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Abstract 

 Biodiesel is the biofuel most commonly used in Europe, covering 

approximately 80% of the biofuel market. However, the relationship between 

biofuel industry and food prices push towards the adoption of new generation 

biodiesels which could minimize the impact of biofuels production on human 

food chain. Biodiesel sourced from non-edible seed oils like Jatropha Curcas could 

therefore be a viable solution for biodiesel production, since allows green cover to 

wasteland. More recently, also Hydrotreated Vegetable Oil (HVO), obtained by 

means of a refinery-based process that converts vegetable oils into paraffinic 

hydrocarbons, has been gaining an increasing attention. 

 The effects of using high percentage blends of ultra low sulphur diesel and 

biofuels (FAME and HVO) in a Euro 5 small displacement passenger car diesel 

engine on combustion process, full load performance and part load emissions 

have been evaluated in this work. Moreover, a characterization of Particulate 

Matter (PM) in terms of mass, chemical composition and particles number and 

size distribution was assessed as well. 

 The impacts that fuels with different physical and chemical properties may 

have on injection, combustion and on ECU calibration process were evaluated by 

means of specific tests campaign involving different injection timings under part 

load operation. Results highlighted that the implementation of models for 

blending detection, on engines ECUs, could be of crucial importance for a wider 

usage of biofuels in transportation sector.   
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 In addition, the effects on engine torque were analyzed, for both a standard 

ECU calibration (i.e. without any special tuning for the different fuel 

characteristics) and for a specifically adjusted ECU calibration obtained by 

properly increasing the injected fuel quantities to compensate for the lower Lower 

Heating Value (LHV) of the biofuels: with the latter, the same torque levels 

measured under diesel operation could be observed with the biodiesel too, with 

lower smoke levels, thus highlighting the potential for maintaining the same level 

of performance while achieving substantial emissions benefits. 

 Moreover, the effects of biodiesel blends on brake specific fuel consumption 

and on engine-out exhaust emissions (CO2, CO, HC, NOx and smoke) were also 

evaluated at several part load operating conditions, representative of the New 

European Driving Cycle (NEDC). Both standard and specific calibrations were 

evaluated, highlighting an average rise of fuel consumption in good agreement 

with LHV decrease, at same fuel conversion efficiency and CO2 emissions. A 

decrease of NOx emissions when using a specifically adjusted engine calibration, 

along with a considerable smoke emission reduction were observed as well. 

 Due to increasing concerns about the hazardous effects that particulate matter 

could have on human health, PM emissions were evaluated under normal engine 

operating mode at part load operation. PM gravimetric analysis at medium and 

high load operating points showed a good correlation with soot measurements 

carried out by means of standard laboratory equipment (i.e. smokemeters). On the 

contrary, at low loads, the same instrument underestimated the Soluble Organic 

Fraction (SOF) fraction of PM especially when biofuel was used. Thermo-

gravimetric analysis confirmed the outcomes from gravimetric analysis: the 

significance of standard measurements which are commonly carried out during 

the engine calibration activity should be carefully considered when biofuels are 

adopted. 

 Finally, the assessment of the toxicological potential of PM when HVO and 

Rapeseed Methyl Ester (RME) were used was carried out. Results highlighted that 

PM from HVO had a higher mutagenic effect respect to PM emissions obtained 

with other fuels. 
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Introduction 

 Biofuels have been widely investigated in recent years, since they can provide 

interesting opportunities in terms of reductions of both Greenhouse Gases (GHG) 

and Particulate Matter (PM) emissions, as well as in terms of energy sources 

diversification. In particular, the usage of trans-esterified vegetable oils for 

fuelling diesel engines (often referred to as biodiesel, or FAME, Fatty Acid Methyl 

Ester), generally in blend with fossil fuels, has been increasingly spreading, thanks 

to its chemical and physical properties which are quite similar to those of fossil 

diesel fuels. In 2009 European directive 2009/28/EC introduced a new target for the 

European Union (EU) member states concerning the share of energy from 

renewable sources in all forms of transport; in particular, a target of at least 10% of 

the final energy consumption in the transportation sector should be achieved by 

2020.  

 Nevertheless, in the fourth quarter of 2012, the European Commission 

published a proposal to limit the use of food-based biofuels and to include 

Indirect Land Use Change (ILUC) emissions when assessing the greenhouse gas 

effect of biofuels. The use of food-based biofuels to meet the 10% renewable 

energy target of should be limited to 5%. In order to meet the 10% target, biodiesel 

sourced by non-edible sources (i.e. algae, industrial waste, straw, animal manure, 

sewage sludge, palm oil mill effluent, crude glycerin, non-food cellulosic and 

ligno-cellulosic materials) have to be studied and developed.  

 Moreover, Asian countries are exploring biodiesel sourced from non-edible 

seed oils like Jatropha Curcas, a wild plant which can grow in arid, semiarid and 
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wasteland; therefore, Jatropha Methyl Ester (JME) represents a viable solution for 

biodiesel production, since allows green cover to wasteland. However, 

unsaturated FAMEs such as Rapeseed Methyl Ester (RME) or Soy Methyl Ester 

(SME), are known to adversely impact on fuel oxidation stability, and FAME 

percentages that can be blended into automotive diesel fuel is currently limited in 

Europe to 7% on a volume basis, although higher percentages, up to 30% are 

currently being considered, even if they might require special care to prevent 

engine oil dilution, injectors coking and deposits formation in the fuel injection 

system.  

 More recently, also Hydrotreated Vegetable Oil (HVO), obtained by means of a 

refinery-based process that converts vegetable oils into paraffinic hydrocarbons, 

has been gaining an increasing attention, since being sulphur and aromatics free, 

and having a high cetane number its combustion characteristics are particularly 

attractive. In addition, thanks to the lack of unsaturated compounds also its 

oxidation stability has been demonstrated to be better than that of FAME. Finally, 

additional advantages in terms of environmental impact of the HVO production 

process have been highlighted, showing a good potential in terms of GHG 

emissions reduction, as well as the possibility of producing HVO in existing oil 

refineries without the need for additional chemicals such as methanol which is 

required for FAME production, or for the storage of by-products such as glycerol.  

 High Speed Direct Injection (HSDI) Diesel engines are nowadays spreading in 

the global market of passenger cars, thanks to undoubted advantages such as 

higher efficiency (lower fuel consumption and CO2 emissions), drivability, 

durability and reliability. Increasing concerns regarding the two main pollutants 

from Diesel engines, NOx and PM, started a progressive process of tightening of 

emission limits; Tier 2 (USA) and Euro5b/6 (Europe) emissions regulations will 

definitively bring down NOx and PM, with also the introduction of new 

limitations such as, for instance, on particles number (PN) emissions.  

 Although the effects of biofuels (paraffinic and esters) on engine emissions 

have already been investigated by several researchers and a plethora of studies 

concerning the effects of FAME can be found in literature, only few studies have 

been carried out on last generation automotive engines, as the one which was 

adopted for the present work. Experimental activities reported in literature are 

usually carried out running the engine with the original, diesel oriented, ECU 

calibration; a specifically adjusted ECU calibration optimized for alternative fuels 

is rarely used and the possible decrease of engine torque output is often recovered 

by increasing the torque demand through an increase of the accelerator pedal 

position, thus simulating a switch of the supplied fuel. An extension of the 

investigations to modern engines and after-treatment systems, which may include 

advanced combustion technologies and closed loop combustion controls seems 
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therefore to be necessary in order to fully understand the effects of both FAME 

and HVO usage. 

 

 Therefore, the aim of the present work is the analysis of the effects of using 

blended (30% vol.) and neat renewable diesel fuel, obtained from Rapeseed 

Methyl Ester (RME), Jatropha Methyl Ester (JME) and Hydrotreated Vegetable Oil 

(HVO), in a Euro 5 small displacement passenger car diesel engine, featuring 

advanced combustion technologies and closed loop combustion controls. 

Moreover due to increasing concerns about PM effects on human health a detail 

characterization of PM produced by different fuels in term of mass, chemical 

composition and particles number and size distribution was carried out as well. 

 In the First Chapter a review of the recent developments on Diesel emission 

control technologies and legislations limits is given, in order to summarize the 

evolution of emission control technologies over the last decade. Moreover a 

survey related to the usage of biodiesel is proposed. 

 The Second Chapter collects a detailed description of the experimental setups 

that have been prepared for each experimental investigation, which will be useful 

in understanding the following results. 

 In the Third Chapter the analysis of the effects that biofuels may have on full 

load performance and on emissions during part load operation will be presented; 

in addition the effects that different fuels may have on the combustion process are 

discussed as well. 

 Finally, in the Fourth Chapter, a characterization of PM emitted when fuelling 

the engine with both conventional and renewable diesel fuels in terms of mass, 

chemical composition, particles number and size distribution and of mutagenic 

potential will be given. 
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1 Chapter 1 – Diesel Emissions 

Control Technologies Review 

1.1 Introduction 

 In this chapter, due to the target of the present work which is focused on the 

characterization of the effects of using biodiesel blends in a Euro 5 small 

displacement passenger car diesel engine, featuring advanced combustion 

technologies and closed loop combustion controls, a brief overview about the 

progress of the regulations on Diesel pollutant emissions will be given, moving 

subsequently to an overall description of latest Diesel emissions control 

technologies, presenting some of the newer technologies for in-cylinder emissions 

reduction and giving way to a more detailed description on the evolution of 

biofuel usage over the last years. 
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1.2 Regulatory Trends 

 Regulations regarding emission limits are the drivers which today, as well as in 

the past, force vehicles manufacturers to continuously introduce and develop new 

technologies for the control of pollutant species. For this reason it is important to 

give an overall picture of emission standards evolution within last decades in the 

major markets in the world, i.e. European and USA markets, in order to highlight 

the steps that led to the development and introduction of different emission 

control technologies. It should be here pointed out that the discussion will be 

focused on the description of the regulatory evolution regarding Diesel engines 

for light duty (LD) applications. 

 Emission regulations in European countries for LD applications were first 

introduced in the ’70 with Directive 70/220/EEC which, over the years, has been 

amended several times up to 2004, while in 2007 this Directive has been repealed 

and replaced by Regulation 715/2007 (usually referred to as Euro 5/6). Some of the 

important regulatory steps implementing emission standards for Diesel engines 

for LD vehicles are summarized in Table 1.1. 

 Emissions, which are tested over the cold start test referred to as the New 

European Driving Cycle (NEDC), were progressively reduced, from the 

introduction of Euro 1 up to the current Euro 5 standard; referring to future Euro 6 

standard, which will be effective from September 2014, it is possible to observe a 

progressive tightening of emission limits, especially for PM and NOx. The Euro 5/6 

standards introduce a new PM mass emission measurement method developed by 

the UN/ECE Particulate Measurement Programme (PMP) and adjusts the PM 

mass emission limits to account for differences in results using the old and the 

new method; more important, from Euro 5b a new particle number (PN) emission 

limit, in addition to the mass-based limits, has been set due to increasing concerns 

about PM health and environmental effects related to the number of emitted 

particles (2008/692/EC July 18, 2008). 

 Emission standards adopted in the USA for Diesel engines for LD applications 

differ significantly from the European picture, due to the fact that regulations are 

fuel neutral, meaning that no distinctions are made in terms of pollutant emissions 

between gasoline and Diesel engines; Federal Standards for engines and vehicles, 

including emission standards for greenhouse gas (GHG) emissions, are 

established by the US Environmental Protection Agency (EPA). 

 Two categories of standards have been defined for LD vehicles in 1990; Tier 1 

Tier 2 emission standards are structured into 8 permanent and 3 temporary 

certification levels of different stringency, called “certification bins”, and an average 

fleet standard for NOx emissions, as reported in Table 1.2. Vehicle manufacturers 

have a choice to certify particular vehicles to any of the available bins, but with the 
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clause that the average NOx emissions of the entire LD vehicle fleet sold by each 

manufacturer has to meet the average NOx standard corresponding to certification 

Bin #5. The temporary certification bins reported in Table 1.2 with more relaxed 

emission limits were available in the phase-in period and expired after the 2008 

model year. 

Table 1.1 EU Emission Standards for Passenger Cars (Dieselnet, Emissions Standards - 

Europe - Cars and Light Trucks. 2011) 

Stage Date 
CO HC HC+NOx NOx PM PN 

g/km #/km 

Euro 1 1992.07 2.72 - 0.97 - 0.14 - 

Euro 2, IDI 1996.01 1.00 - 0.7 - 0.08 - 

Euro 2, DI 1996.01 1.00 - 0.9 - 0.10 - 

Euro 3 2000.01 0.64 - 0.56 0.50 0.05 - 

Euro 4 2005.01 0.50 - 0.30 0.25 0.025 - 

Euro 5a 2009.09 0.50 - 0.23 0.18 0.005 - 

Euro 5b 2011.09 0.50 - 0.23 0.18 0.005 6x10
11

 

Euro 6 2014.09 0.50 - 0.17 0.08 0.005 6x10
11

 

 In addition to the Federal Standards, each State has the right to adopt its own 

emission regulations. Regulations enforced by the State of California are often 

more stringent than the federal rules; States adopting the California standards 

include Arizona (2012 model year), Connecticut, Maine, Maryland, Massachusetts, 

New Jersey, New Mexico (2011 model year), New York, Oregon, Pennsylvania, 

Rhode Island, Vermont, and Washington, as well as the District of Columbia. 

Engine and vehicle emission regulations are adopted by the California Air 

Resources Board (CARB), a regulatory body within the California EPA. Low 

Emission Vehicle (LEV) California emissions standards, whose structure is quite 

similar to Federal Standards,  followed an evolution from Tier 1/LEV (up to 2003), 

to LEV II (phased-in in the period 2004-2010), to the final LEV III (proposed in 

2010 and phased-in through model years 2014-2022); for each of the emission 

standards, manufacturers must meet increasingly tighter fleet average targets, 

more stringent than for Federal Standards. Details on the modification proposed 

by CARB for LEV II emission standards are well summarized in (Johnson 2011). 
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Table 1.2 Tier 2 Emission Standards (Dieselnet, Emissions Standards - USA - Cars and Light-

Duty Trucks - Tier 2. 2011) 

Bin # 
NMHC CO NOx PM HCHO 

g/mi 

Temporary Bins 

11 0.280 7.3 0.9 0.12 0.032 

10 0.156 4.2 0.6 0.08 0.018 

9 0.090 4.2 0.3 0.06 0.018 

Permanent Bins 

8 0.125 4.2 0.20 0.02 0.018 

7 0.090 4.2 0.15 0.02 0.018 

6 0.090 4.2 0.10 0.01 0.018 

5 0.090 4.2 0.07 0.01 0.018 

4 0.070 2.1 0.04 0.01 0.011 

3 0.055 2.1 0.03 0.01 0.011 

2 0.010 2.1 0.02 0.01 0.004 

1 0.000 0.000 0.000 0.000 0.000 

 From a general point of view, looking at the increasing tightening of emission 

limits for both the European and the American standards, it possible to observe 

that the trend is to force the adoption of emission controlling technologies, 

whether they are in-cylinder or after-treatment, which could significantly bring 

down tailpipe emissions from mobile sources. 

 Besides the reduction of pollutant emissions described so far, vehicles fuel 

economy has gained a lot of attention through years, becoming today a worldwide 

important topic of discussion; not only pollutant emissions have to be controlled, 

but also fuel consumption should be kept within regulated limits, which somehow 

highlights the global efforts to increase as much as possible the internal 

combustion engine efficiency and to reduce the emission of CO2, which is the best 

known greenhouse gas (GHG). 

 In Europe, in order to control GHG emissions from the transportation sector, 

the European Commission signed in 1998-99 a voluntary agreement with the 

European Automobile Manufacturers Association (ACEA) to reduce CO2 

emissions; the major provisions of the subscribed agreement were a 25% reduction 

in CO2 emissions from the 1995 level, setting a target of 140 g/km to be reached by 

2008, and the possibility to extend the agreement to 120 g CO2/km by 2012, as 
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shown in Figure 1.1. Even though significant CO2 emission reductions were 

achieved in the initial years, the ACEA was not able to reach the 140 g/km target 

by 2008; the European Commission decided thus in 2009 to turn the voluntary 

agreement into a mandatory CO2 emission regulation from new LD vehicles. 

 

 
Figure 1.1 CO2 reduction from Light-Duty Vehicles Under ACEA Agreement (Dieselnet, 

Emission Standards - Europe - Cars GHG - ACEA Agreements 2010) 

 For passenger cars, CO2 emission targets were adopted in April 2009, setting a 

fleet-average medium-term CO2 emission target of 130 g/km to be reached by 

2015, and a long-term target of 95 g CO2/km to be reached from 2020; the 

regulation is phased-in over the period from 2012 to 2015, where manufacturers 

must meet their average CO2 emission targets in 65% of their fleets in 2012, 75% in 

2013, 80% in 2014 and 100% from 2015. Besides incentives obtained respecting the 

targets, significant penalties will be applied to manufacturers which will not fulfill 

the limits; after a period (2012-2018) of progressively increasing fees, starting from 

2019 manufacturers will pay €95 per vehicle for each g/km of CO2 exceeding the 

target. 

 In USA the Corporate Average Fuel Economy (CAFE) standards for passenger 

cars and light duty trucks (LDT) was first established back in 1975 as part of the 

Energy Policy Conservation Act promoted as a response to the oil crisis of the 

early ’70; the CAFE regulation requires each car manufacturer to meet a standard 

for the sales-weighted fuel economy, expressed in miles per gallon (mpg), for the 

entire fleet of vehicles sold in the USA in each model year. Table 1.3 summarizes 

the limits in mpg over the last 15 years, even though fuel economy standards were 

applied since 1978 (not reported here for the sake of brevity). 
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Table 1.3 CAFE fuel economy standards 

Year Cars Light Trucks Year Cars Light Trucks 

1995 27.5 20.6 2007 27.5 22.2 

1996 27.5 20.7 2008 27.5 22.5 

2005 27.5 21.0 2009 27.5 23.1 

2006 27.5 21.6 2010 27.5 23.5 

 In addition to CAFE standards, California adopted in 2002 a dedicated 

regulation, becoming effective from 2006 and phased-in  over the period 2009-

2016, aiming the control of emissions of GHG from motor vehicles in California; 

the average reduction of GHG should be about 22% in 2012 and 30% in 2016, 

compared to model year 2004 vehicles. 

 As it can be noticed from Table 1.3, few efforts have been done in USA with the 

aim to promote fuel economy, especially in the segment of passenger cars; 

however, recently the CAFE program has been modified for light-duty trucks 

application in order to tighten the existing limits. Moreover, CARB is proposing 

new LD CO2 standards as part of the LEV III emission standards, resulting in an 

effective 20-25% tightening of current CO2 emission standards (Johnson 2010). 

 An interesting analysis with the aim to illustrate the cost-effectiveness of the 

diesel in meeting CO2 regulations has been carried out by (Körfer 2009); in his 

work Körfer compared the costs of bringing both a gasoline and a Diesel medium-

size Euro 5 car to compliance with the 2020 European CO2 requirements, finding 

that with Diesel engines it was possible not only to save money in terms of initial 

investment, but it was also possible to take advantages from the surplus in terms 

of g CO2/km with respect to the legislation limits. 

 In conclusion, even though more stringent emission standards are being 

applied all over the world, looking at the future the emphasis of regulations is 

progressively shifting towards the attainment of CO2 or fuel economy regulations, 

which could pave the way for the diffusion, also within the USA market, of Diesel 

powered LD vehicles. 

1.3 Engine Developments 

 Progresses in emissions regulations (i.e. from emerging Super Ultra Low 

Emission Vehicle (SULEV) standards in California), evolution of the market and 

upcoming fuel economy requirements are making great pressure on the Diesel 

engine, especially if considering the continuous evolution of advanced gasoline 
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concepts and Hybrid Electric Vehicles (HEV). Diesel engine developers are 

responding to the challenge focusing on the reduction of fuel consumption while 

maintaining good performance; this is mainly achieved through the adoption of 

very sophisticated combustion designs and control on the engine. 

 Thanks to advances in turbocharging and fuel injection technologies, engine 

downsizing is today a very effective method to bring down engine fuel 

consumption without sacrificing engine performance; exhaust gas recirculation 

(EGR) control, two-stage turbocharging, closed-loop combustion control, 

advanced swirl concepts realized through variable valve actuation are other key 

technologies for the achievement of further improvements (Johnson 2009). 

 Figure 1.2 shows the evolution of European emission regulations from Euro 4 

up to Euro 6  in terms of NOx and Particulate Matter emissions; as it can be noticed 

the  achievement of very low emission levels can be attained only through a 

synergic combination of different technologies involving both engine and after-

treatment developments. 

 Engine technology developments have been widely documented in literature 

over the last decades. (Czarnowski 2008) showed that the adoption of low 

pressure loop EGR and series turbocharging can lead to the achievement of both 

low engine-out NOx and fuel consumption levels, as also reported from (Mattes 

2008); more complicated engine layouts were explored by (Joergl 2008) 

(Dorenkamp 2008), with both low and high pressure EGR and dual stage 

turbocharging which can bring engine-out NOx down to Euro 6 levels. 

 From a more scientific point of view, downsized prototype diesel engines are 

reaching very high levels in specific power and Indicated Mean Effective Pressure 

(IMEP) (Köerfer 2008); however, even though downsizing and downspeeding of 

the engine can give undoubted benefits in terms of fuel consumption, an increase 

up to 50% in engine-out NOx could be reached. On production engines, 

downsizing enables great savings in fuel consumption, but appropriate measures 

should be taken in order to compensate for the unavoidable increase of engine-out 

NOx; (Körfer 2009) well described an innovative approach in engine design, where 

a mix of advanced engine technologies such as new swirl concepts, EGR control, 

high pressure electronically controlled injection system and sophisticated 

combustion chamber design, led to a 17% reduction in fuel consumption, with at 

the same time a 50% reduction in engine-out NOx and a 10% reduction in engine-

out PM, when downsizing to a 1.6 liters a Euro 4 midsize passenger car a 2.0 liters 

Diesel engine. Another interesting analysis was carried out by (Tatur 2010), who 

showed that in order to meet US EPA Tier 2 Bin 5 standards a range of different 

technology options should be evaluated. Upper class passenger cars would need 

high pressure injection systems (injection pressure higher than 2000 bar, with 

piezoelectric injectors), 2-stage turbocharging, together with a selective catalytic 
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reduction (SCR) system for NOx control; on the other hand, lower class passenger 

cars could meet the target with 1450-1800 bar injectors, and variable geometry 

turbochargers (VGT), together with a lean NOx traps (LNT) system for NOx 

reduction, while medium-size passenger cars would need a mix of these 

technologies. 

 

Figure 1.2 Road map for NOx and PM emissions reduction, technological steps 

 As far as compression ratio (CR) is concerned, decreasing of diesel engine CR 

could lead to a reduction of frictional losses and NOx, as reported by (Tomoda 

2010); lower compression ratios compromise thermodynamic efficiency and could 

result in poor cold start, especially in cold ambient conditions or at high altitude. 

The issue could be address by redesigning the bowl, adding more holes to the 

injector to get more air entrainment, and increasing the number of pilot injections. 

More recently, similar observations have been showed by (Sakono 2011). 

 On the other hand, advance combustion regimes have been widely 

investigated, with the aim to reduce emission of NOx and PM which are more 

critical for diesel engines; Low Temperature Combustion (LTC) modes, which 

cover a number of advanced combustion strategies, including Homogeneous 

Charge Compression Ignition (HCCI) or Premixed Charge Compression Ignition 

(PCCI), seem to be very promising in this context, but often present as a drawback 

an increase in CO and HC emissions. NOx emissions decrease thanks to the 

significant reduction of thermal NO formation process due to lower combustion 

temperature, while PM emissions decrease thanks to significantly lower soot 

formation rate resulting also from the combustion temperature lowering (Tao 

2005); conversely, higher CO emissions can result from both formation increase 

(under-mixed fuel-rich regions at high loads, over-mixed, fuel-lean regions at low 
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loads (Mueller 2005)) and slower oxidation of CO to CO2 due to lower combustion 

temperature (Bhave 2006), while HC emissions can increase due to several factors 

such as, for instance, long spray penetration, which leads to wall impingement 

and, due to lower combustion peak temperature at low loads, to quenching at 

combustion chamber surfaces, and presence of significant amount of fuel in lean 

zones prone to escaping the burning process and leading to unburned HC 

emissions. 

 In addition to pollutant emissions, it should be taken into account that in 

premixed LTC combustion, the combustion rate is not directly linked to the 

injection rate, which means that combustion cannot be controlled by the injection 

rate; advanced combustion regimes are characterized by a more intense premixed 

portion of the combustion, which present as a drawback the combustion noise. In 

conventional diesel engines combustion noise was decreased significantly thanks 

to the advent of common rail injection systems and the ability to use pilot injection 

in order to reduce the pressure gradient associated with premixed burning; for 

these reasons LTC modes can be operated nowadays only under low load engine 

operating conditions, through a synergic exploitation of the flexibility given by the 

common rail injection system and advanced EGR and turbocharger technologies, 

while still keeping a more conventional combustion regime under medium-high 

loads operating conditions. 

 Finally, in recent years Diesel engines are moving towards hybridization, trying 

to make unique synergies on emissions between diesel engines and electrification, 

that may give them a relative advantage over similar steps with gasoline engines. 

 A detailed analysis has been carried out by (Cisternino 2010), who evaluated a 

second generation mild hybrid architecture on a 1.9 liter Euro 4 engine in 

dynamometer testing; the hybrid system utilized stop-start functionality for idle 

reduction and assist on starts and accelerations, while also enabling energy 

recuperation during decelerations. The analysis showed that fuel consumption can 

drop by 10%; meanwhile, CO emissions fall by 80%, while HC drops 20%, thanks 

to hotter DOC (Diesel Oxidation Catalyst) temperatures which may result of less 

idling. On the other hand NOx is reduced by 15% thanks to milder transients 

phase which do not involve high load operating conditions. 

 A similar analysis was carried out by (Krüger 2010) on a 1.6 liter engine; the 

low-load hybrid assist was found to match very well with the high-load 

efficiencies of diesel engine, which allowed to reach a near uniform fuel 

consumption in urban and highway driving conditions,  with a 20% reduction of 

fuel consumption with respect to conventional diesel engine on certification test 

cycles. Furthermore, also in this case CO and HC emissions were reduced by 75%, 

thanks also to lower engine-out emissions, in addition to faster DOC light-off. 
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1.4 The growing role of biofuels 

The global biofuel industry has been witnessing rapid growth over the past few 

years in the backdrop of depleting fossil fuels and degradation of environmental 

conditions. Since the second half of the 20th century, amid concerns about rising 

oil prices and greenhouse gas emissions from fossil fuels, the term biofuel has 

largely come to mean bioethanol and biodiesel. Therefore, many economies have 

turned their attention towards biofuels. Many countries are also supporting the 

biofuel industry in the form of subsidies and tax incentives which keep the biofuel 

producing companies profitable. Even governments of various countries have 

implemented mandatory biofuel blend with the conventional fuel to increase its 

demand. 

1.4.1 Biofuels in the global energy scene 

 According to official statistics of International Energy Agency (IEA), global 

production of biofuels – liquid and gaseous fuels derived from biomass – has been 

growing steadily over the last decade from 16 billion liters in 2000 to more than 

100 billion liters in 2010 (Figure 1.3). Today, biofuels provide around 3% of total 

road transport fuel globally (on an energy basis) and considerably higher shares 

are achieved in certain countries. Brazil, for instance, met about 23% of its road 

transport fuel demand in 2008 with biofuels. In the United States, the share was 

4% of road transport fuel and in the European Union (EU) around 3% in 2008. 

Figure 1.4 shows the share of biofuels in road transport energy consumption in the 

world. This has encouraged many countries to advance their biofuels 

development plans and increase production targets. It is widely expected that 

globally production of biofuels will continue growing in the coming years. 

 

 
Figure 1.3 Global biofuel production 2000-2010 (source: IEA, 2010a) 
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Figure 1.4 Share of biofuels in road transport energy consumption (March, 2012 

WEC/Enerdata) 

1.4.1.1 The EU biofuels policy and regulatory landscape 

 In a strive to alleviate climate change related environmental degradation as 

well as the increasing scarcity of conventional energy sources, the European 

Commission set in 2003 the basis for the promotion of the use of renewable energy 

in transport. This legislative act was entitled the “Biofuels Directive” as it mainly 

laid down indicative targets for biofuels use in transport in the European Union 

from 2005 up to 2010. Accordingly, Member States had been given the possibility 

to create a detaxation system for biofuels. The Council supported this framework 

and unanimously approved the Energy Taxation Directive.   

 In 2009, the European Commission released the major legislative act that is 

defining the evolution of the European biofuels sector in the next ten years. The 

main provisions of the Renewable Energy Directive are the following: renewable 

energy for all sectors and especially for the transport sector will have to follow 

binding targets for 2020; sustainability criteria are imposed for the first time upon 

a series of products, namely for biofuels; a certification scheme for sustainable 

biofuels will be put in place; a promotion scheme for advanced biofuels pathways 

has been developed.  Binding targets for renewable energy in transport (10% in all 

Member States) and for renewable energy in final energy consumption (20% in all 

Member States) have been set. The Commission proposal confirmed the 

conclusion of the March 2007 Energy Council defining a 20% target for all 

renewable energies and a target of at least 10% for biofuels (meaning that the 

renewables mix used to attain the overall 20% target shall contain at least 10% of 

renewable energy in transport in all Member States).   

1.4.1.2 Energy independence through increased production of biofuels 

 Only a few countries currently enjoy energy independence. Every single 

country throughout the world, however, has the inherent ability to achieve 
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complete and lasting energy independence on a renewable and therefore 

sustainable basis. The Arab Spring, Libyan uprising and Iran’s nuclear issue 

illustrated the continuing possibility of major disruptions in oil supply and the 

security risks involved in maintaining access to foreign oil. Biofuels is a way to 

reduce dependence on foreign oil and increase the nation's overall sustainability. 

This may be accomplished by adopting the simple agricultural approach of 

growing vegetable oil crops for the purpose of refining biodiesel fuels. Demand 

for these biofuels can also give a boost to rural economies, providing support for 

the economy overall. 

1.4.2 Future trend 

 The IEA’s Energy Technology Perspectives (ETP) 2010 BLUE Map Scenario sets 

a target of 50% reduction in energy-related CO2 emissions by 2050 from 2005 

levels. To achieve the projected emission savings in the transport sector, ETP 2010 

projects that sustainably produced biofuels will eventually provide 27% of total 

transport fuel (Figure 1.5). Based on the BLUE Map Scenario, by 2050 biofuel 

demand will reach 32 EJ, or 760 million tons of oil equivalent (Mtoe). 

 Reductions in transport emissions contribute considerably to achieving overall 

BLUE Map targets, accounting for 23% of total energy-related emissions reduction 

by 2050 (IEA, 2010c). The highest reductions are achieved in OECD countries, 

while some non-OECD countries, including India and China, show significant 

increases because of rapidly growing vehicle fleets. Vehicle efficiency 

improvements account for one-third of emissions reduction in the transport sector; 

the use of biofuels is the second-largest contributor, together with electrification of 

the fleet, accounting for 20% emissions saving (Figure 1.6). 

 
Figure 1.5 Global energy use in the transport sector (left) and use of biofuels in different 

transport modes (right) in 2050 (BLUE Map Scenario) 
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Figure 1.6 Contribution of biofuels to GHG emissions reduction in the transport sector 

 In this roadmap, biofuel demand over the next decade is expected to be highest 

in OECD countries, but non-OECD countries will account for 60% of global biofuel 

demand by 2030 and roughly 70% by 2050, with strongest demand projected in 

China, India and Latin America (Figure 1.7). The first commercial advanced 

biofuel projects will be set up in the United States and Europe, as well as in Brazil 

and China, where several pilot and demonstration plants are already operating. 

 

 
Figure 1.7 Biofuel demand by region 2010-50 

1.5 Renewable diesel fuel 

 The term “biodiesel” in legislation is, till now, a general designation, which can 

be divided into different specific renewable diesel products: traditional biodiesel 

(fatty acid methyl ester (FAME)), Hydrotreated vegetable oil (HVO) which is 

sourced by feedstock like FAME while the end-product is like synthetic diesel, 
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synthetic diesel (paraffinic hydrocarbons) produced from any carbon-based 

combustable matter by means of Fischer-Tropsch (FT) synthesis process and 

Dimethyl ether (DME) sourced from methanol or synthesis gas. The following 

sections will be focused on FAME (mainly RME) and HVO which were used in the 

experimental tests. 

1.5.1 Traditional biodiesel (FAME) 

 The major components of vegetable oils and animal fats are triacylglycerols 

(TAG); often also called triglycerides). Chemically, TAG are esters of fatty acids 

(FA) with glycerol. The TAG of vegetable oils and animal fats typically contain 

several different FA. Thus, different FA can be attached to one glycerol backbone. 

 The different FA that are contained in the TAG comprise the FA profile (or FA 

composition) of the vegetable oil or animal fat. Because different FA have different 

physical and chemical properties, the FA profile is probably the most important 

parameter influencing the corresponding properties of a vegetable oil or animal 

fat. 

 To obtain traditional biodiesel, the vegetable oil or animal fat is subjected to a 

chemical reaction termed transesterification. In that reaction, the vegetable oil or 

animal fat is reacted in the presence of a catalyst (usually a base) with an alcohol 

(usually methanol) to give the corresponding alkyl esters (or for methanol, the 

methyl esters) of the FA mixture that is found in the parent vegetable oil or animal 

fat.  Figure 1.8 depicts the transesterification reaction. 

 

 
Figure 1.8 The transesterification reaction 

 Biodiesel can be produced from a great variety of feedstocks. These feedstocks 

include most common vegetable oils (e.g., soybean, cottonseed, palm, peanut,  

rapeseed/canola, sunflower, safflower, coconut, jatropha) and animal fats (usually 

tallow) as well as waste oils (e.g., used frying oils). The choice of feedstock 
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depends largely on geography. Depending on the origin and quality of the feed-

stock, changes to the production process may be necessary. 

 

1.5.2 Hydrotreated vegetable oil (HVO) 

 Hydrotreating of vegetable oils (HVO) and animal fats is a process which is 

based on oil refining know-how and is used for the production of biofuels for 

diesel engines. In the process (Figure 1.9), hydrogen is used to remove oxygen 

from the triglyceride vegetable oil molecules and to split the triglyceride into three 

separate chains thus creating hydrocarbons which are similar to existing diesel 

fuel components. This allows the blending in any desired ratio without any 

concerns regarding quality (Mikkonen s.d.). The end product is clean paraffinic 

diesel fuel. 

 

 
Figure 1.9 HVO production process 

 HVO is a mixture of straight chain and branched paraffins – the simplest type 

of hydrocarbon molecules from the point of view of clean and complete 

combustion. Typical carbon numbers are C15  ... C18. Paraffins exist also in fossil 

diesel fuels which also contain significant amounts of aromatics and naphthenics. 

Aromatics are not favorable for clean combustion. HVO is practically free of 

aromatics and its composition is quite similar to GTL (Gas To Liquid) and BTL 

(Biomass To Liquid) diesel fuels made by Fischer Tropsch synthesis from natural 

gas and gasified biomass. 
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2 Chapter 2 – Experimental 

Apparatus & Test Procedures 

2.1 Introduction 

 The experimental activity carried out within this thesis, as previously described 

in the Introduction Chapter, is focused on the evaluation of different biofuels on full 

load performance and part load emissions and on the characterization of soot 

particle number distributions from diesel engines; the experimental setup and the 

test procedure adopted for each of the abovementioned activities varies 

significantly depending on the target of the single activity, due to the specificity of 

the covered topics. As an example, the experimental characterization of particle 

number distributions required the usage of a specific instrumentation for the 

sampling, conditioning and measuring of the exhaust gas flow. 

 Moreover, as it is well known from literature and as it has been observed 

during tests, the operating parameters of some of the used measuring devices (i.e. 

the dilution ratio of a dilution system for particle number distribution analysis) 

may have a significant effect on the raw result obtained through experiments; 

consequently it was important to take into consideration those effects and try to 

modify, wherever possible, the experimental setup in order to avoid undesirable 

results. For these reasons it has been necessary to define, prior to the execution of 

tests, the right experimental setup and the right test procedure to be adopted in 

correlation with the final target of each research activity. 
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 This chapter presents the experimental apparatus (i.e. type of engine, type of 

measuring devices, etc.) which was setup; for each of the referred above activities 

the choice of the experimental setup and a description of the operating principle of 

sampling and measuring devices will be given, as well as a discussion on the main 

operating parameters. Finally, each test procedure adopted will be presented. 

2.2 Evaluated Fuels 

2.2.1 Biodiesel feedstock comparison 

 In order to evaluate the effects that different feedstocks may have on engines, 

in terms of both full load performance and engine out emissions, two different 

first generation biodiesels sourced from rapeseed and Jatropha Curcas oils were 

investigated during the first part of the study. Therefore experimental tests were 

initially performed using the five following fuels:  

 Diesel: standard Ultra Low Sulphur Diesel (ULSD) fuel compliant with EN590 

(sulphur < 10 mg/kg); 

 RME (B30): 30% vol. blend of Rapeseed Methyl Ester (RME) biodiesel with 70% 

diesel; 

 JME (B30): 30% vol. blend of Jatropha Methyl Ester (JME) biodiesel with 70% 

diesel; 

 RME (B100): neat RME biodiesel; 

 JME (B100): neat JME biodiesel. 

 

 The properties of pure diesel and biodiesel fuels used are listed in Table 2.1, 

while the composition of neat biodiesel fuels, as well as the cetane numbers of 

each component as reported in (Dieselnet, “Appendix: Biodiesel Composition and 

Properties of Components” 2009), are listed in Table 2.2. It should be noticed that, 

as far as neat JME is concerned, the higher content of high cetane saturated fatty 

acids components, such as palmitic and stearic acids overcomes the effect of 

medium-low cetane unsaturated fatty acids compounds, such as oleic and linoleic 

acids, thus leading to a considerably higher cetane number for neat JME respect to 

neat RME.   

 As it is well known from literature, see for instance (Postrioti 2004), the higher 

density and viscosity of neat biodiesel may lead to a significant increase of spray 

penetration, which determines higher risks of fuel spray impingement on liner 

and oil dilution. In addition, the boiling curve of biodiesel, which usually shows a 

very narrow distillation temperature range (generally in the range between 330 

and 360°C, see Table 2.1 and Figure 2.1), also affects the residence time of fuel in 
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the oil, with negative consequences in terms of oil dilution behavior. The higher 

density and viscosity of biodiesel may have a negative impact on injection flow 

rate, causing a noticeable decrease of injected quantities, especially for short 

injector actuations (i.e. for pilot injections) (Millo 2013), thus leading to a 

significant increase of the premixed portion of the main combustion, with negative 

effects in terms of CO and HC emissions.  

 Although not all fuel characteristics can be scaled on the basis of the blending 

percentage, the neat fuels analysis was preferred during this first part of the 

research project, in order to gather more accurate information concerning biofuel 

characteristics and to allow at least rough estimates also for different blending 

ratios. Even if the oxygen content of the biodiesel reduces both its stoichiometric 

ratio A/Fst (13 instead of 14.5 of diesel, with a 11% reduction) and its Lower 

Heating Value (LHV) (37.4 MJ/kg instead of 43 MJ/kg of diesel, with a 13% 

reduction), the LHV/A/Fst ratio is more closely comparable for biodiesel and diesel 

(with differences lower than 4%), thus highlighting the potential for recovering 

engine performance at full load by means of a proper ECU recalibration, since the 

maximum brake mean effective pressure (BMEP) which can be achieved at a given 

relative air/fuel ratio λ is proportional to the LHV/A/Fst ratio. 

Table 2.1 Properties of neat fuels 

Properties Diesel RME (B100) JME (B100) 

Carbon content C [w%] 86.5 79.6 79.7 

Hydrogen content H [w%] 13.5 12.1 12.2 

Oxygen content O [w%] - 8.3 8.1 

Distillation Temperatures  

Initial Boiling Point [°C] 171.2  154.5  152.4 

10% [°C] 204.0  346.7  343.0 

50% [°C] 274.8  349.8  348.0 

90% [°C] 342.3  354.6  352.9 

Final Boiling Point [°C] 366.9  360.0  353.4 

Sulphur content S [ppm] 

(EN ISO 14596-98) 
< 10 < 10 <10 

Stoichiometric ratio (A/F)st 14.4 13.0  13.0 

Net heating value, LHV [kJ/kg] 

(ASTM D 240-00) 
42960 37365 37455 

Cetane Number 51.8 51.5 56.6 
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(ISO 5165-98) 

Density at 15 °C [kg/m3] 840 883 880 

Viscosity at 20 °C [mm2/s] 3.14 7.09 7 

LHV/(A/F)st [MJ/kg] 2.99 2.88 2.88 

Table 2.2 Composition of neat fuels 

Fatty Acid Formula Cetane 

Number 

RME (B100) 

[%] 

JME (B100) 

[%] 

Methyl Oleate C19H36O2 54 56.4 41.2 

Methyl Linoleate C19H34O2 43 23.5 33.7 

Methyl Palmitate C17H34O2 74 9.0 15.6 

Methyl Linolenate C19H32O2 23 3.5 n.d. 

Methyl Elaidate C19H36O2 - 2.9 1.3 

Methyl Stearate C19H38O2 81 2.4 6.8 

Others  - 2.3 1.4 

 

 

 
Figure 2.1 Distillation curves of tested fuels 
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2.2.2 Fatty Acid Methyl Esters and Hydrotreated Vegetable Oil 

comparison 

 Two different types of biodiesels were used during the second portion of the 

study: a first generation biodiesel and a hydrotreated vegetable oil, both sourced 

from rapeseed. The analysis was focused, in first place, on the characterization of 

the effects of high percentage biodiesel blends on full load performance and 

engine out emissions. A special care was given on the evaluation of the impact 

that different fuel characteristics may have on combustion process as well. Tests 

were performed using the three following fuels:  

 Diesel: standard Ultra Low Sulphur Diesel (ULSD) fuel compliant with EN590 

(sulphur < 10 mg/kg); 

 RME (B30): 30% vol. blend of Rapeseed Methyl Ester (RME) biodiesel with 70% 

diesel; 

 HVO (B30): 30% vol. blend of Hydrotreated Vegetable Oil (HVO) with 70% 

diesel. 

 

 The main properties of reference diesel and of the two biofuels blends are listed 

in Table 2.3, while distillation curves and viscosity vs. temperature trends are 

shown in Figure 2.2 and Figure 2.3, respectively.  

 It can immediately be noted that the HVO blend shows distillation and 

viscosity characteristics closer to those of the diesel fuel in comparison with the 

RME blend, which on the contrary shows a significant shift towards fractions with 

higher boiling temperatures and towards higher viscosity levels. HVO blend 

properties, which are closer to those of diesel, ensure that the main fuel spray 

characteristics are almost the same of diesel fuel sprays, as also shown by 

(Hulkkonen 2011) and (Sugiyama 2011). 

 As far as the energy content of the fuels is concerned, the oxygen content of the 

RME blend reduces its Lower Heating Value to 41.2 MJ/kg instead of 42.8 MJ/kg of 

diesel, with a 4% loss. Moreover, since the RME blend density is about 2% higher 

than diesel density and because, if the viscosity and bulk modulus effects on the 

injection rate could be neglected on first approximation, the amount of fuel 

injected should scale as the square root of the pressure drop across the injector 

nozzle multiplied by the fuel density, the injected quantities with the RME blend 

should be about 1% higher than diesel, for the same injection pressure and 

duration. This leads to an energy content introduced into the cylinder that should 

be expected to be about 3% lower with the RME blend in comparison with diesel. 

Nevertheless results reported in (Millo 2013) suggested that the hypothesis of a 

change of fuel injected fuel mass proportional to the square root of fuel density, 
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cannot be acceptable for RME B30, especially under low injection pressures and 

short energizing times operations. 

 For the HVO blend, the LHV is on the contrary slightly higher than that of 

diesel fuel (43.3 MJ/kg instead of 42.8 MJ/kg of diesel, with a 1% difference), but 

the density is about 3% lower, thus leading to an energy content introduced into 

the cylinder roughly 2.5% lower, assuming again on first approximation that, for 

the same injection pressure and duration, the injected quantity depend on fuel 

density only. However, (Sugiyama 2011) reported a significant increase of the 

injected quantity (up to 5%) when operating the engine with neat HVO, 

attributing this effect to the lower bulk modulus of HVO. Moreover, if the 

LHV/(A/F)st ratio is considered, all the three fuels show identical values, thus 

suggesting the potential for recovering engine performance at full load with 

biofuel blends by means of a proper ECU re-calibration as has been already 

highlighted in paragraph 2.2.1.  

 As far as fuel properties impacting on combustion and emissions are 

concerned, the lower aromatic contents of RME and HVO blends highlight the 

potential of reducing smoke and PM emissions, with further additional benefits 

expected for RME, due to the better local oxygen availability during the 

combustion process which is assured by the oxygen content of the fuel blend. 

 The significantly higher cetane number of the HVO blend should lead to a 

decrease of unburned hydrocarbons (HC) and carbon monoxide (CO) emissions, 

although the closed loop combustion control implemented in the ECU is expected 

to minimize combustion phasing shifts due to different fuel ignition qualities, and 

therefore to minimize fuel conversion efficiency changes as well. 

Table 2.3 Main fuel properties 

Properties Diesel RME (B30) HVO (B30) 

Carbon content C [w%] 86.5 83.4 85.4 

Hydrogen content H [w%] 13.5 13.2 14.1 

Oxygen content O [w%] - 3.4 - 

Total Aromatics [w%] 25.7 19.2 16.1 

Distillation Temperatures  

Initial Boiling Point [°C] 171.5 185 164.5 

10% [°C] 202.4 223 204.3 

50% [°C] 265.6 302.2 273.2 

90% [°C] 335.8 340.2 317.2 

Final Boiling Point [°C] 364.6 358.4 349.2 
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Sulphur content S [ppm] 

(EN ISO 14596-98) 
< 10 < 10 <10 

Stoichiometric ratio (A/F)st 14.5 13.98  14.66 

Net heating value, LHV [kJ/kg] 

(ASTM D 240-00) 
42840 41240 43290 

Cetane Number 

(ISO 5165-98) 
51.8 51.5 56.6 

Density at 15 °C [kg/m3] 8837.5 853 812.2 

Viscosity at 40 °C [mm2/s] 2.681 3.183 2.545 

LHV/(A/F)st [MJ/kg] 2.95 2.95 2.95 

Oxidation Stability [hours] 

(EN 15751:2009) 
- 9.9 27.4 

Surface Tension at 20 °C, 

[mN/m] 

30.4 33.1 28 

 

 
Figure 2.2 Distillation curves for the diesel reference fuel and for the RME and HVO B30 

blends 
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Figure 2.3 Viscosity vs. temperature for the diesel reference fuel and for the RME and HVO 

B30 blends 

2.3 Engine and test rig description 

 Since the biodiesel usage appears to be particularly challenging in small 

displacement engines, due to the high risks of lube dilution caused by cylinder 

liner fuel jet impingement occurring during post-injections used for Diesel 

Particulate Filter (DPF) regeneration and due to the increased risk of injector 

nozzle coking in small diameter nozzle holes, the analysis has been carried out on 

two passenger cars Diesel engines, the main characteristics of which are listed in 

Table 2.4. The engines had similar hardware solutions: both engines are modern 

Euro 5 small displacement turbocharged common-rail DI diesel engines and are of 

the smallest engines on the European market if considering the unit 

displacements. As far as the Original Equipment Manufacturer (OEM) after-

treatment is concerned, the engines are equipped with a close-coupled after-

treatment system, featuring a DOC and a catalyzed DPF integrated in a single 

canning, the main characteristics of which are shown in Table 2.5. 

 Investigation conducted with both engines was carried out on the same test rig; 

a scheme of the chosen test bench is shown in Figure 2.4. As the figure depicts, the 

engine was connected to an eddy current dynamometer, while engine fuel 

consumption was measured by means of an AVL 733S gravimetric fuel meter; 

exhaust gases were sampled at the engine outlet and measured through a Fisher-

Rosemount NGA-2000 gas analyzer, while an AVL 415S smoke meter was used for 

the measurement of filter smoke number (FSN) for repeatability checks. Due to the 

target of the experimental investigation, there was no need for running tests over 
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transient operating conditions (i.e. simulating driving cycles such as NEDC); for 

this reason, an eddy current dynamometer has been chosen, which enabled the 

operation of the engines under steady-state conditions. 

 During tests, all the engine control parameters were controlled by a PC that 

was directly connected to the engine ECU: the test engines were also equipped 

with a closed-loop combustion control capable of maintaining the 50% of mass 

fraction burned (MFB50) crank angle at its optimal position under part load 

operating conditions. Moreover, the piezoresistive pressure transducers integrated 

in the glow plugs used for the closed loop combustion control were also used for 

the measurement of the in-cylinder pressure. The output from these transducers 

was first filtered by a low-pass filter to reduce high frequency noise and to prevent 

aliasing errors and signal distortion and then finally sampled by means of a 12 bit 

high-speed multichannel data acquisition board (National Instruments DAQCard-

Al-16E4), coupled to a high resolution (0.4°) crank-angle encoder to ensure proper 

timing of the sampled data. At each operating condition 100 consecutive engine 

cycles were recorded to obtain a wide statistical sample. Data acquisition and 

post-processing were performed by means of ICE Analyzer a suitable developed 

program for internal combustion engine indicating analysis (Badami 2001). 

 

 
Figure 2.4 Scheme of the experimental test rig 
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Table 2.4 Main characteristics of the engines under test 

 
Biodiesel feedstock 

comparison 

FAME and HVO 

comparison 

Engine Type Diesel, 4 stroke, EU5 Diesel, 4 stroke, EU5 

Displacement 1248 cm
3
 1248 cm

3
 

Cylinders arrangement 4 in line 4 in line 

Bore x Stroke 69.6 mm x 82 mm 69.6 mm x 82 mm 

Compression ratio 16.8:1 16.8:1 

Air Management System 

Turbocharger with WG; 

Cooled High Pressure 

EGR 

Turbocharger with VGT; 

Cooled High Pressure 

EGR 

Fuel injection system Common Rail Common Rail 

Maximum Power 55 kW @ 4000 rpm 72 kW @ 3500 rpm 

Maximum Torque 200 Nm @ 2000 rpm 230 Nm @ 2250 rpm 

Table 2.5 Main characteristics of the after-treatment system 

 
DOC DPF 

Substrate volume [dm
3
] 1.1 2.6 

Substrate length [mm] 76.2 177.8 

Wall Thickness [mil] 4.5 10 

2.4 Full load performance and part load emissions 

characterization 

2.4.1 Test procedure 

 Experiments were initially carried out evaluating the effects of biodiesel blends 

on engine performance at full load: it is well known from (Millo 2011, Millo 2010) 

that when running the engine with biodiesel without any modification in ECU 

calibration, the torque output is reduced due to the lower LHV of the fuel blend 

(approximately  -13% for neat biofuels and -4% for B30 blends on average). 

 Due to this performance gap, tests were subsequently performed running the 

engine with a specifically adjusted ECU calibration (which will be hereafter 
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referred to as “Specific Calibration”), obtained by changing properly the injected 

quantity up to reach the same torque or the same smoke level measured under 

diesel operation (whichever occurring first), so to more completely evaluate the 

performance potential of biodiesel blends. 

 Moreover, the effects on engine emissions and fuel consumption of biodiesel 

feedstock first and biodiesel typology afterwards, were also evaluated at different 

part load operating points, listed in Table 2.6, selected after a preliminary 

numerical simulation as representative of the New European Driving Cycle. It 

should be noticed that the chosen engines were adopted on different vehicles with 

different road loads and equipped with different gearboxes aimed to comply 

different mission profiles, thus explaining the differences among the operating 

points which were tested with each engine as it is shown in Table 2.6. 

  Since the change in fuel from diesel to biofuel blends may lead to a reduction in 

the torque output due to the lower energy content of the injected fuel blend, the 

same BMEP target was obtained by means of an adjustment of the energizing time 

of the main injection while keeping unchanged the pedal position, and thus the 

operating point position on the engine calibration map. It should be pointed out 

that in this way all the main engine control parameters (e.g. injection pressure and 

timing, EGR rate, etc.) are not changed from the standard calibration, and 

therefore the biofuel potentialities in terms of emissions reductions may not be 

fully exploited. 

 Finally, further experimental investigations were carried out to fully exploit the 

benefits that could be obtained for instance by adjusting the EGR rates in order to 

take into account the different biofuel blends Soot-BSNOx and BSCO-BSNOx trade-

offs: these effects were therefore evaluated for each operating point by varying the 

EGR rate from 0% to the maximum achievable value corresponding to the fully 

open EGR valve position. 

Table 2.6 Part load operating points 

 Biodiesel feedstock comparison FAME and HVO comparison 

Operating 

Point 
Speed [rpm] BMEP [bar] Speed [rpm] BMEP [bar] 

1 1500 2 1000 4 

2 1500 5 1500 2 

3 2000 2 1500 5 

4 2000 5 1500 8 

5 2500 5 2000 5 
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6 2500 8 2000 8 

7 - - 2500 8 

2.5 Analysis of the sensitivity of the different fuels to 

engine calibration 

 This type of analysis was carried out only when fuelling the engine with RME 

and HVO blends. Objective of this activity was to evaluate that the sensitivity of  

the different fuels to different calibration settings, such as for instance injection 

timing. 

2.5.1 Test procedure 

 Tests were carried out at low load, low speed operating point (1500 [rpm] @ 2 

[bar] BMEP) running the engine with a specifically adjusted injection pattern 

featuring a single injection event (main injection) with and without EGR.  

 The accelerator pedal position, which was used with diesel fuel, was used even 

when the engine was ran with biofuels. This approach was chosen in order to 

maintain unchanged the injection duration, when different fuels were used, thus 

focusing the attention on the effects of the timing only, and of the sensitivity to the 

timing of the different fuels. A range of start of injections from 3 [deg BTDC] up 

to 10 [deg BTDC], with a step of 1 [deg], was explored (see Table 2.7). Figure 2.5 

depicts the injection pattern used for this kind of analysis. 

Table 2.7 Test matrix of start of injection (SOI) sweep tests 

Operating Point Start of Injection (SoI) [deg BTDC] 

1500 [rpm] @ 2 [bar] BMEP  

(with and without EGR) 

2.7 

3.7 

4.7 

5.7 (cal.point) 

6.7 

7.7 

8.7 

9.7 
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Figure 2.5 Sweep of the start of the main injection 

2.6 PM gravimetric analysis 

 Gravimetric as well as thermogravimetric analysis of PM, (section 2.7) and 

mutagenic investigation (section 2.9) of PM were carried out only with RME and 

HVO blends. Objective of this activity was to evaluate the effects that different fuel 

characteristics may have on PM emitted from the engine. 
 

2.6.1 Experimental setup 

 An AVL SPC-472 partial flow smart sampler was used to collect PM on filters 

under different engine operating conditions. This instrument is composed of: 

 a control cabinet; 

 a dilution tunnel and a filter rack. 

 

 A scheme of a partial flow dilution tunnel is shown in Figure 2.6. The sampled 

exhaust gases are diluted with compressed air provided by the test cell supply 

system after undergoing a complete conditioning in the control cabinet. The 

dilution starts at the mixer at the tunnel entrance and continues throughout the 

tunnel under turbulent flow conditions. The dilution tunnel has a diameter of 

about 30 mm and it is about 635 mm long. After the tunnel, the diluted exhaust 

gas stream is led through the analysis filter. The flows of both exhaust gases and 

dilution air are taken under control by the control cabinet.  

 As far as the smart sampler operating parameters are concerned, the dilution 

tunnel was kept at about 190°C during the whole test campaign in order to obtain 
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a temperature upstream the analysis filter of about 50°C. Two different dilution 

ratios were used depending on the tested  operating conditions.  

 PM sampled at engine exhaust was collected on PALLFLEX Membrane 

TISSUQUARTZ 2500QAT-UP filters of 70mm of diameter suitable for exposure in 

aggressive environments characterized by high temperatures (up to 1093°C). 

Therefore, there was no detectable weight loss to be attributed to filters when 

thermogravimetric tests were performed. PM mass collected on analysis filters 

was measured by means of a Mettler Toledo UMX2 microbalance with 0.1 

micrograms of resolution and a maximum load of 210 mg. 

 

 
Figure 2.6 Partial flow dilution tunnel scheme 

2.6.2 Test procedure 

 In order to highlight the effects of engine load on PM in terms of both mass and 

chemical composition (see next paragraph 2.7) a sweep of engine loads was 

performed. Three different levels of load were chosen (Table 2.8) while the engine 

was running at 1500 rpm. When biofuels were used, tests were carried out 

adopting the same specifically adjusted calibration used during part load emission 

characterization (see paragraph 2.4.1). 

 The main operating parameters adopted during tests, such as dilution ratio and 

diluted exhaust gases temperature upstream the filter are listed in Table 2.9. 

During tests, exhaust gases were sampled downstream of the turbine at engine out 

position. At each operating point at least three filters were loaded for repeatability 

check. In more detail, a dilution ratio of 9 was adopted at medium and high loads 

while a volume of 0.1 Nm3 of diluted exhaust gases was flowed through the filter. 

When the low load operating point was tested, a dilution ratio of 5 was adopted, 

see figure 21
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instead, in order to avoid a prolonged exposure of the analysis filter at the exhaust 

stream. At low load operating point only, filters were fed with about 0.2 Nm3 of 

diluted exhaust gases, thus allowing to load a noticeable PM mass on the filters 

even though the engine was running at conditions characterized by low PM 

emissions. 

 In order to increase tests reproducibility, filters were weighted after being 

exposed at controlled atmosphere (environment temperature 20 ±1°C and 50±5% 

of relative humidity) for 48 h according to (EN 14907:2005 s.d.) standard. 

Table 2.8: Gravimetric analysis operating points 

FAME and HVO assessment 

Operating Point Speed [rpm] BMEP [bar] 

2 1500 2 

3 1500 5 

4 1500 8 

Table 2.9 Test conditions and parameters used during gravimetric tests 

 
 

 

 

 

 

 

T filter Drop Pres. PM Loaded T filter Drop Pres. PM Loaded T filter Drop Pres. PM Loaded

[°C] [mbar] [mg] @ 48h [°C] [mbar] [mg] @ 48h [°C] [mbar] [mg] @ 48h

1 51.46 5.93 5 3.841 1 51.26 6.21 5 5.217 1 50.96 11.16 5 2.76

2 50.56 5.37 5 4.229 2 50.56 5.72 5 5.675 2 49.95 9.89 5 3.012

3 50.05 5.53 5 4.639 3 50.66 5.60 5 6.038 3 49.95 8.62 5 3.046

4 50.05 5.3 5 4.856 4 50.96 4.73 5 6.222 4 49.85 8.55 5 2.932

T filter Drop Pres. PM Loaded T filter Drop Pres. PM Loaded T filter Drop Pres. PM Loaded

[°C] [mbar] [mg] @ 48h [°C] [mbar] [mg] @ 48h [°C] [mbar] [mg] @ 48h

1 49.95 321.41 9 7.643 1 51.46 224.66 9 6.531 1 50.96 286.52 9 6.439

2 50.05 348.46 9 8.251 2 50.96 221.34 9 6.278 2 50.05 295.49 9 6.677

3 49.95 354.66 9 8.632 3 50.46 225.22 9 6.288 3 49.65 305.03 9 6.815

4 49.85 361.46 9 8.572 4 49.85 316.33 9 6.991

T filter Drop Pres. PM Loaded

T filter Drop Pres. PM Loaded [°C] [mbar] [mg] @ 48h T filter Drop Pres. PM Loaded

[°C] [mbar] [mg] @ 48h 1 50.16 31.29 9 2.325 [°C] [mbar] [mg] @ 48h

1 50.36 74.44 9 2.838 2 50.26 44 9 2.299 1 50.05 62.22 9 2.41

2 50.46 74.51 9 2.6 3 50.36 31.50 9 2.098 2 50.76 63.42 9 2.445

3 50.56 77.55 9 2.715 3 50.86 68.22 9 2.538

4 50.66 82 9 2.723 4 51.16 66.67 9 2.6

Filter # DR

DR

DRFilter #

DIESEL - 1500 [rpm] @ 2 [bar] BMEP

DIESEL - 1500 [rpm] @ 5 [bar] BMEP

Filter #

DIESEL - 1500 [rpm] @ 8 [bar] BMEP

RME (B30) - 1500 [rpm] @ 8 [bar] BMEP

Filter # DR

RME (B30) - 1500 [rpm] @ 2 [bar] BMEP

Filter # DR

RME (B30) - 1500 [rpm] @ 5 [bar] BMEP

Filter # DR

Filter # DR

HVO (B30) - 1500 [rpm] @ 2 [bar] BMEP

Filter # DR

HVO (B30) - 1500 [rpm] @ 5 [bar] BMEP

Filter # DR

HVO (B30) - 1500 [rpm] @ 8 [bar] BMEP
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2.7 PM chemical composition (TGA) analysis 

 The analysis on the chemical composition of PM was executed on the same 

filters which were loaded during analysis discussed in section 2.6.  

2.7.1 Experimental setup 

 TGA was carried out by means of a TA Q50 thermogravimetric analyzer 

provided by TA Instruments at Bureau Veritas Laboratories. The 

thermogravimetric analyzer measures the amount and rate of weight change in 

the sample as a function of increasing temperature in a controlled atmosphere (for 

more details about test procedure see 2.7.2 section). Data collected by sample 

weight changes provide precious information concerning the chemical 

composition of PM.  

 As far as the operating parameters are concerned, the analyzer was calibrated 

in terms of both mass and temperature before test execution.  In more detail, since 

precise transition temperatures are essential during TGA, during temperature 

calibration the Curie temperature of nickel element was checked. Moreover a 

sample pan of alumina was chosen for tests. 

2.7.2 TGA test procedure 

 At least one filter for each operating point listed in paragraph 2.6 was analyzed. 

Samples after being mounted on TGA analyzer, were exposed at an inert 

atmosphere composed of nitrogen and left to stabilize at room temperature (25°C); 

then were heated up to 225°C. The mass loss which was detected during this 

phase could be linked to water and volatile organic compounds vaporization (see 

Figure 2.7). Subsequently, samples temperature was risen up to 800°C and 

stabilized at this conditions for 5min in order to desorb most of the volatile 

fraction of PM. In this case the mass depletion gave information about 

vaporization and thermolysis of medium and high molecular weight organic 

compounds (see Figure 2.7) In both cases filters were exposed to a nitrogen flow of 

90ml/min and a temperature rate of 10°C/min was used. Afterwards, the inert 

atmosphere was replaced by an oxidant one (air) and temperature was risen up to 

1000°C. In more detail an air flow of 90ml/min and a temperature rate of 10°C/min 

were used. In this phase due to the presence of air, soot was oxidized to form 

gaseous carbon oxides while only mineral compounds remained on the pan at the 

end of the test (Figure 2.7). Samples weight was continuously monitored 

throughout the test. Table 2.10 TGA test procedure summarizes the above described 

procedure.  
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Table 2.10 TGA test procedure 

Test phases  Atmosphere  Mass loss linked to: 

Room temperature 25°C Nitrogen no mass loss was detected 

Temperature increase: 

25°C to 225°C (@ 10°C/min) 

Nitrogen 

(@ 90mL/min) 

vaporization of water and low 

boiling compounds 

Temperature increase: 

225°C to 800°C (@ 10°C/min) 

Nitrogen 

(@ 90mL/min) 

vaporization of high boiling 

compounds 

Temperature increase: 

800°C to 1000°C (@ 10°C/min) 

Air 

(@ 90mL/min) 
oxidation of PM soot fraction 

 

 
Figure 2.7 Sample mass loss as a function of sample temperature 

2.8 PM particles number and size distribution analysis 

2.8.1 Experimental setup 

2.8.1.1 Measuring system 

 A TSI model 3080 scanning mobility particle sizer (SMPS) was used to record 

particle size distributions for exhaust soot particles under different engine 

operating conditions. This instrument is composed of: 
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 an electrostatic classifier TSI 3080 with a Kr-85 Bipolar Charger using Kripton 

as ion source; 

 an inlet impactor; 

 a differential mobility analyzer TSI 3081; 

 a condensation particle counter TSI 3025A. 

 

 A detailed description of the operating principle of a measuring device similar 

to the one here adopted is given by (De Filippo 2009). 

 As far as the SMPS operating parameters are concerned, the polydisperse 

aerosol flow was set to 1.5 lpm, with a sheath flow at 15 lpm; with a 0.071 cm 

impactor nozzle, it was possible to cover a broad range of particle diameters from 

6 to 225 nm, namely those within the Fine Particles classification (EPA 2004). These 

classes of nano-particles are the most significant because they include both the 

Ultrafine Particles and the smaller range of the Accumulation Mode which represent 

the typical classes of nano-particles emitted from automotive diesel engines 

(Kittelson 1998). The size distributions were corrected for multiple-charged 

particles produced in the neutralizer within the SMPS. 

2.8.1.2 Sampling system 

 Exhaust gas was sampled from engine outlet (i.e. downstream of the turbine). 

The sampling system consists of two dilution stages and a sampling line, named 

Line A in Figure 2.8. This line (1m long, 4 mm inner diameter) consists of an 

heated and insulated stainless steel pipe which connects the sampling point to the 

first dilution stage (first dilutor of a DEKATI DI-1000 package) heated at 250°C to 

reduce nucleation (I. S. Abdul-Khalek 1998). 

 Exhaust gas was sampled into the primary ejector pump at approximately 5 

lpm leading to ~ 0.15s residence time which is sufficiently short to minimize 

diffusion losses and produce a minimum increase in mean particle diameter from 

coagulation, according to (Maricq 2010). In the first dilution stage filtered 

compressed air heated to 150 °C flows through an orifice placed on the sample 

flow axis as shown in Figure 2.8. In order to obtain a higher dilution ratio (DR), a 

second dilution stage was used (second dilutor of a DEKATI DI-1000 package); the 

second stage is not heated and it is directly connected to the TSI 3080 SMPS by 

means of a flexible pipe (7.5 m long), which length could not be reduced due to 

safety reasons and room constraints. Each dilution stage nominally provides a DR 

of 8, which leads to a total DR of 64, which should likely reduce particle 

agglomeration according to (Abdul Khalek 1998) and (Abdul Khalek 1999), 

(Lüders 1998). 
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 The significant length of the flexible pipe upstream to the SMPS could 

undoubtedly affect the measured number distributions, especially in the range of 

the smallest nanoparticles, typically referred to as the “Nucleation Mode”. Two sets 

of data were recorded in order to evaluate the effect of the transfer line length on 

the measured size distributions. The engine operating conditions were kept equal 

for both sets of data, namely with the engine running at 2000 rpm @ 5 bar BMEP. 

 For both  sets of data, the SMPS 3080 was equipped with a 0.457 mm impactor 

which allowed the coverage of the size range of particle diameters from 15 to 660 

nm. The only difference between the two sets of the data was the length of the 

pipe that connected the second stage diluter with the inlet of the SMPS: a longer 

(about 7.5 m long) and a shorter (about 1 m long) transfer line. 

 

 

 
Figure 2.8 Two stage dilution system (top); scheme of the first stage dilutor (bottom) 

 Figure 2.9 displays the comparison between number and mass size 

distributions measured with the longer (yellow symbols) and the shorter transfer 

line (black symbols). In general, the two number distributions do not differ 

qualitatively (peak diameter at about 50 nm) and quantitatively (max peak 

number is ~ 6*107 particle/cm3). However, it is possible to observe a slight decrease 

in PN concentration for particles smaller than 40 nm. Specifically this reduction is 

significant at sizes with d<20nm (>60%) but it reduces below 15% at sizes d=40 nm. 

Since for safety reasons and room constraints the shorter transfer line could not be 

used for the whole experimental activity, the long transfer line had to be selected, 

even though it affects particle concentration below 40 nm, as shown in Figure 2.9. 
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However, it is worth noticing that the results presented in this work, which 

basically are comparisons between different engine operating conditions or fuels, 

were obtained with the same experimental set-up and are therefore comparable 

relatively to each other; however, the comparison of the presented results with 

other studies reported in literature should be carried out carefully, due to 

differences that may be caused by the different sampling systems. 

 
Figure 2.9 Particle number and size distribution comparison for long and short transfer line, 

2000 rpm and 5 bar BMEP engine operating point 

2.8.2 Test procedure 

 Particle number and size distribution were evaluated at different engine 

operating conditions, typically under part load under normal mode fuelling the 

engine with diesel and different biofuels blends, in order to highlight the impact 

of the different fuels on PM characteristics.  

 In Table 2.11 is listed the test matrix, in more detail, during the second portion 

of this study PM number distributions were explored by sweeping engine load 

from 2 bar BMEP up to 8 bar while keeping constant the engine speed (1500 rpm). 

Due to the fact that the adoption of biofuel blends may lead to a reduction in the 

torque output of the engine because of the lower energy content of the injected 

fuel blend, the same BMEP target among fuels was obtained by means of a 
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specifically adjusted ECU calibration as it has been already highlighted in 

paragraph 2.4.1. 

Table 2.11 Particle size and number distribution test matrix 

 Biodiesel feedstock comparison FAME and HVO assessment 

Operating 

Point 
Speed [rpm] BMEP [bar] Speed [rpm] BMEP [bar] 

1 1500 2 1500 2 

2 2000 5 1500 5 

3 2500 8 1500 8 

2.9 Mutagenicity analysis of PM emissions 

2.9.1 Test procedure 

 Mutagenicity tests were carried out on PM samples collected during tests 

discussed in section 2.6 when the engine was ran at low load and low speed 

operating conditions (1500 rpm @ 2 bar BMEP) and fuelled with conventional 

diesel, RME B30 and HVO B30. Table 2.12 lists the PM mass collected on filters as 

well as the volume of diluted exhaust gases with was flowed through each filter.  

Table 2.12 Samples specifications 

Fuel  PM mass [mg]  Diluted exhaust gases volume [l] 

ULSD 4.69 216.77 

RME 6.13 214.03 

HVO 3.05 213.51 

 

 Samples were extracted firstly by means of sonication in dichloromethane and 

subsequently in a Soxhlet apparatus. The solvents once unified were dried and 

then redissolved in DMSO (dimethylsulfoxide), immediately before Ames tests 

execution. 

 Mutagenicity analysis was performed employing the standard test protocol 

(Standard Methods 2005). In more detail TA98 and TA100 Salmonella 

typhimurium strains were chosen since these strains were shown to be most 

sensitive to mutagens of organic extracts of diesel engine particles. Depending on 

the tester strain different types of mutations can be detected: 
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 TA98 detects mutagens that cause frameshift mutation and so module shift; 

 TA100 detects mutagens that cause base-pair substitutions and therefore 

mutagens that induce to a wrongly reading of DNA.  

 Moreover tests were performed with and without metabolic activation by 

microsomal mixed-function oxidase systems (S9 fraction). Preparation of the liver 

S9 fraction from rats was carried out as described in (Standard Methods 2005). 

 Tests were performed using petri capsules containing a plate on which was 

applied an agar containing a limited amount of histidine and biotin, a suspension 

of Salmonella typhimurium, the sample to be tested at different dilution ratio with 

DMSO and, in the case of metabolic activation a 10% of S9 mix. Plates were 

incubated at 37°C for 48 h. and subsequently, the histidine revertant colonies were 

counted.  

When tests were performed without metabolic activation the following two 

mutagens were used as positive controls: 

 the sodium azide mutagen that causes base-pair substitutions mutations and 

thus able to detect TA100 strain;  

 the 2-nitrofluorene mutagen that causes frameshift mutations in TA98 strain. 

 

 When S9 fraction was used, the 2-aminofluorene mutagen was chosen for 

detecting both TA98 and TA100 strains. 

 Every sample,  was tested thrice. According to the criteria given by (Standard 

Methods 2005) results were considered positive if the number of revertants on the 

plates containing the test concentration was more than double the number of 

spontaneous revertants and a reproducible dose-response relationship was 

observed.  

 The mutagenicity ratio, was used in order to represent outcomes obtained from 

this tests campaign. Mutagenicity ratio (MR) was calculated as follows: 

 

   
  

                     
 

 

Where RN is referred to the number of net revertants: 

 
                                          

 

The number of revertants which grow in these conditions is directly linked to the 

mutagenic potential of the used mutagen. In order to compare results obtained by 

different fuels, RN and MR referred to 1mg of sample and 1 Nm3 of air were 

calculated as well.  
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3 Chapter 3 – Full Load 

Performance And Part Load 

Emissions Assessment 

3.1 Introduction 

 In this chapter results from the experimental activity described in section 2.4 

will be presented and discussed. The analysis will start with the assessment of the 

engine performance when running the unit under tests at full load with different 

fuels. In more detail, results obtain with both standard and specific engine 

calibrations will be analyzed within two different sections: the first one related to 

the biodiesel feedstock comparison (section 3.2.1.1) the second one focused on the 

comparison between FAME and HVO fuels (section 3.2.1.2).  

 Afterwards a discussion related to the outcomes provided by operating the 

engine at part load with conventional and renewable diesel fuels will follow. The 

comparison between results obtained when fuelling the engine with biodiesel 

sourced by different feedstock will be presented in section 3.2.2.1. As far as HVO 

assessment is concerned, results will be discussed in section 3.2.2.2. 

 Finally the sensitivity of the different fuels to different engine calibrations will 

be analyzed in in paragraph 3.2.3.   
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3.2 Results analysis and discussion 

3.2.1 Full load performance 

3.2.1.1 Biodiesel feedstock comparison 

 Results concerning the comparison of full load engine performance for the 

different fuel blends with the standard ECU calibration are shown in Figure 3.1 on 

the left. As expected when biofuels were used a loss of engine performance was 

observed due to the lower LHV of the blends and to the lower injected volume 

that cannot be fully compensated by the small increase in fuel density of biodiesel 

blends (see Table 2.3 for fuel properties) (Millo 2013). In more detail in the range of 

revolution speeds which goes from 1500 rpm up to the maximum explored 

revolution speed (3250 rpm) a decrease, on average, of 1.5% for 30%v/v blends 

was observed independently of the used feedstock. The performance gap was 

increased up to 8% in the case of neat JME (B100) and 6.7% in the case of neat RME 

(B100). Similar outcomes were observed by (Beatrice 2009). In that case, differences 

in the engine performance between different feedstocks were attributed to the 

actual fuel properties (e.g. viscosity or compressibility) that biofuels had at full 

load engine working conditions with respect to the ones measured at more 

moderate reference conditions.  

 Moreover, some issues in the low end torque are quite evident, in particular at 

1250 rpm, with a considerable decrease (6% for 30%v/v blends and 13.3% for neat 

biodiesel) of the engine torque output, far beyond the expected engine derating 

due to the lower energy content of the injected biofuel.  

Figure 3.2 reports the measured cylinder pressure, mass fraction burned and 

injector signal traces for all the tested fuels when the engine was running at 1250 

rpm and at full load with standard calibration. All injection parameters were kept 

constant for all fuels and also the injected volume estimated by the ECU was 

constant for all tests. It is evident that the lower IMEP value of biofuels with 

respect to diesel is to the consequence of the lower pressure traces which were 

achieved throughout the combustion process, even if similar boost pressure levels 

were achieved with all fuels (Figure 3.3 on the left).  

 Notwithstanding the detected torque penalty with biodiesels, they tend to 

increase the fuel conversion efficiency, as demonstrated by the Figure 3.4 (graph 

on the left). An increase of about 1.8% and 4% for B30 blends and neat biofuels 

with respect to diesel fuel was observed. 

 Finally, as far as the smoke emissions are concerned, an overall decrease of 

filter smoke number of almost 0.5 and 0.9 FSN for 30%v/v blends and neat biofuels 

were observed respectively. This reduction could be attributed to the presence of 
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oxygen inside the biofuel molecule (see Figure 3.5 graph on the left) as well as to 

the lack of aromatics compounds in the fuel molecule. 

 Figure 3.1 (graph on the right) shows the comparison of full load engine 

performance for the different fuel blends with the specific ECU calibration. The 

calibration adjustment allowed RME and JME B30 and B100 blends to fully 

recover the performance gap related to the lower energy content of the biofuel, 

with even some performance benefit in the medium-low speed range. Moreover, it 

should also be pointed out that, even after the calibration adjustment, smoke 

emissions (which were significantly lower with the standard ECU calibration) 

were still appreciably lower in comparison with diesel values, as reported in 

Figure 3.5 (graph on the right). 

 The increase in torque output in the medium-low speed range cannot be only 

explained on the basis of the calibration adjustment. As matter of fact, due to the 

slightly lower LHV/(A/F)st ratio of neat biodiesels (roughly 4% lower), the torque 

output measured under biodiesel operation should never exceed diesel values 

even when running the engine at the same relative air-fuel ratio (unless one makes 

the hypothesis of large fuel conversion efficiency variations). Figure 3.4 (on the 

right) depicts the fuel conversion efficiency during full load tests for all fuels when 

ECU recalibration was carried out; with specific calibration all fuels exhibited 

similar efficiencies. However, the relaxation of the maximum injected quantity 

limits mapped in the ECU determined an increase in the injected fuel quantities 

higher than the expected, which leaded to a decrease in the relative air-fuel ratio 

for neat biodiesel; this resulted in an increase of the introduced energy content 

into the combustion chamber and also in an increase of the energy available for 

the turbocharging system which finally leaded to higher boost levels (see Figure 

3.4 on the left); this behavior can explain the higher torque level measured in the 

medium-low speed range under biodiesel operation, although it is worth to be 

noticed that a significant FSN reduction can still be achieved in comparison with 

diesel (see Figure 3.5). 
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Figure 3.1 Full load engine performance with standard ECU calibration (left) and specific 

calibration (right) with all the tested fuels 

 
Figure 3.2 Cylinder pressure trace and injector signal for all fuels at 1250 rpm and full load 

(standard calibration). 

 
Figure 3.3 Intake manifold pressure during full load tests with standard (left) and specific 

(right) calibration and all fuels 
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Figure 3.4 Fuel conversion efficiency at full load for all fuels: standard calibration (left), 

specific calibration (right) 

 
Figure 3.5 FSN reduction at full load for biodiesel blends compared to diesel: standard 

calibration (left), specific calibration (right) 

3.2.1.2 FAME vs HVO characterization 

 The comparison of full load engine performance for diesel, RME and HVO B30 

blends, without any modification in ECU calibration, is shown in Figure 3.6 (on 

the left). It is worth to be mentioned that the engine on which the tests were 

carried out is equipped with a different turbocharging system (featuring a VGT 

instead of a waste gate (WG)) from the engine which was used for the previous 

analysis: as a results, the torque versus speed output of the two engines are not 

directly comparable to each other. When fuelling the engine with the RME B30 

blend a noticeable decrease of about 4 to 5 % on average in the torque output can 

be observed over almost the entire speed range. Moreover, as far as the HVO B30 

blend is concerned, comparable levels of torque output with respect to the 

reference diesel (with differences lower than 1% on average) could be observed 

over almost the entire speed range, since a slightly higher LHV mitigates the 

negative effect of the lower fuel density. Similar levels of fuel conversion efficiency 

were registered for HVO B30 and diesel, while an overall increase in the fuel 
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conversion efficiency of about 2% was observed when RME B30 was used (Figure 

3.7).  

 Smoke levels measured under RME B30 blend operations with standard 

calibration were significantly lower in comparison with diesel operation, showing 

impressive FSN reductions as reported in Figure 3.8. HVO B30 smoke emissions 

were generally still appreciably lower in comparison with diesel values. In more 

detail, when the engine was running in a range between  1500 rpm and  4250 rpm 

a decrease of filter smoke number of about 0.6 and 0.2 for RME B30 and HVO B30 

with respect to diesel was observed respectively. This decrease could be attributed 

mainly to the presence of oxygen in the RME molecule and at the absence of 

aromatic hydrocarbons in HVO molecule. A maximum decrease of about 2 filter 

smoke number for RME B30 if compared to diesel was observed at the lowest 

revolution speed (1250 rpm).  

 Further performance improvements were obtained by modifying the engine 

calibration in order to obtain the same smoke levels measured under diesel 

operation. The outcomes of the full load performance tests using the specific 

calibration and fuelling the engine with diesel RME and HVO are showed in 

Figure 3.6 (graph on the right). RME B30 fully recovered the performance gap 

highlighted before, with even an improvement in terms of torque output at low 

engine revolution speeds. (1250 rpm). 

 

 
Figure 3.6 Full load engine performance with diesel, RME B30 and HVO B30: standard 

calibration (left), specific calibration (right) 
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Figure 3.7 Fuel conversion efficiency at full load for all fuels: standard calibration (left), 

specific calibration (right) 

 
Figure 3.8 Filter Smoke Numbers reduction for biofuels respect to diesel at full load with 

standard calibration 

3.2.2 Part load emission characterization 

3.2.2.1 Biodiesel feedstock comparison 

Engine parameters  analysis for the selected k-points 

 

 Graphs depicted starting from Figure 3.9 up to Figure 3.14. report the main 

engine working parameters in terms of accelerator pedal position, main injection 

energizing time, engine intake air mass, boost pressure, EGR Rate, relative air to 

fuel ratio (λ), start of main injection (SoI main), 50% of mass fraction burned 

position and rail pressure for all fuels at the tested operating points. For each 

figure, left column refers to standard calibration, while right column to specific 

calibration. In all the diagrams the standard deviation bars measured on three 
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repetition tests with all fuels and calibrations are also displayed, in order to 

decouple the engine repeatability from the net fuel effects.  

 With standard calibration, for biodiesel fuelling, it was necessary to increase the 

accelerator pedal position to obtain the same torque of the correspondent test with 

diesel fuel (Figure 3.9). This increase was necessary due to the decrease in the 

available energy content when biodiesel blends were used. The shift of the 

accelerator pedal position was “interpreted”, from ECU point of view, as a change 

of engine operating point. This, in turn, caused a variation of engine control input 

parameters, as it is possible to observe in the following figures. Generally, at low 

load ( @2 bar BMEP), the effect of the accelerator pedal position variation is not 

relevant in terms of change of operating input parameters, as should be noted in 

Figure 3.10 and Figure 3.11 as far as the energizing time of the main injection and 

the total air mass at the engine intake is concerned. Moreover, similar boost levels 

were achieved with all fuels (Figure 3.12) due to the poor turbocharger boosting 

capability typical of low speed/low load operating point. In fact, in the operating 

region around low load points, the boost pressure keeps just above the 

atmospheric pressure, therefore for little variations of the pedal position no 

significant increment of pressure was recorded for all biodiesel blends. Moreover, 

similar levels of EGR rate (Figure 3.13) and of λ (Figure 3.14) were observed for all 

fuels. At high load operating points ( @ 8 [bar] BMEP), the accelerator pedal 

position drift in the case of neat biodiesels fuelling causes a larger variation in the 

engine parameters than at lower load operating points. Therefore a significant 

increase of engine intake air mass, boost pressure and relative air to fuel ratio as 

well as a significant decrease of EGR rate were observed especially for neat 

biofuels with respect to diesel and 30%v/v biodiesel blends. This drift had a 

significant impact on emissions as will be discussed in the following paragraph.  

As far as 30%v/v blends is concerned similar to diesel fuel levels were observed 

for all operating parameters. While most of the comments noted during the 

analysis of the high load tested points are still valid, the tests performed at 

medium load operating points ( 1500 rpm@ 5 bar BMEP and 2000 rpm @ 5 bar 

BMEP)  highlighted a significant drift in the start of main injection for all biofuels 

(Figure 3.15). This drift should be explained taking into account the fact that these 

operating points are crucial as far as the combustion noise, BSFC and emissions 

are concerned. The correspondent SOI main values are generally targeted to have 

a delayed combustion timing so to keep both NOx and combustion noise under 

control; as a consequence, any rise in accelerator pedal value to the ECU triggers a 

delayed MFB50 setpoint with respect to diesel fuel (Figure 3.16).  

 When the specific calibration was used, tests were carried out maintaining the 

accelerator pedal position fixed for all the fuels (Figure 3.9 graph on the right) and 

thus the MFB50 position (Figure 3.16). Therefore, in order to achieve the same 
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BMEP level obtained with diesel a variation of energizing time (ET) and SOI of the 

main injection only were observed (Figure 3.10 and Figure 3.15). Finally, similar 

operating parameters, i.e. EGR rate, λ etc. were observed for all fuels in contrast 

with standard calibration where the main operating parameters changed 

accordingly to the drift of the accelerator pedal position.  

 
Figure 3.9 Accelerator pedal position for all fuels; standard calibration on the left and specific 

calibration on the right 

 
Figure 3.10 Main injection energizing time for all fuels; standard calibration on the left and 

specific calibration on the right 

 
Figure 3.11 Trapped air mass per cylinder for all fuels; standard calibration on the left and 

specific calibration on the right 
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Figure 3.12 Boost pressure for all fuels; standard calibration on the left and specific 

calibration on the right 

 
Figure 3.13 EGR rate for all fuels; standard calibration on the left and specific calibration on 

the right 

 
Figure 3.14 Relative air to fuel ratio (λ) for all fuels; standard calibration on the left and 

specific calibration on the right 
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Figure 3.15 Start of main injection for all fuels; standard calibration on the left and specific 

calibration on the right 

 
Figure 3.16 50% of fuel mass burned for all fuels; standard calibration on the left and specific 

calibration on the right 

 
Figure 3.17 Rail pressure for all fuels; standard calibration on the left and specific calibration 

on the right 
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Combustion analysis for the selected k-points 

 

 Figures 3.18 – 3.20 report, for three operating conditions representative of low, 

medium and high load operation, respectively, the related indicating data, i.e. the 

cylinder pressure traces, injector signal, heat release rate (HRR) and cumulative 

mass fraction burned measured for cylinder 1. In order to maintain a good 

readability of the figures a comparison between diesel, JME B30 and JME B100 

fuels only is shown, since both RME and JME biodiesel blends exhibited similar 

traces independently of the feedstock which was adopted for their production. All 

four engine cylinders were fitted with pressure transducers the signals of which 

are rooted to both ECU and ICE Analyzer software. The indicating diagrams 

highlight primarily the beneficial effect of the specific calibration in re-centering 

the pressure cycles for biodiesel fuelling.  

 At 1500 rpm @ 2 bar BMEP, JME B30 and JME B100 showed trends in terms of 

combustion pattern that are influenced both by the change of the engine 

calibration parameters with respect to diesel fuel and by their physical - chemical 

properties (Figure 3.18). With standard calibration, biofuels showed a delayed 

combustion timing with respect to the diesel. The change in the SOI of the main 

injection was directly connected to the accelerator pedal position. Furthermore the 

augment in accelerator pedal position (Figure 3.9) led to a not negligible increase 

in rail pressure (Figure 3.17) which could enhance fuel atomization and thus the 

combustion process of the fuel injected during pilot injection. Therefore, as far as 

the pilot injection combustion is concerned, all fuels exhibited similar behavior, 

although an appreciable delay can be noticed for the biofuels: the different 

ignitability properties of biofuels in conjunction with the more favorable 

conditions established in the combustion chamber when the biofuel was injected 

led to similar HRR traces, although again with noticeable delays for the biofuels. 

Notwithstanding the change in pedal position, the engine operated in conditions 

characterized by high EGR rates (of almost 40%) and similar relative air to fuel 

ratios (Figure 3.13 and Figure 3.14), thus similar HRR peak values for all fuels 

were registered during the combustion of the main injection. The combustion with 

biofuels was however slower; as a matter of fact an increase in the MFB10-90 was 

observed for biofuels if compared to diesel fuels (from 13 deg registered with 

diesel, the MFB10-90 angular interval was increased up to 15 deg and 19 deg for 

JME B30 and B100 respectively). 

 The in-cylinder analysis for the specific calibration at 1500 rpm, 2 bar BMEP 

operating point is shown on Figure 3.18 as well (graphs on the right). It can be 

clearly noticed that running the engine with biodiesel, the closed-loop combustion 

control progressively advances the start of injection in order to keep the MFB50 at 

the optimal mapped value. While for JME B30 no significant variations in the heat 
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release of pilot and main injections can be observed, B100 blend shows a reduced 

heat release of the pilot injection, with a consequent increase of the premixed 

portion of the combustion. This change in the combustion process may be the 

main reason for the increased CO and HC emissions at low loads operating points 

as it will be discussed in the following paragraph. The increase in CO emissions at 

low loads (which is accompanied by a corresponding increase in HC emissions as 

shown in Figure 3.25 on the right) could be attributed to a change in the 

combustion process, since the higher viscosity and the higher distillation 

temperatures of the biodiesel can lead to a substantial deterioration of the fuel 

atomization and vaporization (Postrioti 2004), especially at low injection pressures 

and low in cylinder temperatures and pressures as for the 2 bar BMEP operating 

points (Figure 3.18). Moreover, the lower energy content of the biodiesel blends 

could also significantly affect the energy released by the pilot injection, thus 

causing an increase of the premixed portion of the combustion, while at higher 

loads this effect is usually not noticeable. 

 
Standard Calibration (a) Specific Calibration (b) 

 
Standard Calibration (c) Specific Calibration (d) 

Figure 3.18 Indicating analysis for the 1500 [rpm] @ 2 [bar] BMEP engine op. point for diesel, 

JME (B30) and JME (B100): in-cylinder pressure, heat release rate and injection pattern (top, 

figures a and b), heat release rate and mass fraction burned (bottom, figures c and d). 

 Increasing the engine load (@ 5 bar BMEP) (Figure 3.19) with standard 

calibration the increase in accelerator pedal position led to a delayed injection and 

to a delayed combustion process for biofuels. In more detail, biodiesel exhibited a 
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similar behavior to diesel during combustion process, although showing some 

noticeable delay in the HRR process. 

 On the contrary, the specific calibration re-centered the combustion process in 

order to keep the MFB50 at its optimal mapped value, as shown in Figure 3.19 

right.  

 
Standard Calibration (a) Specific Calibration (b) 

 
Standard Calibration (c) Specific Calibration (d) 

Figure 3.19 Indicating analysis for the 2000 [rpm] @ 5 [bar] BMEP engine op. point for diesel, 

JME (B30) and JME (B100): in-cylinder pressure, heat release rate and injection pattern (top 

portion, figures a and b), heat release rate and mass fraction burned (bottom, figures c and d). 

 A further increase of the load with standard calibration led to a significant shift 

of the accelerator pedal position in the case of neat biodiesel fuelling; this increase 

causes a larger variation in the engine parameters, i.e. rail pressure, trapped air 

mass, boost pressure and their effects on NOx and PM emissions, as it will be 

observed later. At high engine speed and load, the diffusive combustion phase is 

dominant and mitigates the effect of fuel properties. Then the critical effects of 

biodiesel blends on HRR pattern linked with the low pilot combustion efficiency 

and a different air/fuel mixing are reduced thanks to the high cylinder 

temperature reached at the TDC. When the engine was operated at same 

calibration input parameters as for the specific calibration, the HHR patterns for 

all fuels almost completely overlapped.  
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Standard Calibration (a) Specific Calibration (b) 

 
Standard Calibration (c) Specific Calibration (d) 

Figure 3.20 Indicating analysis for the 2500 [rpm] @ 8 [bar] BMEP engine op. point for diesel, 

JME (B30) and JME (B100): in-cylinder pressure, heat release rate and injection pattern (top, 

figures a and b), heat release rate and mass fraction burned (bottom, figures c and d). 

FC, BSFC and pollutant emission analysis for the selected k-points 

 

 The experimental results obtained under part load operating conditions with 

both engine calibrations (standard and specific) are shown in Figures 3.21 - 3.27, 

reporting respectively brake specific fuel consumption, engine fuel conversion 

efficiency, brake specific CO2 , CO, HC and NOx emissions and smoke emissions. 

For each figure, left column refers to standard calibration, while right column to 

specific calibration. In the following section the outcomes obtained with the 

specific calibration will be discussed first.   

 Brake specific fuel consumption (Figure 3.21) shows a 4% on average increase 

for both RME and JME B30 blends, which grows up to a 12% on average for B100, 

in good agreement with the lower LHV values for neat and blended biodiesel. 

Taking into account fuel densities, the volumetric fuel consumption increase – 

which is the performance parameter perceived by the final user – would be 

reduced to a more acceptable value of 2.5% and 7% respectively with RME and 

JME B30 and B100. Moreover, no significant differences could be observed based 

on the biodiesel feedstock (i.e. between JME and RME). 



58 

Chapter 3 – Full Load Performance And Part Load Emissions Assessment 

Politecnico di Torino 

 As far as fuel conversion efficiency is concerned (Figure 3.22), no appreciable 

differences can be seen between diesel and biofuels, with the only exception for 

the low speed – low load operating point (1500 rpm @ 2 bar BMEP), where a slight 

worsening of efficiency can be observed for biofuels. As a matter of fact, under 

part load operating conditions the closed-loop combustion control is capable of 

maintaining MFB50 at its optimum position, compensating for different fuel 

characteristics, as it has been reported (Millo 2011). 

 Thanks to the lower carbon content of neat RME and JME, the increase in CO2 

emissions that could be expected from BSFC data measured under biodiesel 

operation was partially compensated, as reported in Figure 3.23; as a result, from a 

pure Tank-To-Wheel approach, a modest increase in CO2 emissions should be 

expected only in case of neat biodiesel usage. 

 BSCO emissions (Figure 3.24) measured under biodiesel blends operations 

were found to be comparable with diesel emissions at medium-high loads 

operating conditions, without appreciable differences depending on the biofuel 

feedstock; an appreciable increase was instead measured at low loads (2 bar 

BMEP) operating points. This increase in CO emissions could be attributed to a 

variation in the combustion process as highlighted in the previous paragraph. 

 As for CO emissions, an appreciable increase in BSHC (Figure 3.25) could be 

observed at low loads for both RME and JME blends (for both B30 and B100), 

while at medium-high loads HC emissions for biofuels were found to be 

comparable or only slightly higher to diesel levels.  

 Figure 3.26 shows BSNOx emissions. The modified ECU calibration allows to 

obtain comparable engine-out NOx emissions when fuelling the engine with 

biofuels at medium-high loads, for both B30 and B100 blends, without significant 

differences between feedstocks; as far as low loads engine operating points are 

concerned, the high EGR rate used is likely to produce an highly premixed low 

temperature combustion, with an even more marked shift towards this kind of 

combustion regime when the engine is operated with biofuels, due to the lower 

energy released by the pilot combustion, thus resulting in significant NOx 

emissions reductions (as already highlighted in Figure 3.18).  

 As far as engine-out smoke emissions are concerned (Figure 3.27), a noteworthy 

reduction can be observed for medium and high load operating conditions, 

especially for B100 biodiesel blends; at low loads, smoke reduction is modest, 

although even under diesel operation quite low FSN levels were measured. These 

significant smoke reductions could be expected due to the absence of soot 

promoters as aromatic hydrocarbons in the biofuel molecule and to the increased 

local oxygen availability during the combustion process, thanks to the oxygen 

content of the biofuel molecules (about 8% on a weight basis).  Finally, JME B30 

blend showed a higher sensitivity to re-calibration, especially at medium loads 
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where a small change in the EGR rate (see trade-off in Figure 3.28) can produce a 

large increase in soot emissions with only a modest change in NOx.  

 The outcomes of tests carried out under part load operation with the standard 

calibration are shown in Figures 3.21 - 3.27 (graphs on the left). Both calibrations 

showed similar trends for BSFC , fuel conversion efficiency and all the pollutants 

with the only exception of BSNOx. For the latter the change in the operating point 

due to the increase of the accelerator pedal position and thus a significant 

reduction of EGR rate (Figure 3.13) led to an increase in emissions especially for 

medium and high loads. 

 Soot-NOx trade-off results obtained for the three operating points, 

representative of low, medium and high loads respectively, are shown in Figures 

3.28 - 3.30, while Table 3.1 reports the tested EGR rates; it should be pointed out 

that, for each operating point the same EGR rate values were tested for diesel, and 

RME and JME blends, in order to better compare the trade-off curves obtained 

with the different fuels. 

 At low engine speed and load (1500 rpm, 2 bar BMEP Figure 3.28) an unusual 

soot-NOx trade-off trend for all the tested fuels can be noticed since increasing the 

EGR rate produces a shift towards an highly premixed, low temperature 

combustion, causing a simultaneous reduction of NOx and soot emissions; at this 

operating point the ECU calibration point can therefore be set at the maximum 

EGR rate even under diesel operation, because the highly premixed combustion 

allows to obtain a simultaneous reduction of both NOx and soot emissions. 

Although soot levels are indeed already extremely low with diesel fuel, 

appreciable reductions of soot emissions at constant NOx levels could be obtained 

thanks to biodiesel usage, without any need of change of the EGR level calibration 

point. The results for the medium load operating conditions are shown in Figure 

3.29; in this case the RME and JME B30 blends trade-offs are quite similar in shape 

to the diesel trade-off, and do not show significant margins for further 

improvements, because any additional increase of the EGR rate from the 

calibration point would cause a dramatic increase in soot emissions also for the 

two biofuel blends. On the contrary, significant reductions of soot emissions at 

constant NOx levels could by obtained thanks to neat biodiesel usage, again 

without the need of change of the EGR level calibration point. 

 Similar remarks could also be done for the soot-NOx trade-off at high load 

which is shown in Figure 3.30. 
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Figure 3.21 Brake Specific Fuel Consumption (BSFC): standard calibration (left), specific 

calibration (right)  

 
Figure 3.22 Fuel conversion efficiency: standard calibration (left), specific calibration (right) 

  
Figure 3.23 Brake Specific CO2 emissions (engine outlet): standard calibration (left), specific 

calibration (right) 
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Figure 3.24 Brake Specific CO emissions (engine outlet): standard calibration (left), specific 

calibration (right) 

 
Figure 3.25 Brake Specific HC emissions (engine outlet): standard calibration (left), specific 

calibration (right) 

 
Figure 3.26 Brake Specific NOx emissions (engine outlet): standard calibration (left), specific 

calibration (right) 
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Figure 3.27 FSN (engine outlet): standard calibration (left), specific calibration (right) 

 

Figure 3.28 Soot–BSNOx  trade-off comparison at 1500 [rpm], 2 [bar] BMEP 
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Figure 3.29 Soot–BSNOx  trade-off comparison at 2000 [rpm], 5 [bar] BMEP. 

 

Figure 3.30 Soot–BSNOx trade-off comparison at 2500 [rpm], 8 [bar] BMEP. 
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Table 3.1 Trade-off tests EGR rates [%]. 

 Operating points (Speed [rpm] x BMEP [bar] 

E
G

R
 R

a
te

s 
]%

] 
1500x2 2000x5 2500x8 

0 0 0 

10 8 4 

20 15 8 

29 22 13 

37 26 16 

40 28 20 

 

3.2.2.2 HVO characterization 

 During HVO characterization campaign, tests were carried out adopting a 

standard and a specifically adjusted ECU calibration. As highlighted in the 

previous section, as far as B30 blends are concerned, both calibrations led to 

similar outcomes in terms of engine parameters, indicating analysis and 

emissions. Therefore only the results obtained with the specific calibration will be 

discussed hereafter. The main experimental results obtained under part load 

operating conditions are shown in Figures 3.31 – 3.37, reporting respectively brake 

specific fuel consumption, engine fuel conversion efficiency, brake specific CO2, 

CO, HC and NOx emissions and smoke emissions.  

 No appreciable variations of BSFC were found with the HVO B30 blend, again 

in good agreement with the LHV data, and differently from what is reported in 

literature (see for instance (Sugiyama 2011)). As far as RME B30 is concerned 

results were in good agreement with outcomes discussed in 3.2.2.1. As a matter of 

fact, brake specific fuel consumption shows a 4% average increase for the RME 

B30 blend (Figure 3.31), in good agreement with the 4% lower LHV of the fuel 

blend. As expected from the BSFC analysis, fuel conversion efficiency (Figure 3.32) 

does not show appreciable variations when switching from diesel fuel to RME and 

HVO B30 blends.  

 As far as CO2 emissions are concerned, the lower carbon content of the RME 

blend allows to compensate for its higher fuel consumption, thus significantly 

reducing the increase in CO2 emissions levels that could be expected from BSFC 

data, as shown in Figure 3.33. Differences between the HVO B30 blend and the 

reference diesel fuel in terms of CO2 emissions are almost negligible, being the 



65 

T. G. Vlachos – Ph.D. Thesis 

Politecnico di Torino 

BSFC of the HVO blend almost identical to the diesel one, as well as its carbon 

content.  

 CO and HC specific emissions (Figure 3.34 and Figure 3.35) appear to be 

significantly reduced with both RME and HVO B30 blends at low and medium 

loads, while only modest or even insignificant variations were registered at higher 

loads:  The more relevant differences were found at the lower load level (2 bar 

BMEP), in particular for the HVO blend, and are therefore likely to be attributed to 

the better ignition quality of the HVO. This behavior could therefore be 

emphasized when considering engine cold conditions (i.e. the conditions at the 

start of the relevant homologation testing procedures).  

 NOx specific emissions are reported in Figure 3.36: NOx emissions with the two 

biofuel blends were generally comparable with those of the reference diesel fuel, 

with the only significant exception of the low load point (2 bar BMEP), for which a 

relevant increase of NOx emissions was measured for the HVO blend, and are 

therefore likely because of the better ignition quality of the biofuel.  

The modest effect of fuel composition on NOx at medium loads could be expected 

since the engine will be operated with closely comparable relative air/fuel ratios λ 

(and so with roughly the same oxygen availability and combustion temperatures).  

 As far as smoke emissions are concerned (Figure 3.37), a noteworthy reduction 

can generally be observed for medium and high load operating conditions (5 and 

8 bar BMEP), with only modest reductions at low loads (2 bar BMEP) for the RME 

blend, and even a slight increase with the HVO blend. These significant smoke 

reductions could be expected, due to the absence of soot promoters as aromatic 

hydrocarbons in the biofuel molecule and, for the RME blend only, to the 

increased local oxygen availability during the combustion process, thanks to the 

oxygen content of the biofuel molecules (about 3% on a weight basis). Smoke 

reductions are therefore more significant for the RME blend, and more moderate 

for the HVO blend. However, it should be pointed out that FSN measurements are 

basically determined by the soot fraction only, while, especially at low loads, 

significant increases in the SOF fraction with biodiesel usage - which cannot be 

detected by FSN measurements - have been found by several researchers, since the 

unburned hydrocarbons produced by the biodiesel combustion process are more 

likely to condense and to absorb over the soot particles, due to their higher 

distillation temperatures. Further investigation complementing soot emission 

evaluations based on FSN with gravimetric PM measurements will be proposed in 

the following Chapter 4). 

 Finally, combustion noise values, computed according to (Herbert 1982), 

(Badami 2001) are shown in Figure 3.38: while the RME B30 shows values which 

are always quite close to the Diesel ones, the HVO B30 values appear to be 

appreciably lower (about 1.5 dB on average) than Diesel ones, likely because of the 
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better ignition quality of the fuel and of the lower variations of the injected energy 

quantities during the pilot injections. Further confirmations of these effects can 

also be found by means of the in-cylinder pressure and of the heat release rate 

analysis, as shown, by way of example, in Figure 3.39 for the 1500 rpm, 2 bar 

BMEP operating point: a higher heat release peak during pilot combustion, 

followed by a lower heat release peak during the main combustion can be clearly 

seen for the HVO B30 in comparison with Diesel, thus resulting in a smoother in-

cylinder pressure increase and therefore in a slightly lower combustion noise.  

 Further experimental investigations were carried out to fully exploit the 

benefits that could be obtained for instance by adjusting the EGR rates in order to 

take into account the different biofuel blends Soot-BSNOx and BSCO-BSNOx trade-

offs. Although the analysis was carried out for all the 7 selected part load 

operating points, only the results obtained for the 2000 rpm, 5 bar BMEP 

conditions will be shown in Figure 3.40 and Figure 3.41 for sake of brevity, as 

representative of the biofuel blends behavior. 

 As far as the Soot-BSNOx trade-off is concerned (Figure 3.40), while the RME 

B30 shows a good potential for achieving significant smoke reduction at fixed NOx 

levels the HVO B30 does not shows significant advantages in comparison with the 

reference diesel fuel, thus suggesting that, for this operating condition, the better 

local oxygen availability during the combustion process which is assured by the 

oxygen content of the RME blend plays a fundamental role for smoke reduction. 

 A quite different situation was found instead for the BSCO-BSNOx trade-off, 

which is shown in Figure 3.41: in this case, while the RME B30 follows quite 

closely the reference diesel trend, significantly lower CO emissions were found for 

the HVO B30, thanks to its better ignition quality. 

 

 
Figure 3.31 BSFC at part load  
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Figure 3.32 Fuel conversion efficiency at part load  

 
Figure 3.33 BSCO2 emissions at part load 

 
Figure 3.34 BSCO emissions at part load 
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Figure 3.35 BSHC  emissions at part load 

 
Figure 3.36 BSNOx emissions at part load 

 
Figure 3.37 Filter Smoke Number at part load 
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Figure 3.38 Combustion noise at part load 

 
Figure 3.39 In-cylinder pressure, heat release rate, mass fraction burned and injector signal 

traces at 1500 rpm, 2 bar BMEP 

 
Figure 3.40 Soot-BSNOx trade-off for at 2000 rpm, 5 bar BMEP for all fuels 
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Figure 3.41 BSCO-BSNOx trade-off  at 2000 rpm, 5 bar BMEP for all fuels 

3.2.3 Analysis of the sensitivity of the different fuels to engine 

calibration 

 In this section results from the experimental activity, carried out according to 

methodology described in chapter 2.5 and concerning the influence of pilot and 

main injections timing on soot, NOx, BSHC, BSCO and BSFC when the engine was 

fuelled with diesel, RME B30 and HVO B30 under part load operation will be 

discussed. During investigation only one single injection event was analyzed 

performing a sweep of the start of the injection (see section 2.5 for more details), 

and running the engine with and without EGR. 

 During tests, with and without EGR, all the operating parameters i.e. 

energizing time of the main injection, rail pressure, trapped air mass, boost 

pressure, EGR Rate and relative air/fuel ratio were the same among fuels due to 

the fact that during tests the accelerator pedal position was kept fixed 

independently of the type of fuel which was used. The effects of start of injection 

timing on combustion process and on emissions are well known especially when a 

single injection event occurs per cycle. Therefore in the present section the 

comparison among diesel, RME B30 and HVO B30 will be discussed only. Figures 

3.42 – 3.44 report indicating analysis data obtained with all fuels at three different 

values of start of injection with and without EGR. For sake of brevity the 

discussion will be focused on only three out of seven tested values of SoI, i.e. 5.7 

deg BTDC, 2.7 deg BTDC and 7.7 deg BTDC which represents the original 

calibrated value on the diesel oriented calibration, the minimum explored SoI and 

the SoI where the combustion has the maximum efficiency respectively 

 Figure 3.42 depicts the indicating data for all fuels at calibration point. During 

the tests carried out without EGR HVO B30 exhibited a lower ignition delay due 

to its higher cetane number, thus leading to a more advanced combustion respect 

to other fuels as could be confirmed by MFB50 position, thus leading to lower CO 
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and HC emissions respect to other fuels as will be showed in the following section. 

On the contrary, diesel and RME B30 exhibited similar HRR traces while 

comparable HRR peak values for all fuels were observed. While most of the 

comments noted previously are still valid, in the case of EGR different ignition 

properties among fuels are further stressed. In more detail, the more advanced 

combustion pattern of HVO suggests lower CO emissions among fuels, while as 

far as RME is concerned, the steepest mass fraction burned trace suggests a major 

production of NOx if compared to other fuels. 

 Figure 3.43 depicts indicating data obtained when SoI was 2.7 deg before TDC 

with and without EGR. A significant variation of in-cylinder pressure, HRR and 

mass fraction burned traces for HVO respect to diesel and RME was observed in 

both cases and especially when EGR was activated. Lower viscosity and a more 

favorable distillation curve with respect to other fuels enhance air/fuel mixture 

forming and ignition even when the injection event is close to TDC. These data 

confirm the better ignition properties of HVO if compared to both conventional 

diesel and RME B30 highlighting the importance of fuel quality and properties 

during engine calibration development.   

 When the start of injection was increased up to 7.7 deg BTDC (Figure 3.44), all 

fuels showed similar combustion processes in both cases with EGR activated and 

deactivated. In more detail in the case with EGR HVO still showed a MFB50 

position closer to TDC, while RME B30 exhibited the fastest combustion. 

 The experimental results in terms of brake specific fuel consumption, engine 

fuel conversion efficiency, brake specific CO, HC and NOx emissions obtained 

with the sweep of SoI are shown in Figures 3.45 – 3.49. For each figure, left column 

refers to the case without EGR, while right column to the case with activated EGR 

system. In the following, outcomes regarding smoke emissions will be omitted 

because of the low levels of smoke emissions reached at this operating point 

which are very close to the detection limit of the instrument (measures in a range 

of 0-0.08 FSN were detected during all test campaign).   

 Figure 3.45 depicts the BSFC during the sweep of SoI in the cases with and 

without EGR.. In the case without EGR a decrease of BSFC of almost 7% and 12 % 

for diesel and RME was observed respectively when SoI was increased from 2.7 

deg BTDC up to 7.7 deg before BTDC. On the contrary HVO exhibited an almost 

constant BSFC level during all test campaign. In the case with EGR the variation in 

BSFC was greater, in more detail a decrease of 35% and 30% for diesel and RME 

was observed respectively passing from SoI of  2.7 deg up to 7.7 deg before TDC. 

 Fuel conversion efficiency for all fuels and SoI values is depicted in Figure 3.46. 

In the case without EGR, HVO exhibited the maximum efficiency if compared to 

other fuels. In the case without exhaust gases recirculation the impact of fuels on 

combustion efficiency is not so evident as it is in the case with EGR. As a matter of 
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fact when EGR is activated a significant increase of fuel conversion efficiency was 

observed for diesel and RME when SoI was increased from 2.7 up to 7.7 deg 

BTDC. Tests with a SoI 7.7 deg BTDC showed the maximum fuel conversion 

efficiency, as was highlighted by indicating analysis data. A further increase in SoI 

leads to a slight decrease of fuel conversion efficiency. 

 
without EGR with EGR 

 
Figure 3.42 Indicating analysis for the 1500 [rpm] @ 2 [bar] BMEP engine op. point for diesel, 

RME (B30) and HVO (B30) at SoI=5.7 deg BTDC (calibration point) without EGR (left 

column) and with EGR (right column): in-cylinder pressure, heat release rate and injection 

pattern (top), heat release rate and mass fraction burned (bottom). 
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without EGR with EGR 

 
Figure 3.43 Indicating analysis for the 1500 [rpm] @ 2 [bar] BMEP engine op. point for diesel, 

RME (B30) and HVO (B30) at SoI=2.7 deg BTDC without EGR (left column) and with EGR 

(right column): in-cylinder pressure, heat release rate and injection pattern (top), heat release 

rate and mass fraction burned (bottom). 

 Figures 3.47 and 3.48 show BSCO and BSHC emissions respectively at different 

SoI. As highlighted by indicating analysis data, when the start of injection is 

postponed at 2.7 deg before TDC combustion efficiency is very low for diesel and 

RME, therefore an increase of BSCO and BSHC is expected. As a matter of fact a 

decrease on average of BSCO and BSHC of 68% and 82% for diesel and RME was 

observed when SoI was increased from the minimum angle up to 7.7 deg before 

TDC. Finally NOx emissions are showed in Figure 3.49. 
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without EGR with EGR 

Figure 3.44 Indicating analysis for the 1500 [rpm] @ 2 [bar] BMEP engine op. point for diesel, 

RME (B30) and HVO (B30) at SoI=7.7 deg BTDC without EGR (left column) and with EGR 

(right column): in-cylinder pressure, heat release rate and injection pattern (top), heat release 

rate and mass fraction burned (bottom). 

 
Figure 3.45 BSFC with all fuels and SoI at 1500 rpm @ 2 bar BMEP: without EGR (left), with 

EGR (right) 
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Figure 3.46 Fuel conversion efficiency with all fuels and SoI at 1500 rpm @ 2 bar BMEP: 

without EGR (left), with EGR (right) 

 
Figure 3.47 BSCO with all fuels and SoI at 1500 rpm @ 2 bar BMEP: without EGR (left), 

with EGR (right) 

 
Figure 3.48 BSHC with all fuels and SoI at 1500 rpm @ 2 bar BMEP: without EGR (left), 

with EGR (right) 
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Figure 3.49 BSNOx with all fuels and SoI at 1500 rpm @ 2 bar BMEP: without EGR (left), 

with EGR (right) 
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4 Chapter 4 – Particulate Matter 

characterization 

4.1 Introduction 

 In this chapter results from the experimental activity, carried out according to 

methodology described in chapter 2 and concerning the characterization of PM 

emitted from diesel engines operated with different fuels will be presented. The 

discussion will focus, firstly, on PM characterization in terms of both total mass 

and chemical composition obtained by gravimetric and thermogravimetric tests 

respectively (see sections 2.6 and 2.7 for more details). Afterwards PN and size 

distributions will be presented and discussed.  

 Finally the analysis of the mutagenic potential of PM emissions produced by 

different types of fuels will be exposed.  
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4.2 Results analysis and discussion 

4.2.1 PM gravimetric and chemical composition analysis 

PM gravimetric analysis 
 

 As described in paragraph 2.6, PM gravimetric analysis was conducted under 

part load operation fuelling the engine with both conventional diesel and biofuels. 

Tests were executed by weighting filters before and after being loaded with PM by 

means of a high resolution microbalance. Figure 4.1 depicts the main results of the 

investigation and related to the selected operating points (1500 rpm @ 2 bar BMEP, 

1500rpm @ 5 bar BMEP and 1500 rpm @ 8 bar BMEP)  when the engine was fueled 

with diesel, RME B30 and HVO B30.  

 It is worth to be noticed that RME B30 and HVO B30 showed at medium and 

high loads a noticeable reduction of specific PM emissions (34% and 14% on 

average respectively) if compared to diesel fuel. On the contrary at low speed/low 

load operating point (1500 rpm @ 2 bar BMEP), RME B30 exhibited a 32% of 

increase respect to diesel fuel whereas HVO B30 still showed a 32% of reduction if 

compared to diesel. 
 

 
Figure 4.1 PM specific emissions for all op. points and evaluated fuels. 

 As far as HVO B30 is concerned, the highlighted overall decrease in PM 

emissions could be attributed to the chemical properties of this biofuel; the higher 
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cetane number enhances ignitability properties of HVO, while the lack of 

aromatics in HVO molecule leads to a lower soot formation . 

 It is worth to be mentioned that the increase of PM emissions for RME B30 

which was observed at low load is not linked to smoke emissions as shown in 

Figure 4.2. At low load operating point, all three fuels had similar smoke 

emissions, thus suggesting that, in the case of FAME, the soluble organic fraction 

(SOF) of PM may be predominant among other PM fractions, i.e. soot. This bigger 

portion of SOF could be attributed, in first place, to an increase of HC emissions 

for RME B30 respect to other fuels during low load operation. However, results 

discussed in section 3.2.2.2 (Figure 3.35), and replicated in Figure 4.2, concerning 

the impact of both RME and HVO 30%v/v blends on emissions under part load 

operation highlighted a decrease in HC emissions for biofuels at 1500 rpm @ 2 bar 

BMEP. Moreover, the BSHC-A/F relative ratio trade off related to the same 

operating point and obtained with all fuels (Figure 4.3) confirmed the 

abovementioned decrease of HC emissions for RME.  

 

 
 

 
Figure 4.2 Correlation between specific PM emissions and smoke, BSFC, BSHC for all fuels 

and tested operating points  

 The discrepancy between gravimetric analysis and HC emissions could be 

partially explained if the chemical properties of RME B30 are taken into account: 

RME B30 has a higher boiling point and a lower volatility than diesel fuel, 

therefore when unburned biodiesel is present in the dilution tunnel, it should be 
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more likely to condense and adsorb on the carbon particle surfaces. This effect in 

conjunction with the fact that SOF of RME B30 is more sensitive to variations of 

the dilution ratio during filter loading tests as already highlighted by (Van Gerpen 

1998) (see section 2.6.2 for more details on test procedure) could explain the higher 

condensation of unburned hydrocarbons from biodiesel in the sampling system, 

even at 190°C (Van Gerpen 1998) and (Sharp 2000)). 

   

 
Figure 4.3 BSHC versus relative air fuel ratio at 1500 rpm @ 2 bar BMEP 

 In order to gather more information on a possible correlation between 

experimental data and PM emissions which are usually estimated on the basis of 

smoke measurements by means of AVL and MIRA formulas (see Appendix II) 

when different fuels are used, the above discussed outcomes were compared with 

calculated results obtained by using AVL and MIRA relationships (Figure 4.4).  

 At medium and high load conditions, experimental and calculated results were 

in good agreement even though both relationships seemed to overestimate 

experimental data. On the contrary, at low load, variation noticeable difference 

between measured and calculated PM emissions was observed. This could be 

mainly due to the fact that both relationships did not take into account the 

different nature of fuels.  

 In order to gather more details regarding the abovementioned phenomena 

breakdown analysis of calculated PM emissions was performed for both AVL and 

MIRA PM estimates. Figure 4.5 highlights the contribute of each fraction adopted 

for PM calculation. It should be noticed that the weight of each of these factors is 

different accordingly to engine load. At medium and high loads PM is consisted, 

mainly, by soot (“dry” PM), thus explaining the good agreement between 

experimental and simulated data highlighted before. On the contrary, at low load 
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SOF is predominant over other PM fractions, while soot fraction was similar for all 

fuels. Since the noticeable increase in PM emissions encountered during low load 

operation with RME B30, is not detectable with standard FSN and gaseous 

emissions measurements, the significance of these standard measurements which 

are commonly carried out during the engine calibration activity should be 

carefully considered as far as biofuel blends are concerned. 

 

 
 

 
Figure 4.4 Specific PM emissions obtained by using AVL and MIRA models 
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Figure 4.5 Breakdown analysis of PM emissions according to AVL and MIRA model 

 

PM chemical composition analysis 

 

 Results of thermogravimetric test executed at Bureau Veritas Laboratoires are 

presented and discussed in the present section. Figure 4.6 depicts the TGA 

analysis outcomes for the low speed low load tested operating point (1500 rpm @ 2 

bar BMEP). As the figures depicts, VOF takes up majority of overall particulate 

mass (more than 80%) for all fuels, which proves the expectations from 

gravimetric analysis. The substantially huge portion of SOF fraction for RME B30 

(62% over total PM mass) compared to SOF portion of PM detected with diesel 

and HVO B30 fuels (51% and 47% over total PM mass, respectively) could be 

rooted to its physical properties as has been highlighted previously. On the 

contrary, the almost negligible soot portion of PM for RME respect to the one 

observed for the remaining fuels (14% and 16% over total PM mass for diesel and 

HVO B30 respectively) is in contradiction with smoke emissions which were 

similar for all fuels (see Figure 4.2 and Figure 4.5). 

 At medium load operating conditions (1500 rpm @ 5 bar BMEP), for each tested 

fuel, soot covers the largest portion of total PM mass with respect to PM detected 

under low and high load operations (Figure 4.7). This could explain why the 

results obtained by means of smokemeters were in good agreement with 

gravimetric analysis when medium loads were explored. As far as PM emitted 

with different fuels is concerned, a maximum content of almost 33% of SOF for 
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RME was detected. At high load condition (Figure 4.8), soot still occupies the 

largest portion of total PM mass, even if, in absolute terms, is less important than 

the soot portion of PM detected at medium load, probably due to the lower EGR 

rate used during 8 bar BMEP operating point respect to medium load (Figure 4.9).  

 
Figure 4.6 Particulate matter chemical composition for three tested fuel at 1500 rpm @ 2 bar 

BMEP load condition 

 

 
Figure 4.7 Particulate matter chemical composition for three tested fuel at 1500 rpm @ 5 bar 

BMEP load condition 
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Figure 4.8 Particulate matter chemical composition for three tested fuel at 1500 rpm @ 8 bar 

BMEP load condition  

 

 

Figure 4.9 EGR rate of three fuels at thermo-gravimetric analysis 

4.2.2 Particle size and number distribution 

 In this section results from the experimental investigation on soot particles 

number distributions are analyzed and discussed. Prior to starting the discussion 

on particle number distribution results, an additional clarification about following 

results measured through the experimental apparatus described in paragraph 2.8 

should be given. 

 Generally, test results concerning particle number and mass size distributions 

could be reported both in terms of logarithmic or linear y-axis scales; the first is 

useful for a comparison between data with different orders of magnitude such as, 
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for instance, data measured upstream and downstream of the DPF, while the 

second better highlights the distribution shape and allows an easier location of its 

maximum value. 

 Number and mass size distribution, reported in terms of dN/dlogDp and 

dM/dlogDp respectively, are normalized to one decade of particle size, which 

allows particle size distributions to be compared regardless of the size range and 

distributions are already corrected taking into account the DR realized by the two 

stages dilution system. Moreover, mass calculation has been carried out 

automatically by the SMPS control software according to (TSI 2006); in particular, 

the adopted methodology assumes that all particles are perfect spheres with an 

assumed constant density of 1.8 g/cm3, which is a representative value for diesel 

soot. Since the mass size distribution is calculated on basis of number size 

distribution, the following discussions are mainly focused on number size 

distribution. 

 For statistical reasons, data shown hereafter represent averages of at least four 

repeatable scans carried out at each engine operating condition or sampling point 

on the exhaust line; as an example of repeatability, Figure 4.10 shows the 

comparison of five number distributions obtained from five non-consecutive 

SMPS scans measured at the engine outlet for the 2000 rpm, 5 bar BMEP engine 

operating point under normal operating conditions, while Table 4.1 lists the 

statistic calculation for each of the number distribution performed according to the 

methodology reported in (TSI 2006). It is possible to observe that number 

distributions are quite repeatable, with variations between the five scans in mean 

diameter or geometric mean diameter within 5%. 
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Figure 4.10 Comparison of five SMPS scans measured at the engine outlet for the 2000 rpm @ 

5 bar BMEP engine operating point 

Table 4.1 Statistic calculations performed by the Aerosol Instrument Manager
®

 Software 

 SAMP. #1 SAMP. #2 SAMP. #3 SAMP. #4 SAMP. #5 

Median (nm) 54.0 55.2 54.2 56.1 55.7 

Mean (nm) 58.8 60.0 58.9 62 61.4 

Geo. Mean 

(nm) 
52.2 53.0 52.2 54.7 54.4 

Mode (nm) 61.5 57.3 59.4 57.3 59.4 

Geo. St. Dev. 1.66 1.68 1.66 1.67 1.65 

Total Conc. 1.55e+06 

(#/cm³) 

1.49e+06 

(#/cm³) 

1.47e+06 

(#/cm³) 

1.59e+06 

(#/cm³) 

1.55e+06 

(#/cm³) 

 

 

 

4.2.2.1 FAME vs. HVO characterization 

 

 Figure 4.11, Figure 4.14 and Figure 4.15 show particles number and size 

distributions for the 1500 rpm @ 2 bar BMEP, 1500 rpm @ 5 bar BMEP and 1500 

rpm @ 8 bar BMEP operating points measured at engine outlet with three different 

fuels; results are reported with either linear (graphs on the left) and logarithmical 

(graph on the right) y-axis scales. Since the mass size distribution is calculated on 

basis of number size distribution, the following discussions are mainly focused on 

number size distribution. 
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Low load operating point (1500 rpm @ 2 bar BMEP) 

 

 At low load (1500 rpm @ 2 bar BMEP) operating point (Figure 4.11), HVO B30 

showed a significant increase of almost 26% of particles number peak value with 

respect to diesel, while RME B30 exhibited PN distribution similar to diesel. The 

distributions mean diameters are 62.3nm for diesel, 61.4nm for RME B30 while it 

increases up to 66.8nm for HVO B30, with a 7% of increase in mean distribution 

diameter in the case of HVO. These changes in PM number distribution could be 

explained if the EGR rates and relative air to fuel ratios obtained with different 

fuels are taken into account during low load operation. As could be observed from 

Table 4.2, switching fuel from diesel or RME to HVO,  the relative air-fuel ratio 

showed a noticeable decrease of almost 8% passing from 2.4 to 2.2; moreover, it 

should be noticed that due to the position of the calibration point on the soot-λ 

trade off curve obtained with HVO (Figure 4.12) a slight variation of EGR and so 

of λ could be enough to change significantly soot production. On the contrary,  

RME B30, exhibits an overall smoother trade off curve which lies on lower soot 

values with respect to other fuels. The increased local oxygen availability  seems 

therefore to significantly reduce the soot formation. 

 Finally, the extremely important effects on PM emissions that can be attributed 

to shifts in the engine operating points on the calibration maps highlight the need 

for a specific adjustment of the engine calibration on the basis of the fuel 

characteristics (e.g., for the higher LHV of HVO B30 blends) in order to avoid 

jeopardizing the potential emission benefits of biofuels. 

Table 4.2 Relative A/F ratios and EGR rates levels for all fuels at 1500 rpm @ 2 bar BMEP 

 DIESEL RME B30 HVO B30 

Relative 

air/fuel ratio 
2.41 2.48 2.29 

EGR rate 33 33 35 

 
Figure 4.11 PN distribution at 1500 rpm @ 2 bar BMEP: semi-log graph (left), log-log graph 

(right) 
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Figure 4.12 Soot-λ tradeoff curve with all fuels at 1500 rpm @ 2 bar BMEP 

Medium load operating point (1500 rpm @ 5 bar BMEP) 
 

 Even if the calibration points for diesel and HVO B30 are similar (Figure 4.13); 

HVO B30 still shows an increase of 24% of particles number peak value with 

respect to diesel (Figure 4.14) whereas, no appreciable difference between RME 

B30 and diesel were observed.  

 Moreover, as far as diesel fuel is concerned, a slight shift of PN distribution 

towards bigger diameters was observed (Figure 4.14). The increase of mean 

diameter of particle of diesel is mainly to the lower dilution ratio. At 1500 rpm @ 5 

bar BMEP operating condition, the dilution ratio with diesel was 71, while a DR of 

almost 86 was used during tests with both RME B30 and HVO B30. The lower 

dilution ratio used with diesel could mitigate nanoparticles detection. 

 
Figure 4.13 Soot-λ tradeoff curve with all fuels at 1500 rpm @ 5 bar BMEP 

 



89 

T. G. Vlachos – Ph.D. Thesis 

Politecnico di Torino 

 
Figure 4.14 PN distribution at 1500 rpm @ 5 bar BMEP: semi-log graph (left), log-log graph 

(right) 

High load operating point (1500 rpm @ 8 bar BMEP) 
 

 A further increase in engine load from 5 bar to 8 bar does not lead to any 

appreciable variations in number distributions for all fuels (Figure 4.15). The peak 

distribution diameter lied at almost 80 nm for all fuels; it should be noticed that 

during RME operation an increase of nanoparticles was observed. The reason for 

high concentration of nanoparticles of RME B30 could be due to the high local 

oxygen availability which enhanced soot oxidation which led to a decrease of the 

size of PM. 

 
Figure 4.15 PN distribution at 1500 rpm @ 8 bar BMEP: semi-log graph (left), log-log graph 

(right) 

4.2.2.2 Biodiesel feedstock comparison 

 

 In order to gather more information on the effect that different biodiesel 

feedstocks may have on PM emissions, tests were performed under part load 

conditions and with 5 different fuels i.e. reference diesel, RME and JME B30, RME 

and JME B100. As an example Figure 4.16 shows results obtained running the 

engine at 2500 rpm @ 8 bar BMEP with all tested fuels. Results confirmed the 

outcomes highlighted in the previous section, i.e. with B30 blends negligible 

differences on PM particles number distributions were observed respect to diesel. 

On the contrary, when neat biodiesels were adopted, an appreciable reduction on 
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PM particles number distribution was observed (45% on average) if compared to 

other fuels. Moreover, when neat biodiesels were used, a slight shift of the PM 

particles number distribution geometric mean Dp value of almost 15% and 33% 

was observed with respect to B30 blends and diesel respectively. Finally, different 

feedstocks led to similar PN distributions, therefore the nature of the source of 

biodiesel did not affect PM emissions, result which confirmed outcomes discussed 

previously related to the biodiesel feedstock origin (Chapter 2). 

 
Figure 4.16 PN and size distributions with diesel, RME and JME (B30 and B100) at 2500 rpm 

@ 8 bar BMEP 

4.2.3 PM mutagenic characterization 

 Results concerning toxicological assessment of PM emitted from engine fuelled 

with conventional diesel and biofuels are described in the present section. Table 

4.3 lists the revertants levels obtained during Ames test as an average of three 

measurements at different dilution ratios. In more detail Table 4.3 lists the average 

and the standard deviation of spontaneous revertants, of rerertants which were 

induced by standard mutagen, and finally of revertants related to PM each sample 

which was tested. 

 Analysis results highlighted that samples were more sensible at strain TA98 

instead of TA100 one, thus suggesting that the sampled PM was composed mainly 

of compounds which when reacting with mutagens caused frameshift mutations 

(see section 2.9 for more details). Moreover, it should be noticed that TA98 caused 

mutations in both cases: with and without metabolic activation. Therefore, the 

mutagenic activity could be determined by means of compounds and molecules 

directly or indirectly, i.e. taking into account metabolic reactions.  

 In order to wrap up some conclusions, the following remarks could be done: 

PM produced with all three fuels, was sensible to strain TA98 (with and without 

metabolic activation); the adoption of strain TA100 gave positive response only in 

the case without metabolic activation and only when the minimum dilution ratio 

was tested (see Table 4.3). In addition, as far as diesel fuel is concerned, a toxic 

activity with strain TA98-S9 was observed only when the sample with the 
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minimum dilution ratio was tested. This activity was null when S9 fraction was 

used, thus suggesting its detoxifying activity of S9 fraction. Finally, tests 

performed with TA100-S9 on samples with the minimum dilution ratio (for all 

fuels)  demonstrated, as well, that the toxicity is annulled in presence of metabolic 

activation. 

 In order to appreciate better the outcomes of Ames test and to compare results 

which are referred to different fuels, the levels of mutagenicity ratio and net 

revertants number calculated per mg of PM and m3 of sampled air are listed for 

each of the tested strains in Table 4.4. 

 It should be taken into account the fact that: results expressed as Rev/m3 and 

MG/m3 were definitely too high, due to the fact that they are referred to samples 

which were collected directly from the exhaust system of the engine, thus without 

being diluted first at high dilution ratio representative of real life conditions.  

 Finally, an increase in biological activity, measured as MR/mg, for samples 

sourced from HVO (B30) fuel respect to samples derived by other fuels was 

observed (Table 4.4). 
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Table 4.3 Number of revertants with different mutagens for all the tested samples (red fonts 

are referred to toxic activity) 

  
 

 

 

 

 

 

 

 

TA 98 - S9
Colonies number 

(average ± st. deviation)
TA 100 - S9

Colonies number 

(average ± st. deviation)

Spontaneous  21 ± 1  Spontaneous  112 ± 13

2NF  440 ± 93  SA  1058 ± 201

 0.2 mg/plate  toxic   0.2 mg/plate  toxic

 0.1 mg/plate  67 ± 16   0.1 mg/plate  236 ± 26

 0.02 mg/plate  36 ± 2   0.02 mg/plate  155 ± 23

 0.01 mg/plate  30 ± 6   0.01 mg/plate  187 ± 13

 0.002 mg/plate  22 ± 1   0.002 mg/plate  140 ± 20

 0.3 mg/plate  99 ± 14   0.3 mg/plate  toxic

 0.1 mg/plate  58 ± 4   0.1 mg/plate  222 ± 18

 0.03 mg/plate  44 ± 9   0.03 mg/plate  145 ± 17

 0.01 mg/plate  25 ± 7   0.01 mg/plate  180 ± 17

 0.003 mg/plate  26 ± 9   0.003 mg/plate  140 ± 17

 0.2 mg/plate  124 ± 5   0.2 mg/plate  toxic

 0.1 mg/plate  70 ± 8   0.1 mg/plate  250 ± 54

 0.02 mg/plate  32 ± 5   0.02 mg/plate  177 ± 21

 0.01 mg/plate 24 ± 6   0.01 mg/plate  136 ± 23

 0.002 mg/plate  28 ± 6   0.002 mg/plate  138 ± 9

TA 98 + S9
Colonies number 

(average ± st. deviation)
TA 100 + S9

Colonies number 

(average ± st. deviation)

Spontaneous  30 ± 13  Spontaneous  137 ± 16

2AF  2757 ± 157  2AF  1160 ± 308

 0.2 mg/plate  43 ± 14   0.2 mg/plate  154 ± 16

 0.1 mg/plate  42 ± 5   0.1 mg/plate  134 ± 18

 0.02 mg/plate  27 ± 1   0.02 mg/plate  128 ± 11

 0.01 mg/plate  28 ± 1   0.01 mg/plate  118 ± 19

 0.002 mg/plate  24 ± 11   0.002 mg/plate  126 ± 18

 0.3 mg/plate  35 ± 11   0.3 mg/plate  191 ± 72

 0.1 mg/plate  35 ± 13   0.1 mg/plate  201 ± 5

 0.03 mg/plate  23 ± 2   0.03 mg/plate  162 ± 14

 0.01 mg/plate  21 ± 6   0.01 mg/plate  135 ± 30

 0.003 mg/plate  20 ± 3   0.003 mg/plate  144 ± 28

 0.2 mg/plate  60 ± 18   0.2 mg/plate  139 ± 19

 0.1 mg/plate  49 ± 9   0.1 mg/plate  142 ± 12

 0.02 mg/plate  19 ± 7   0.02 mg/plate  134 ± 10

 0.01 mg/plate  22 ± 6   0.01 mg/plate  143 ± 14

 0.002 mg/plate  14 ± 4   0.002 mg/plate  110 ± 8

DIESEL

RME (B30)

HVO (B30)

DIESEL

RME (B30)

HVO (B30)
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Table 4.4 Mutagenicity ratio and net revertants number for all fuels 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Strain MR/mg  MR/m3  Rev/mg  Rev/m3

TA 98 - 21 412 429 8504

TA 98 + 0 0 0 0

TA 100 - 9 176 1014 19816

TA 100 + 0 0 0 0

Strain MR/mg  MR/m3  Rev/mg  Rev/m3

TA 98 - 12 317 250 6587

TA 98 + 0 0 0 0

TA 100 - 8 213 903 23933

TA 100 + 0 0 0

Strain MR/mg  MR/m3  Rev/mg  Rev/m3

TA 98 - 18.5 264 504 7239

TA 98 + 5 79 163 2365

TA 100 - 10 145 1157 16433

TA 100 + 0 0 0 0

RME (B30)

HVO (B30)

DIESEL
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Conclusions 

 The effects of using high percentage blends of ultra low sulphur diesel and 

biofuels (FAME and HVO) in a Euro 5 small displacement passenger car diesel 

engine on combustion process, full load performance and part load emissions 

have been evaluated in this thesis. Moreover, a characterization of PM in terms of 

mass, chemical composition and particles number and size distribution was 

assessed as well. 

 In addition a comparison between two different FAME feedstocks, sourced by 

rapeseed and jatropha respectively was assessed running the engine at full and 

part load. At full load operating conditions, without any modifications to the ECU 

calibration, when fuelling the engine with blended (at 30% v/v blending ratio) and 

neat FAME a noticeable decrease (4% and 7% respectively) in the torque output 

was observed over almost the entire speed range due to the lower LHV of the 

biofuels that could not be fully compensated by the small increase in fuel density. 

Smoke levels measured under RME B30 blend operations were significantly lower 

in comparison with diesel operation, showing impressive FSN reductions. With an 

adjusted ECU calibration, the same torque levels measured under diesel operation 

could be obtained with the B30 blends, while with B100 blends a slight increase in 

torque output was achieved in medium-low load region, thanks to a shift of the 

compressor operating points which led to higher boost pressures. Smoke levels 

were found to be lower for both B30 and B100 in comparison with diesel fuel, for 

all tested operating points. This behavior highlights the potential for maintaining 

at least the same level of performance while achieving substantial emissions 
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benefits. FAME blends were then evaluated at several part load operating 

conditions, representative of the New European Driving Cycle. With the adoption 

of a specific calibration a 4% on average rise of fuel consumption for B30 (12% on 

average for B100), on a mass basis, was highlighted at same fuel conversion 

efficiency and comparable CO2 emissions; if fuel consumption are evaluated on a 

volume basis, as perceived by the final user, the higher biofuel density partially 

compensate its lower energy content, thus leading to volumetric fuel consumption 

increases of 2.5% and 7% for B30 and B100, respectively. Moreover, a noticeable 

increase of CO and HC emissions at low load could be noticed, along with a 

significant NOx emissions decrease, and a considerable smoke emission reduction. 

As far as biodiesel feedstock effects are concerned, no significant emission 

variations could be highlighted between RME and JME blends, both B30 and B100, 

despite noticeable differences in terms of chemical properties, and in cetane 

number in particular. These results can be attributed, at least in part, to the use of 

a closed loop combustion control system, which therefore appeared to be robust 

enough to tolerate the changes in the fuel properties. 

 Recently, Hydrotreated Vegetable Oil (HVO), obtained by means of a refinery-

based process that converts vegetable oils into paraffinic hydrocarbons, has been 

gaining an increasing attention. A comparison between HVO and RME B30 blends 

was therefore evaluated. At full load operating conditions, as far as the HVO B30 

blend is concerned, levels of torque output comparable with reference diesel (with 

differences lower than 1% on average) could be observed over almost the entire 

speed range, while smoke emissions were generally still appreciably lower in 

comparison with diesel values. With an adjusted ECU calibration, the same torque 

levels measured under diesel operation could be obtained. At part load operating 

conditions, representative of the New European Driving Cycle, with the 

specifically adjusted calibration, a 4% average rise of fuel consumption, on a mass 

basis, at same fuel conversion efficiency and CO2 emissions was found for the 

RME blend, while no significant variations were found for the HVO blend. CO 

and HC specific emissions were significantly reduced with both RME and HVO 

B30 blends at low and medium loads, while only modest or even insignificant 

variations were registered at higher loads. This behavior is more evident for the 

HVO blend, likely due to the better ignition quality of this fuel, and could 

therefore be emphasized when considering engine cold conditions (i.e. the 

conditions at the start of the relevant homologation testing procedures). NOx 

emissions with the two biofuel blends were generally comparable with those of 

the reference diesel fuel, while a noteworthy reduction of smoke levels could 

generally be observed for medium and high load operating conditions, especially 

for the RME B30 fuel. 
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 PM characterization in terms of PM mass, chemical composition and PN 

distributions for diesel, RME B30 and HVO B30 was then evaluated. Gravimetric 

analysis showed an increase of 30% of PM mass for RME B30 respect to diesel due 

to its higher distillation temperature, whereras HVO blend showed 30% lower 

specific PM emissions. At medium and high load condition, a noticeable reduction 

of PM for both RME and HVO respect to diesel was observed, due to local oxygen 

availability in RME molecule and lack of aromatics hydrocarbons in the case of 

HVO which led to lower soot emissions. PM gravimetric analysis at medium and 

high load operating points showed a good correlation with soot measurements 

carried out by means of standard laboratory equipment (i.e. smokemeters). On the 

contrary, at low loads, the same instrument underestimated the Soluble Organic 

Fraction (SOF) fraction of PM especially when biofuel was used. Thermo-

gravimetric analysis confirmed the outcomes from gravimetric analysis: the 

significance of standard measurements which are commonly carried out during 

the engine calibration activity should therefore be carefully considered when 

biofuels are concerned. PM particles number and size distribution investigation 

carried out running the engine with conventional and bioderived fuels showed 

that with B30 blends negligible differences on PM particles number distributions 

were observed respect to diesel. On the contrary, when neat biodiesels were 

adopted, an appreciable reduction on PM particles number distribution was 

observed (45% on average) if compared to diesel fuel. Finally, different feedstocks 

led to similar PN distributions, i.e. the nature of the source of biodiesel did not 

affect PM emissions. Finally toxicological analysis on PM emitted when the engine 

was fuelled with diesel, RME B30 and HVO B30 showed an increase in biological 

activity, for samples sourced from HVO (B30) fuel respect to samples derived by 

diesel and RME fuels. 
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6 Appendix I – PM estimation on 

the basis of FSN measurements 

I.1 Introduction 

 Contrary to gaseous diesel emissions, PM is not well defined. PM is 

traditionally divided into the following three main fractions: the solid fraction 

consisted mainly by elemental carbon and ashes, the soluble organic fraction 

(SOF) derived mainly from the fuel and the lubricating oil which condense and 

absorb on soot particles or directly nucleate to new PM particles and sulfate 

particulates (Figure I.1). Moreover, the properties of PM depend on the fuel, 

engine technology, operating conditions, and exhaust aftertreatment. Therefore, 

due to PM complexity does not exist a single absolute measure method for 

particulate matter.  

 Because of simple operability, the fast data availability and the clear indication 

of the emitted soot concentration in the exhaust gas of internal combustion 

engines, instruments which operate on the basis of in situ optical smoke 

measurement techniques such as the smokemeters have become the standard for 

engine test bed. In more detail smokemeters detect the fractional reduction in 

reflectance by a smoke filter due to the blackening of its surface by soot. Therefore 

for the estimation of PM emissions the effects of fuel and oil consumption and fuel 

sulphur content have to be taken into account as well. 
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 In the following sections the estimation of PM emissions using the AVL and 

MIRA relationships will be presented. Both formulas calculate PM emissions on 

the basis of smoke measurements performed by means of smokemeters. It should 

be noticed that both methods adopt the same formula for estimating PM 

emissions, while the difference between methods is related to specific soot 

emissions calculation. In both cases PM emissions are estimated according the 

following expression: 
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 Where SOOT is the specific soot emissions, BSFC and BSHC are the brake 

specific fuel consumption and HC emissions respectively, S is the fuel sulphur 

content and Boil is the oil consumption. 

 

 
Figure I.1. An example of a typical chemical composition of PM  

I.2 AVL relationship 

 According to AVL method, specific soot emissions could be estimated by 

means of the following formulas: 
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 Where P is the engine power, Gexh is the exhaust gases mass flow and 

SOOTConcAVL is the concentration of SOOT calculated on the basis of FSN 

measurements as follows: 
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I.3 MIRA relationship 

 In the case of MIRA method specific soot emission are calculated according to 

the following expressions: 
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 Where Gexh is the exhaust gases mass flow while the variable SOOT is 

calculated as follows: 

 

                     

 

                           

 

                           

 

                            

 

                          

I.4 AVL and MIRA methods comparison  

 Figure I.2 depicts the comparison between the abovementioned methods. It 

should be noticed that in a range of smoke emissions from 1 up to 5 FSN, MIRA 

method overestimates PM emission respect to AVL and viceversa for higher 

smoke emissions. 
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Figure I.2 Comparison between MIRA and AVL methods 
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