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ABSTRACT

It was the work of Jan Anderson, together with Keith Boardman that showed it was possible to physically separate  

Photosystem I (PSI) from Photosystem II (PSII) [1] and it was Jan Anderson who realized the importance of this work 

in terms of the fluid-mosaic model  as applied to the thylakoid membrane [2].  Since then there has been a steady  

progress in the development of biochemical procedures to isolate PSII and PSI both for physical and structural studies. 

Dodecylmaltoside  (DM)  has  emerged  as  an  effective  mild  detergent  for  this  purpose.  DM  is  a  glucoside-based 

surfactant with a bulky hydrophilic head group composed of two sugar rings and a non-charged alkyl glycoside chain.  

Two isomers of this molecule exist, differing only in the configuration of the alkyl chain around the anomeric center of  

the carbohydrate head group, axial in α-DM and equatorial in β-DM. We have compared the use of α-DM and β-DM for 

the isolation of  supramolecular  complexes of  PSII  by a single step solubilisation of stacked thylakoid membranes  

isolated from peas. As a result we have optimised conditions to obtain homogeneous preparations of the C 2S2M2 and 

C2S2 supercomplexes following the nomenclature of Dekker and Boekema [3]. These PSII-LHCII supercomplexes were 

subjected to biochemical and structural analyses.

Keywords:  Photosynthesis;  Photosystem  II;  PSII-LHCII  supercomplex;  Thylakoids;  n-dodecyl-α-D-maltoside;  n-

dodecyl-β-D-maltoside

Abbreviations: 

Chl Chlorophyll;  DCBQ 2,6-dichlorobenzoquinone; α-DM n-dodecyl-α-D-maltoside;  β-DM n-dodecyl-β-D-maltoside; 

EM Electron microscopy; HEPES N-2-hydroxylethyl piperazine-N’-2-ethane sulphonic acid; HPLC High performance 

liquid  chromatography;  K3Fe(CN)6 Potassium  ferricyanide;  LHC  Light  harvesting  complex;  MES  2-(N-

Morpholino)ethanesulfonic acid; OEC Oxygen evolving centre; PS Photosystem; SDS-PAGE Sodium dodecyl sulphate 

polyacrylamide gel electrophoresis 



1. INTRODUCTION 

Photosystem II (PSII) uses sunlight to split water into its elemental constituents: dioxygen is released providing our  

planet  with  an  aerobic  atmosphere  and  a  protective  ozone  layer,  while  the  ‘hydrogen’  supplies  reducing  

equivalents which, with additional input of light energy absorbed by photosystem I (PSI), are used to convert  

carbon dioxide to the organic molecules which constitute almost all the global biosphere. The names PSII and 

PSI were coined as photoreactions II and I by Duysens [4] soon after the concept of the Z-scheme was postulated 

by Hill and Bendall [5]. Experiments at that time indicated that there was efficient redox coupling between the 

two photosystems [6]  and it seemed inconceivable that they could exist as separate biochemical and structural 

entities. However, it was the work of Jan Anderson together with Keith Boardman that showed this to be the 

case [1] and it was Jan Anderson who realized the importance of this work in terms of fluid-mosaic model as 

applied to the thylakoid membrane [2].  Since then there has  been a steady progress  in the development of 

biochemical procedures to isolate both PSII and PSI. In the case of higher plants, the biochemical procedures  

developed have built on the recognition that PSII and PSI are laterally separated between granal and stromal  

regions as demonstrated by Bertil Andersson and Jan Anderson [7]. Perhaps the most widely exploitation of this 

lateral separation was the preparation of BBY particles using Triton X-100 [8]. These particles, derived from the 

grana partition lamellae, are highly enriched in PSII and therefore have often been the starting point for PSII  

preparation used for detailed biochemical and structural studies. 

The first direct structural information about PSII was derived from electron microscopy (EM) via freeze fracture studies 

on thylakoid membranes, as reviewed by Staehelin [9], followed by the imaging of isolated PSII particles, as reviewed  

by Hankamer et al. [10]. However, it was the application of electron crystallography which revealed the position and  

helix organization of the major subunits of higher plant PSII dimeric reaction center  core [11–14] and its outer light 

harvesting complexes containing chlorophyll (Chl) a and b. In 2001 the electron crystallographic studies of the higher 

plant PSII core dimer was complemented by X-ray crystallography conducted on PSII isolated from the cyanobacterium 

Thermosynechococcus elongatus [15]. X-ray crystallography then provided a slightly more detailed model of PSII from 

T. vulcanus  [16], followed by a fully refined crystal structure of the  T. elongatus PSII at 3.5 Å [17] and later at 3.0 

Å/2.9 Å [18,19]. These atomic structures revealed the positioning of all the protein subunits of cyanobacterial PSII and 

allowed the assignment of all the transmembrane helices, the major cofactors and their protein environments, giving 

information also about the location of lipids and detergent molecules within the membrane spanning portion of the  

dimeric complex. More recently the crystal structure of PSII isolated from T. vulcanus was refined to 1.9 Å giving very 

valuable details about the positioning of water molecules and providing more information about the oxygen evolving 

centre (OEC) [20].  Complementing these achievements has been the determination of the crystal structures of higher  

plant PSII proteins in their isolated forms: LHCII at  2.7 Å [21] and 2.5 Å [22], CP29 a LHC-like Chl  a/b-binding 

protein [23] and the extrinsic proteins PsbP [24] and PsbQ [25,26].

The challenge is to extend this degree of structural knowledge to obtain a high resolution model of the complete PSII 

complex of higher plants. Indeed, there are a number of significant differences between the PSII of cyanobacteria and 

that of higher plants and green algae. In higher plant PSII there are at least two small subunits that are not found in 

cyanobacteria, the intrinsic PsbW and the extrinsic PsbR. In the case of the OEC, plant PSII has the extrinsic protein  

PsbO complemented with PsbP and PsbQ [27] instead of PsbU and PsbV as in cyanobacteria. Other differences concern 

the outer antenna systems. In higher plants the PSII reaction centre core complex is serviced by intrinsic light harvesting 

complexes  (LHC)  binding  Chl  a and  Chl  b,  while  in  cyanobacteria  this  function  is  carried  out  by  extrinsic 

phycobilisomes attached to the stromal surface of PSII. This difference in the outer antenna systems suggests significant  

differences in binding sites for these additional pigment containing proteins. 

Our understanding of how LHC and LHC-like proteins bind to the PSII dimeric core in higher plants and green algae 

comes mainly from combining single particle analysis of electron microscopic images with appropriate crystallographic  



data  of  individual  components  for  interpreting  2D projection  maps  [see  for  review 3]  or  constructing 3D models 

[28,29]. 2D projection maps from negatively stained particles have provided models of a range of PSII particles of 

which two supercomplexes maintain a two-fold symmetry, C2S2M2 and C2S2 as named by Dekker and Boekema [3]. 3D 

reconstructions  of  non-stained  particles  recorded  in  vitreous  ice  has  provided  a  more  detailed  model  of  the  C2S2 

supercomplex [30] using the crystal structure of the cyanobacterial core dimer [17] and the isolated higher plant LHCII 

[21],  PsbP [24] and PsbQ [25]. Clearly such interpretations and models have serious limitations and uncertainties.  

Therefore, to fully address the architecture of the PSII in higher plants and to complement functional, biochemical and 

molecular biological studies of PSII and its OEC proteins, structural information at high resolution is required.

There have been reports of plant PSII preparations, which form 3D crystals [31–33], but unfortunately they did not give 

X-ray diffractions of sufficient quality for high resolution analysis. To make progress with this challenge it is necessary 

to isolate homogeneous preparations with well-defined protein composition. Several methods have been used to prepare  

PSII reaction centre cores from higher plants which include multiple steps of membrane solubilisation with rather long  

exposure  to  different  non-ionic  detergents  (i.e.,  Triton  X-100,  n-octyl  beta-D-glucopyranoside,  β-DM,  digitonin) 

followed by a final isolation step through sucrose density centrifugation [34–38], column chromatography [39–41] or a 

combination of  these two methods [42].  A few of  these  preparations  start  from digitonin solubilised chloroplasts, 

whereas  the majority relay on  BBY particles [8]. Such isolated reaction centre cores are usually  depleted of LHC 

proteins. They have provided a minimal system for the study of primary photochemistry and oxygen evolution as well  

as for structural studies by electron microscopy (EM) [see for review 43]. Milder detergent treatment with α-DM and β-

DM directly on isolated thylakoids was reported by Eshaghi  et al. [44], Dekker  et al. [45] and Bumba  et al. [46] 

yielding a variety of different oligomeric forms of PSII: monomeric PSII and different sized supramolecular LHCII-

PSII structures including the C2S2M2 and C2S2 supercomplexes. More recently, Caffarri et al. [47] have used α-DM to 

solubilize BBY preparations from wild type and LHC mutants of Arabidopsis to obtain a wide range of PSII-LHCII  

supercomplexes separated by sucrose density centrifugation. Amongst this range were the two-fold symmetrical C 2S2M2 

and C2S2 supercomplexes. 

In this paper we describe an efficient one-step method, avoiding a BBY intermediate preparation, to obtain in relatively  

high yields homogenous preparations of the C2S2M2 and C2S2 supercomplexes, as a starting point for high resolution 

structural studies. Isolated thylakoid membranes of peas grown under controlled conditions were subjected to a single  

very short and mild solubilisation step using low concentration of either α-DM or β-DM in combination with sucrose 

density gradient centrifugation. The spectral and biochemical properties of both supercomplexes have been investigated 

and the initial characterizations of their structures conducted by single particle analysis of negatively stained particles.

2. MATERIAL AND METHODS

(a) Plant growth conditions and thylakoid membranes isolation

Before  sowing,  pea  (Pisum sativum L.,  var.  Palladio  nano)  seeds  were  treated  as  described  in  [48].  Germinated 

seedlings were transferred to pots and grown hydroponically in Long Ashton nutrient solution [49] in a growth chamber 

with 8 h daylight, 20°C, 60% humidity and 150 µmol m -2 s-1 photons. Leaves from plants grown for 3 weeks were 

harvested and thylakoid membranes isolated according to [50] and finally stored in 25 mM MES pH 6.0, 10 mM NaCl,  

5 mM MgCl2 and 2 M glycine betaine (buffer A) at a Chl concentration in excess of 1 mg ml-1.

(b) Isolation of PSII-LHCII supercomplexes

Thylakoid membranes having a Chl concentration of 1 mg ml-1 in buffer A were treated with 50 mM α-DM or β-DM for 

1 min at  4°C in the dark.  500 μM phenylmethylsulphonylfluoride  was  present  during the  solubilisation to  inhibit  

protease activity. After a short centrifugation at 21,000x g for 10 min at 4°C, 700 μl of the supernatants were added to 

the top of linear sucrose gradients, prepared by freezing and thawing ultracentrifuge tubes filled with a buffer made of  



0.65 M sucrose, 25 mM MES pH 5.7, 10 mM NaCl, 5 mM CaCl2 and 0.03% α-DM or β-DM. Centrifugation was 

carried out at 100,000x  g for 12 h at 4°C (Surespin 630 rotor, Thermo Scientific). Sucrose bands, containing PSII-

LHCII particles, were carefully removed using a syringe and, if necessary, concentrated by membrane filtration with 

Amicon Ultra 100 kDa cut-off devices (Millipore) and then stored at -80°C.

(c) Spectroscopic analyses

The Chl concentration was determined after extraction in 80% acetone according to Arnon [51]. Absorption spectra 

were recorded using a Lambda25 spectrophotometer (Perkin Elmer). When dilution was necessary, the same buffers as 

for  the  gradients  were  used.  Low  temperature  (77K)  fluorescence  emission  spectra  were  registered  by  a  FL55 

spectrofluorometer (Perkin Elmer), equipped with a red sensitive photomultiplier and a low temperature cuvette holder.  

Samples were excited at 436 nm. The spectral  bandwidth was 7.5 nm (excitation) and 5.5 nm (emission). The Chl 

concentration was approximately 0.5 μg ml-1 in 90% (v/v) glycerol/sucrose gradient buffers.

(d) PSII-LHCII supercomplexes biochemical characterization

SDS-PAGE was carried out using either the Laemmli’s system [52] with a 12.5% acrylamide resolving gel containing 5 

M urea or the Tris-Tricine system [53] with a 16% acrylamide resolving gel containing 6 M urea. Pre-stained protein  

size markers  (Precision plus,  Bio-Rad) were  used for  estimation of  apparent  size of PSII-LHCII  components.  The 

separated proteins were either stained by Coomassie brilliant blue R-250 or transferred onto nitro-cellulose membrane 

and immunodetected with specific antisera against LHCII subunits and PsbO, PsbP, PsbR and PsbW polypeptides, by 

using the alkaline phosphatase conjugate method, with 5-bromo-4-chloro-3-indolyl phosphate/nitro blue tetrazolium as  

chromogenic substrates (Sigma).

The purity of the PSII-LHCII preparations was analysed by size-exclusion chromatography on a Jasco HPLC system 

with a BioSep-SEC-S 3000 (Phenomenex) column. The 20-μl samples injected contained 6 µg of Chl and profiles were 

monitored at 280 nm. The mobile phase consisted of 20 mM MES pH 6.5, 10 mM MgCl 2,  30 mM CaCl2,  0.5 M 

mannitol, 0.03% α-DM or β-DM and was passed through the column at a flow rate of 1 ml min-1. 

(e) Oxygen evolution measurements

The oxygen evolution was measured at 20°C using a Clark-type oxygen electrode (Hansatech) under saturating light  

intensity (≈1000 and 5000 μmol m-2 s-1 photons respectively for thylakoids and PSII-LHCII particles). 10 μg Chl of 

thylakoids and 25 or 20 μg Chl of PSII-LHCII particles isolated respectively with α-DM or β-DM were added to 1 ml of 

a medium made of 25 mM MES pH 6.5, 2 M glycine betaine, 10 mM NaHCO3, 10 mM NaCl, in the presence or 

absence  of  25  mM  CaCl2.  A  mixture  of  1  mM  potassium  ferricyanide  (K3Fe(CN)6)  and  200  μM  2,6-

dichlorobenzoquinone (DCBQ) or 500 μM DCBQ alone were used as electron acceptors for thylakoids and PSII-LHCII 

particles respectively.

(f) Electron microscopy and image analyses 

Samples from sucrose gradient bands were diluted ten-fold in a buffer composed of 10 mM HEPES pH 7.5 and stained 

with 2% uranyl acetate on glow discharged carbon-coated copper grids. EM was performed with a Phillips CM200FEG 

electron microscope operated at 200 kV. The images were recorded at 50,000 X on a TVIPS F415 4Kx4K CCD camera 

leading to a final pixel size of 1.76 Å at specimen level. Single particle analysis was performed using EMAN2 [54] and 

IMAGIC  [55]  softwares,  including  initial  reference-free  alignment,  followed  by  multireference  alignment  and 

multivariate statistical analysis and classification, as described in [56]. 



The  modelling  studies  of  the  2D  projection  maps  were  conducted  with  X-ray  structures  of  the  PSII  core  of  

cyanobacteria at 1.9 Å [20], the LHCII complex of pea at 2.5 Å [22] and the CP29 of spinach at 2.8 Å [23] (PDB 

accession numbers: 3ARC, 2BHW and 3PL9, respectively) using UCSF Chimera [57].

3. RESULTS

(a) Isolation and characterization of differently sized PSII-LHCII supercomplexes 

To obtain homogenous preparation of highly active PSII-LHCII supercomplexes, we optimized the conditions for direct  

solubilisation of thylakoid membranes in the presence of salts. Previously, we had found that using a wide range of  

Chl/DM  ratios  to  access  the  partition  regions  of  stacked  pea  thylakoids  resulted  in  PSII  particles  of  different  

complexities which could be separated on a sucrose density gradient at low pH containing salts [50]. From this work we 

identified a short time single step with α-DM and β-DM using a Chl/DM ratio of 1:50 as being effective for isolating  

complexes containing LHCII and PSII proteins.

Figure 1 shows the sucrose density profile after treating isolated pea thylakoids with α-DM and β-DM at a Chl/DM ratio 

of 1:50 followed by a relatively quick (12 h) ultracentrifugation. Five different green bands were separated either with  

α-DM (figure 1, left) or with β-DM (figure 1, right). All  bands were characterized by their Chl  a/b ratio (figure 1), 

absorption spectra (figure 2 a) and protein composition (figure 2 b). These results indicated that: 1) bands α1 and β2 

contained mainly trimeric LHCII subunits; 2) bands α2 and β3 were composed of PSI-LHCI complexes co-migrating 

with ATP-ase; 3) a monomeric LHC/Chl b-enriched fraction was separated only by using β-DM, corresponding to band 

β1; 4) lower bands (α3-5 and β4-5) contained PSII and LHCII proteins. Chls b, bound to Lhcb polypeptides, show two 

main peaks around 470 and 650 nm, whereas Chls a in the Lhcb and PSII proteins are responsible for the absorption 

around 435 and 675 nm. The relative high intensity of the absorption in the Chl  b region in bands α3-5 and β5 together 

with the Chl  a/b ratios ranging between 2.5 and 3.2 are consistent with previous studies conducted on PSII-LHCII 

supercomplexes isolated either from BBYs [37,47] or directly from thylakoid membranes [44]. Therefore we conclude 

that these bands are likely to contain PSII supercomplexes with a higher level of Chl b in those derived with α-DM (Chl 

a/b ratio of 2.5-2.6) compared to β-DM (3.1-3.2). Instead, in band β4 there was a high level of PSII cores subunits, but 

its LHCII content was lower than in band β5 and there was a contamination by PSI and LHCI polypeptides, as detected  

by SDS-PAGE (figure 2 b), accounting for its higher Chl a/b ratio (5.0-5.5).

 

(b) Biochemical characterization of two predominant forms of PSII-LHCII supercomplexes 

The aim of our work was to develop a (reproducible) method of isolating abundant, highly pure and intact PSII-LHCII 

supercomplexes for structural studies. For this reason we focused our biochemical characterization only on the two 

strongest sucrose gradient bands, α3 and β5, referred hereafter to as α and β, respectively.

Absorption spectra and 77K fluorescence emission spectra of bands α and β are presented respectively in figure 3 a and 

3 b. The α particles showed absorption peaks at 677 and 436 nm and a single fluorescence emission peak at 684 nm; 

whereas the β particle had its maxima absorption peaks at 676 and 436 nm and a single fluorescence emission peak at  

682 nm. From a comparison of the absorption spectra in the region around 650 nm it was evident that the particles 

isolated with α-DM have a higher Lhcb content compared with β particles, which is in accordance with the Chl  a/b 

ratios given in figure 1. The absence of any 77K fluorescence peaks at 735 nm, corresponding to emission of long-

wavelength PSI antennae, in both emission spectra (figure 3 b) confirmed the absence of any PSI contamination in the 

PSII-LHCII supercomplexes isolated with α- and β-DM. 

The overall purity, as well as the complete protein composition of the two particles, was further explored by using the 

Tris-Tricine SDS-PAGE system [53] loading the same amount of total Chl for each sample on the gel (figure 4 a). In 

addition to the presence of a number of small PSII core subunits in the region below 10 kDa common to both samples,  

this electrophoretic system revealed clearly additional polypeptides in the region between 25-15 kDa only in the α 



particle. Western blot analyses based on a same Chl loading (figure 4 b) showed that: 1) both particles displayed almost 

the same quantity of the antennae polypeptides Lhcb1 and Lhcb5 and of the extrinsic subunit PsbO; 2) the amount of  

Lhcb2 was slightly higher in the particle isolated with β-DM and the same was even much more evident in the case of  

Lhcb4; 3) the Lhcb3 and Lhcb6 polypeptides were present and in high amounts only in the α particle; 4) low amounts of 

the extrinsic subunits PsbP, PsbQ and PsbR were detected only in the particle isolated with α-DM; 5) the small subunit  

PsbW, present in both α and β particles, was more abundant in the particle isolated with β-DM, on an equal Chl basis.

The purity and relative molecular masses of the α and β particles were checked by size-exclusion chromatography.  

From the HPLC profiles shown in figure 5 a single distinct peak for both types of particles was detected, suggesting 

homogeneous preparations in both cases. The longer eluting time displayed by the β particle (5.6 min) with respect to 

the α (5.3 min) indicates that the latter is larger than the former.

(c) Activity measurements

Both α and β particles were assayed for their ability to evolve oxygen. Triplicate measurements of oxygen evolution in  

the presence of an optimal concentration of Ca2+ and Cl- (25 mM CaCl2) showed that the particle isolated with α-DM 

gave rates of 478±6 µmol O2 mg Chl-1 h-1, whereas its counterpart isolated with β-DM reached values of 591±20 µmol 

O2 mg Chl-1 h-1  (table 1). Compared on a Chl base, the higher rates displayed by the β particle can reflect its higher  

amount of reaction centre with respect to the α particle, which instead is characterized by a larger-sized antenna system. 

It is known that the reduction in oxygen-evolving capacity of PSII, due to the removal of the PsbP extrinsic subunit, can 

be restored by addition of calcium [58,59] and chloride ions [60]. The complex isolated with α-DM, which was found to 

bind a certain amount of the extrinsic subunit PsbP, did not significantly change its rate of oxygen evolution in the  

absence of CaCl2, whereas its counterpart isolated with β-DM in the same ionic conditions showed a reduction of about  

26% (table 1). Thus, in the case of the α particle the absence of a significant stimulation by addition of 25 mM CaCl2 

suggests that the PsbP subunit is present in a functionally active manner and that the OEC is in a more intact state than  

in the β particle.

(d) Determination of the supramolecular structure of the PSII-LHCII supercomplexes 

Electron  micrographs  of  the  negatively  stained  α  and  β  particles  (figure  6)  revealed  the  high  purity  of  the  two 

preparations and confirmed that the isolated complexes are LHCII-PSII supercomplexes. From a total of 600 images for 

each  preparation,  a  set  of  15,563  projections  for  the  α  particles  and  26,340  for  the  β  particles  were  analyzed, 

respectively.  From  these  analyses,  it  was  evident  that  for  both  particles  a  preferential  orientation  in  side-view  

projections (as paired PSII-LHCII supercomplexes) and top-view projections was present. Moreover, a higher number  

of side-view projections characterized the β particles, whereas similar amounts of projections in slightly tilted oblique  

views were observed in both particles. 

In  order  to investigate  the supramolecular  organization of  PSII  and its  associated  light-harvesting antenna,  a  total  

number of 6197 single particles top-views from the α dataset and 6985 top-views from the β dataset were extracted 

from the electron microscopy images. The two datasets were separately processed and final results after alignment, 

multivariate  statistical  analysis  and  classification  showed  that  the α  particle  is  mainly  composed  of  C2S2M2 

supercomplexes and the β particle is mainly composed of C2S2 supercomplexes. As the most abundant PSII-LHCII 

supercomplexes in  the α and β preparations  showed respectively a C2S2M2  and a C2S2  organization,  homogeneous 

classes of their corresponding top-view projections (1049 for α and 1765 for β) were summed to give the final 2D 

projection maps shown in figure 7  a-b.  Despite uncertainties in these projection maps, the assignment of the main 

subunits of the supercomplexes can be made by overlaying the projections of X-ray structures of individual components  

as previously shown [30,47]. Here we have used the cyanobacterial PSII core at 1.9 Å [20], the trimeric LHCII complex 

of pea at 2.5 Å [22] and the monomeric Lhcb protein CP29 of spinach at 2.8 Å [23]. The latter has been used as a  



template  for  CP24 and CP26, as  well  as for  CP29. The fitting of  the X-ray data into the electron  density of  the  

projection maps of the α and β particles was essentially the same as that adopted by Caffarri  et al. [47],  with the 

exception that CP24 and CP26 were modeled at a slightly different orientation, based on density distribution . The final 

projection maps of the C2S2M2 and the C2S2  supercomplexes with the assignment of their main PSII core and antenna 

subunits are shown in figure 7 c-d.

4. DISCUSSION

Progress in the determination of the structure of PSII isolated from cyanobacteria has advanced in a most striking way 

over the past ten years culminating in an X-ray derived model at 1.9 Å [20]. This advance has not been mirrored for 

PSII isolated from higher plants. Despite reports that crystals of higher plant PSII core preparations have been grown, 

they showed poor X-ray diffraction [31–33]. However, there is every reason to believe that most of the details revealed  

by the cyanobacterial crystal structures will be the same for the PSII core of higher plants. For example, all the key 

amino acids of the D1, D2 and CP43 proteins, which are intimate with the Mn 4Ca-cluster of the OEC, are conserved 

between  higher  plant  and  cyanobacterial  PSII  [61].  Similarly,  the  amino acids  which  act  as  ligands  for  cofactors  

involved in energy capture and charge separation are conserved. The differences between the two systems relate to the  

OEC extrinsic proteins, the presence of additional core proteins in higher plant PSII and in their outer light harvesting  

systems.  In  the  latter  case  the  phycobiliproteins  serve  as  an  extrinsic  located  outer  light  harvesting  system  for 

cyanobacteria, while the Chl a/b-binding Lhcb proteins are an intrinsic outer antenna system for higher plant PSII.  In 

both cases there is no high resolution data to reveal how these outer antenna systems structurally interact with the PSII  

core. In the case of plants, this information is vital for the interpretation of long range energy transfer processes and, in  

particular, to give a detailed explanation to the phenomenon of non-photochemical quenching [62]. For this purpose  

alone, a high resolution structure of higher plant PSII is urgently needed. Such a challenge requires careful biochemistry 

to obtain homogeneous and stable preparations of PSII-LHCII supercomplexes.

Previous studies  [37,44,46,47,63]  have identified DM as  an  effective  mild detergent  for  obtaining preparations  of 

discrete  PSII-LHCII  supercomplexes.  DM  is  a  glucoside-based  surfactant  with  a  bulky  hydrophilic  head  group 

composed of two sugar rings and a non-charged alkyl glycoside chain. Two isomers of this molecule exist, differing 

only in the configuration of the alkyl chain around the anomeric center of the carbohydrate head group, axial in α-DM 

and equatorial in β-DM. We have compared the use of α-DM and β-DM for the isolation of supramolecular complexes  

of PSII by a single step solubilisation of stacked thylakoid membranes isolated from peas. We chose: 1) to solubilize  

directly  thylakoids  instead  of  PSII  membranes  (BBYs),  in  order  to  minimize  the  possibility  of  detergent-induced 

artifacts; 2) to use stacked membranes in order to avoid destabilization of the interaction of LHCII with the PSII core.  

As a result we optimized conditions to obtain homogeneous preparations of the C2S2 and C2S2M2 supercomplexes as the 

main product. In agreement with previous works [64,65], our biochemical analyses of these two types of LHCII-PSII  

supercomplexes showed that  unlike C2S2,  the C2S2M2 supercomplex contained both the Lhcb3 and Lhcb6 antennae 

subunits,  crucial  polypeptides  for  the assembly and  the  macro  organization of  this  supercomplex  in  the thylakoid 

membrane of higher plants [47]. Moreover, the C2S2M2 supercomplex contained detectable levels of PsbP, PsbQ and 

PsbR compared with the C2S2, although both contained the extrinsic PsbO polypeptide and the small intrinsic subunit 

PsbW. The reason for this is almost certainly due to the milder nature of α-DM compared with β-DM and is unlikely to  

have any physiological significance. However, Caffarri et al. [47] concluded that PsbQ can bind to PSII cores only in 

the presence of peripheral antennae subunits (at least the domain composed of CP26/LHCII S-trimer) and PsbP binds to  

the  supercomplex  only  in  the  presence  of  CP29/CP24/LHCII  M-trimer  and  is  absent  from  PSII  cores.  This  last 

conclusion has been challenged by Pagliano et al. [66].

In all other respects the protein compositions of the two supercomplexes are the same as expected, given that C 2S2 forms 

the inner PSII-LHCII core to C2S2M2. This structural relationship was suggested previously [67] and confirmed by our 



analyses of α and β particles by negative stain electron microscopy and interpretation of density within the top view 

projections using currently available X-ray data.

We identify density for two types of LHCII trimers designated as S and M, where S, common to both supercomplexes, 

consists of Lhcb1 and Lhcb2 proteins, while M, exclusive to the α particle, is a LHCII trimer containing the Lhcb3 

protein. These results are in accordance to previous findings suggesting that Lhcb3 is a subunit of the M-trimer [68] on 

the basis that it is present in the C2S2M1-2 supercomplexes but absent in the C2S2 supercomplex [37]. Additionally, Lhcb3 

is frequently found in a Lhcb6-Lhcb4-LHCII trimer subcomplex [69,70]. Moreover, it had previously been shown that 

the C2S2 supercomplex contained the Lhcb4 and Lhcb5 and not the Lhcb6 subunit [28,30]. Taking into account this 

information we interpret the projection maps of the α and β particles in the same way as Dekker and Boekema [3] and  

conclude that Lhcb4 is likely to be located close to M-trimer in C2S2M2 and linked to it via Lhcb6.

In modelling the organization of the subunits within the supercomplex we used the latest X-ray data for the PSII dimeric 

core [20], LHCII trimer [22], and CP29 [23], where the latter was also used for modelling CP26 and CP24.  As we 

observed similar features in the projections as Caffarri et al. [47], we followed essentially the same fitting of the crystal 

structures into the electron density as they did, except for small rotational adjustments of CP24 and CP26, although the 

reliability of the fitting must be treated with caution: the protein is stained with uranyl acetate, the spatial resolution is 

limiting and the problem of fitting 3D crystal structures into a 2D projection map is always somewhat tentative. 

In terms of chlorophyll content, we can conclude that C2S2M2 binds approximately a total of 316 Chls per OEC (214 

Chl a and 102 Chl b, giving a Chl a/b ratio of 2.1), while C2S2 contains a total of 206 Chls per OEC (150 Chl a and 56 

Chl  b, giving  a  Chl  a/b ratio  of  2.7).  With  these  assumptions  the  oxygen  evolution  rates  for  the  two  types  of 

supercomplexes can be compared on an equal Chl basis. The maximum rates with CaCl2 added were 478±6 and 591±20 

μmol  O2 mg  Chl-1 h-1 for  the C2S2M2  and  C2S2  particles,  respectively,  giving  a  ratio  of  1.27  in  favour  of  C2S2 

supercomplexes. However, since C2S2M2 contains approximately 110 more Chls per OEC than C2S2, the ratio of the 

maximimum rates  per  OEC become 1.24 in  favour of  C2S2M2.  From this difference  and the fact  that  the C2S2M2 

preparation showed only a slight dependence of the addition of CaCl2 and contained detectable levels of PsbP, PsbQ 

and PsbR, we can conclude that this supercomplex is more catalytically competent than the smaller C 2S2 supercomplex. 

Nevertheless, both preparations offer an opportunity for further structural analyses by cryo electron microscopy and 

open up a new direction for crystallography.
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TABLES (including captions)

µmol O2 mg Chl-1 h-1

+ CaCl2 - CaCl2

Thylakoids 189�8 175�12

α particle 478�6 457�12

β particle 591�20 437�16

Table 1. Oxygen evolution measurements on the α and β particles and the starting thylakoid membranes performed in  

the presence and absence of 25 mM CaCl2 in the assay medium. The oxygen evolution rates are average ± sd of 

triplicate measurements of at least three independent experiments.

FIGURES CAPTIONS

Figure 1. Separation of pigment–binding complexes by sucrose gradient ultracentrifugation of thylakoids solubilized 

with α-DM and β-DM.  

Figure 2. (a) Absorption spectra of sucrose gradient bands α1-α5 obtained from thylakoids solubilized with α-DM and  

bands β1-β5 obtained from thylakoids solubilized with β-DM. The spectra are normalized to the maximum in the red 

region. α3, α4 and α5 are almost superimposed. The Chl b  content, which is proportional to the antenna content, is 

deducible from the intensity of the bands at 470 and 650 nm. (b) Protein composition of sucrose gradient bands α1-α5 

isolated from thylakoids solubilized with α-DM, of bands β1-β5 isolated from thylakoids solubilized with β-DM and of  

thylakoids  membranes (lane T).  4 µg Chl were loaded on each lane.  On the left  pre-stained protein markers  with  

indicated their apparent molecular weight (kDa).

Figure 3. (a) Absorption spectra of α particles (solid line) and β particles (dashed line). The spectra are normalized to  

the maximum in the red region. (b) Low temperature (77K) fluorescence emission spectra of α particles (solid line) and 

β particles (dashed line). Spectra are normalized to the maximum value.

Figure 4. (a) Protein composition of α particles (α) and β particles (β) and of pea thylakoids (lane T). 8 µg Chl were 

loaded on each lane. On the right pre-stained protein markers with indicated their apparent molecular weight (kDa). (b) 

Western blot with antibodies against antenna polypeptides Lhcb1-6, OEC subunits PsbO, PsbP, PsbQ and PsbR and 

PsbW of α particles (α) and β particles (β) and of pea thylakoids (lane T). 1 µg Chl was loaded on each lane.

Figure 5. Size-exclusion profiles recorded at 280 nm of α particles (solid line) and β pa rticles (dashed line). 6 µg Chl 

were applied for injection of each sample.

Figure 6. Electron micrographs of α particles (a) and β particles (b) obtained by sucrose density gradient, negatively 

stained with 2% uranyl acetate. Top-view, side-view and end-view projections of the α and β particles are indicated by 

white rectangles, ovals and circles, respectively. The scale bar equals 100 nm.



Figure  7.  Final  projection  maps of  the  C2S2M2 supercomplex  isolated  with α-DM (a)  and  the  C2S2 supercomplex 

isolated with β-DM (b).  The scale bar  equals  150 Å.  Assignment  of  the subunits in the C2S2M2 (c)  and C2S2 (d) 

supercomplexes by fitting the high-resolution structures of the PSII core [20] (subunits D1, D2, CP47, CP43 and PsbO 

are in yellow, orange, red, sandy brown and blue, respectively), the LHCII [22] (S-trimer is in dark green and M-trimer 

in  light  green)  and the  monomeric  Lhcb  [23]  (CP29,  CP26 and CP24 are  in  steel  blue,  turquoise and dark  blue, 

respectively).
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