamp of 38.6 ms) until a pin-

ning center is reached. The speed of the avalanches is esti-

mated to be of 4� 10�3 m=s, while the front propagating

continuously has a speed of the order of 10�4 m/s. Careful

investigations of the FM/PM front kinetics and its dependence

on the external parameters are in progress.

DSC was performed on a second fragment of the same

sample down to very low temperature rates in order to dis-

close the kinetics of individual avalanches. Scans were per-

formed in the range 0.1–200 mK/s. At temperature rates

larger than 10 mK/s the avalanches are merged together,

while below the individual avalanches start to separate.

Comparing the heat flux signals at different rates it appears

that the kinetics is dominated by the thermal contact between

the sample and the calorimetric cell.8 The estimate gives a

thermal contact resistance R ’ 500 K=W. Fig. 2 shows the

recorded heat flux as a function of the temperature at several

rates. The scan was performed from 213.15 K to 193.15 K

employing a low rate in the temperature interval

204.15 K–202.15 K. The transition is almost completed

(besides small avalanches below the baseline heat flux)

within the small interval of �0:53 K. For the time constant

of the relaxation of the single avalanches we obtain 5 s inde-

pendently of the rate. This time constant is related to the

thermal contact resistance by s ¼ RC, where C is the heat

capacity of the sample. With an average specific heat of

approximately 500 J/kgK and a mass of the sample of

20.54 mg this results in the measured value. Fig. 2, inset,

shows how the avalanches randomly change from measure-

ment to measurement. It is worth noting that although the

temperature where the avalanche occurs might be slightly

different from measurement to measurement, the number of

avalanches is always the same, independent of the tempera-

ture rate. At higher rates a few smaller avalanches occur in

the vicinity of the main ones. From the enthalpy of the single

avalanche, the ferromagnetic phase fraction was calculated

(see Table I) and compared with the enthalpy of the com-

plete transition (85 mJ) measured at a rate of 4 K/min.

One of the possible interpretations of a rate dependent

hysteresis is a thermally activated transition.5,7 In thermally

activated processes, the energy barrier dividing two local

FIG. 1. Selected MOI frames at temperature rates 123 mK/s (cooling: top

rows) and 69 mK/s (heating: bottom rows). The first and the last images

show the relatively pure PM or FM phase, while the others show phase coex-

istence. Uniform out-of-plane induction field: 3 mT. The FM phase (brighter

parts) displays much larger magnetic flux density than the PM phase (darker

parts).

FIG. 2. Heat flux of a LaFe11.7Co0.195Si1.105 fragment at low temperature

rates around the transition temperature measured by DSC. Inset: Two differ-

ent scans at 0.01 K/min.
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minima (in our case the FM and PM phase) is small such that

it can be overcome by thermal fluctuations. Thermally acti-

vated systems typically show an exponential time dependence.

Indeed, by means of ab initio calculations small energy bar-

riers were found for the La-Fe-Si compound.16 Although a sta-

tistical analysis of the calorimetric data is still in progress, our

preliminary results indicate instead an athermal behaviour. In

a certain temperature rate interval, the avalanches appear to be

clearly separated and very fast compared to the temperature

rate, which means one avalanche occurs at an almost constant

temperature. This is confirmed by the high velocity of the FM

front during an avalanche. The sequence of avalanches is quite

independent of the rate and reproducible. At temperature rates

higher than 0.05 K/min the avalanches start to merge together

while at slow rates (0.01 K/min) thermal relaxation versus the

thermal bath occurs. The athermal character may indicate that

large energy barriers are present, which determine the kinetics

of the phase transition. Possible causes are defects, stresses

due to mismatch of the crystal-structure of the single phases

or grain boundaries which act as pinning centers for the propa-

gating FM/PM front, as observed in the magneto-optical

measurements. During the temperature cycling, microcracks

may occur leading to irreversible aging effects.17 Therefore,

one has to distinguish two levels of phase transition dynamics

in La-Fe-Si, the intrinsic one of the defect free crystal which

is very fast and might be described successfully by thermal

activation and an extrinsic one, presumably due to microstruc-

tural defects or thermal relaxation towards a thermal bath. Our

results indicate that the latter is relevant for the correct experi-

mental determination of the hysteretic magneto-caloric effect.

III. CONCLUSION

The magneto-optical patterns and the calorimetric meas-

urements of the individual avalanches show that the transfor-

mation process is dominated by the pinning of phase

boundaries at defects rather than by the nucleation and

growth processes. The FM/PM phase nucleates systemati-

cally at the same sites and evolve in a rather reproducible

fashion. Outside the defective regions the typical domain

wall speed is 10�4 m/s, while between depinning events it

reaches 4� 10�3 m=s. These jumps are seen also in DSC as

isolated avalanches. However, in DSC the rather high speed

is masked by the thermal contact resistance. Despite this we

note three facts: (i) the avalanche sequence is a rather repro-

ducible process, (ii) we have no evidence of the rate depend-

ence of the nucleation temperatures for the individual

avalanches, (iii) the nucleation temperatures have a statisti-

cal distribution from run to run. These results indicate an

athermal character of the phase transition in which the ther-

mal activation over the energy barriers does not play a rele-

vant role.
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TABLE I. Enthalpy in mJ of single avalanches (as indicated in Fig. 2) at dif-

ferent temperature rates in cooling. FM is the ferromagnetic phase fraction

at the rate 0.05 K/min.

Peak 0.1 K/min 0.05 K/min 0.01 K/min FM

1 9.6 9 9 10.6%

2 7.8 10.6 7.3 12.5%

3 34.1 33.4 8.0 39.3%

4 11 11.8 35.4 13.8%

5 9.4 8.9 8.3 10.5%

6 9.7 8.5 8.3 10.0%

Total 81.6 82.2 76.2 96.7%
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